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Distinguishing Renal Cell Carcinoma From

Normal Kidney Tissue Using Mass Spectrometry
Imaging Combined With Machine Learning

Vishnu Shankar, MS'; Kanchustambham Vijayalakshmi, PhD?; Rosalie Nolley, BS3; Geoffrey A. Sonn, MD3; Chia-Sui Kao, MD*;
Hongjuan Zhao, MD?; Ru Wen, PhD?; Livia S. Eberlin, PhD5; Robert Tibshirani, PhD®; Richard N. Zare, PhD?; and James D. Brooks, MD?

PURPOSE Accurately distinguishing renal cell carcinoma (RCC) from normal kidney tissue is critical for
identifying positive surgical margins (PSMs) during partial and radical nephrectomy, which remains the primary
intervention for localized RCC. Techniques that detect PSM with higher accuracy and faster turnaround time
than intraoperative frozen section (IFS) analysis can help decrease reoperation rates, relieve patient anxiety and
costs, and potentially improve patient outcomes.

MATERIALS AND METHODS Here, we extended our combined desorption electrospray ionization mass spec-
trometry imaging (DESI-MSI) and machine learning methodology to identify metabolite and lipid species from
tissue surfaces that can distinguish normal tissues from clear cell RCC (ccRCC), papillary RCC (pRCC), and
chromophobe RCC (chRCC) tissues.

RESULTS From 24 normal and 40 renal cancer (23 ccRCC, 13 pRCC, and 4 chRCC) tissues, we developed a
multinomial lasso classifier that selects 281 total analytes from over 27,000 detected molecular species that
distinguishes all histological subtypes of RCC from normal kidney tissues with 84.5% accuracy. On the basis of
independent test data reflecting distinct patient populations, the classifier achieves 85.4% and 91.2% accuracy
on a Stanford test set (20 normal and 28 RCC) and a Baylor-UT Austin test set (16 normal and 41 RCC),
respectively. The majority of the model’s selected features show consistent trends across data sets affirming its
stable performance, where the suppression of arachidonic acid metabolism is identified as a shared molecular
feature of ccRCC and pRCC.

CONCLUSION Together, these results indicate that signatures derived from DESI-MSI combined with machine
learning may be used to rapidly determine surgical margin status with accuracies that meet or exceed those
reported for IFS.

JCO Precis Oncol 7:e2200668. © 2023 by American Society of Clinical Oncology

INTRODUCTION

The standard treatment for localized renal cell carci-
noma (RCC) is surgical resection including partial and
radical nephrectomy. However, 30%-60% of the pa-
tients will experience tumor recurrence.* The finding of
positive surgical margins (PSMs) on surgical patho-
logical analysis, ranging from 0.1% to 18% for patients
with small renal masses and 18% to 32% for patients
with advanced RCC,? has been associated with in-
creased rate of local relapse® and worse overall survival
independent of other predictors.* Patients with PSM
either undergo an immediate second surgery or are
actively monitored for tumor progression by imaging.5®
Avoiding PSM will help decrease reoperation rates,
relieve patient anxiety and costs, and improve patient
outcomes. However, the most common technique for
minimizing the risk of PSM, that is, intraoperative
frozen section (IFS),”® has low accuracy®'° caused by
multiple factors, including artifacts of frozen tissue

sections.!* Another problem with IFS is the long
turnaround time, requiring surgeries to be paused for
20-60 minutes while tissue margins are analyzed
histologically, which subjects patients to increased risk
related to extended anesthesia, and underscores the
need for better techniques to accurately detect PSM
with fast turnabout time.

We and others have demonstrated that the applica-
tion of desorption electrospray ionization mass
spectrometric imaging (DESI-MSI), an ambient ion-
ization mass spectrometry technique that enables
spatially mapping the abundances of metabolite and
lipid species on tissue surfaces,'?!® can distinguish
normal from malignant tissues in several organs in-
cluding pancreas, brain, breast, stomach, kidney, and
prostate.'**° DESI-MSI can classify PSM versus nega-
tive surgical margins with high sensitivity and specificity
in several cohorts of prospectively collected surgical
specimens. For example, >98% agreement with
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CONTEXT

Key Objective

Accurately distinguishing renal cell carcinoma (RCC) from normal kidney tissue is critical for identifying positive surgical
margins (PSMs) during partial and radical nephrectomy, which remains the primary intervention for localized RCC.

Knowledge Generated

Using the combination of desorption electrospray ionization mass spectrometry imaging (DESI-MSI) and statistical lasso
modeling approaches, we report the development of a multinomial classifier (>84% accuracy), evaluated on three data
sets reflecting different patient populations from different institutions, for distinguishing all histological subtypes of RCC
from normal tissues with high sensitivity and specificity.

Relevance

Our proof-of-concept work lays the groundwork for implementing DESI-MSI-based PSM detection in RCC with higher ac-
curacy and faster turnaround time than the current standard of care, intraoperative frozen section, which could decrease
reoperation rates, relieve patient anxiety and costs, and potentially improve patient outcomes.

histopathology was achieved by DESI-MSI in 32
pancreatectomies.'® Along these lines, agreement with his-
topathology was also achieved for 86%, 89%, and 80%
breast, gastric, and brain  tissue  specimens,
respectively,'*1>17 highlighting the potential value of DESI-
MSI in providing accurate and rapid assessment of surgical
margin for intraoperative use. Because DESI-MSI is such a
well-established technique, details of its implementation in
the present studies are relegated to the supporting
information.

RCC lends itself to detection by metabolomic approaches
because many initiating mutations affect metabolism (eg, Von
Hippel-Lindau mutations induce tumor switch to glycolytic
metabolism).?° In clear cell RCC (ccRCC), the major RCC
subtype encompassing 70%-80% of RCCs, lipidomic profiling
of 49 paired normal versus cancer tissues showed that >70%
of the detected lipids were significantly different in cancer
compared with normal kidney cortex.2! In addition, DESI-MSI
analysis of tissues from two separate ccRCC cohorts (15
ccRCC v 13 normal and nine ccRCC v nine paired normal)
identified analytes that separate ccRCC from noncancer-
ous kidney tissues.'®?? Recently, we evaluated the fea-
sibility of using DESI-MSI in distinguishing ccRCC versus
noncancerous kidney tissues in 40 normal tumor pairs of
patient specimens and reported a predictive model with
85% accuracy validated in an independent test set of 17
pairs.?® These results demonstrated the utility of DESI-
MSI-derived metabolite-based signatures in distinguish-
ing ccRCC from normal kidney tissues. However, whether
such metabolite-based signatures can distinguish normal
kidney tissues from other histological subtypes of RCC
including papillary RCC (pRCC) and chromophobe RCC
(chRCC) remain to be investigated.

In this study, we extended our methodology?* to incor-
porate other histological subtypes of RCC including pRCC
(10%-15% of RCC) and chRCC (4%-5% of RCC). We built
a multinomial lasso classifier on 24 normal, 23 ccRCC, 13

2 © 2023 by American Society of Clinical Oncology

pRCC, and four chRCC tissues to distinguish all histo-
logical subtypes of RCC from normal kidney tissues. To
assess model generalizability, we also evaluated this
classifier's performance on two independent test sets
comprised of 48 tissues (20 normal and 28 cancer) from
Stanford and 57 tissues (16 normal and 41 cancer) from
Baylor-UT Austin.?® In addition, we characterized the
multinomial model features and evaluated its perfor-
mance in classifying RCC histological subtypes, that is,
ccRCC, pRCC, and chRCC. Beyond its performance in
classifying RCC subtypes, we also detect a conserved
signature of arachidonic acid suppression in ccRCC and
pRCC tissues. The differences are detected for several
eicosanoid metabolic pathway products. This result in-
dicates that lipid reprogramming is an important feature of
RCC tumorigenesis, as previously reported,?1?¢ and that
our methodology can more broadly identify specific
pathways that contribute to RCC progression.

MATERIALS AND METHODS
Tissue Samples

A total of 112 banked frozen human tissue samples in-
cluding 44 normal kidney tissues with cortex and/or medullar
and 68 RCC samples including 41 ccRCC (40 ccRCCs from
previous study),?® 21 pRCC, and six chRCC samples were
harvested from both benign and cancerous areas in subjects
undergoing nephrectomy for kidney cancer under an IRB-
approved protocol that allowed association of clinical data
with specimens (IRB-13828), as previously described.?® For
each case, a 5-pm formalin-fixed, paraffin-embedded tissue
section was stained with hematoxylin and eosin (H&E) and
evaluated by a genitourinary pathologist (C.-S. K.) to confirm
histology. In addition, a 5-pm frozen section of each tissue
sample was stained with H&E and evaluated to exclude
necrotic tissues, and then, a 10-um section was obtained
immediately adjacent to the H&E section using a Leica
CM1950 cryostat (Leica Biosystems, Deer Park, IL) for
DESI-MSI analysis. All tissues were harvested from radical
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nephrectomy specimens after patients had signed an
informed consent under an Institutional Review Board—
approved protocol (IRB-13828).

DESI-MSI Analysis

Information on the conditions for which DESI-MSI was
operated, how molecular identifications were made, and
how two-dimensional chemical maps were created can be
found in the experimental section of the Data Supplement.

Statistical Analysis

To identify the key metabolic signatures with highest
classification accuracy between RCC and normal tissues,
we trained a pixel-based multinomial model, as described
previously.?32427 Additional details on how raw data were
processed to a training matrix are found in Refs 16, 23, 24,
and the Data Supplement (Statistical Methods Description
S7). A training matrix was assembled with 52,886 rows and
27,523 columns,® where each row corresponds to a
unigue pixel and column to a detected m/z peak. All tissues
were processed uniformly, including Stanford training, test,
and Baylor-UT Austin test sets.?® Several pixel-based lasso
models that predict the probability of a given pixel being
cancerous or normal were compared using five-fold cross-
validation (CV; Data Supplement [Table 11). If the class with
maximum predicted probability belongs to cancer (clear
cell, papillary, or chromophobe), the pixel is predicted to be
cancerous. The best performing multinomial model was
selected for additional evaluation on independent test sets.
Tissue-level performance was assessed by using a majority-
wise rule, namely if over half the pixels were predicted to be
cancerous regardless of subtype, the entire tissue is pre-
dicted to be cancerous.

RESULTS

DESI-MSI Enables Molecular Characterization of
Metabolites in All Histological Subtypes of RCC

Using DESI-MSI analysis, we obtained a spatial map of
small metabolites and lipids (m/z50-1,000) across normal,
ccRCC, pRCC, and chRCC core biopsy postnephrectomy
tissue specimens. DESI-MSI analysis revealed rich
metabolite information (Fig 1) characterized by molec-
ular ions such as small metabolites in the m/z 50-200
range; free fatty acids (FFAs), eicosanoids, and mono-
acylglycerides lipids in the m/z200-400 range; fatty acid
dimers and ceramides (Cer) in the m/z 400-700 range;
and glycerophospholipids within the m/z 700-1,000
range in core biopsy tissue from normal kidney (Fig 1A)
and pRCC (Fig 1B). Molecular fragmentation MS/MS
analysis identified >15 tentative peaks from small me-
tabolites (Data Supplement [Figs 1-4]), such as lactate
(m/z 89.0247), succinate (m/z 117.0195), taurine
(m/z 124.0077), glutamic acid (m/z 146.0463) glucose
+ Cl™ adduct (m/z 215.0326), and FFAs. Identified FFA
peaks include palmitic acid FA(16:0) (m/z 255.2327),
oleic acid FA(18:1) (m/z 281.2484), arachidonic acid
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FA(20:4) (m/z303.2327), and docosanoic acid FA(22:0)
(m/z339.2092). Using delta nomenclature for the FFAs,
we have denoted the total number of carbon atoms to the
number of carbon-carbon double bonds (eg, FA(18:1)
oleic acid is 18 carbon chain fatty acid with one carbon-
carbon double bond). In addition, several eicosanoid
pathway metabolites, including prostaglandins, throm-
boxanes, leukotrienes, and lipoxins, were detected.
These metabolites include 12S-hydroxy-57,87,10E,
147,177-eicosapentaenoic acid (12S-HEPE) FA(20:5,0)
(m/z 317.2249), 5S,12R-dihydroxy-67,8E,10E,14Z-eicosa-
tetraene-1,20-dioic acid (20-carboxy-leukotriene-B4) LTB4
FA(20:5,04), (m/z 365.2460), and 9S,15S-dihydroxy-11-
oxo-thromboxa-57,13E-dien-1-oic acid-d4 (11-dehydro-
TXB2-d4) FA(20:2,04) (m/z 371.2799).

Moreover, we observed monoacylglycerides such as MG
(18:0) (m/z 393.2642), and fatty acid dimers such as
FA(16:0)+FA(16:0) (m/z 511.4728), FA(16:0)+FA(18:1)
(m/z 537.4883), FA(18:1)+FA(18:1) (m/z 563.5046),
FA(18:1)+FA(20:4) (m/z 585.4890), FA(20:4)+FA(20:4)
(m/z 607.4727). Within the 600-1,000 m/z region,
ceramides m/z 631.4737, Cer(d40:1) (m/z 655.45920),
Cer(d42:2) (m/z 682.5917), and glycerophospholipids
such as glycerophosphoglycerol PG(34:1) (m/z747.5175),
PG(36:2) (m/z 773.5335), PG(36:2) (m/z 797.5342) and
glycerophosphoinositol P1(38:4) (m/z 885.5482) were
detected.

Multinomial Lasso Classifier Stably Distinguishes All
Histological Subtypes of RCC From Normal Tissues

We developed a multinomial lasso classifier to find specific
my/z peaks that distinguish all histological subtypes of RCC
from normal kidney tissues using MassExplorer, a com-
putational pipeline for processing and analyzing raw DESI-
MSI data.?* Among an initial training set of 64 tissues (24
normal and 40 cancer including 23 ccRCC, 13 pRCC, and
four chRCC), DESI-MSI detects 27,523 m/z peaks in at
least a single pixel across 52,886 total pixels. Several
models were trained and compared using CV accuracy,
sensitivity, and specificity. Sensitivity and specificity are
defined as how well the model can identify true positives
(cancer) and true negatives (noncancer), respectively.
The multinomial lasso classifier, which selects a sparse
subset of analytes for each class (normal, clear cell,
papillary, and chromophobe; Data Supplement [Fig 5]),
picked 281 total m/z coefficients (Data Supplement
[Fig 6]) and achieved the best CV accuracy (84.3%),
sensitivity (86.8%), and specificity (82.6%; the Data
Supplement [Table 1] shows pixel-level performances).
The multinomial lasso selected peaks for each class are
included in the Data Supplement ([Table 21). Notably, the
multinomial model outperformed the binary logistic re-
gression lasso model, which achieved 72.6% accuracy
and selected 572 m/z coefficients (Data Supplement
[Table 11).
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FIG 1. DESI-MS analysis of normal kidney and RCC tissues, specifically pRCC, shows that normal tissues have higher abundance of m/z 317.2249
(12S-HEPE) compared with RCC tissues. (A) Representative DESI mass spectra of normal kidney tissue and the respective DESI-MS ion images of
metabolites m/z317.2249 (12S-HEPE) and m/z281.2484 (oleic acid). (B) Representative DESI mass spectra of pRCC tissues and the respective DESI-MS
ion images of 12S-HEPE and oleic acid. DESI-MS, desorption electrospray ionization mass spectrometry; FA, fatty acid; NL, normalization; PG, glyc-
erophosphoglycerol; pRCC, papillary RCC; RCC, renal cell carcinoma; 12S-HEPE, 12S-hydroxy-57,87,10E,147,17Z-eicosapentaenoic acid.

We evaluated the multinomial model CV performance on
independent test sets, including 48 Stanford tissues
(20 normal and 28 cancer) termed Stanford test setand
57 Baylor-UT Austin tissues from Zhang et al?® termed
Baylor-UT Austin test set. Table 1 presents the per-
formances of the multinomial model. Importantly, the
overall performances appear stable, corresponding to
84.3% accuracy in CV (79.2% specificity and 87.5%
sensitivity), 85.4% accuracy on the Stanford test set
(100% specificity and 75% sensitivity), and 91.2%
accuracy on the Baylor-UT Austin test set (81.3%
specificity and 95.1% sensitivity). Additional area un-
der the curve (AUC)-receiver operating characteristic
analysis (Fig 2A) estimates the multinomial model
achieves AUC 0.807, 0.865, and 0.854 on the Stanford
training CV, Stanford test, and Baylor-UT Austin test
sets, respectively, affirming the stability of the model
performance.

Our previously published model?® that distinguishes ccRCC
from normal kidney tissues achieved 68.1% accuracy on
distinguishing non-cRCC tissues in the Stanford training set

4 © 2023 by American Society of Clinical Oncology

(59.8% sensitivity and 96.7% specificity), highlighting the
strength of the new model in predicting non-ccRCC sub-
types that were not covered by the previous model. Al-
though both Stanford tissues in this study and Baylor-UT
Austin tissues in the study by Zhang et al*®> were imaged
using DESI-MSI, some important methodological differ-
ences are worth mentioning. Within the Stanford tissues,
the relative abundances were measured for metabolites
ranging from m/z 50-1,000, while the Baylor-UT Austin
tissue data reflect relative abundances for metabolites
ranging from m/z 100-1,500. Additionally, our mass
spectrometry measurements used in this study focused on
detecting and identifying small metabolites and lipids
(m/z 50-400), while Baylor-UT Austin data emphasized
complex lipids (m/z 600-1,500). Despite these methodo-
logical differences, which limit a direct one-to-one com-
parison with the published model,2® the consistency of our
model performance in detecting RCC from normal tissues
across different patient populations more broadly suggests
that DESI-MSI-derived metabolic signatures can be used to
diagnose RCC.
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TABLE 1. Multinomial Lasso Prediction Results (11/z250-1,000) for 64 Renal Tissue
Specimens in the Stanford Training Set, 48 in Stanford Test Set, and 57 in the
Baylor-UT Austin Test Set®® in Comparison With Histopathological Analysis

Set

Lasso Prediction Results (n/z 50-1,000) for Renal
Cancer Tissue Specimens

Pathology Diagnosis Normal Cancer % Correct

Stanford training CV Normal 19 5 79.2
Cancer 5 E5) 87.5
Overall agreement: 84.3%

Stanford test set Normal 20 0 100
Cancer 7 21 75

Overall agreement: 85.4%

Baylor-UT Austin test set

Normal 13 3 81.3
Cancer 2 39 95.1

Overall agreement: 91.2%

Abbreviation: CV, cross-validation.

We further investigated whether the model features (ie,
selected rm/z peaks) are consistent across data sets. Among
analytes selected by the lasso model on the Stanford
training set, we evaluated if the selected analytes with
higher mean relative abundances in cancer tissues (ele-
vated in cancer, Fig 3B) were also elevated on average in
the Stanford test and Baylor-UT Austin test cancer tissues
compared with normal tissues. Among selected m/z peaks
elevated in normal tissues within the Stanford training set,
63.0% and 52.8% of these peaks are also elevated in
Stanford test and Baylor-UT Austin test sets, respectively
(Fig 2B). Similarly, for peaks upregulated in training cancer
tissues, 74.6% and 54.3% of these peaks are also upre-
gulated in Stanford test and Baylor-UT Austin test sets,
respectively. For example, N-acetyl aspartic acid (m/z
174.04) remains upregulated in normal tissues and taurine
(m/z 124.00) in pRCC tissues (Data Supplement [Fig 71).
Additionally, arachidonic acid (m/z 303.23) as a feature
elevated in normal tissues (Fig 3C) is consistently upre-
gulated in normal tissues compared with ccRCC and pRCC
tissues in Stanford training, test, and Baylor-UT Austin test
sets by 1.6-, 3.3-, and 2.3-fold, respectively. These results
show that the majority (>50%) of peaks that are either
associated with normal or cancer tissues maintain the same
trend across test sets and demonstrate the capability of our
DESI-MSI and statistical analysis in identifying consistent
signatures for RCC diagnosis.

Multinomial Lasso Classifier Does Not Distinguish
Histological Subtypes of RCC

When only considering RCC tissues, the accuracy of our
multinomial lasso classifier in distinguishing particular
histological subtypes in Stanford CV training set, Stanford
test set, and Baylor-UT Austin test set is 82.5%, 60.7%,
and 38%, respectively (Data Supplement [Table 3]). The
decline in classifier performance can be ascribed to fre-
quently misclassifying one RCC subtype for another,
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specifically assigning chRCC as ccRCC or pRCC. Additional
characterization of the multinomial model performance in
classifying RCC subtypes is included in the Data Supple-
ment ([Statistical Methods section S7-S101).

Furthermore, we investigated DESI-MSI metabolite profiles
of RCC tissues between the Stanford test set and Baylor-UT
Austin test set using the 27,523 detected m/z peaks. After
the relative abundances across pixels were averaged for
each tissue, samples were hierarchically clustered based
on Euclidean distance. Figure 3A presents the resulting
dendrogram, where each leaf corresponds to a sample
from one of the test sets.

Clustering analysis revealed that tissues of the same RCC
subtype, even within the same data set, do not readily
congregate together. To quantify how frequently RCC tissue
histological subtypes across different patient populations of
the same histology class cluster together, we determined for
each Stanford test tissue which RCC tissue within the
Baylor-UT Austin tissue data has the closest molecular
signature. Surprisingly, we found that only six of the 28
(21.4%) RCC tissues in the Stanford test data are closest to
tissues with the matching subtype within the Baylor-UT
Austin test data, with all matching cases corresponding to
ccRCC tissues (6/18 = 33.3%; Fig 3B). Of the 10 pRCC and
chRCC in the Stanford test data, none cluster closest to
tissues of the same subtype in the B-UT test data (Fig 3B).
Together, these results suggest that the DESI-MSI profile for
the same RCC tissue subtype from different institutions is
largely inconsistent and likely explains the poor model test
set performance in classifying RCC subtypes.

DESI-MSI Imaging Identifies Suppression of Arachidonic
Acid Metabolism Is Conserved Between ccRCC and
pPRCC Subtypes

Representative spectra across normal tissue and each
RCC subtype whose histology was confirmed by H&E
staining shows the spatial distribution of arachidonic acid
FA(20:4) (303.23 m/z), which appears significantly
suppressed in pRCC and ccRCC tissues (Figs 2C and 4).
Additionally, 11-dehydro-TXB2-d4 (m/z 371.2791),
which is formed from thromboxane A2 species that are
derived from arachidonic acid lipids, also appears slightly
elevated in the normal tissues compared with RCC his-
tological subtypes (Fig 4), consistent with previous studies
of ours and other groups demonstrating suppression of
arachidonic acid FA(20:4) as a potential marker in ccRCC
tissue diagnosis.?t?® These results demonstrated that
suppression of arachidonic acid metabolism is an im-
portant shared molecular feature of ccRCC and pRCC.

DISCUSSION

Our previous work provided the first proof of concept for use
of DESI-MSI to determine surgical margin status in ccRCC
and revealed key metabolic differences between ccRCC
and normal tissue consistent with the metabolic rewiring
in ccRCC.2®> This study demonstrates that metabolic
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cell carcinoma.
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signatures derived from DESI-MSI can stably distinguish all
RCC histological subtypes, including ccRCC, pRCC, and
chRCC from normal kidney tissues across different patient
populations, adding to a growing body of literature sup-
porting the use of DESI-MSI for cancer diagnosis and
surgical margin evaluation.!®??232832° The multinomial
lasso classifier showed excellent performance character-
istics with high sensitivity and specificity in distinguishing
RCC versus normal tissues in diverse patient populations,
matching or exceeding those reported for frozen sections,
and providing strong rationale for developing a rapid and
reproducible DESI-MSI-based method of assessing cancer
margins during surgical resection of RCC to potentially
lower the risk of tumor recurrence. Our study also identifies
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suppression of arachidonic acid metabolism as an im-
portant shared molecular feature of ccRCC and pRCC,
shedding light on the metabolic changes conserved be-
tween these RCC histological subtypes, which will help us
better understand the biology of RCC metabolism.

As DESI-MSI is performed at room temperature and in open
air, can handle crude sample very easily with minimal
sample preparation, and provides a comprehensive
chemical map of metabolites, it is an ideal technique for
rapid identification and characterization of biological tissue
specimens for real-time clinical applications.*>** The de-
velopment of nondestructive, histologically compatible
solvents has enabled molecular imaging and standard H&E
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FIG 4. DESI-MS analysis shows representative spectra from normal, pRCC, ccRCC, and chRCC tissues. Spatial maps corresponding to arachidonic
acid (m/z303.23) and 11-dehydro-TXB2-d4 (m/z371.28) suggest elevation of these metabolites in normal compared with RCC tissues. Histology of
RCC subtypes was confirmed by H&E staining tissue section from the same cases (shown on right at 40x magnification). ccRCC, clear cell RCC;
chRCC, chromophobe RCC; DESI-MS, desorption electrospray ionization mass spectrometry; H&E, hematoxylin and eosin; NL, normalization;
pRCC, papillary RCC; RCC, renal cell carcinoma.

histology to be performed on the same tissue section.'®13
Our study is the first to identify a robust universal DESI-MSI
signature that separates all RCC histological subtypes from
normal kidney tissue. The next step would be to compare
the accuracy of the DESI-MSI model to IFS in determining
tumor margins using fresh nephrectomy specimens. We
expect DESI-MSI-based methods will be more sensitive
and accurate than IFS since neoplastic foci of low-grade
RCC are often misinterpreted as thickly cut, crushed
benign tubules on IFS. This hypothesis is supported by
our previous study using DESI-MSI to evaluate surgical
margins in pancreatic cancer, in which margins were
found to be positive by DESI-MSI/lasso, but negative by
IFS, in eight of 32 patients.'® The median survival for

8 © 2023 by American Society of Clinical Oncology

these eight patients was only 10 months, similar to what
one would expect for patients with PSM at the time of
resection. This short survival time contrasted sharply
with patients shown to have negative margins by both
DESI-MSI and IFS where survival time was 26 months,
suggesting DESI-MSI is more sensitive than IFS in
detecting margin involvement by tumor in patients who
experienced early recurrence and death. Additionally, as
DESI-MSI-derived metabolic signatures cover multiple
pathways, including lipid inflammatory signaling, the
citric acid cycle, and protein biosynthesis, we envision
that our methodology may better capture patient het-
erogeneity in the tumor margin. Although additional di-
rect comparisons between DESI-MSI and IFS are
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needed, we anticipate that our combined methodology
can provide a more accurate, faster, and affordable
intraoperative technology in determining surgical mar-
gins in RCC compared with IFS.

Studies have shown that histological subtypes of RCC not
only differ in pathophysiology, clinical course, response to
treatment, and prognosis but also in molecular charac-
teristics including gene mutations and copy number al-
terations, gene expression at transcript and protein levels,
and DNA methylation status, even within the same histo-
logical subtype.®-3” For example, in 2018, Ricketts et al*”
performed an integrated genomic analysis of all available
histologically confirmed TCGA samples of ccRCC, pRCC,
and chRCC and identified shared and subtype-specific
molecular features in a cohort of 843 TCGA-RCC. These
results indicate that histological subtypes of RCC may share
molecular features, including metabolite profiles. However,
most of the studies on RCC metabolism have focused on
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