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Abstract. Rain-on-snow (RoS) events in regions of
ephemeral snowpack – such as the northeastern United States
– can be key drivers of cool-season flooding. We describe
an automated algorithm for detecting basin-scale RoS events
in gridded climate data by generating an area-averaged time
series and then searching for periods of concurrent precip-
itation, surface runoff, and snowmelt exceeding predefined
thresholds. When evaluated using historical data over the
Susquehanna River basin (SRB), the technique credibly finds
RoS events in published literature and flags events that are
followed by anomalously high streamflow as measured by
gauge data along the river. When comparing four differ-
ent datasets representing the same 21-year period, we find
large differences in RoS event magnitude and frequency, pri-
marily driven by differences in estimated surface runoff and
snowmelt. Using dataset-specific thresholds improves agree-
ment between datasets but does not account for all discrepan-
cies. We show that factors such as meteorological forcing and
coupling frequency, as well as choice of land surface model,
play roles in how data products capture these compound ex-
tremes and suggest care is to be taken when climate datasets
are used by stakeholders for operational decision-making.

1 Introduction

Rain-on-snow (RoS) events have been increasingly studied
over the past few decades, yet such research is overwhelm-
ingly focused on mountainous regions with well-defined
seasonal snowpacks (Singh et al., 1997; McCabe et al.,

2007; Wayand et al., 2015; Sterle et al., 2019; Musselman
et al., 2018; Poschlod et al., 2020; Hatchett, 2021; Siirila-
Woodburn et al., 2021; Heggli et al., 2022; Yu et al., 2022;
Brandt et al., 2022; Maina and Kumar, 2023; Haleakala et
al., 2023). Correspondingly, there has been less focus in ar-
eas with more ephemeral snow cover, such as the north-
eastern United States, even though RoS events, a flavor of
compound extreme events (AghaKouchak et al., 2020), pro-
duce many cases of “slow-rise” flooding – floods generally
occurring more than 6 h after the onset of the meteorolog-
ical driver (Dougherty et al., 2021). Climatologically, RoS
events in the northeastern United States peak in late winter
and spring (Ashley and Ashley, 2008; Villarini and Smith,
2010; Dougherty and Rasmussen, 2019; Wachowicz et al.,
2020) and are key drivers of flooding in New England and
the Atlantic side of Canada (Collins et al., 2014). Synoptic
case study analyses of recent RoS events in the mid-Atlantic
highlight inland-running extratropical cyclones that advect
warm, moist air into the region as key dynamical drivers
(Grote, 2021; Suriano et al., 2023). Rapid snow ablation in
ephemeral snow regions has been shown to have a strong
correlation with increases in basin streamflow in the days fol-
lowing snowmelt (Suriano et al., 2020, 2023).

While climatological studies are critically important,
event-level analysis has become increasingly valuable when
communicating climate risks (Shepherd et al., 2018). One
river basin in the northeastern United States that has his-
torically dealt with RoS events is the Susquehanna River
basin (SRB) – a basin home to more than 4 million people
(Leathers et al., 2008) and one considered climatologically
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flood-prone due to the wide variety of weather phenomena
that occur within the region (Perry, 2000). The most con-
sequential non-tropical-cyclone flood in recent SRB history
was a RoS flood that occurred in January 1996, resulting in
∼USD 1.5 billion in damages and 30 fatalities (Leathers et
al., 1998). Significant events such as this are frequently used
by stakeholders as a point of reference for real-time forecasts
and long-term planning (St. George and Mudelsee, 2019).
Other evidence, such as the Great Flood of 1936 (another
RoS event), and the fact that sediment records indicate pre-
historic periods of high flood activity are associated with neg-
ative phases of the North Atlantic Oscillation (NAO) (which
drive positive snowpack anomalies in the northeastern United
States; Hartley and Keables, 1998) underscore the impor-
tance of these events to regional hydrology (Toomey et al.,
2019).

While studying historical events is important for plan-
ning purposes, and counterfactual reforecasts using imposed
warming approaches can provide clues as to how similar
events may unfold in the future (e.g., Pettett and Zarzycki,
2023), it is difficult for such approaches to provide risk quan-
tification from a frequency-of-occurrence perspective. For
these climatological evaluations, it is desirable to be able to
identify such events in both observational datasets and model
simulations, including future climate projections. Unfortu-
nately, assessing extreme, compound, and discrete events in
climate datasets is a complex challenge, particularly because
such datasets are not necessarily developed specifically for
this purpose (Angélil et al., 2017; Parker, 2020), and there is
commonly a lack of observational reference datasets to quan-
tify their fidelity. Gridded datasets (spatiotemporally contin-
uous data provided on a regular latitude–longitude mesh) of
the historical record are frequently used to assess hydrome-
teorological extremes in locations with poor or nonexistent
station observations. They are also utilized in climate anal-
yses requiring multiple complex variables, as well as for
evaluating model sensitivity and performance. Further, fu-
ture changes in RoS event frequency and character due to
climate change are projected via the use of free-running mod-
els, which operate on numerical grids and do not have an a
priori record to compare to, making the use of an automated
heuristic a requirement.

Therefore, to extract information regarding compound hy-
drometeorological extremes, such as RoS events, and their
corresponding statistics, algorithmic techniques that objec-
tively analyze datasets without manual intervention are de-
sirable. Here, we demonstrate a technique for generating a
RoS event database at the basin scale for arbitrary gridded
datasets and intercompare key decision-relevant differences
(e.g., flood frequency) across four climate data products. We
choose to focus on the SRB based on its proximity to ma-
jor population centers, existing evidence for increasing flood
hazards and exposure in the basin (Sharma et al., 2021), and
the aforementioned 1996 extreme event serving as a bench-
mark for the mid-Atlantic United States, although the tech-

nique described can be applied to any geographically defined
basin with properly specified thresholds.

2 Methods

2.1 Datasets

We evaluate RoS events within three widely used climate
datasets and in one state-of-the-art Earth system model
(ESM) nudged towards an atmospheric reanalysis. All four
datasets seek to reproduce observed conditions, although
each uses a distinct methodology to do so. First, we inves-
tigate the dataset described in Livneh et al. (2015) (here-
after, L15). L15 is a widely used 1/16° hydrometeorological
dataset covering most of North America. Meteorological data
provided by L15 consist of daily precipitation, temperature
(maximum and minimum), and wind speed at each location
(Henn et al., 2018). These data are then temporally interpo-
lated to obtain subdaily estimates (Bohn et al., 2013), which
are then used to drive the variable infiltration capacity (VIC;
Liang et al., 1994) land surface model (LSM) to produce
hydrometeorological outputs. Next, we investigate the 1/8°
North American Land Data Assimilation System (NLDAS-
VIC4.0.5) described in Xia et al. (2012). NLDAS is driven
by offline atmospheric forcing derived from the North Amer-
ican Regional Reanalysis, with adjustments made to some
variables based on observations. NLDAS uses a combination
of daily observations and radar data to produce hourly esti-
mates of precipitation. While there are multiple NLDAS-2
LSMs that produce hydrologic output variables, we analyze
only the NLDAS-VIC4.0.5 as it is the most methodologi-
cally consistent with L15. We also analyze a ∼ 0.5° global
reanalysis (JRA-55; Kobayashi et al., 2015), generated by
running a prognostic ESM while continually assimilating ob-
servational data during integration. Global reanalyses serve
as a bridge between in situ, but spatiotemporally unstruc-
tured, observational data and free-running climate models
(Parker, 2016). Finally, a ∼ 1° nudged version of the U.S.
Department of Energy (DOE) Energy Exascale Earth System
Model (E3SM, Golaz et al., 2022) model is analyzed (Zhang
et al., 2022). Assessing this dataset provides insight into the
capability of ESMs used in climate assessments (e.g., the
Coupled Model Intercomparison Project Phase 6 (CMIP6),
Eyring et al. (2016)) to capture observed hydrometeorologi-
cal extreme events. E3SM performs close to the CMIP6 en-
semble mean across several measures of skill (Fasullo, 2020).
To constrain the large-scale meteorology in E3SM to match
observed conditions, the E3SM simulation is nudged using
6-hourly fields from the ERA5 reanalysis (Hersbach et al.,
2020) generated using the technique contained in the Beta-
cast toolkit (Zarzycki, 2023), initially outlined in Zarzycki
and Jablonowski (2015). This nudging acts as a crude as-
similation technique and is only applied in the free atmo-
sphere (above nominally 850 hPa, or 1 km). The zonal and
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meridional winds are nudged to ERA5 analysis with a relax-
ation timescale τ = 3 h, and the temperature is nudged with
τ = 24 h. No nudging is performed on the surface pressure
or moisture fields. The simulation reproduces observed pat-
terns of 500 hPa geopotential height and sea level pressure
while simulating grid-scale processes relatively untethered
by the nudging reanalysis product (Sun et al., 2019). E3SM
is run with a spectral element dynamical core on an unstruc-
tured cubed-sphere mesh (ne30np4), and simulation output
is remapped to a 1°× 1° rectilinear grid using higher-order
methods (Hill et al., 2004). All model settings and tunings
are left as the default contained in the commit used here
(f9cbe57).

2.2 Defining basin-scale events

A schematic of the RoS detection algorithm described here
is shown in Fig. 1. To identify RoS events in the datasets,
three hydrometeorological variables are used: precipitation
(PRECIP, includes both rainfall and snowfall), surface wa-
ter runoff (ROF), and snow water equivalent (SWE). The
24 h change in SWE from the previous day (dSWE) is cal-
culated via a simple backward difference. All data are stan-
dardized to daily average values (00:00Z to 00:00Z) by tem-
porally averaging any subdaily (e.g., hourly) data at each grid
cell. Grid cells that have at least 50 % of their area enclosed
by the shapefile boundary of a river basin (here, the SRB)
are kept, while those exterior to the basin are set to missing
values (Fig. 1a). The resulting SRB domains for each prod-
uct can be seen in Fig. 2. A basin-wide time series is then
constructed by spatially averaging fields for each day and
smoothing the resulting time series using a moving average
to reduce day-to-day noise. We choose a 5 d window based
on midlatitude synoptic timescales (Holton, 2004), although
other window durations did not materially impact these find-
ings (not shown).

This results in a one-dimensional time series with a sin-
gle value for each calendar day that represents the basin-
averaged conditions for each data product. RoS days are then
defined by flagging periods of positive ROF and negative
dSWE (snow loss) that both exceed specified thresholds (t).
We test two methods of thresholding: one uses fixed thresh-
olds across all four datasets (FIXED), and the other defines
dataset-specific thresholds by those exceeding 95 % of all
daily values (RELATIVE). For FIXED, we require an aver-
age ROF of 1.4 mmd−1 (tROF) and dSWE of −1.4 mmd−1

(tdSWE) averaged across the basin based on a manual sensi-
tivity analysis. Thresholds in the RELATIVE configuration
are calculated independently for each product by computing
the 95th percentile value for each variable in the unsmoothed
daily 1985–2005 time series (Fig. 1b). This results in an ar-
ray containing a binary value for each day defining whether
or not it is a “RoS day”. Contiguous RoS days are considered
to be part of a single “RoS event” such that discrete events
can last for different durations.

To enforce a criterion that precipitation occurs during at
least some portion of the event, we require an average PRE-
CIP of 2 mmd−1 (tPRECIP), which is kept the same in both
the FIXED and RELATIVE configurations. We note that our
findings are actually largely insensitive to the magnitude of
the PRECIP threshold (or even its inclusion), implying the
vast majority of events with high dSWE and ROF are also
associated with non-zero PRECIP. This supports the notion
that similar synoptic meteorological patterns (Grote, 2021)
and additional liquid input to the surface (i.e., runoff being
a combination of snowmelt and water flux from the atmo-
sphere) lead to the majority of RoS floods being associated
with, at least, some precipitation versus precipitation alone
being a primary driver of such events. It also concurs with
Suriano et al. (2023), who found that, while RoS days con-
tributed disproportionately to extreme snow ablation events,
snowmelt also occurred in a myriad of non-precipitating
patterns, including high-pressure overhead and under north-
westerly/westerly large-scale flow. We argue this also corrob-
orates the finding that actual heat transfer between the liquid
rain and the surface of the snowpack is rather small and ex-
plains only a small fraction of the observed snowmelt (Moore
and Owens, 1984).

A sample RoS event detection is shown in Fig. 1c. The
smoothed basin-averaged daily time series of PRECIP, ROF,
and dSWE are shown from top to bottom in dark green, blue,
and red respectively (the thinner line represents the raw, un-
smoothed time series). The various thresholds (tPRECIP, tROF,
and tdSWE) are shown as horizontal dashed lines. The area
where the metric exceeds the relevant t (i.e., days that the
variable’s RoS criterion is satisfied) is shaded for each time
series. The vertical black lines denote the start and end of
the event, defined by the first and last times when all three
quantities exceed their defined threshold t . Gray shading rep-
resents contiguous days where all three criteria are satisfied,
thus defining a RoS event. Here, an event from 17 January to
25 January 1996 was added to the record.

For context, our definition here of RoS is somewhat arbi-
trary. Most studies enforce some fixed combination of pre-
cipitation and snowpack threshold. Ye et al. (2008) classified
events as liquid precipitation falling onto at least 10 mm of
existing snowpack in a grid box. Musselman et al. (2018) de-
fine “RoS days” where at least 10 mm of precipitation falls
on at least 10 mm of snowpack in a given day. This technique
was adopted by López-Moreno et al. (2021) and Maina and
Kumar (2023). A similar strategy, but applying higher thresh-
olds (20 mm precipitation, 250 mm snowpack), was used by
Würzer et al. (2016). Likewise, Hotovy et al. (2023) required
10 mm of existing SWE and greater than 0 °C surface tem-
peratures to enforce collocated daily precipitation (of at least
5 mm) to fall in liquid form. Instead of a SWE metric, oth-
ers have applied snow cover fraction or some other snow/no-
snow classification in addition to a precipitation threshold
(Mazurkiewicz et al., 2008; Pradhanang et al., 2013; Co-
hen et al., 2015). Others include some measure of snowmelt,
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Figure 1. Schematic demonstrating how RoS events are defined in this work. (a) Gridded daily averaged data are first masked to only retain
data within a defined shapefile (here the SRB) and then area-averaged to produce a single value on that day for the area. (b) Exceedance
thresholds t can be computed from these daily values by using a specified percentile (e.g., 95th) of the distribution of the entire dataset.
(c) Finally, RoS events are defined as contiguous days where the basin-averaged time series of ROF, dSWE, and PRECIP all exceed their
thresholds tROF, tdSWE, and tPRECIP, respectively. In the bottom plots, the darker lines represent the smoothed time series, while the thinner
lines denote the raw daily data. Shaded areas indicate periods when the given variable’s time series is above its relevant threshold t (denoted
as a horizontal dashed line).

such as Freudiger et al. (2014) and Li et al. (2019), who re-
quired 3 mm of rainfall, 10 mm SWE, and no larger than a
4 : 1 ratio between rainfall and snowmelt in order to elimi-
nate rain-only events (Musselman et al., 2018, also includes
the latter requirement). Suriano (2022) similarly required a
10 mm daily snow depth decrease that occurred in combina-
tion with above-freezing temperatures and non-zero precipi-

tation. However, relative strategies have also been proposed,
such as the 98 % threshold used for covarying extremes in
the compound event analysis of Poschlod et al. (2020). Other
studies simply require the joint occurrence of precipitation
and snowmelt in a given period (McCabe et al., 2007; Sur-
fleet and Tullos, 2013; Collins et al., 2014; Guan et al., 2016;
Jeong and Sushama, 2018). Wachowicz et al. (2020) used

Nat. Hazards Earth Syst. Sci., 24, 3315–3335, 2024 https://doi.org/10.5194/nhess-24-3315-2024
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Figure 2. November to April (inclusive) mean climatologies of L15, NLDAS, JRA, and E3SM (left to right). From top to bottom are
precipitation (PRECIP; mmd−1), surface runoff (ROF; mmd−1), snow water equivalent (SWE; mm), and daily change in snow water
equivalent (dSWE; mmd−1). dSWE only includes days with snow loss at a particular grid cell. Data are only included if > 50 % of a grid
cell lies within the SRB bounds (black outline).

the same gridded data and explored four different definitions
derived from some of the above and found high-level agree-
ment.

This brief literature review is not meant to be considered
exhaustive but rather to highlight that both RoS evaluation
techniques in this article fall within the scope of existing
strategies. It also emphasizes that extreme RoS events in
mountainous regions with more seasonal snowpack or those
using grid point values versus basin-integrated metrics may
require different thresholds. With the caveat that much of the
previously cited RoS work has focused on regions with less
ephemeral snowpack (e.g., western US mountains), the algo-

rithm discussed here falls within the envelope of previously
published results both from a heuristic perspective and also
with respect to our defined thresholds. We also note that our
decision to use surface runoff in our definition is unique and
implicitly includes the permeability of soil in our calcula-
tion. For example, the 1996 SRB event was exacerbated by
first frozen and then saturated soils, allowing for significant
lateral movement of water across the surface (Yarnal et al.,
1997). While the application of this threshold is intuitive, we
acknowledge it does introduce the potential for land surface
errors to be more apparent in RoS detection (e.g., biases in
soil properties in conditions).

https://doi.org/10.5194/nhess-24-3315-2024 Nat. Hazards Earth Syst. Sci., 24, 3315–3335, 2024
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Table 1. Pearson correlations between data products for daily
time series of precipitation (top), surface runoff (middle), and 24 h
change in snow water equivalent (bottom) over the study period. All
values are correlated significantly at greater than the 99.9 % confi-
dence level using a two-sided t test, indicating that all time series
represent the same historical period and include relevant day-to-day
variations over the SRB.

JRA L15 NLDAS E3SM

PRECIP

JRA 1.00 0.76 0.89 0.75
L15 0.76 1.00 0.81 0.93
NLDAS 0.89 0.81 1.00 0.77
E3SM 0.75 0.93 0.77 1.00

ROF

JRA 1.00 0.89 0.88 0.83
L15 0.89 1.00 0.85 0.74
NLDAS 0.88 0.85 1.00 0.82
E3SM 0.83 0.74 0.82 1.00

dSWE

JRA 1.00 0.34 0.46 0.47
L15 0.34 1.00 0.79 0.66
NLDAS 0.46 0.79 1.00 0.71
E3SM 0.47 0.66 0.71 1.00

Lastly, to show all datasets adequately represent the same
period, Pearson correlations of basin-wide statistics (Table 1)
were statistically significant with a two-sided t test between
all permutations of daily time series. This confirms that all
datasets fundamentally represent the same meteorology and
land surface evolution as processed here and can therefore be
directly compared to one another.

3 Results

3.1 Climatology

We first investigate the mean climatology of relevant quan-
tities over the SRB to provide some context into each data
product’s baseline. The average cool-season (November–
April, inclusive) distributions of PRECIP, ROF, SWE, and
dSWE are shown in Fig. 2. The higher resolution of L15 and
NLDAS is evident from the added structure in the mean fields
of the first two columns. Mean PRECIP (Fig. 2a–d) is higher
in JRA and E3SM when compared to the L15 and NLDAS.
This may be due to factors such as atmospheric model bi-
ases or the inclusion of rain gauge data in L15 and NLDAS,
although it has been shown that significant spread exists in
historical gridded climate data products, even for more com-
monly observed variables such as precipitation (Gutmann
et al., 2012; Livneh et al., 2014; Henn et al., 2018). ROF
(Fig. 2e–h) and SWE (Fig. 2i–l) climatologies differ between

the data products. Notably, L15 produces mean ROF values
that are less than half of the climatologies of each of the other
three datasets. It is well known that simulated ROF from
different hydrologic models can be extremely variable, with
regional differences between products reaching an order of
magnitude (Gudmundsson et al., 2012; Sood and Smakhtin,
2015; Beck et al., 2017). NLDAS contains less SWE clima-
tologically, < 20 % of the SWE produced by L15 or E3SM
and even produces less than the coarser JRA. Previous work
has also shown that SWE estimates can vary greatly across
datasets (Lundquist et al., 2015; Rhoades et al., 2018), par-
ticularly over the ephemeral snow area of the northeastern
United States (McCrary et al., 2017, 2022). dSWE clima-
tology is shown in Fig. 2m–p. When calculating the mean,
all accumulation (or zero change) days are ignored to iso-
late only days where snow loss occurred. Here, NLDAS also
exhibits the lowest magnitude of dSWE, although we spec-
ulate this is at least partly due to the shallower mean snow-
pack. The largest climatological dSWE magnitude is found
in JRA, even though the SWE does not contain the largest
depths, implying the snowpack is more variable in JRA and
may be prone to more rapid snow loss (from a dSWE per unit
time perspective).

We emphasize that, from a physical standpoint, differences
in snowfall and snowmelt timing (Rauscher et al., 2008; Mc-
Cabe and Clark, 2005), snow properties (Brown et al., 2006),
temperature and permeability of the soil (Niu and Yang,
2006), precipitation type partitioning (Knowles et al., 2006),
and evapotranspiration (Zheng et al., 2019) all can lead to
differences in how these quantities are simulated. We specu-
late that these mechanisms play important roles in the differ-
ing mean climatologies, but performing a fully detailed water
budget analysis for each of the land surface models leveraged
by these datasets is beyond the scope of this analysis.

3.2 Flagged event statistics

Turning to the algorithmically flagged RoS events, Table 2
shows summary statistics for all four data products. Focus-
ing on the FIXED thresholds, the total number of discrete
events that occurred in the SRB over the 21-year study pe-
riod varies by an order of magnitude, from 6 events in L15
to 58 in E3SM. Interestingly, large differences do not nec-
essarily appear when considering the mean event-averaged
dSWE, ROF, or PRECIP (last three columns). In fact, when
a RoS event occurs, L15 has the largest PRECIPa and largest
dSWEa, although it has the smallest ROFa.

When using the RELATIVE thresholds, the event frequen-
cies agree better, with only a difference of a factor of 2 be-
tween L15/NLDAS and JRA/E3SM. The number of events
in L15 increases because the ROF threshold tROF (95th per-
centile of daily values) is reduced from 1.4 to 0.6 mmd−1.
Similarly, the dSWE threshold tdSWE magnitude is reduced
from −1.4 to −0.8 mmd−1 in NLDAS. Conversely, fewer
events were classified in E3SM, due to increases in both the
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Table 2. Statistics of RoS events over the SRB using FIXED thresholds (top) and RELATIVE thresholds (bottom). tPRECIP, tROF, and tdSWE
represent the thresholds used for precipitation, surface runoff, and snow water equivalent loss, respectively (mmd−1). Events represent the
number of RoS events flagged over the 1980–2005 period. Duration is the average number of consecutive days an RoS event lasts. PRECIPa,
ROFa, and dSWEa represent the amount of precipitation rate, amount of runoff rate, and average snow loss (mmd−1) per event by calculating
the mean daily value for each individual event and then averaging those.

tPRECIP tROF tdSWE tfSWE Events Duration PRECIPa ROFa dSWEa
mmd−1 mmd−1 mmd−1 % no. d mmd−1 mmd−1 mmd−1

FIXED

L15 2.0 1.4 −1.4 – 6 3.2 9.5 1.5 −5.3
NLDAS 2.0 1.4 −1.4 – 16 2.9 6.3 2.1 −5.2
JRA 2.0 1.4 −1.4 – 48 3.5 5.3 2.6 −4.4
E3SM 2.0 1.4 −1.4 – 58 4.1 6.5 2.4 −5.2

RELATIVE

L15 2.0 0.6 −1.5 – 20 5.2 6.2 1.1 −5.3
NLDAS 2.0 1.4 −0.8 – 20 2.8 7.2 2.1 −4.2
JRA 2.0 1.6 −1.9 – 40 3.1 5.1 2.5 −4.1
E3SM 2.0 1.8 −2.2 – 41 4.1 6.9 2.9 −8.0

RELATIVE_F14

L15 2.0 0.6 −1.5 20 20 4.9 6.0 1.0 −5.3
NLDAS 2.0 1.4 −0.8 20 13 3.0 4.4 1.9 −5.1
JRA 2.0 1.6 −1.9 20 40 3.0 5.3 2.4 −4.2
E3SM 2.0 1.8 −2.2 20 41 4.0 6.8 2.8 −7.8

required ROF and dSWE thresholds applied to the daily cli-
matology. However, even when accounting for the baseline
climatological differences of the data products by threshold-
ing on percentiles, rather than absolute magnitudes, differ-
ences still are evident in all metrics.

We also perform a sensitivity analysis intended to include
the requirement in Freudiger et al. (2014) and Musselman et
al. (2018) that the sum of rainfall and snowmelt contains at
least 20 % snowmelt. This is added as an additional thresh-
old tfSWE = 0.2, where fSWE (fraction of dSWE contribu-
tion) is computed as dSWE divided by the sum of dSWE and
PRECIP smoothed time series (note that the sign of dSWE is
inverted to be a positive contributor to liquid water on the sur-
face). We refer to this simulation as RELATIVE_F14 since
it preserves the same thresholds in RELATIVE with this one
additional exclusionary check from Freudiger et al. (2014)
in order to remove high-rainfall (but low snow loss) events.
The number of events is the same for all datasets except NL-
DAS, which loses seven events over the study period when
enforcing tfSWE = 0.2. This can be explained by the results
in Fig. 2. NLDAS produces a “wetter” precipitation clima-
tology (Fig. 2f) but less climatological SWE (Fig. 2j) and,
correspondingly, less dSWE (Fig. 2n). Therefore, enforcing
a check that removes high-PRECIP, low-dSWE events would
reduce events detected in NLDAS most strongly relative to
other datasets. While the other three products have the same
number of events with or without the inclusion of tfSWE =

0.2, the mean duration is slightly shortened, and mean event

ROF is somewhat reduced using RELATIVE_F14, implying
that a handful of high-PRECIP, low-dSWE (and high ROF)
days at event onset or termination are lost. However, this re-
duction is small and therefore provides confidence that just
including threshold checks for dSWE, ROF, and PRECIP is
satisfactory for detecting RoS events over the SRB without a
more formal snow loss cutoff. In the remainder of this paper,
we omit the use of tfSWE for simplicity. However, we want
to emphasize that the simulation of land surface processes
in different datasets can play a key role in precipitation–
snowmelt partitioning, motivating further process-oriented
evaluation of their joint occurrence in gridded climate data in
the future. A percentile-based threshold-only algorithm (such
as RELATIVE) may particularly struggle in regions of clima-
tologically low SWE and high PRECIP (which experiences
primarily rain-induced flooding) or high SWE and low PRE-
CIP (primarily melt-induced flooding).

The differences across gridded climate data products are
also shown in Fig. 3 (FIXED) and in Fig. 4 (RELATIVE).
The sign of dSWE is flipped here for ease of visualization
with the other metrics (i.e., positive dSWE in both figures
denotes snow ablation). We focus our discussion on the rela-
tive threshold results in Fig. 4 for brevity, although note that
the distributions of event statistics (Figs. 3b–d and 4b–d) are
qualitatively similar between the two.

Figure 4a shows the total number of RoS events flagged
over the climatological period (fourth column of Table 2),
while Fig. 4b–d show the frequency distribution for basin-
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Figure 3. Histogram statistics for RoS events within the FIXED detection framework. The number of RoS events for each product from
1985–2005 is shown in (a). The other three panels show frequency distributions of the daily rate (mmd−1) of maximum precipitation
(PRECIP), maximum runoff (ROF), and maximum change in SWE (dSWE, snowmelt positive).

averaged maximum rates of PRECIP, ROF, and dSWE at the
event level. These are calculated by selecting the maximum
daily value from the array of actual (i.e., unsmoothed) daily
values during each RoS event.

The maximum PRECIP associated with flagged RoS
events is similar between the four datasets, with E3SM tend-
ing to have slightly more extreme PRECIP occurring over the
SRB (in agreement with Fig. 2). Much larger differences are
seen in ROF and dSWE. In ROF, both the E3SM and JRA
datasets produce larger event magnitudes of ROF and sub-
sequently have longer tails in their probability distributions,
compared to the other two datasets. L15 produces RoS events
with the least ROF (averaging approximately one-third of
those found in either E3SM or JRA), with NLDAS in be-
tween the other three. The probability distribution functions
of dSWE highlight an even more complex picture, with both

NLDAS and L15 having narrower distributions with smaller
magnitudes than E3SM. JRA and E3SM have broader dis-
tributions (i.e., longer tails), but the JRA distribution is more
skewed, with frequent low-dSWE events, whereas E3SM has
a more uniform distribution of dSWE rates.

Summarizing, using either a relative or fixed threshold to
identify RoS events, the fully coupled ESMs (E3SM and
JRA) produce more events than L15 and NLDAS. While
daily PRECIP in each product differs somewhat, it should
be noted that these differences are relatively small. Rather,
the majority of the differences in RoS events flagged arise
from lower magnitudes of ROF and dSWE in L15 and dSWE
in NLDAS. It is worth noting that L15 and NLDAS produce
fewer RoS events regardless of which thresholding technique
is used, so not only are the distributions of relevant daily vari-
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Figure 4. Same as Fig. 3 except for the RELATIVE detection thresholds.

ables shifted relative to the other models, but their skewness
is impacted as well (Figs. 3 and 4).

3.3 Single-year evaluation

To further explore RoS events at a more granular level, we
focus on results associated with the 1996 water year (WY96,
October 1995 to September 1996). We chose this WY since
this includes the January 1996 SRB flood that is often used
for disaster planning purposes in the region (US Army Corps
of Engineers, 2001). The same visualizations for other WYs
are included in the data download associated with this article
(Zarzycki et al., 2024).

Figure 5 shows the SRB daily WY96 time series of basin-
integrated PRECIP, ROF, and dSWE. Negative (positive)
dSWE denotes snowmelt (accumulation). Vertical shading
denotes RoS events that were flagged by the algorithm (us-
ing the RELATIVE thresholds). At the top of each panel is a

stripe with four different shadings, representing days where
streamflow exceeded the 90th, 95th, 99th, and 99.9th relative
percentiles over the 1985–2005 period at the US Geological
Survey (USGS) gauge at Harrisburg, Pennsylvania (USGS
no. 01570500), with deepest blues and black representing
highly anomalous flow conditions.

The 17–18 January 1996 event is readily apparent for three
of the four data products (NLDAS, JRA, and E3SM). Ob-
served streamflow spiked during and immediately after the
RoS event as shown by the dark blue stripes at the top of
each time series, indicating a lag between when the RoS
event algorithm identifies changes in PRECIP, dSWE, and
ROF and the observed daily streamflow gauge observation
at Harrisburg (namely, the 99.9th percentile streamflow ex-
ceedance). While this is operationally the largest RoS event
observed over the period, there remain large discrepancies
in the hydrometeorological conditions between the datasets.
The dSWE signal is the largest in magnitude within JRA
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Figure 5. Time series of daily precipitation (PRECIP; green), surface runoff (ROF; orange), and SWE loss (dSWE; pink) during WY96 for
each of the four products. Vertical purple shading denotes periods flagged as an RoS event. At the top of each time series are colored bars
that denote extreme values (greater than the 90th percentile) of observed USGS streamflow at Harrisburg, Pennsylvania (no. 01570500), with
black representing 99.9th percentile values over the 1980–2005 period.

and E3SM compared to NLDAS. L15 shows a very mini-
mal dSWE, to the point that tdSWE is not exceeded in the
detection algorithm. PRECIP is more similar across the three
datasets, implying that the reduced ROF in L15 is likely due
to minimal snowmelt.

All products also indicate a second, more moderate RoS
event during the last third of February, although L15 and
E3SM (JRA) show larger dSWE (ROF) signals than the other
datasets. The USGS gauge streamflow also exceeded the 95th
percentile for this RoS event. More moderate flooding also
appeared to occur in March and April although the detection
algorithm only flagged such events in L15 and E3SM. We
also emphasize that all RoS events flagged by the detection
algorithm resulted in well-above-average streamflow, high-
lighting the efficacy of the detection algorithm in capturing
meaningful hydrometeorological extremes from basin-scale
climate data.

Another way to visualize the WY96 RoS events is shown
in Fig. 6. This plot shows the daily distribution of all three
hydrometeorological quantities that make up a RoS event by
plotting dSWE on the x axis and PRECIP on the y axis; the
size of the x–y marker depicts the magnitude of ROF. Mark-
ers are filled if the RoS event criteria are satisfied (REL-
ATIVE) for that calendar day and are colored red (blue)
if there is dSWE loss (gain). The variability of the PRE-
CIP (y axis) is the most similar between the two ESMs,
although all products include at least 1 d of precipitation
greater than 30 mm when averaged over the SRB. Larger dif-

ferences across datasets are noted for the other two RoS event
response variables. JRA and E3SM produce a wider spread
in both RoS and non-RoS events along the x axis, indicating
that the two ESMs produce days with the largest magnitudes
of dSWE. Further, L15 has markers that are small in size,
indicating low daily ROF magnitudes when compared to the
other three products. There is a substantial spread across the
four datasets, even over comparable time series with well-
defined and record-setting RoS events. This is likely due to
daily differences in the timing of storms, the amount of wa-
ter vapor transport and precipitation they produce, and how
close surface air temperatures are to freezing conditions that
in turn influence whether a meteorological event leads to an
increase in snow accumulation or results in an RoS event.

3.4 Evaluation of a single event

One notable question given the above analysis (Fig. 5) is
why the January 1996 event is captured differently across
the products, particularly “why is it ‘unseen’ by the L15
dataset?”. Figure 7 shows the SRB evolution of total on-
surface SWE over WY96 for all datasets. All products
show increasing SWE from mid-December onwards, albeit
with varying accumulation rates and maximum depths. The
datasets mostly differ in the SWE ablation during mid-
January, with L15 (Fig. 7a) showing essentially no ablation
of the existing snowpack, JRA (Fig. 7c) showing near total
ablation, and NLDAS and E3SM (Fig. 7b and d) lying some-
where between the two extremes.
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Figure 6. Bubble plots comparing precipitation (PRECIP; y axis), SWE change (dSWE; x axis), and surface runoff (size of bubble) for
each of the four datasets during WY96. For each bubble, the values come from the same calendar day. Filled bubbles were flagged by the
algorithm as an RoS event (purple shaded periods in Fig. 5).

Figure 7. Daily SWE time series averaged over the SRB during WY96 for all four data products. Shaded in blue are the same events from
Fig. 5.

To untangle the potential source of this discrepancy, Fig. 8
shows the temperature (red line, right axis) at the grid cell
nearest to Harrisburg for the four products during the 1996
event. Also included is the temperature trace observed at
Harrisburg (thin gold line) as recorded in National Oceanic
and Atmospheric (NOAA) surface weather station archives

along with a reference freezing line (black). The surface rel-
ative humidity is indicated by the dashed purple line (right
axis), and the product-specific associated precipitation rate
(mmh−1) partitioned into rain (green) and snow (cyan) is de-
noted by bars (left axis).
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Figure 8. Evolution of reference height surface air temperature, relative humidity, and precipitation during the January 1996 SRB RoS flood
event across data products. Data are taken from the grid cell nearest to Harrisburg, Pennsylvania. The left axis corresponds to the precipitation
rate (shown in bars from the bottom) reported by the product. Green bars indicate rainfall (precipitation occurring when Ts > 0 °C), and cyan
bars indicate snowfall (precipitation occurring when Ts ≤ 0 °C). The right axes show reference height surface air temperature as denoted by
the solid red line and relative humidity as denoted by the dashed purple line. A thick black horizontal line indicates 0 °C air temperature
(273.15 K). The thin gold line on each panel represents the observed temperature trace at Harrisburg over the period.

None of the four products precisely match the observed
temperature, although we acknowledge that this is, at least,
partly due to the spatial resolution of the data. While the tim-
ing of the temperature increase associated with the warm air
advection component of the event is well matched in NL-
DAS (Fig. 7b) and E3SM (Fig. 7d), both products have a
slight cool bias. The overall temperature maximum is better
matched by JRA (Fig. 7c), although the peak occurs approx-
imately 6 h earlier than in observations. An opposite shift is
seen in L15 data, with the observed temperature peak leading
L15’s temperature peak by approximately 6 h (Fig. 7a).

Across all four datasets, only L15 reports below-freezing
temperatures between 18 January at 12:00Z and 19 January
at 18:00Z. This occurs because L15 only leverages daily
minimum and maximum observed temperatures to construct
temperature fields. At each L15 grid cell, temperature min-
ima and maxima are assumed to occur at sunrise and ap-
proximately late afternoon, respectively, with an interpola-
tion spline used to provide information at intermediate hours
(Bohn et al., 2013). These temperatures are always assumed
to occur on the day of record (Livneh et al., 2015), which is
relevant because the actual temperature minimum on 19 Jan-
uary occurred during the local afternoon after the passage
of a cold front (Leathers et al., 1998). A similar, regular cy-
cle is seen in the L15 relative humidity, with near-saturated
surface conditions only occurring for approximately 3 h win-

dows each day. The other three data products show the in-
creased moisture advection ahead of the precipitation max-
imum, with near-saturated surface air mass for large peri-
ods of the 72 h preceding the initiation of the flood event.
Therefore, for this event, the daily extremes of thermody-
namic variables are more strongly influenced by atmospheric
dynamics than solar insolation. We emphasize that this tim-
ing is actually quite important since factors such as tempera-
ture and surface humidity (and associated sensible and latent
heat fluxes) are typically dominant drivers of snow ablation
in high-snowmelt events (Mazurkiewicz et al., 2008; Würzer
et al., 2016; Harpold and Brooks, 2018) and need to line up
concurrently to produce compound extremes like the one ob-
served in 1996.

To understand how this could impact snowpack metamor-
phism, we also investigate precipitation during the event. We
can assume precipitation type at the surface is determined by
whether the reference height surface air temperature is above
or below freezing, which is the manner in which the major-
ity of land surface models partition precipitation (Harpold
et al., 2017; Jennings et al., 2018; Siirila-Woodburn et al.,
2021). Since L15 contains below-freezing temperatures be-
tween 00:00Z and 12:00Z on 19 January, it is the only prod-
uct that partitions a fraction of precipitation into the frozen
state during the peak of the event. Further, since daily precip-
itation is evenly partitioned into subdaily bins to force VIC,
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L15 registers more precipitation during this period than the
other products (which typically peak after 12:00Z on 19 Jan-
uary).

We argue this motivates the following interpretation. In
L15, snowpack lost due to melt during the above-freezing
temperatures during the 1996 event is, at least, partially offset
by new snow on the ground that falls during the event due to
below-freezing temperatures. These below-freezing periods
and reduced relative humidity at the surface also mitigate any
snowmelt in the land surface model that would be associated
with enthalpy fluxes (either sensible or latent heat) into the
existing snowpack. When combined, this explains the lack of
a decline in L15 SWE and subsequent lack of a spike in ROF
in Fig. 5. All other datasets show a more prolonged period
of above-freezing temperatures with high specific humidity
during the window noted above, with nearly all precipitation
during this period falling as rain versus snow. This induced
varying degrees of snowmelt in E3SM, NLDAS, and JRA
that are sufficient to trigger the RoS detection algorithm.

3.5 Generalizability to other basins

Finally, while we focus on the SRB in this article, it is bene-
ficial to evaluate whether the algorithm can detect other well-
known historical RoS events in the United States and whether
the dataset-to-dataset variability observed in the SRB occurs
elsewhere. As a test of the transferability of the methodol-
ogy described in Sect. 2.2, we perform the same analysis
using the RELATIVE framework over the Willamette River
basin (WRB) in Oregon and southern Washington and the
Sacramento River basin (SacRB), covering parts of northern
California and southern Oregon, in the United States. A sig-
nificant RoS flood event occurred over the WRB in 1996 a
few weeks following the SRB event discussed above. From
5–9 February 1996, the WRB experienced its most severe
flooding in three decades, with parts of the river rising up to
3–6 m above flood stage, causing eight fatalities, displacing
over 30 000 residents, and causing nearly USD 500 million in
damages. Preceding the floods, subfreezing temperatures and
substantial snowpack prevailed at relatively low elevations,
but a succession of warmer synoptic systems brought liq-
uid precipitation ranging from 10–25 cm in lowlands to 35–
75 cm in mountainous regions over the 4 d period. These con-
ditions led to significant snowmelt, exacerbating the flooding
(Halpert and Bell, 1997; Colle and Mass, 2000). The 1997
New Year’s flood event in California was the most finan-
cially devastating flood in the state’s history with damages
totaling USD 1.6 billion, ranked as the second most severe
superflood between 1950 and 2010 across the western United
States (Tarouilly et al., 2021). Over half a million individu-
als were displaced, and 43 out of 58 California counties were
declared disaster zones (Lott et al., 1997). Preceding storms
in late November and December contributed to elevated soil
moisture and a substantial snowpack, setting the stage for
extreme flooding exacerbated by heavy precipitation and an

intense, warm, atmospheric river event on New Year’s Day
of 1997 (Galewsky and Sobel, 2005; Rhoades et al., 2023).

To probe these events, we first acquire shapefiles defining
both the WRB and SacRB, shown in Fig. 9. Like with the
SRB analysis, all four datasets are masked using these basins.
Daily, basin-averaged mean time series are constructed with
the 95th percentiles of ROF and dSWE being computed from
these distributions to use as thresholds tROF and tdSWE. We
then seek RoS events by looking for periods of concurrent
PRECIP, ROF, and dSWE that all exceed relevant thresholds.

Figure 10 shows the WY96 results over the WRB. The
February flood event is clearly evident in the streamflow
shading along the top of the panels on the left (black col-
ors indicating 99.9 % streamflow). Three of the four products
indicate a RoS event immediately preceding this streamflow
maximum. All products indicate spikes in PRECIP and ROF
over the basin, although E3SM produces less precipitation
than the other three, likely owing to its coarser resolution.
JRA has the largest and most rapid snowmelt, with both NL-
DAS and E3SM also showing reductions in SWE during the
event. L15 shows a small rapid increase and then a decrease
in SWE during the event. This offset is strong enough that the
RoS algorithm is not triggered (tdSWE is not satisfied). While
a more detailed evaluation of the meteorology as represented
by the data products is beyond the scope of this study, it is
possible that some of the mechanisms discussed in Sect. 3.4
are also relevant in this basin. The bubble plots on the right
side of Fig. 10 show a wide diversity as in Fig. 6, although the
relative differences are somewhat dissimilar, implying differ-
ent processes are at play, particularly for the ROF. As be-
fore, L15 has a narrower range of dSWE over the basin (i.e.,
spread on the horizontal axis) but does contain large values
of both precipitation (vertical axis) and runoff (marker size).
The dSWE variability for both E3SM and JRA is larger, but
the products generally have lower ROF and PRECIP, respec-
tively, than both L15 and NLDAS.

Figure 11 shows the WY97 results over the SacRB. Here,
all four data products detect a RoS event in the basin in late
December–early January. The timing differs slightly between
the datasets, with E3SM (L15) triggering the earliest (lat-
est). We speculate that this is a function of resolution, where
the higher-resolution L15 contains more detailed small-scale
processes (e.g., subbasin melt at higher elevations, time for
headwaters to reach the main stem). Evaluating temporal dif-
ferences at the daily scale due to model structural character-
istics is an interesting target for future work. All products
capture large spikes in PRECIP and subsequent increases in
ROF over the basin. They differ more significantly in terms
of dSWE, with JRA (NLDAS) producing the most (least)
snowmelt over the basin. Of note, both JRA and E3SM flag a
smaller RoS event later in January, while both L15 and NL-
DAS show increased SWE in the basin. All products show
increases in ROF, however, which coincide with a secondary
maximum in the streamflow, highlighting the complexity of
how surface hydrology evolves in models even if the rele-
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Figure 9. Basin shapefile domains for (a) the Willamette River basin (WRB) and (b) the Sacramento River basin (SacRB). Contoured is the
surface runoff field from JRA on (a) 7 February 1996 and (b) 30 December 1996.

vant metrics (e.g., runoff) are similar. The bubble plots on the
right of Fig. 11 indicate similar behavior to Fig. 10, which is
likely a function of snow processes in the SacRB being more
similar to the WRB than the SRB.

While this should only be considered a cursory investiga-
tion, it provides additional data points that the methodology
can be applicable to other basins susceptible to RoS flood-
ing. Of note, both the WRB and SacRB contain higher and
steeper orography than the SRB, implying that the algorithm
can credibly detect RoS events in different basin geometries.
However, we stress a few caveats. More rigorous evaluation
would be required by regional hydrologists to ensure results
in other basins are hydrologically fit for purpose. Further,
we also acknowledge that RoS over high mountain ridges
can feed into rises in streamflow in different basins (e.g.,
the Sierra Nevada in California contributes to multiple wa-
tersheds). Applying shapefiles containing larger hydrologic
units or other spatial coverage may improve results in these
regions and provide a better understanding of model variabil-
ity and how land surface processes are represented in climate
data.

4 Conclusions

We interrogate four different gridded climate data products
that include PRECIP, ROF, and SWE in order to quantify
differences in the representation of coupled land–atmosphere
processes that lead to flooding events in the historical record.
In particular, we focus on RoS floods over the SRB and de-
vise an algorithm for the automatic detection of RoS events
that can be applied to any gridded dataset with relevant vari-
ables. We include surface runoff as a criterion to incorporate

information regarding the land surface model soil conditions
before and during RoS events. We also spatially integrate at
the basin scale versus the more commonly applied strategy
of an analysis done grid cell by grid cell in climate data.

A detection algorithm flagging for times of collocated
ROF and dSWE is generally successful at marking periods
that will be followed by above-normal streamflow as mea-
sured by a gauge in the basin. We find using fixed thresholds
for RoS-relevant variables applied uniformly across multi-
ple gridded datasets leads to large discrepancies in event fre-
quency over the historical period, up to a factor of 10. Nor-
malizing these thresholds by each dataset’s climatology (rel-
ative thresholds based on daily percentiles) improves agree-
ment. However, there remains a difference of approximately
a factor of 2 between event counts, implying that the under-
lying distributions are fundamentally different in both shape
and magnitude across the data analyzed.

This underscores the complex assessment of such flood
events – even products representing the historical record con-
tain a large spread in hydrometeorological quantities pro-
vided to end users. The spatiotemporal dependencies of how
meteorological data are generated for land surface and/or
hydrological model forcing are critically important. While
the spatial resolution of data is important, particularly for
snow processes in complex terrain (Henn et al., 2018; Siirila-
Woodburn et al., 2021), we show that the time resolution of
data used to derive surface water conditions is just as crit-
ical for transient extremes, such as RoS events. This is be-
cause the timing of synoptic variations in reference height
surface air temperature and humidity that dictate snowmelt
and precipitation phase can occur on the order of hours at
local scales and can have an outsized role in compound ex-
treme event representation if those variations are threshold-
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Figure 10. As in Figs. 5 (a, c, e, g) and 6 (b, d, f, h), except for the Willamette River basin (WRB) during WY96. The striped gauge
percentiles along the top of the left panels are derived from daily streamflow from USGS gauge no. 14211720 (Willamette River at Portland,
Oregon).
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Figure 11. As in Figs. 5 (a, c, e, g) and 6 (b, d, f, h), except for the Sacramento River basin (SacRB) during WY97. The striped gauge
percentiles along the top of the left panels are derived from daily streamflow from USGS gauge no. 14211720 (Sacramento River at Verona,
California).
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dependent (e.g., storm rain–snow partitioning and alterations
to the freezing line at the land surface).

Since RoS events in regions of ephemeral snow (e.g.,
SRB) can have rapid changes in surface forcing at hourly
timescales (e.g., Leathers et al., 1998), temporally coarse
data applied to force LSMs may result in an underpredic-
tion of RoS frequency. This may occur if time-interpolated
data (and/or less frequent coupling) smooths and/or clips
out short-term extrema and results in mismatched forcing
or reduced day-to-day variability of multiple, co-dependent
anomalies (e.g., temperature and precipitation extremes) re-
quired to accurately simulate historical, decision-relevant hy-
drometeorological extremes (e.g., 1996 SRB RoS event). We
note that this effect can be independent of the model time step
itself. For example, the L15 data disaggregate precipitation
data across subdaily time steps and use a diurnal spline to
reconstruct near-surface atmospheric conditions. While the
LSM used is integrated at smaller timescales, the effective
time resolution of the forcing data remains daily.

We also show that even though a dataset is provided at
much coarser spatial resolutions than is desired (e.g., JRA
and E3SM), model-derived datasets that are more frequently
coupled and/or constrained at shorter timescales (e.g., reanal-
ysis products and nudged ESMs) may produce more accu-
rate land–atmosphere interactions and better representation
of decision-relevant hydrometeorological extremes, particu-
larly at basin (and larger) spatial scales. However, these prod-
ucts will likely suffer in the spatial representation of hydrom-
eteorology in regions of high heterogeneity. The spatial res-
olution is also tightly linked to land surface flood processes
within the basin. Higher resolution may better resolve head-
water catchments and smaller geometries, whereas coarser
datasets may only be skillful at larger scales, even with more
accurate forcing. Spatial scales are also connected to hydro-
logic timescales. Smaller areas respond to increased liquid
input more quickly than larger, downstream sections of a
basin. Understanding how coupling frequency affects hydro-
logic climate data, alongside spatial and temporal character-
istics, is a complex challenge but may offer insights into im-
proving dataset credibility.

We want to emphasize that this work does not aim to sug-
gest a “superior” dataset writ large. For example, even though
L15 does not capture the 1996 SRB flood as well as other
products here, it has been an invaluable tool for studying cli-
mate extremes such as heat waves (Mazdiyasni and AghaK-
ouchak, 2015), droughts (Pendergrass et al., 2020; Williams
et al., 2020), and wildfires (Williams et al., 2019) (amongst
others) in the United States. Rather, we offer a few sug-
gestions about leveraging hydrometeorological data for ap-
plication purposes. It is recommended that gridded climate
data developers consider the temporal resolution of land sur-
face forcing if the representation of daily (or subdaily) hy-
drometeorological extrema is desirable, particularly from a
use-inspired or decision-relevant context (Jagannathan et al.,
2021). While we do not downscale any datasets in this study,

it is likely that using different meteorological data to force
the same land surface and/or hydrological model will result
in vastly different predicted streamflows, particularly for RoS
events when variables are spatiotemporally co-dependent and
would be sensitive to any post-processing adjustments (e.g.,
mean climatological correction). When possible, subdaily in-
formation about atmospheric conditions should be included
in meteorological forcing data.

From a stakeholder perspective, this is an important con-
sideration when back-testing models, and, in particular, ap-
plying such models to evaluate tail risks (e.g., 1-in-100-year
flood events and how they may change in a future climate).
The results here show longer tails in the fully coupled ESM-
derived climate data, which may impact return rates of ex-
treme events, even if calibrated or bias-corrected after the
fact. Therefore, care must be taken when applying data re-
quiring coupling between the atmosphere and land surface
(and riverine) components, whether generated dynamically
or statistically. While post-processing adjustments to the
mean climatology may be desirable, these adjustments can
alter decision-relevant hydrometeorological extremes that re-
side in the tail of the distribution.
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accessed at https://doi.org/10.5281/zenodo.10412332 (Zarzycki et
al., 2024).

Author contributions. CMZ devised the project and led the writ-
ing of the manuscript, with input from RRM and AMR. BDA post-
processed climate data and wrote the majority of the RoS detection
algorithm. AMR performed an initial cursory analysis and devised
the bubble plot visualization.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. Data acquisition and E3SM simulations were
completed at the National Energy Research Scientific Computing
Center (NERSC), a US Department of Energy Office of Science

https://doi.org/10.5194/nhess-24-3315-2024 Nat. Hazards Earth Syst. Sci., 24, 3315–3335, 2024

https://github.com/E3SM-Project/E3SM
https://github.com/E3SM-Project/E3SM
https://doi.org/10.5281/zenodo.10412332


3332 C. M. Zarzycki et al.: Algorithmic detection of basin-scale rain-on-snow events

User Facility located at Lawrence Berkeley National Laboratory,
operated under Contract No. DE-AC02-05CH11231 using NERSC
award BER-ERCAP0020801. Event algorithm development, cali-
bration, and analysis were performed on the Pennsylvania State
University’s Institute for Computational and Data Sciences’ Roar
supercomputer. The authors thank Andrew Jones for initial thoughts
regarding the bubble plot diagnostics contained in this paper.

Financial support. This work is supported by the US Department
of Energy (DOE), Office of Science, Office of Biological and En-
vironmental Research program under award no. DE-SC0016605 “A
framework for improving analysis and modeling of Earth system
and intersectoral dynamics at regional scales”.

Review statement. This paper was edited by Philip Ward and re-
viewed by Keith Musselman and one anonymous referee.

References

AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mal-
lakpour, I., Mazdiyasni, O., Moftakhari, H., Papalexiou, S.
M., Ragno, E., and Sadegh, M.: Climate extremes and com-
pound hazards in a warming world, Annu. Rev. Earth Pl.
Sc., 48, 519–548, https://doi.org/10.1146/annurev-earth-071719-
055228, 2020.

Angélil, O., Stone, D., Wehner, M., Paciorek, C. J., Krish-
nan, H., and Collins, W.: An Independent Assessment of
Anthropogenic Attribution Statements for Recent Extreme
Temperature and Rainfall Events, J. Climate, 30, 5–16,
https://doi.org/10.1175/JCLI-D-16-0077.1, 2017.

Ashley, S. T. and Ashley, W. S.: The storm morphology of deadly
flooding events in the United States, Int. J. Climatol., 28, 493–
503, https://doi.org/10.1002/joc.1554, 2008.

Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Dutra, E., Fink, G.,
Orth, R., and Schellekens, J.: Global evaluation of runoff from 10
state-of-the-art hydrological models, Hydrol. Earth Syst. Sci., 21,
2881–2903, https://doi.org/10.5194/hess-21-2881-2017, 2017.

Bohn, T. J., Livneh, B., Oyler, J. W., Running, S. W., Ni-
jssen, B., and Lettenmaier, D. P.: Global evaluation of MT-
CLIM and related algorithms for forcing of ecological and
hydrological models, Agr. Forest Meteorol., 176, 38–49,
https://doi.org/10.1016/j.agrformet.2013.03.003, 2013.

Brandt, W. T., Haleakala, K., Hatchett, B. J., and Pan, M.:
A Review of the Hydrologic Response Mechanisms Dur-
ing Mountain Rain-on-Snow, Front. Earth Sci., 10, 791760,
https://doi.org/10.3389/feart.2022.791760, 2022.

Brown, R., Bartlett, P., MacKay, M., and Verseghy, D.: Evaluation
of snow cover in CLASS for SnowMIP, Atmos. Ocean, 44, 223–
238, https://doi.org/10.3137/ao.440302, 2006.

Cohen, J., Ye, H., and Jones, J.: Trends and variability in
rain-on-snow events, Geophys. Res. Lett., 42, 7115–7122,
https://doi.org/10.1002/2015GL065320, 2015.

Colle, B. A. and Mass, C. F.: The 5–9 February 1996 Flood-
ing Event over the Pacific Northwest: Sensitivity Studies
and Evaluation of the MM5 Precipitation Forecasts, Mon.

Weather Rev., 128, 593–617, https://doi.org/10.1175/1520-
0493(2000)128<0593:TFFEOT>2.0.CO;2, 2000.

Collins, M. J., Kirk, J. P., Pettit, J., DeGaetano, A. T., McCown, M.
S., Peterson, T. C., Means, T. N., and Zhang, X.: Annual floods
in New England (USA) and Atlantic Canada: synoptic clima-
tology and generating mechanisms, Phys. Geogr., 35, 195–219,
https://doi.org/10.1080/02723646.2014.888510, 2014.

Dougherty, E. and Rasmussen, K. L.: Climatology of flood-
producing storms and their associated rainfall characteristics
in the United States, Mon. Weather Rev., 147, 3861–3877,
https://doi.org/10.1175/MWR-D-19-0020.1, 2019.

Dougherty, E., Morrison, R., and Rasmussen, K.: High-
resolution flood precipitation and streamflow relation-
ships in two US river basins, Meteorol. Appl., 28, e1979,
https://doi.org/10.1002/met.1979, 2021.

E3SM-Project: E3SM, GitHub [code], https://github.com/
E3SM-Project/E3SM (last access: 28 September 2024),
2024.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Fasullo, J. T.: Evaluating simulated climate patterns from the CMIP
archives using satellite and reanalysis datasets using the Climate
Model Assessment Tool (CMATv1), Geosci. Model Dev., 13,
3627–3642, https://doi.org/10.5194/gmd-13-3627-2020, 2020.

Freudiger, D., Kohn, I., Stahl, K., and Weiler, M.: Large-scale anal-
ysis of changing frequencies of rain-on-snow events with flood-
generation potential, Hydrol. Earth Syst. Sci., 18, 2695–2709,
https://doi.org/10.5194/hess-18-2695-2014, 2014.

Galewsky, J. and Sobel, A.: Moist Dynamics and Orographic Pre-
cipitation in Northern and Central California during the New
Year’s Flood of 1997, Mon. Weather Rev., 133, 1594–1612,
https://doi.org/10.1175/MWR2943.1, 2005.

Golaz, J.-C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J.
D., Lin, W., Bradley, A. M., Tang, Q., Maltrud, M. E., Forsyth,
R. M., Zhang, C., Zhou, T., Zhang, K., Zender, C. S., Wu, M.,
Wang, H., Turner, A. K., Singh, B., Richter, J. H., Qin, Y., Pe-
tersen, M. R., Mametjanov, A., Ma, P.-L., Larson, V. E., Kr-
ishna, J., Keen, N. D., Jeffery, N., Hunke, E. C., Hannah, W.
M., Guba, O., Griffin, B. M., Feng, Y., Engwirda, D., Di Vit-
torio, A. V., Dang, C., Conlon, L. M., Chen, C.-C.-J., Brunke,
M. A., Bisht, G., Benedict, J. J., Asay-Davis, X. S., Zhang, Y.,
Zhang, M., Zeng, X., Xie, S., Wolfram, P. J., Vo, T., Veneziani,
M., Tesfa, T. K., Sreepathi, S., Salinger, A. G., Eyre, J. E.
J. R., Prather, M. J., Mahajan, S., Li, Q., Jones, P. W., Ja-
cob, R. L., Huebler, G. W., Huang, X., Hillman, B. R., Har-
rop, B. E., Foucar, J. G., Fang, Y., Comeau, D. S., Caldwell,
P. M., Bartoletti, T., Balaguru, K., Taylor, M. A., McCoy, R.
B., Leung, L. R., and Bader, D. C.: The DOE E3SM Model
Version 2: Overview of the Physical Model and Initial Model
Evaluation, J. Adv. Model. Earth Sy., 14, e2022MS003156,
https://doi.org/10.1029/2022MS003156, 2022.

Grote, T.: A synoptic climatology of rain-on-snow flooding in Mid-
Atlantic region using NCEP/NCAR Re-Analysis, Phys. Geogr.,
42, 452–471, https://doi.org/10.1080/02723646.2020.1838119,
2021.

Nat. Hazards Earth Syst. Sci., 24, 3315–3335, 2024 https://doi.org/10.5194/nhess-24-3315-2024

https://doi.org/10.1146/annurev-earth-071719-055228
https://doi.org/10.1146/annurev-earth-071719-055228
https://doi.org/10.1175/JCLI-D-16-0077.1
https://doi.org/10.1002/joc.1554
https://doi.org/10.5194/hess-21-2881-2017
https://doi.org/10.1016/j.agrformet.2013.03.003
https://doi.org/10.3389/feart.2022.791760
https://doi.org/10.3137/ao.440302
https://doi.org/10.1002/2015GL065320
https://doi.org/10.1175/1520-0493(2000)128<0593:TFFEOT>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<0593:TFFEOT>2.0.CO;2
https://doi.org/10.1080/02723646.2014.888510
https://doi.org/10.1175/MWR-D-19-0020.1
https://doi.org/10.1002/met.1979
https://github.com/E3SM-Project/E3SM
https://github.com/E3SM-Project/E3SM
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-13-3627-2020
https://doi.org/10.5194/hess-18-2695-2014
https://doi.org/10.1175/MWR2943.1
https://doi.org/10.1029/2022MS003156
https://doi.org/10.1080/02723646.2020.1838119


C. M. Zarzycki et al.: Algorithmic detection of basin-scale rain-on-snow events 3333

Guan, B., Waliser, D. E., Ralph, F. M., Fetzer, E. J., and Neiman, P.
J.: Hydrometeorological characteristics of rain-on-snow events
associated with atmospheric rivers, Geophys. Res. Lett., 43,
2964–2973, https://doi.org/10.1002/2016GL067978, 2016.

Gudmundsson, L., Tallaksen, L. M., Stahl, K., Clark, D.
B., Dumont, E., Hagemann, S., Bertrand, N., Gerten, D.,
Heinke, J., Hanasaki, N., Voss, F., and Koirala, S.: Com-
paring large-scale hydrological model simulations to observed
runoff percentiles in Europe, J. Hydrometeorol., 13, 604–620,
https://doi.org/10.1175/JHM-D-11-083.1, 2012.

Gutmann, E. D., Rasmussen, R. M., Liu, C., Ikeda, K., Gochis,
D. J., Clark, M. P., Dudhia, J., and Thompson, G.: A Com-
parison of Statistical and Dynamical Downscaling of Winter
Precipitation over Complex Terrain, J. Climate, 25, 262–281,
https://doi.org/10.1175/2011JCLI4109.1, 2012.

Haleakala, K., Brandt, W. T., Hatchett, B. J., Li, D., Lettenmaier,
D. P., and Gebremichael, M.: Watershed memory amplified the
Oroville rain-on-snow flood of February 2017, PNAS Nexus, 2,
pgac295, https://doi.org/10.1093/pnasnexus/pgac295, 2023.

Halpert, M. S. and Bell, G. D.: Climate Assessment for 1996, B.
Am. Meteorol. Soc., 78, S1–S50, https://doi.org/10.1175/1520-
0477-78.5s.S1, 1997.

Harpold, A. A. and Brooks, P. D.: Humidity determines snowpack
ablation under a warming climate, P. Natl. Acad. Sci. USA, 115,
1215–1220, https://doi.org/10.1073/pnas.1716789115, 2018.

Harpold, A. A., Kaplan, M. L., Klos, P. Z., Link, T., Mc-
Namara, J. P., Rajagopal, S., Schumer, R., and Steele, C.
M.: Rain or snow: hydrologic processes, observations, predic-
tion, and research needs, Hydrol. Earth Syst. Sci., 21, 1–22,
https://doi.org/10.5194/hess-21-1-2017, 2017.

Hartley, S. and Keables, M. J.: Synoptic associa-
tions of winter climate and snowfall variability in
New England, USA, 1950–1992, Int. J. Clima-
tol., 18, 281–298, https://doi.org/10.1002/(SICI)1097-
0088(19980315)18:3<281::AID-JOC245>3.0.CO;2-F, 1998.

Hatchett, B. J.: Seasonal and Ephemeral Snowpacks of
the Conterminous United States, Hydrology, 8, 32,
https://doi.org/10.3390/hydrology8010032, 2021.

Heggli, A., Hatchett, B., Schwartz, A., Bardsley, T., and Hand, E.:
Toward snowpack runoff decision support, iScience, 25, 104240,
https://doi.org/10.1016/j.isci.2022.104240, 2022.

Henn, B., Newman, A. J., Livneh, B., Daly, C., and Lundquist,
J. D.: An assessment of differences in gridded precipita-
tion datasets in complex terrain, J. Hydrol., 556, 1205–1219,
https://doi.org/10.1016/j.jhydrol.2017.03.008, 2018.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo,
G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara,
G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flem-
ming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S.,
Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The
ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–
2049, https://doi.org/10.1002/qj.3803, 2020.

Hill, C., DeLuca, C., Suarez, M., and Da Silva, A.: The architecture
of the Earth System Modeling Framework, Comput. Sci. Eng., 6,
18–28, https://doi.org/10.1109/MCISE.2004.1255817, 2004.

Holton, J. R.: An Introduction to Dynamic Meteorology, 4th edn.,
Elsevier Acadamic Press, 535 pp., ISBN 0123540151, 2004.

Hotovy, O., Nedelcev, O., and Jenicek, M.: Changes in
rain-on-snow events in mountain catchments in the rain-
snow transition zone, Hydrolog. Sci. J., 68, 572–584,
https://doi.org/10.1080/02626667.2023.2177544, 2023.

Jagannathan, K., Jones, A. D., and Ray, I.: The Making of a Metric:
Co-Producing Decision-Relevant Climate Science, B. Am. Me-
teorol. Soc., 102, E1579–E1590, https://doi.org/10.1175/BAMS-
D-19-0296.1, 2021.

Jennings, K. S., Winchell, T. S., Livneh, B., and Molotch,
N. P.: Spatial variation of the rain–snow temperature thresh-
old across the Northern Hemisphere, Nat. Commun., 9, 1–9,
https://doi.org/10.1038/s41467-018-03629-7, 2018.

Jeong, D. I. and Sushama, L.: Rain-on-snow events over North
America based on two Canadian regional climate models,
Clim. Dynam., 50, 303–316, https://doi.org/10.1007/s00382-
017-3609-x, 2018.

Knowles, N., Dettinger, M. D., and Cayan, D. R.: Trends in snowfall
versus rainfall in the western United States, J. Climate, 19, 4545–
4559, 2006.

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda,
H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka,
K., and Takahashi, K.: The JRA-55 reanalysis: General specifi-
cations and basic characteristics, J. Meteorol. Soc. Jpn. Ser. II,
93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.

Leathers, D. J., Kluck, D. R., and Kroczynski, S.: The severe flood-
ing event of January 1996 across north-central Pennsylvania, B.
Am. Meteorol. Soc., 79, 785–798, https://doi.org/10.1175/1520-
0477(1998)079<0785:TSFEOJ>2.0.CO;2, 1998.

Leathers, D. J., Malin, M. L., Kluver, D. B., Henderson, G. R., and
Bogart, T. A.: Hydroclimatic variability across the Susquehanna
River Basin, USA, since the 17th century, Int. J. Climatol., 28,
1615–1626, https://doi.org/10.1002/joc.1668, 2008.

Li, D., Lettenmaier, D. P., Margulis, S. A., and Andreadis, K.:
The Role of Rain-on-Snow in Flooding Over the Conter-
minous United States, Water Resour. Res., 55, 8492–8513,
https://doi.org/10.1029/2019WR024950, 2019.

Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A sim-
ple hydrologically based model of land surface water and energy
fluxes for general circulation models, J. Geophys. Res.-Atmos.,
99, 14415–14428, https://doi.org/10.1029/94JD00483, 1994.

Livneh, B., Deems, J. S., Schneider, D., Barsugli, J. J.,
and Molotch, N. P.: Filling in the gaps: Inferring spa-
tially distributed precipitation from gauge observations
over complex terrain, Water Resour. Res., 50, 8589–8610,
https://doi.org/10.1002/2014WR015442, 2014.

Livneh, B., Bohn, T. J., Pierce, D. W., Munoz-Arriola, F., Ni-
jssen, B., Vose, R., Cayan, D. R., and Brekke, L.: A spatially
comprehensive, hydrometeorological data set for Mexico, the U.
S., and Southern Canada 1950–2013, Scientific Data, 2, 1–12,
https://doi.org/10.1038/sdata.2015.42, 2015.

López-Moreno, J. I., Pomeroy, J. W., Morán-Tejeda, E., Revuelto,
J., Navarro-Serrano, F. M., Vidaller, I., and Alonso-González, E.:
Changes in the frequency of global high mountain rain-on-snow
events due to climate warming, Environ. Res. Lett., 16, 094021,
https://doi.org/10.1088/1748-9326/ac0dde, 2021.

Lott, N., Sittel, M. C., and Ross, D.: The winter of ’96–’97: West
Coast flooding, Tech. Rep. 97–01, National Climatic Data Cen-

https://doi.org/10.5194/nhess-24-3315-2024 Nat. Hazards Earth Syst. Sci., 24, 3315–3335, 2024

https://doi.org/10.1002/2016GL067978
https://doi.org/10.1175/JHM-D-11-083.1
https://doi.org/10.1175/2011JCLI4109.1
https://doi.org/10.1093/pnasnexus/pgac295
https://doi.org/10.1175/1520-0477-78.5s.S1
https://doi.org/10.1175/1520-0477-78.5s.S1
https://doi.org/10.1073/pnas.1716789115
https://doi.org/10.5194/hess-21-1-2017
https://doi.org/10.1002/(SICI)1097-0088(19980315)18:3<281::AID-JOC245>3.0.CO;2-F
https://doi.org/10.1002/(SICI)1097-0088(19980315)18:3<281::AID-JOC245>3.0.CO;2-F
https://doi.org/10.3390/hydrology8010032
https://doi.org/10.1016/j.isci.2022.104240
https://doi.org/10.1016/j.jhydrol.2017.03.008
https://doi.org/10.1002/qj.3803
https://doi.org/10.1109/MCISE.2004.1255817
https://doi.org/10.1080/02626667.2023.2177544
https://doi.org/10.1175/BAMS-D-19-0296.1
https://doi.org/10.1175/BAMS-D-19-0296.1
https://doi.org/10.1038/s41467-018-03629-7
https://doi.org/10.1007/s00382-017-3609-x
https://doi.org/10.1007/s00382-017-3609-x
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.1175/1520-0477(1998)079<0785:TSFEOJ>2.0.CO;2
https://doi.org/10.1175/1520-0477(1998)079<0785:TSFEOJ>2.0.CO;2
https://doi.org/10.1002/joc.1668
https://doi.org/10.1029/2019WR024950
https://doi.org/10.1029/94JD00483
https://doi.org/10.1002/2014WR015442
https://doi.org/10.1038/sdata.2015.42
https://doi.org/10.1088/1748-9326/ac0dde


3334 C. M. Zarzycki et al.: Algorithmic detection of basin-scale rain-on-snow events

ter, https://repository.library.noaa.gov/view/noaa/13812 (last ac-
cess: 23 September 2024), 1997.

Lundquist, J. D., Hughes, M., Henn, B., Gutmann, E. D., Livneh, B.,
Dozier, J., and Neiman, P.: High-Elevation Precipitation Patterns:
Using Snow Measurements to Assess Daily Gridded Datasets
across the Sierra Nevada, California, J. Hydrometeorol., 16,
1773–1792, https://doi.org/10.1175/JHM-D-15-0019.1, 2015.

Maina, F. Z. and Kumar, S. V.: Diverging Trends in Rain-On-Snow
Over High Mountain Asia, Earths Future, 11, e2022EF003009,
https://doi.org/10.1029/2022EF003009, 2023.

Mazdiyasni, O. and AghaKouchak, A.: Substantial increase
in concurrent droughts and heatwaves in the United
States, P. Natl. Acad. Sci. USA, 112, 11484–11489,
https://doi.org/10.1073/pnas.1422945112, 2015.

Mazurkiewicz, A. B., Callery, D. G., and McDonnell, J. J.: Assess-
ing the controls of the snow energy balance and water available
for runoff in a rain-on-snow environment, J. Hydrol., 354, 1–14,
https://doi.org/10.1016/j.jhydrol.2007.12.027, 2008.

McCabe, G. J. and Clark, M. P.: Trends and variability in snowmelt
runoff in the western United States, J. Hydrometeorol., 6, 476–
482, 2005.

McCabe, G. J., Clark, M. P., and Hay, L. E.: Rain-on-snow events in
the western United States, B. Am. Meteorol. Soc., 88, 319–328,
https://doi.org/10.1175/BAMS-88-3-319, 2007.

McCrary, R. R., McGinnis, S., and Mearns, L. O.: Evaluation of
Snow Water Equivalent in NARCCAP Simulations, Including
Measures of Observational Uncertainty, J. Hydrometeorol., 18,
2425–2452, https://doi.org/10.1175/JHM-D-16-0264.1, 2017.

McCrary, R. R., Mearns, L. O., Hughes, M., Biner, S., and
Bukovsky, M. S.: Projections of North American snow
from NA-CORDEX and their uncertainties, with a fo-
cus on model resolution, Climatic Change, 170, 1–25,
https://doi.org/10.1007/s10584-021-03294-8, 2022.

Moore, R. and Owens, I.: Controls on advective
snowmelt in a maritime alpine basin, J. Appl. Meteo-
rol. Clim., 23, 135–142, https://doi.org/10.1175/1520-
0450(1984)023<0135:COASIA>2.0.CO;2, 1984.

Musselman, K. N., Lehner, F., Ikeda, K., Clark, M. P., Prein, A. F.,
Liu, C., Barlage, M., and Rasmussen, R.: Projected increases and
shifts in rain-on-snow flood risk over western North America,
Nat. Clim. Change, 8, 808–812, https://doi.org/10.1038/s41558-
018-0236-4, 2018.

Niu, G.-Y. and Yang, Z.-L.: Effects of frozen soil on snowmelt
runoff and soil water storage at a continental scale, J. Hydrome-
teorol., 7, 937–952, 2006.

Parker, W. S.: Reanalyses and Observations: What’s the
Difference?, B. Am. Meteorol. Soc., 97, 1565–1572,
https://doi.org/10.1175/BAMS-D-14-00226.1, 2016.

Parker, W. S.: Model Evaluation: An Adequacy-for-Purpose View,
Philos. Sci., 87, 457–477, https://doi.org/10.1086/708691, 2020.

Pendergrass, A. G., Meehl, G. A., Pulwarty, R., Hobbins, M.,
Hoell, A., AghaKouchak, A., Bonfils, C. J. W., Gallant, A. J. E.,
Hoerling, M., Hoffmann, D., Kaatz, L., Lehner, F., Llewellyn,
D., Mote, P., Neale, R. B., Overpeck, J. T., Sheffield, A.,
Stahl, K., Svoboda, M., Wheeler, M. C., Wood, A. W., and
Woodhouse, C. A.: Flash droughts present a new challenge for
subseasonal-to-seasonal prediction, Nat. Clim. Change, 10, 191–
199, https://doi.org/10.1038/s41558-020-0709-0, 2020.

Perry, C. A.: Significant floods in the United States during the 20th
century: USGS measures a century of floods, US Department
of the Interior, US Geological Survey, https://pubs.usgs.gov/fs/
2000/0024/report.pdf (last access: 23 September 2024), 2000.

Pettett, A. and Zarzycki, C. M.: The 1996 Mid-Atlantic Winter
Flood: Exploring Climate Risk through a Storyline Approach, J.
Hydrometeorol., 24, 2259–2280, https://doi.org/10.1175/JHM-
D-22-0146.1, 2023.

Poschlod, B., Zscheischler, J., Sillmann, J., Wood, R. R., and Lud-
wig, R.: Climate change effects on hydrometeorological com-
pound events over southern Norway, Weather and Climate Ex-
tremes, 28, 100253, https://doi.org/10.1016/j.wace.2020.100253,
2020.

Pradhanang, S. M., Frei, A., Zion, M., Schneiderman, E.
M., Steenhuis, T. S., and Pierson, D.: Rain-on-snow runoff
events in New York, Hydrol. Process., 27, 3035–3049,
https://doi.org/10.1002/hyp.9864, 2013.

Rauscher, S. A., Pal, J. S., Diffenbaugh, N. S., and Benedetti,
M. M.: Future changes in snowmelt-driven runoff timing
over the western US, Geophys. Res. Lett., 35, L16703,
https://doi.org/10.1029/2008GL034424, 2008.

Rhoades, A. M., Jones, A. D., and Ullrich, P. A.: As-
sessing Mountains as Natural Reservoirs With a Mul-
timetric Framework, Earths Future, 6, 1221–1241,
https://doi.org/10.1002/2017EF000789, 2018.

Rhoades, A. M., Zarzycki, C. M., Inda-Diaz, H. A., Ombadi, M.,
Pasquier, U., Srivastava, A., Hatchett, B. J., Dennis, E., Heggli,
A., McCrary, R., McGinnis, S., Rahimi-Esfarjani, S., Slinskey,
E., Ullrich, P. A., Wehner, M., and Jones, A. D.: Recreating
the California New Year’s Flood Event of 1997 in a Region-
ally Refined Earth System Model, J. Adv. Model. Earth Sy.,
15, e2023MS003793, https://doi.org/10.1029/2023MS003793,
2023.

Sharma, S., Gomez, M., Keller, K., Nicholas, R. E., and Mejia,
A.: Regional Flood Risk Projections under Climate Change, J.
Hydrometeorol., 22, 2259–2274, https://doi.org/10.1175/JHM-
D-20-0238.1, 2021.

Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Des-
sai, S., Dima-West, I. M., Fowler, H. J., James, R., Maraun,
D., Martius, O., Senior, C. A., Sobel, A. H., Stainforth, D. A.,
Tett, S. F. B., Trenberth, K. E., van den Hurk, B. J. J. M.,
Watkins, N. W., Wilby, R. L., and Zenghelis, D. A.: Story-
lines: an alternative approach to representing uncertainty in phys-
ical aspects of climate change, Climatic Change, 151, 555–571,
https://doi.org/10.1007/s10584-018-2317-9, 2018.

Siirila-Woodburn, E. R., Rhoades, A. M., Hatchett, B. J., Hun-
ing, L. S., Szinai, J., Tague, C., Nico, P. S., Feldman, D.
R., Jones, A. D., Collins, W. D., and Kaatz, L.: A low-to-no
snow future and its impacts on water resources in the western
United States, Nature Reviews Earth & Environment, 2, 800–
819, https://doi.org/10.1038/s43017-021-00219-y, 2021.

Singh, P., Spitzbart, G., Hübl, H., and Weinmeister, H.: Hydro-
logical response of snowpack under rain-on-snow events: a
field study, J. Hydrol., 202, 1–20, https://doi.org/10.1016/S0022-
1694(97)00004-8, 1997.

Sood, A. and Smakhtin, V.: Global hydrological models: a review,
Hydrolog. Sci. J., 60, 549–565, 2015.

Sterle, K., Hatchett, B. J., Singletary, L., and Pohll, G.: Hydrocli-
mate Variability in Snow-Fed River Systems: Local Water Man-

Nat. Hazards Earth Syst. Sci., 24, 3315–3335, 2024 https://doi.org/10.5194/nhess-24-3315-2024

https://repository.library.noaa.gov/view/noaa/13812
https://doi.org/10.1175/JHM-D-15-0019.1
https://doi.org/10.1029/2022EF003009
https://doi.org/10.1073/pnas.1422945112
https://doi.org/10.1016/j.jhydrol.2007.12.027
https://doi.org/10.1175/BAMS-88-3-319
https://doi.org/10.1175/JHM-D-16-0264.1
https://doi.org/10.1007/s10584-021-03294-8
https://doi.org/10.1175/1520-0450(1984)023<0135:COASIA>2.0.CO;2
https://doi.org/10.1175/1520-0450(1984)023<0135:COASIA>2.0.CO;2
https://doi.org/10.1038/s41558-018-0236-4
https://doi.org/10.1038/s41558-018-0236-4
https://doi.org/10.1175/BAMS-D-14-00226.1
https://doi.org/10.1086/708691
https://doi.org/10.1038/s41558-020-0709-0
https://pubs.usgs.gov/fs/2000/0024/report.pdf
https://pubs.usgs.gov/fs/2000/0024/report.pdf
https://doi.org/10.1175/JHM-D-22-0146.1
https://doi.org/10.1175/JHM-D-22-0146.1
https://doi.org/10.1016/j.wace.2020.100253
https://doi.org/10.1002/hyp.9864
https://doi.org/10.1029/2008GL034424
https://doi.org/10.1002/2017EF000789
https://doi.org/10.1029/2023MS003793
https://doi.org/10.1175/JHM-D-20-0238.1
https://doi.org/10.1175/JHM-D-20-0238.1
https://doi.org/10.1007/s10584-018-2317-9
https://doi.org/10.1038/s43017-021-00219-y
https://doi.org/10.1016/S0022-1694(97)00004-8
https://doi.org/10.1016/S0022-1694(97)00004-8


C. M. Zarzycki et al.: Algorithmic detection of basin-scale rain-on-snow events 3335

agers’ Perspectives on Adapting to the New Normal, B. Am. Me-
teorol. Soc., 100, 1031–1048, https://doi.org/10.1175/BAMS-D-
18-0031.1, 2019.

St. George, S. and Mudelsee, M.: The weight of the flood-of-record
in flood frequency analysis, J. Flood Risk Manag., 12, e12512,
https://doi.org/10.1111/jfr3.12512, 2019.

Sun, J., Zhang, K., Wan, H., Ma, P.-L., Tang, Q., and
Zhang, S.: Impact of Nudging Strategy on the Climate Rep-
resentativeness and Hindcast Skill of Constrained EAMv1
Simulations, J. Adv. Model. Earth Sy., 11, 3911–3933,
https://doi.org/10.1029/2019MS001831, 2019.

Surfleet, C. G. and Tullos, D.: Variability in effect of climate change
on rain-on-snow peak flow events in a temperate climate, J. Hy-
drol., 479, 24–34, https://doi.org/10.1016/j.jhydrol.2012.11.021,
2013.

Suriano, Z. J.: North American rain-on-snow ablation climatol-
ogy, Climate Res., 87, 133–145, https://doi.org/10.3354/cr01687,
2022.

Suriano, Z. J., Henderson, G. R., and Leathers, D. J.: Discharge
responses associated with rapid snow cover ablation events in the
Susquehanna and Wabash River basins, Phys. Geogr., 41, 70–82,
https://doi.org/10.1080/02723646.2019.1674558, 2020.

Suriano, Z. J., Henderson, G. R., Arthur, J., Harper, K., and
Leathers, D. J.: Atmospheric Drivers Associated with Extreme
Snow Ablation and Discharge Events in the Susquehanna River
Basin: A Climatology, J. Appl. Meteorol. Clim., 62, 1497–1510,
https://doi.org/10.1175/JAMC-D-23-0042.1, 2023.

Tarouilly, E., Li, D., and Lettenmaier, D. P.: Western U. S. Super-
floods in the Recent Instrumental Record, Water Resour. Res.,
57, e2020WR029287, https://doi.org/10.1029/2020WR029287,
2021.

Toomey, M., Cantwell, M., Colman, S., Cronin, T., Donnelly, J.,
Giosan, L., Heil, C., Korty, R., Marot, M., and Willard, D.: The
Mighty Susquehanna – Extreme Floods in Eastern North Amer-
ica During the Past Two Millennia, Geophys. Res. Lett., 46,
3398–3407, https://doi.org/10.1029/2018GL080890, 2019.

US Army Corps of Engineers: Non-Structural Flood Damage Re-
duction Within the Corps of Engineers: What Districts Are
Doing, Tech. Rep. ADA629409, https://apps.dtic.mil/sti/tr/pdf/
ADA629409.pdf (last access: 23 September 2024), 2001.

Villarini, G. and Smith, J. A.: Flood peak distributions for
the eastern United States, Water Resour. Res., 46, W06504,
https://doi.org/10.1029/2009WR008395, 2010.

Wachowicz, L. J., Mote, T. L., and Henderson, G. R.:
A rain on snow climatology and temporal analysis for
the eastern United States, Phys. Geogr., 41, 54–69,
https://doi.org/10.1080/02723646.2019.1629796, 2020.

Wayand, N. E., Lundquist, J. D., and Clark, M. P.: Mod-
eling the influence of hypsometry, vegetation, and storm
energy on snowmelt contributions to basins during rain-
on-snow floods, Water Resour. Res., 51, 8551–8569,
https://doi.org/10.1002/2014WR016576, 2015.

Williams, A. P., Abatzoglou, J. T., Gershunov, A., Guzman-
Morales, J., Bishop, D. A., Balch, J. K., and Letten-
maier, D. P.: Observed Impacts of Anthropogenic Climate
Change on Wildfire in California, Earths Future, 7, 892–910,
https://doi.org/10.1029/2019EF001210, 2019.

Williams, A. P., Cook, E. R., Smerdon, J. E., Cook, B. I., Abat-
zoglou, J. T., Bolles, K., Baek, S. H., Badger, A. M., and
Livneh, B.: Large contribution from anthropogenic warming to
an emerging North American megadrought, Science, 368, 314–
318, https://doi.org/10.1126/science.aaz9600, 2020.

Würzer, S., Jonas, T., Wever, N., and Lehning, M.: Influ-
ence of initial snowpack properties on runoff formation dur-
ing rain-on-snow events, J. Hydrometeorol., 17, 1801–1815,
https://doi.org/10.1175/JHM-D-15-0181.1, 2016.

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood,
E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Letten-
maier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko,
D.: Continental-scale water and energy flux analysis and vali-
dation for the North American Land Data Assimilation System
project phase 2 (NLDAS-2): 1. Intercomparison and applica-
tion of model products, J. Geophys. Res.-Atmos., 117, D03109,
https://doi.org/10.1029/2011JD016048, 2012.

Yarnal, B., Johnson, D. L., Frakes, B. J., Bowles, G. I.,
and Pascale, P.: The Flood of ’96 and its socioeconomic
impacts in the Susquehanna River Basin, J. Am. Water
Resour. As., 33, 1299–1312, https://doi.org/10.1111/j.1752-
1688.1997.tb03554.x, 1997.

Ye, H., Yang, D., and Robinson, D.: Winter rain on snow and its as-
sociation with air temperature in northern Eurasia, Hydrol. Pro-
cess., 22, 2728–2736, https://doi.org/10.1002/hyp.7094, 2008.

Yu, G., Wright, D. B., and Davenport, F. V.: Diverse Physi-
cal Processes Drive Upper-Tail Flood Quantiles in the US
Mountain West, Geophys. Res. Lett., 49, e2022GL098855,
https://doi.org/10.1029/2022GL098855, 2022.

Zarzycki, C. M.: zarzycki/betacast: Betacast (v0.2), Zenodo [code],
https://doi.org/10.5281/zenodo.6047091, 2023.

Zarzycki, C. M. and Jablonowski, C.: Experimental Trop-
ical Cyclone Forecasts Using a Variable-Resolution
Global Model, Mon. Weather Rev., 143, 4012–4037,
https://doi.org/10.1175/MWR-D-15-0159.1, 2015.

Zarzycki, C. M., Ascher, B. D., Rhoades, A. M., and Mc-
Crary, R. R.: Algorithmically Detected Rain-on-Snow Flood
Events in Different Climate Datasets: A Case Study of
the Susquehanna River Basin, Zenodo [code and data set],
https://doi.org/10.5281/zenodo.10412332, 2024.

Zhang, S., Zhang, K., Wan, H., and Sun, J.: Further improve-
ment and evaluation of nudging in the E3SM Atmosphere
Model version 1 (EAMv1): simulations of the mean climate,
weather events, and anthropogenic aerosol effects, Geosci.
Model Dev., 15, 6787–6816, https://doi.org/10.5194/gmd-15-
6787-2022, 2022.

Zheng, H., Yang, Z.-L., Lin, P., Wei, J., Wu, W.-Y., Li, L.,
Zhao, L., and Wang, S.: On the Sensitivity of the Precipita-
tion Partitioning Into Evapotranspiration and Runoff in Land
Surface Parameterizations, Water Resour. Res., 55, 95–111,
https://doi.org/10.1029/2017WR022236, 2019.

https://doi.org/10.5194/nhess-24-3315-2024 Nat. Hazards Earth Syst. Sci., 24, 3315–3335, 2024

https://doi.org/10.1175/BAMS-D-18-0031.1
https://doi.org/10.1175/BAMS-D-18-0031.1
https://doi.org/10.1111/jfr3.12512
https://doi.org/10.1029/2019MS001831
https://doi.org/10.1016/j.jhydrol.2012.11.021
https://doi.org/10.3354/cr01687
https://doi.org/10.1080/02723646.2019.1674558
https://doi.org/10.1175/JAMC-D-23-0042.1
https://doi.org/10.1029/2020WR029287
https://doi.org/10.1029/2018GL080890
https://apps.dtic.mil/sti/tr/pdf/ADA629409.pdf
https://apps.dtic.mil/sti/tr/pdf/ADA629409.pdf
https://doi.org/10.1029/2009WR008395
https://doi.org/10.1080/02723646.2019.1629796
https://doi.org/10.1002/2014WR016576
https://doi.org/10.1029/2019EF001210
https://doi.org/10.1126/science.aaz9600
https://doi.org/10.1175/JHM-D-15-0181.1
https://doi.org/10.1029/2011JD016048
https://doi.org/10.1111/j.1752-1688.1997.tb03554.x
https://doi.org/10.1111/j.1752-1688.1997.tb03554.x
https://doi.org/10.1002/hyp.7094
https://doi.org/10.1029/2022GL098855
https://doi.org/10.5281/zenodo.6047091
https://doi.org/10.1175/MWR-D-15-0159.1
https://doi.org/10.5281/zenodo.10412332
https://doi.org/10.5194/gmd-15-6787-2022
https://doi.org/10.5194/gmd-15-6787-2022
https://doi.org/10.1029/2017WR022236

	Abstract
	Introduction
	Methods
	Datasets
	Defining basin-scale events

	Results
	Climatology
	Flagged event statistics
	Single-year evaluation
	Evaluation of a single event
	Generalizability to other basins

	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References



