
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Supply-demand Forecasting For a Ride-Hailing System

Permalink
https://escholarship.org/uc/item/7hr5t5vv

Author
Wang, Runyi

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7hr5t5vv
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Supply-demand Forecasting For a Ride-Hailing System

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER

in Transportation Science

by

Runyi Wang

Thesis Committee:
Professor Amelia Regan, Chair

Professor R. Jayakrishnan
Professor Wenlong Jin

2017

c© 2017 Runyi Wang

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

ACKNOWLEDGMENTS vi

ABSTRACT OF THE THESIS vii

1 Introduction 1

2 Previous Work 3

3 Model Description 5
3.1 Linear Regression . 5
3.2 Support Vector Machine . 6
3.3 Extreme Gradient Boosting Tree . 8

4 Data Handling 9

5 Experiments 13
5.1 Support Vector Machine . 13
5.2 Improving single XGB model . 15
5.3 Bagging XGBoost . 16
5.4 Multi-model blending . 17
5.5 Model ensemble . 20

6 Result 24
6.1 Support Vector Machine . 24
6.2 Single XGBoost . 25
6.3 Bagging XGBoost . 26
6.4 Random Forest . 26
6.5 Extra Trees . 27
6.6 Adaboost . 27
6.7 Final Model . 27

ii

7 Conclusion 28

Bibliography 30

iii

LIST OF FIGURES

Page

4.1 Frequency of Start District . 10
4.2 Frequency of Gaps . 10
4.3 Top 30 importance of features . 12

5.1 Structure of SVM . 14
5.2 Bagging XGBoost . 18
5.3 Structure of Blending Emsemble Model . 19
5.4 Maximum Information Constant . 21
5.5 Rank Average . 22
5.6 Structure of Final Model . 23

iv

LIST OF TABLES

Page

5.1 Single XGBoost initial parameters . 15
5.2 Grid Search Matrix of max depth and min child weight 16
5.3 Single XGBoost final parameters . 16
5.4 Bagging XGBoost parameters . 17

6.1 SVM parameters . 24
6.2 Single XGBoost parameters . 25
6.3 Bagging XGBoost parameters . 26
6.4 Random Forest parameters . 26
6.5 Extra Trees parameters . 27
6.6 Adaboost parameters . 27
6.7 Final Model parameters . 27

v

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor Professor Amelia Regan of the ITS at UC Irvine.
The door to Prof. Regan’s office was always open whenever I ran into a trouble spot or had
a question about my research or writing. She consistently allowed this paper to be my own
work, but steered me in the right the direction whenever she thought I needed it.

I would also like to thank my thesis committee who were involved in this research project:
Professor R. Jayakrishnan and Professor Wenlong Jin. Without their passionate participa-
tion and input, the paper could not have been successfully conducted.

Finally, I must express my very profound gratitude to my parents for providing me with
unfailing support and continuous encouragement throughout my years of study and through
the process of researching and writing this thesis. This accomplishment would not have been
possible without them. Thank you.

vi

ABSTRACT OF THE THESIS

Supply-demand Forecasting For a Ride-Hailing System

By

Runyi Wang

Master in Transportation Science

University of California, Irvine, 2017

Professor Amelia Regan, Chair

Ride-hailing or Transportation Network Companies (TNCs) such as Uber, Lyft and Didi

Chuxing are gaining increasing market share and importance in many transportation mar-

kets. To estimate the efficiency of these systems and to help them meet the needs of riders,

big data technologies and algorithms should be used to process the massive amounts of

data available to improve service reliability. The model developed predicts the gap between

rider demands and driver supply in a given time period and specific geographic area using

data from Didi Chuxing, the dominant ride-hailing company in China. The data provided

includes car sharing orders, point of interest (POI), traffic, and weather information. A

passenger calls a ride (makes a request) by entering the place of origin and destination and

clicking Request Pickup on the Didi phone based application. A driver answers the request

by taking the order. Our training data set contains three consecutive weeks of data in 2016,

for large Chinese city which is referred to as City M. Though the training set is relatively

small when compared to the whole of Didi’s ride sharing market, it is large enough so that

patterns can be discovered and generalized. These data were made available to researchers

and entrepreneurs by Didi after removal of some identifying information.

vii

Chapter 1

Introduction

Ride-hailing or Transportation Network Companies (TNCs) such as Uber, Lyft and Didi

Chuxing are gaining increasing market share and importance in many transportation mar-

kets.

To estimate the efficiency of these systems and to help them meet the needs of riders, big

data technologies and algorithms should be used to process the massive amounts of data

available to improve service reliability.

Using data from the dominant ride-hailing company in China, this thesis develops a model

to predict supply and demand mismatches.

Because few of Chinas 1.4 billion citizens own automobiles, the frequency with which Chinese

citizens commute on taxis, buses, trains is among the highest in the world. Didi Chuxing,

the dominant ride-hailing company in China processes over 11 million trips and collects over

50GB of data per day. [6]

A common way to predict ride demand is to use traditional statistical methods. These rely

on current traffic information and historical traffic data, and uses models such as Auto-

1

Regression, Moving Average, Autoregressive Moving Average etc. We can also use machine

learning methods to train regression models, inferring the relationship between future traffic

demands and related big data, such as previous traffic demands and supplies, POI (Place

Of Interest) information etc, to optimize the level of accuracy of the prediction. However, it

can be very time-consuming to train these models, so it is crucial to choose the right model

and attributes in order to balance cost and accuracy.

The model developed predicts the gap between rider demands and driver supply in a given

time period and specific geographic area. The data provided includes car sharing orders,

point of interest (POI), traffic, and weather information. A passenger calls a ride (makes a

request) by entering the place of origin and destination and clicking Request Pickup on the

Didi app. A driver answers the request by taking the order. Our training data set contains

three consecutive weeks of data in 2016, for large Chinese city which is referred to as City

M. Though the training set is relatively small when compared to the whole of Didi’s ride

sharing market, it is large enough so that patterns can be discovered and generalized. These

data were made available to researchers and entrepreneurs by Didi after removal of some

identifying information.

Mean absolute error was chosen as the measure for evaluation of the models. Several ma-

chine learning models including Support Vector Machine and Decision Trees were tested

and compared. We also tuned the model’s parameters with cross validation to get the best

result. To improve the performance of our model, we combined a set of algorithms to reduce

overfitting and noise.

The rest of this thesis is organized as follows. In chapter 2, we introduce the classic approach

to predict rider demand. In chapter 3, we introduce the models. Chapter 4 covers the training

set and testing set. In chapter 5 and 6 we discuss our experiments on different models and

results. In chapter 7 we discuss how we set XGBoost hyperparameters. In chapter 8 we

present our conclusions and extensions to do in the future.

2

Chapter 2

Previous Work

Traffic demand prediction is an important topic in transportation. Accurate prediction of

near-future traffic demand makes it possible to generate and evaluate response strategies,

which is very helpful for traffic assignment, vehicle routing and congestion reduction. Cur-

rently there exists a number of techniques to estimating traffic demands in a network. Most

of them are based on historical traffic demand and current traffic situation.

In 1979, Alfa and Minh suggested a stochastic model for traffic demand distribution based

on the commuters’ departure time from home [1]. Heuristic rules describing travel time pre-

diction and departure time adjustment contributes to the dynamics of urban traffic demand

prediction (Chang et al. 1988 [4]). The Dynasmart evaluation model incorporating drivers

response to information, traffic flow behavior, and the resulting changes in the characteristics

of network paths, into an integrated simulation framework was introduced in 1994 [10]. Dy-

naMIT introduced a mesoscopic demand and supply simulation, with reference to departure

time, pre-trip path and mode choice decisions and en-route path choice decisions (Moshe

et al. 1998 [3]).A rolling horizon framework was implemented, which makes it possible to

re-estimate the state of the network frequently, such that the quality of the prediction is

3

maximized. State-space modeling, as a classical technique for dynamic systems has also

been used for extended OD estimation and prediction framework (Antoniou and Koutsopou-

los, 2006 [2]). Also machine learning method such as neural network can also serve as an

approach to reach our goal with quite expensive cost (Min Zhang et al. 1999 [11]). However,

these methods can predict the amount of traffic in the next period of time, but they barely

provide any information on how close their predictions are to the real traffic demand. To

tell that, a technique providing predictions with confidence which can reflect how reliable

the predictions are.(Dashevskiy and Luo, 2008 [7]). Conformal Predictors are introduced

to guarantee that the probability of making erroneous predictions equals to a pre-defined

significance level.

Because of the explosive developments in data collection technologies during the last few

decades, the foundation of decision making has been transformed. Many decision-making

protocols in road traffic management are no longer effective in the sense that they do not

fully utilize the recently increased availability of traffic data. The problem has turned into

how to select significant features and optimize with respect to all available information.

4

Chapter 3

Model Description

Machine learning is a relatively new computing technology that uses artificial intelligence

tools to develop systems that learn from data, rather than simply performing programmed

instructions. Machine learning is now widely used by researchers and industry analysts to

build predictive models from a wide variety of data. As models are fed new data, they are

able to independently adapt. They can learn from historical patterns and computations to

produce reliable predictions and results. In this chapter we introduce three techniques that

we will use to build our traffic demand prediction model.

3.1 Linear Regression

As one of the most basic and commonly used type of predictive analysis, linear regression

is an approach to build relationship between a set of explanatory variables and a dependent

variable from data.[13] It will find the straight line that best fits the plotted data. The

5

general equation for linear regression is

yi = xTi β + εi, i = 1, ..., n,

where xTi β is the inner product between explanatory vector xi and parameters β.

The model will be trained to minimize the squared residuals, which can be calculated as

n∑
i=1

(XT
i β − Yi)2

The parameters of the model can be estimated using the formula:

β = (XTX)−1XTy

3.2 Support Vector Machine

A Support Vector Machine (SVM) by definition is a discriminative classifier formally defined

by a separating hyperplane. An SVM will give a score:

f(xi,W, b) = Wxi + b

in which xi is the data vector, W and b are model’s parameters. It is calculated from the

raw data to identify its class. SVM is evaluated through a loss function:

Li =
∑
j 6=yi

max(0, wt
jxi − wT

yi
xi + ∆) + λ

∑
k

∑
l

W 2
k,l

6

in which ∆ is a fixed margin and R(W) = λ
∑

k

∑
lW

2
k,l is a regularization penalty. It tells

how close the predicted scores to the true class is. Thus the process of training SVM model

can be considered as an optimization problem, in which we tuning its parameters to minimize

the loss function.

SVM has a regularization parameter, which helps us avoid over-fitting. Also the training

process of SVM is defined as a convex optimization problem, so that we can easily use

methods such as Gradient decent. What’s more, SVM comes with a kernel function by

which we can use our domain knowledge. However to overcome the problem of over-fitting,

SVM is more about model selection than finding the best parameters.

To use SVM in regression, slack variables ξ, ξ?are introduced to deal with infeasible constraints.[14]

Slack variables allow regression error to exist up to the value. The primal function of SVM

regression can be written as

j(W) =
1

2
W ′W + C

N∑
n=1

(ξn + ξ∗n)

Subject to:

∀n : yn − (x′nβ + b) ≤ ε+ ξn

∀n : (x′nβ + b)− yn ≤ ε+ ξn

∀n : ξ?n ≥ 0

∀n : ξn ≥ 0

7

3.3 Extreme Gradient Boosting Tree

Quite different from the previous two models, a decision tree is a decision support tool that

uses a tree-like graph or model of decisions and their possible consequences. Using it as a

predictive model is one of the most popular and practical method for inductive inference.

To train the model, we will use Xgboost, which stands for extreme gradient boosting.[5] This

is an optimized distributed gradient boosting library designed to be highly efficient, flexible

and portable. It used a more regularized model formalization to control over-fitting, and

gives it better performance. It pushes the limit of computations resources for boosted tree

algorithms.

Prediction trees can be summed up to get better representation. A tree ensemble can be

written in the form of

ŷi =
K∑
k=1

fk(xi), fk ∈ F

where K is the number of trees, f is a function and F is the set of possible trees.

8

Chapter 4

Data Handling

We have three groups of data. The first group is the order group. Each of the orders has an

order ID, driver ID, user ID, departure location, destination location, price and time. The

second group includes district level information, like POI class, traffic level etc. The last

group shows the weather information every 10 minutes for each district.

First, we explored the information related to the second group of information – the district

information for each order. The city is divided into 66 non-overlapping square districts

D = {d1, d2, ..., d66}. After calculating the frequency of each district, which is plotted in

figure 4.1, it shows that the number of orders in districts is not quite evenly distributed.

15% of the orders took place in district 51, 80% of the orders took place in the downtown

area and rest of the orders are distributed evenly in the rest of the 45 districts.

Then we divide each day uniformly into 144 slots with a length of 10 minutes. In district

di and time slot tj, the demand demandij is defined as the number of passengers’ requests,

and the supply supplyij is defined as the drivers’ answers. The gap can be represented as:

gapij = demandij − supplyij. We’re trying to predict gapij given the historical data of every

district. Most of the orders are made from 7am to 9pm, and there are 2 peaks in the morning

9

and evening rush hours.

Interestingly, as shown in figure 4.2, the frequency of gaps are monotonically decreasing with

the increase of gap length. 30% of the time all user demands are satisfied.

Figure 4.1: Frequency of Start District

Figure 4.2: Frequency of Gaps

10

There are multiple ways to build the samples from the data. We can train the model, using

the data several time slots ahead as the input to predict the target time slot’s gap. Physically

it means that we’re predicting according to changing tendency but not historical record. The

reason we choose this approach is that the data space is relatively small, and there’s no direct

proof that using previous day or week’s data will boost the performance of our model. In

other words, we can make the conclusion that in this data set the main factor affecting the

prediction of gap is the related data in three time slots ahead.

Since we have 144 time slots everyday and 21 days, we have 3024 samples for each district.

We used the first two week’s data as training set and last week’s data as our validate set.

For all categorical information, one hot encoding (a process by which categorical variables

are converted into a form that can be provided to ML algorithms to do a better job in

prediction) should be used for indicating the state.

There are lot of strategies to do feature engineering. We can use Cross Validation (CV)

onto different permutation of features, testing out which one has the greatest influence on

the data. CV involves partitioning a sample of a data into complementary subsets, training

some subsets and validating the performance on the other sets. The data set is split into 10

folds and predicts gap for each part using the other parts to train with. Multiple rounds of

CV should be performed onto the model to avoid overfitting problem.[12]

Also, XGBoost offers calculation of importance, which can be used as a reference on the data

selection. The features of top 30 importance are listed in figure 4.3. We use 190 dimensions

of features and some subsets of the features to build a hybrid model.

In chapter 5, to determine the hyperparameters of the model, CV will also be used for help.

Using CV onto different hyperparameter combinations is called Grid Search.

11

Figure 4.3: Top 30 importance of features

12

Chapter 5

Experiments

This chapter provides details on how we conducted experiments on the data set of the three

different models.

5.1 Support Vector Machine

When handling huge amount of data, Support Vector Machine has the problem of slow

training speed and enormous memory usage. Kernelized SVMs require the computation

of a distance function between each point in the dataset, which is the dominating cost of

O(nfeatures × n2
observations). Also, the storage of such number of distance is a huge burden on

memory, so that most of the time we recompute the distance when we need them. Hence the

running time can go up to O(nfeatures×n2
observations). Hence to solve problem with large-scale

data set, methods like working set selection, divide and conquer strategy etc.

In this thesis, we use the idea of ensemble SVM[15] to train 30 different SVM models with

bootstrapped subsets of the data set. Though it might seem like we’re increasing the com-

plexity of the algorithm, the complexity is actually reduced. Assume we divide the data into

13

p subsets, then the size of each set is n/p, the complexity of training each sub SVM model

is O((n/p)2). The total complexity can be calculated as:

p∑
i=1

O((n/p)2) = O(n2/p)

which is stepped-down by p times.

After the submodels are trained, we take average of the predictions as a result. This method

greatly reduced the training time without sacrifice of accuracy. The whole architecture of

this model is shown in the figure below .

Figure 5.1: Structure of SVM

14

5.2 Improving single XGB model

Hyper-parameters are parameters those will not be learnt within estimators. To build a

well-performed XGB model, we used the technique of grid search and cross validation to find

out the best hyper-parameters. There are three types of parameters in an XGBoost model

according [5]. General parameters define the boosting model, booster parameters are the

detail parameters of the chosen model and learning task parameters guide the optimization

performed. In this thesis we consider only the tree booster.

To determine the best boosting parameters, we need to set some initial values of other

parameters. We started with the following values:

max depth 3
learning rate 0.1

gamma 0
min child weight 1

subsample 1
colsample bytree 1

max depth 3
reg alpha 0

reg lambda 1
min child weight 1
scale pos weight 1

base score 0.5

Table 5.1: Single XGBoost initial parameters

We tuned the max depth and min child weight first as they will have the major impact on

model performance. Wider ranges were set first and then we performed iterations for smaller

ranges. For the other parameters we followed very similar steps. A matrix of two grids was

built in the form of:

As the model performance increases, it becomes much more difficult to achieve even marginal

gains in performance.

15

max depth [3, 5, 7, 9]
min child weight [1, 3, 5]

Table 5.2: Grid Search Matrix of max depth and min child weight

By doing these iterations on different combinations of parameters, we obtained the best set.

We show these in table 5.1:

max depth 8
learning rate 0.1

gamma 0.2
min child weight 2

subsample 0.7
colsample bytree 0.85

reg alpha 100
scale pos weight 1

Table 5.3: Single XGBoost final parameters

A significant boost in performance can be observed. However, it is difficult to get a very

big improvement by just tuning hyperparameters. To achieve a significant boost, we have

to build an ensemble model.

5.3 Bagging XGBoost

Averaging is very helpful for a wide range of problems, including both classification and

regression. Also it works well on usual metrics, for example accuracy or mean square error.

Bootstrap aggregating, also known as bagging, is a very frequently used machine learning

ensemble meta-algorithm, and a special case of the model averaging approach. It is designed

to the stability and accuracy of machine learning models and reduce overfitting.[9]

Inspired by research on bagging, we allowed these parameters to fluctuate randomly within

a certain small range while randomly sampling the characteristics and training multiple

16

xgboost sub-models for averaging. 30 sub-models are trained using a subset of the training

set and the parameters will be randomly generated randomly in a small range around the

parameters of the best single xgboost model. The details of the parameters is listed in the

following table:

max depth 7 9
gamma 0 0.5

min child weight 1.5 2.5
subsample 0.65 0.75

colsample bytree 0.8 0.9
min child weight 1.5 2.5

Table 5.4: Bagging XGBoost parameters

After we acquired the models, we calculate the average of their predictions. Bagging brought

diversity into our model, which will generalize our model well to new unseen data. The graph

below illustrate the basic principle of bagging being used in our model.

We took 50 samples from the training set to illustrate how bagging works. The gray lines

are very wiggly and show that the model is overfitting the data. By taking the average of 30

sampled parameter values each is fitted to a subset of the entire data set. The new prediction

is more stable and has less overfitting.

5.4 Multi-model blending

Model ensembling is a very powerful technique to improve the performance of ML tasks.

In this thesis we use blending ensemble to build a hybrid model based on Random Forest,

Extra Trees and AdaBoost.

The blending process is actually divide the training set into smaller training sets train−train

and validating sets train− valid during cross validation. Linear regression has been chosen

17

Figure 5.2: Bagging XGBoost

to be the upper-level model, the whole structure are as follows in figure 5.3.

Random forest and extra trees are very similar models. Both of are estimators that fit a

number of decision trees. When choosing variables at a split, extra trees draw samples from

the entire training set instead of a bootstrap sample of the training set. Also the splits are

chosen completely at random from the range of values in the sample at each split. Random

forests are generally more compact than extra trees in practice, but they are also more

expensive to train.

AdaBoost is a meta-estimator that begins by fitting from original data set, and then Ad-

18

Figure 5.3: Structure of Blending Emsemble Model

aBoost training process selects only those features known to improve the predictive power

of the model. Unlike other models, AdaBoost can achieve similar results with much less

tweaking of parameters or settings.

The blending process in our model was according to the following steps:

1. Split the training set into 5 sub train and test sets, named train− traini and train−

validi.

2. Train and cross-validate 3 models from each of the subsets. Then use the submodels

to predict on train− traini, get train− predij

19

3. For each model j, merge train− predij into one prediction set train− predj.

4. Use train− predj as input and the true label of training set as output to train a linear

regression model as our final ensemble model.

5.5 Model ensemble

Once we acquired all three models, we build final ensemble model based on them. The

structure is shown in figure 5.3:

To take the benefits of having multiple models, we build the ensemble by taking their weighed

averages. To get a good result from ensemble, diversity is highly required. To observe the

difference of different single models, we calculate the Maximum Information Constant (MIC)

between the models, and visualize them in matrix (brighter colors means less correlation).

From figure 5.4, we show that the correlation of MIC between XGBoost and SVM, XGBoost

and blending, SVM and blending are relatively lighter. These combinations of models show

great diversity and so that we ensemble these models by taking weighed average.

In summary, as shown in figure 5.6, we implemented a multi-layer ensemble model framework

from 4 different submodels:

1. SVM: Randomly divide the whole data set into 30 subsets such that the complexity will

be decreased. We take the average of scores to be M1’s prediction.

2. Bagging XGBoost: Generate 30 different XGB models by randomly adjusting parameter

in a small range. We also take the average of scores to be M2’s prediction.

3. Blending Model: Train different models on the same data set and use the parameters as

a starting point, and then continue training with Logistic Regression to reach the weight of

20

Figure 5.4: Maximum Information Constant

each model.

4. Sngle XGBoost: Single XGBoost model with best performance given by CV.

On the top level we can use averaging to get our final model. We chose rank averaging as

figure 5.5, since it gives the best result.

21

Figure 5.5: Rank Average

22

F
ig

u
re

5.
6:

S
tr

u
ct

u
re

of
F

in
al

M
o
d
el

23

Chapter 6

Result

The parameters and result of all models are listed in this Chapter.

6.1 Support Vector Machine

Number of Submodels 30

C 1 4

gamma 0.001 0.031

min child weight 1

cache size 7000

verbose true

rbf true

Mean Absolute Error 7.9957

Explained Variance Score 0.3793

Table 6.1: SVM parameters

24

6.2 Single XGBoost

max depth 8

learning rate 0.1

gamma 0.2

min child weight 2

subsample 0.7

colsample bytree 0.85

reg alpha 100

scale pos weight 1

base score 0.5

Mean Absolute Error 4.6319

Explained Variance Score 0.8881

Table 6.2: Single XGBoost parameters

25

6.3 Bagging XGBoost

Number of Submodels 30

max depth 7 9

gamma 0 0.5

min child weight 1.5 2.5

subsample 0.65 0.75

colsample bytree 0.8 0.9

min child weight 1.5 2.5

Mean Absolute Error 4.6019

Explained Variance Score 0.8856

Table 6.3: Bagging XGBoost parameters

6.4 Random Forest

max depth 12

max features 0.14357

min impurity split 1e-7

min samples leaf 3

min samples split 6

n estimators 6

Mean Absolute Error 6.3750

Table 6.4: Random Forest parameters

26

6.5 Extra Trees

max depth 20

max features 0.4

min impurity split 1e-7

min samples leaf 2

min samples split 5

Mean Absolute Error 4.9709

Table 6.5: Extra Trees parameters

6.6 Adaboost

n estimators 10

Mean Absolute Error 5.7845

Table 6.6: Adaboost parameters

6.7 Final Model

Single XGBoost weight 0.5

Bagging XGBoost weight 0.25

Blending Ensemble 0.16

SVM 0.09

Mean Absolute Error 4.6657

Explained Variance Score 0.8813

Table 6.7: Final Model parameters

27

Chapter 7

Conclusion

A traffic demand-supply prediction model has been developed that is based on historical

record and traffic information. A combination of multiple machine learning algorithms has

been used in the development of the model.

1. The best approach to build a prediction regressor right now can be categorized as

Decision Trees and Neural Networks.

• Among single models, XGBoost outperformed any other models. But there are

still a lot of choices out there, such as multilayer perceptron, one-shot memory

network, feedforward neural network etc.

• The Decision Tree’s structure, learning algorithms and parameters tuning has a

great influence on the final result.

• With respect to efficiency of compute time and memory resources, XGBoost has

have some significant advantages over neural network.

• The ensembles of different models brought diversity and made the predictions

smoother, which reduced variance and helped to avoid overfitting.

28

2. Feature engineering is the foundation of models’ performance.

• Data visualization can greatly help feature extraction.

• Categorizing samples according to their similarity on some features can greatly

improve the performance of the model.

• The key feature should be highly related to our target physically. In our case, it’s

the gap from the previous time slot.

• Always use one hot encoding on categorical features.

3. There is still room to improve on the way we split training and testing set. A shifting

time window can be used to increase the number of samples.

4. Once we can precisely predict the future demand-supply gap, we can build an algo-

rithm to optimize the geographic and temporal distribution of drivers’, so that there

are always enough cars available for the riders in any zone during any time interval.

According to Wardrop’s Principles, we can design a system optimization heuristic such

that most of the demand can be satisfied. We can start with Dial’s multipath traffic

assignment model (R. Dial, 1970 [8]), improve its complexity and result.

29

Bibliography

[1] A. S. Alfa and D. L. Minh. A stochastic model for the temporal distribution of traffic
demandthe peak hour problem. Transportation Science, 13(4):315–324, 1979.

[2] C. Antoniou and H. Koutsopoulos. Estimation of traffic dynamics models with machine-
learning methods. Transportation Research Record: Journal of the Transportation Re-
search Board, (1965):103–111, 2006.

[3] M. Ben-Akiva, M. Bierlaire, H. Koutsopoulos, and R. Mishalani. Dynamit: a simulation-
based system for traffic prediction. In DACCORD Short Term Forecasting Workshop,
pages 1–12, 1998.

[4] G.-L. Chang and H. S. Mahmassani. Travel time prediction and departure time adjust-
ment behavior dynamics in a congested traffic system. Transportation Research Part B:
Methodological, 22(3):217–232, 1988.

[5] T. Chen and T. He. Xgboost: extreme gradient boosting. R package version 0.4-2,
2015.

[6] D. Chuxing. The di-tech challenge. http://research.xiaojukeji.com/com peti-
tion/main.action?competitionId=DiTech2016, 2016.

[7] M. Dashevskiy and Z. Luo. Network traffic demand prediction with confidence. In
Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE, pages
1–5. IEEE, 2008.

[8] R. B. Dial. A probabilistic multipath traffic assignment model which obviates path
enumeration. Transportation research, 5(2):83–111, 1971.

[9] T. Hothorn and B. Lausen. Double-bagging: Combining classifiers by bootstrap aggre-
gation. Pattern Recognition, 36(6):1303–1309, 2003.

[10] R. Jayakrishnan, H. S. Mahmassani, and T.-Y. Hu. An evaluation tool for advanced traf-
fic information and management systems in urban networks. Transportation Research
Part C: Emerging Technologies, 2(3):129–147, 1994.

[11] Z. Y. Y. H. R. Min. Study on transportation demand forecast using neural network
model [j]. Journal of Southwest Jiaotong University, 5:022, 1999.

30

[12] A. W. Moore. Cross-validation for detecting and preventing overfitting. School of
Computer Science Carneigie Mellon University, 2001.

[13] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied linear statistical
models, volume 4. Irwin Chicago, 1996.

[14] A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and
computing, 14(3):199–222, 2004.

[15] M. Tian, W. Zhang, and F. Liu. On-line ensemble svm for robust object tracking.
Computer Vision–ACCV 2007, pages 355–364, 2007.

31

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Previous Work
	Model Description
	Linear Regression
	Support Vector Machine
	Extreme Gradient Boosting Tree

	Data Handling
	Experiments
	Support Vector Machine
	Improving single XGB model
	Bagging XGBoost
	Multi-model blending
	Model ensemble

	Result
	Support Vector Machine
	Single XGBoost
	Bagging XGBoost
	Random Forest
	Extra Trees
	Adaboost
	Final Model

	Conclusion
	Bibliography

