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Abstract

Purpose: To evaluate the effect of the anatomic size on 3D radiomic imaging features of the 

breast cancer hepatic metastases.

Materials and Methods: CT scans of 81 liver metastases from 54 patients with breast cancer 

were evaluated. Ten most common 3D radiomic features from the histogram and gray level 

co-occurrence matrix (GLCM) categories were calculated for the hepatic metastases (HM) and 

compared to normal liver (NL). The effect of size was evaluated by using linear mixed-effects 

regression models. The effect of size on different radiomic features was analyzed for both liver 

lesions and background liver.

Results: Three-dimensional radiomic features from GLCM demonstrate an important size 

dependence. The texture-feature size dependence was found to be different among feature 

categories and between the HM and NL, thus demonstrating a discriminatory power for the 

tissue type. Significant difference in the slope was found for GLCM homogeneity (NL slope = 

0.004, slope difference 95% confidence interval [CI] 0.06-0.1, p<0.001), contrast (NL slope = 

45, slope difference 95% CI 205-305, p<0.001), correlation (NL slope = 0.04, slope difference 

95% CI 0.11-0.21, p<0.001), and dissimilarity (NL slope = 0.7, slope difference 95% CI 3.6-5.4, 

p<0.001). The GLCM energy (NL slope = 0.002, slope difference 95% CI −0.0005 to −0.0003, 

p<0.007), and entropy (NL slope = 1.49, slope difference 95% CI 0.07-0.52, p<0.009) exhibited 

size-dependence for both NL and HM, although demonstrating a difference in the slope between 

themselves.

Conclusion: Radiomic features of breast cancer hepatic metastasis exhibited significant 

correlation with tumor size. This finding demonstrates the complex behavior of imaging features 

and the need to include feature-specific properties into radiomic models.
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Introduction

Quantitative oncologic imaging continues to gain immense importance in clinical radiology. 

Today, a number of imaging measurements such as a size, density, metabolic activity, 

diffusion, or permeability parameters are commonly used as surrogate endpoints for tumor 

characterization and assessment of response to therapy (1, 2, 3, 4). They provide noninvasive 

assessment of clinical results with reasonable accuracy and reproducibility. The current 

practice to assess response to therapy in solid tumors is based on the monitoring of the 

tumor size according to Response Evaluation Criteria in Solid Tumors (RECIST). Today, 

RECIST is the most commonly used anatomic imaging biomarker in oncologic clinical 

trials (2,3). However, it has been demonstrated that the response to therapy based on size 

measurements may not reflect true response to therapy in cancers such as lymphomas, 

sarcoma, gastrointestinal stromal tumor (5), and for some therapies may show discordance 

with pathologic response (6). Also, the use of tumor size alone has certain limitations as 

shown in various studies (7, 8, 9).

Radiomics is a rapidly developing and expanding field in oncologic imaging (10). It aims 

to maximize the prognostic utility of measurable and quantifiable imaging properties, also 

known as radiomic features. These features are first, second, or higher-order statistical 

outputs of various image-processing and data-characterization algorithms. Radiomic features 

are designed to capture the unique characteristics of diseased or malignant tissue 

through the quantification of various image-texture properties like randomness, coarseness, 

directionality, to name a few (11,12). It is currently assumed that tumor heterogeneities 

are associated with the underlying tumor genotype and phenotype (13,14). Therefore, 

quantification of the tumor texture can provide a more detailed and distinctive description of 

tumor image properties in comparison to anatomic imaging biomarkers (15). In particular, 

the first-order features are computed using the distribution of voxel intensities in a region or 

a volume of interest (ROI or VOI), while the second-order features (e.g., GLCM) quantify 

the spatial arrangement of the voxel-intensity levels in the texture image. Numerous studies 

have utilized radiomic approach for various types of cancers by using different imaging 

modalities. It has been demonstrated that some radiomic features or a combination of 

features are associated with clinically relevant information. For example, several studies 

have shown that the first-order features can differentiate between the cancer subtypes or the 

grades of malignancy (16). Second-order features have shown correlations with the response 

to therapy (17,18), malignancy classification (19), molecular subtypes (20), and genomic 

data (21). For that reason, radiomics holds a great promise toward the development of 

comprehensive imaging biomarkers (22,23).

Many radiomic features are sensitive to scanning techniques, reconstruction algorithms, 

image spatial resolution, as well as segmentation methodology. A number of studies 

investigated the sensitivity of radiomic features on the scan reconstruction parameters by 
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varying the voxel size and slice thickness. They proposed various feature-normalization 

techniques to reduce this dependence (24–27). Also, in a similar manner, some recent 

studies demonstrated the dependence of radiomic features on the number of voxels inside 

the VOI (27). Proposed correction algorithms helped to reduce the VOI volume dependence 

and improve the inter-reader variability. While these studies have focused on addressing the 

image reconstruction-related questions, the VOI volume dependence of radiomic features 

might be also related to changes in the tumor tissue associated with the tumor growth and 

the development of heterogeneities in response to the therapy, for example. Therefore, the 

main objective of our study is to examine the interaction between computed tomography 

[CT]-derived 3D texture features and anatomic tumor volume as a measure of tumor size. 

In order to minimize the interscan or image reconstruction variability, the images were 

obtained on the same CT scanner using the same imaging protocol.

Materials and Methods

Study Population

Northwestern University Institutional Review Board (IRB) approved this retrospective study 

and waived the requirement for informed consent. Patients with diagnosed breast cancer 

were identified from the enterprise data warehouse after IRB approval. The cohort used in 

this study consisted of 54 patients with breast cancer of three primary molecular subtypes 

(luminal, HER2-positive, and triple-negative). To exclude interscan variability associated 

with the differences in imaging equipment or the imaging protocol, contrast-enhanced 

CT scans were obtained retrospectively from patients with imaging performed using the 

same scanner and imaging protocol. Patients underwent a wide range of treatments for 

different time periods at the moment of imaging. Adjuvant treatment included Tamoxifen 

(25%), Trastuzumab (20%), Anastrozole (16%), Paclitaxel (14%), Palbociclib (11%), 

Palbociclib/Letrozole (6%), Capecitabine (4%), and Docetaxel/ Bevacizumab (4%), where 

the percentage gives the total proportion of subjects in each treatment group. The average 

age of the patients was 57 ± 11 years ranging from 39 to 87 years.

Imaging Technique

Contrast-enhanced CT scans were obtained with multidetector CT scanners(Siemens 

SOMATOM Force, 192-slice) using the same imaging protocol. CT examinations were 

performed at a fixed tube potential of 100 kV and a reference current of 250 mA. In all 

instances, the slice thickness for the reconstructed images was 5 mm, the average voxel 

(pixel) size was 0.64 mm ranging from 0.5 mm to 0.85 mm and the spiral pitch was 

0.6. Axial contrast-enhanced CT scan were obtained in the venous phase (40 seconds 

after initiation of intravenous contrast injection). Nonionic contrast material (iohexol 350, 

Omnipaque; GE Healthcare or iopamidol 370, Isovue; Bracco, Plainsboro, NJ) was injected 

intravenously at a rate of 3 mL/second for a total of 125 mL. Images were retrieved from the 

imaging archive (PACS, GE Centricity, General Electric, Milwaukee, WI).

Image Segmentation and Feature Extraction

The volumetric segmentation and 3D texture analyses was performed for each tumor using 

LIFEx software, version 3.74 (http://www.lifexsoft.org; Orsay, France) (28). A maximum of 
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two well-defined and well-separated metastases with the longest diameter greater than 5 mm 

were selected with total of 81 metastases in 54 patients. Up to two lesions per patient were 

selected. VOI was manually drawn by one experienced radiologists (5 years of experience in 

volumetric CT segmentation) along the margin of the lesion (Figure 1) on each consequent 

slice containing the tumor. Once the tumor texture was assessed the VOI was moved to 

the normal liver avoiding vascular structures and other lesions. The texture of the normal 

liver was used as a reference. In 12 cases, it was difficult to accommodate the whole VOI 

within the normal liver and a new VOI of a similar size and shape was created using an 

original VOI. First, the original VOI was moved to a region of the liver with the minimal 

presence of vascular structures or other lesions. Next, the overlapping margins of the VOI 

were cropped to remove the vascular or other tumor tissue, while new volumes from the 

normal liver were added to equate the “new” VOI to the “old” one in terms of the size. 

Prior to texture analysis, spatial resampling was performed to obtain in-plane spacing of 

0.64 mm (the average in-plane voxel size) in both directions. CT intensities within the VOI 

were normalized between μ−3σ and μ+3σ and reduced to 128 gray-levels (7-bits), where μ is 

the mean value inside the VOI and σ is the standard deviation.

The radiomic features included first-order histogram based features (mean attenuation, 

standard deviation (SD), gray-level histogram skewness, and kurtosis) and second-order 

3D gray-level co-occurrence matrix (GLCM) features (homogeneity, energy, contrast, 

correlation, entropy, and dissimilarity) (28). First introduced by Haralick in 1973 (29), these 

features are the most commonly used and have proven to be effective texture discriminators 

(30). The 3D GLCM was calculated using separation offset equal to 1 voxel and 13 different 

directions. All elements of GLCM were normalized so that the sum of its elements was 

equal to 1. In order to gain orientation invariance, the GLCM features were averaged over all 

directions.

Statistical Analysis

In our study, we did simultaneous measurements of hepatic metastasis and normal liver 

tissue and, therefore, the same patient measurements were considered as paired. A 

skewness (SE), kurtosis (RKU), Shapiro-Wilk’s test (normality indicated if p>0.05), a 

visual inspection of normal Q-Q plots and box plots were conducted to test normality of 

measurements. The Spearman’s rank-correlation test was conducted to assess the degree 

of correlation between the texture features and VOI’s volume. The Levene’s test was 

performed to test for equality of variance between hepatic metastases and normal liver. For 

normally distributed features with equal variances the t-test was used to compare features 

between hepatic metastases (HM) and normal liver (NL). Otherwise, we conducted Mann-

Whitney U test, as a nonparametric alternative to the t-test.

To test the hypothesis that the radiomic features depend on the tumor size we used a linear 

mixed-effects (LME) regression analysis. To utilize a linear regression analysis, first, we 

examined the functional relationships between the texture features and the VOI volume 

by using five fitting models:– linear, logarithmic, inverse, power, and exponential. The 

coefficient of determination, R-squared, was computed to assess the goodness of each 

model. For each fitted model, the normality of the residuals was tested with the Shapiro-
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Wilk’s test and a visual inspection of normal Q-Q plots. The best fitting-model for each 

feature was selected based on the highest R-squared and passing the normality test of 

residuals.

For each feature, a transformation corresponding to the “best” fitting-model was applied 

to perform a LME regression analysis. Otherwise, no transformation was made. Next, we 

used the LME regression models with random slopes and intercepts to analyze association 

between individual texture features and tumor anatomic volume. Analysis was performed for 

two fixed effect variables: Type (HM and NL) and Volume (VOI volume). The Volume was 

considered as a primary variable and the Type was considered as a fixed factor that could 

affect the Intercept and Slope. Therefore, the model could be summarized as follows:

Normal Liver: Feature = Intercept + Slope × Volume

Hepatic Metastases: Feature = Intercept+Δ + Slope+δ × Volume

where Δ is the intercept difference and δ is the slope difference of the LME regression. If 

the slope or the slope difference were statistically significant, then the effect of the size was 

considered to be important. The subject effect (e.g., sampling procedure) was considered as 

a random factor that accounts to the correlations between HM and NL measurements on the 

same subject. The contribution of each factor, as well as interaction effects were tested for 

significance. To assess the ability of features to discriminate between HM and NL, model 

performance and 95% confidence intervals (CI) were assessed by the area under the receiver 

operating characteristics (ROC) curve for each texture feature, results of the corresponding 

fitting model and the residuals. AUC above 0.7 was considered to ensure a fair classification 

accuracy, whereas AUC bellow 0.7 was indicative of a poor classification accuracy. The 

residuals were calculated as the difference between the measured texture features and the 

regression line.

Data analysis was performed using SPSS software version 25.0.0 (IBM Corporation, 

Somers, NY).

Results

We quantified the texture of LHM and NL simultaneously. Quantitative texture features for 

HM and NL are shown in Table 1. The skewness, kurtosis, and results of Shapiro-Wilk test 

confirmed normality assumption only for mean attenuation (SE = 0.15, RKU = 0.11, p = 

0.75 for HM and SE = 0.03, RKU = 0.87, p = 0.53 for NL) and SD (SE = 0.45, RKU = 

0.14, p = 0.21 for HM and SE = −0.07, RKU = −0.2, p = 0.97 for NL) for both HL and 

NL. The mean difference between NL and HM for the mean attenuation was 26 ± 4 HU 

(95% CI 18.6-33.7, p = 0.02) and for SD was 14 ± 1 HU (95% CI 12.2-15.3, p<0.001). The 

Mann-Whitney U test showed a significant intergroup difference for all other features (S1 

Table).
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Figure 2, Figure 3 provide a visual representation of the first and second-order (GLCM) 

texture features as a function of VOI’s volume for both HM and NL. In addition, we applied 

the Spearman’s rank correlation test for both HM and NL. For the first-order features 

(Table 1), the Spearman’s rank correlation test was not statistically significant, with the 

exception of SD for normal liver (p = 0.001). In contrast, all GLCM texture features showed 

statistically significant correlation with VOI’s volume, except only GLCM homogeneity (p = 

0.08) for normal liver.

To examine the effect of size further, we applied a LME regression models. Due to nonlinear 

relationships between texture features and the VOI’s volume, we examined relationships 

between texture features and VOI volume using five different fitting models. Table 2 shows 

the coefficient of determination, R-squared, and the results of Shapiro-Wilk’s testing the 

residuals for normality. For the first-order texture features all fitting models demonstrated 

extremely low performance of R-squared. In contrast, R-squared for the GLCM features 

varied in range from 0.43 to 0.96 for HM, while for normal liver it was acceptable only 

for the GLCM energy (0.95) and the entropy (0.8). The Shapiro-Wilk test for normality of 

residuals was acceptable for all GLCM features except the GLCM heterogeneity for NL 

and, therefore, supporting the application of LME regression analysis. As a result, the power 

model was selected for the GLCM homogeneity, the inverse model was selected for the 

GLCM energy, the contrast and the dissimilarity, and the logarithmic model was selected 

for the GLCM correlation and the entropy. First order features were analyzed without any 

transformation.

The results of the LME regression analysis are summarized in Table 2. Each column 

shows the estimated value, the 95% CI (in parenthesis), and the statistical significance. The 

intercept and the slope represent the linear regression coefficients for the texture features 

from the NL, while the intercept difference and the slope difference represent a deviation of 

the HM regression coefficients from the ones derived for NL. For the NL, the intercept was 

not significantly different from zero only for the histogram skewness (p = 0.48), while the 

slope was not significant for all first-order features and the GLCM homogeneity (p = 0.64). 

For all other GLCM features the slope was statistically significantly different from zero. The 

intercept difference between HM and NL was not significant for the histogram kurtosis (p = 

0.08) and the GLCM homogeneity (p = 0.56). The slope difference was not significant for 

all first-order features and it was significant for all GLCM features.

The texture features were compared between NL and HM using the area under the ROC 

curve. In addition, Table 3 shows performance of the fitting models was assessed by the area 

under the ROC curve for each fitting model and residuals. All first-order and second-order 

GLCM features demonstrated statistically significant difference for measurements and fitted 

model. AUC for GLCM features was varying in the range from 0.74 to 0.84, while for the 

first-order features the range was much wider, from 0.65 to 0.98.

Discussion

In this paper, we analyzed the dependence of the first-order histogram-based features and 

second-order 3D GLCM texture features on the VOI’s volume. Initially, the GLCM features 
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were developed to analyze large-scale nonmedical images, thus assuming to be independent 

of ROI size (29). However, in case of finite size VOI that are common in medical imaging, 

we found statistically significant size dependence of all GLCM texture features on the 

VOI’s volume for both HM and background liver. Moreover, some GLCM texture features 

demonstrated a difference in the size dependence between NL and HM.

Our results suggest that the GLCM texture feature size dependence emerges as a result of 

two factors: (1) the GLCM dependence on the number of voxels inside the VOI (finite size 

effect) and (2) the sensitivity of the GLCM to variations in the tissue texture that might be 

related to the tumor tissue development, such as necrosis, as well as development of texture 

heterogeneities in response to the therapy. We found that some features exhibited a similarity 

in the size dependence. For example, the energy and the entropy demonstrated a comparable 

behavior that can be explained by the way these features are calculated. In particular, energy 

is a sum of squared elements of the GLCM, while the entropy is a sum of the product of 

the GLCM element and its logarithm. These features demonstrate a similar size dependence 

because both of these functions are monotonic and the sum of them depends only on GLCM. 

On the other hand, features like the GLCM homogeneity, the contrast, the correlation and 

the dissimilarity, depend on both the GLCM and the voxel attenuation and demonstrated the 

difference in the size dependence between NL and HM. Therefore, one can conclude, that 

the combination of the GLCM and the voxel attenuation is more sensitive to the distribution 

of heterogeneities than the GLCM alone and, thus, could be more discriminatory to different 

types of tissue. Also, this finding suggests a route to design new radiomic features with 

higher tissue-type selectivity.

Interestingly, a strong correlation between tumor heterogeneity and anatomic tumor volume 

(24,26), as well as metabolically active tumor volume (24) were recently reported for 

different types of cancers. L. Dercle et al. revealed the logarithmic association between 

ROI area and Shannon’s entropy for various type of metastasis, normal psoas muscle, and 

blood in the aorta (26). Hatt et al. (2015) demonstrated a significant interaction between 

two radiomic features (entropy and dissimilarity) and metabolically active tumor volume 

(24). However, the association with the cancer type was explained by differences in VOI’s 

volume distributions, rather than the cancer-specific tissue heterogeneities. Also, changes 

in the value of texture features could provide an additional complementary information for 

response assessment in patients with liver metastases. For example, changes in the texture 

features extracted from the pretreatment and the post-treatment images could potentially 

identify early signs of response, progression, or cancer recurrence. However, appropriate 

methods for extracting clinically relevant information that is not affected by the feature 

extraction algorithms and parameters are still in early stage of development.

Technical aspect associated with the imaging techniques could also contribute to the 

association between texture features and tumor size. Volumetric texture features, in general, 

are calculated using 4 in-plane (axial) and 9 out-of-plane directions to spatially adjacent 

slices above and below the original one. Therefore, 3D texture features depend on two 

length scales defined by the image acquisition parameters – voxel size and interslice 

spacing distance. In case of CT or MR imaging texture analysis, the voxel size can be 

one-order of magnitude smaller than the interslice spacing distance. This implies that with 
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a gradual increase in tumor volume the contribution from out-of-plane voxels will increase, 

thus changing the balance from the description of 2D axial in-plane heterogeneities to a 

combination of both in-plane and out-of-plane (orthogonal to axial) heterogeneities.

We analyzed various models to quantify the size dependence. For some features, this 

analysis resulted in considerably high accuracy of the regression analysis. For example, 

fitting the GLCM energy and entropy with inverse and logarithmic functions resulted 

in substantially high coefficient of determination, R-squared >0.8. However, the primary 

objective of the measurements fitting was to transform measurements to satisfy linear (LME) 

regression analysis, rather than to develop a theoretically (functional) model. Therefore, 

future works should include a theoretical analysis of VOI’s volume effect on GLCM and 

more comprehensive analysis of the size dependence in the small and large-volume limits, 

where different trends are expected. Also, the texture features size-dependence association 

with the cancer type, as well as the effect of therapy, is of a great interest for further studies.

There were several limitations to our study that warrant mention. First, this was a 

retrospective study with a limited sample size. Texture analysis was limited to only the 

first-order histogram based and second-order (GLCM) texture features in order to conduct 

a comprehensive analysis. Another limitation to this study is the fact that almost all liver 

lesions were treated and the treatment period varied. The variability in the treatment 

protocols adds another degree of freedom into our model since various locoregional 

therapies are known to have different effects on the NL and hepatic lesions. However, 

the size dependence between NL and HM groups was significantly different for the second-

order GLCM texture features. Another limitation to this study is the fact that the analysis 

was performed only for liver metastasis of one type of cancer.

Conclusion

Higher-order radiomic features of breast cancer hepatic HMize dependence. This finding 

demonstrates the complex behavior of imaging features and the need to include feature 

specific properties into radiomic models. Caution should be exercised when directly 

comparing radiomic features of different size tumors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors thank Frank H Miller, MD and Camila L. Vendrami, MD for revising the manuscript.

References

1. Tan DS, Thomas GV, Garrett MD, et al. Biomarker-driven early clinical trials in oncology: a 
paradigm shift in drug development. Cancer J 2009; 15:406–420. [PubMed: 19826361] 

2. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid 
tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45:228–247. doi:10.1016/
j.ejca.2008.10.026. [PubMed: 19097774] 

Velichko et al. Page 8

Acad Radiol. Author manuscript; available in PMC 2023 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment 
in solid tumors. J Natl Cancer Inst 2000; 92:205–216. [PubMed: 10655437] 

4. Choi H, Charnsangavej C, Faria SC, et al. Correlation of computed tomography and positron 
emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single 
institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin 
Oncol 2007; 25:1753–1759. doi:10.1200/JCO.2006.07.3049. [PubMed: 17470865] 

5. Ronot M, Bouattour M, Wassermann J, et al. Alternative response criteria (Choi, European 
Association for the Study of the Liver, and Modified Response Evaluation Criteria in Solid 
Tumors [RECIST]) versus RECIST 1.1 in patients with advanced hepatocellular carcinoma treated 
with sorafenib. Oncologist 2014; 19:394–402. doi:10.1634/theoncologist.2013-0114. [PubMed: 
24652387] 

6. Vera R, Gomez Dorronsoro M, Lopez-Ben S, et al. Retrospective analysis of pathological response 
in colorectal cancer liver metastases following treatment with bevacizumab. Clin Trans Oncol 2014; 
16:739–745. doi:10.1007/s12094-013-1142-x.

7. Wolchok JD, Hoos A, Day S, et al. Guidelines for the evaluation of immune therapy activity 
in solid tumors: immune-related response criteria. Clin Cancer Res 2009; 15(23):7412. [PubMed: 
19934295] 

8. Seyal AR, Parekh K, Velichko YS, et al. Tumor growth kinetics versus RECIST to assess response 
to locoregional therapy in breast cancer liver metastases. Acad Radiol 2014; 21(8):950–957. 
doi:10.1016/j.acra.2014.02.015 [PubMed: 24833565] 

9. Villaruz LC, Socinski MA. The Clinical Viewpoint: Definitions, Limitations of RECIST, Practical 
Considerations of Measurement. Clin Cancer Res 2013; 19:2629. [PubMed: 23669423] 

10. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. 
Radiology 2015; 78:563–577. doi:10.1148/radiol.2015151169.

11. Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging 
2012; 30:1234–1248. doi:10.1016/j.mri.2012.06.010. [PubMed: 22898692] 

12. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from 
medical images using advanced feature analysis. Eur J Cancer 2012; 48:441–446. doi:10.1016/
j.ejca.2011.11.036. [PubMed: 22257792] 

13. Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat 
Rev Cancer 2012; 12:323–334. [PubMed: 22513401] 

14. Burrell RA, McGranahan N, Bartek J, et al. The causes and consequences of genetic heterogeneity 
in cancer evolution. Nature 2013; 501(7467):338–345. doi:10.1038/nature12625. [PubMed: 
24048066] 

15. Alic L, Niessen WJ, Veenland JF. Quantification of heterogeneity as a biomarker in tumor imaging: 
a systematic review. PLOS One 2014; 9:e110300 doi:10.1371/journal.pone.0110300. [PubMed: 
25330171] 

16. Young JR, Margolis D, Sauk S, et al. Clear cell renal cell carcinoma: discrimination from other 
renal cell carcinoma subtypes and oncocytoma at multi-phasic multidetector CT. Radiology 2013; 
267:444–453. doi:10.1148/radiol.13112617. [PubMed: 23382290] 

17. Fan M, Wu G, Cheng H, et al. Radiomic analysis of DCE-MRI for prediction of response to 
neoadjuvant chemotherapy in breast cancer patients. Eur J Radiol 2017; 94:140–147 10.1016/
j.ejrad.2017.06.019. [PubMed: 28712700] 

18. Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating 
CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, 
retrospective multicohort study. Lancet Oncol 2018;19:1180–1191. [PubMed: 30120041] 

19. Sebastian B, Daniel P, Philipp K, et al. Prediction of malignancy by a radiomic signature from 
contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography. J 
Magn Reson Imaging 2017; 46:604–616. doi:10.1002/jmri.25606. [PubMed: 28152264] 

20. Prasanna P, Tiwari P, Madabhushi A. Co-occurrence of Local Anisotropic Gradient Orientations 
(CoLlAGe): a new radiomics descriptor. Sci Rep 2016; 6:37241. doi:10.1038/srep37241. 
[PubMed: 27872484] 

21. Guo W, Li H, Zhu Y, et al. Group TBPR Prediction of clinical phenotypes in invasive breast 
carcinomas from the integration of radiomics and genomics data. SPIE, 2015:12.

Velichko et al. Page 9

Acad Radiol. Author manuscript; available in PMC 2023 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Li R, Xing L, Napel S, Rubin DL. Radiomics and radiogenomics: technical basis and clinical 
applications. Chapman and Hall/CRC, 2019.

23. Miles K. Radiomics for personalised medicine: the long road ahead. Nature Publishing Group, 
2020.

24. Hatt M, Majdoub M, Vallieres M, et al. 18F-FDG PET uptake characterization through texture 
analysis: investigating the complementary nature of heterogeneity and functional tumor volume in 
a multicancer site patient cohort. J Nuc Med 2015; 56:38–44. doi:10.2967/jnumed.114.144055.

25. Zhao B, Tan Y, Tsai WY, et al. Reproducibility of radiomics for deciphering tumor phenotype with 
imaging. Sci Rep 2016; 6:23428. doi:10.1038/srep23428. [PubMed: 27009765] 

26. Dercle L, Ammari S, Bateson M, et al. Limits of radiomic-based entropy as a surrogate of tumor 
heterogeneity: ROI-area, acquisition protocol and tissue site exert substantial influence. Sci Rep 
2017; 7:7952. doi:10.1038/s41598-017-08310-5. −7952. [PubMed: 28801575] 

27. Shafiq-ul-Hassan M, Latifi K, Zhang G, et al. Voxel size and gray level normalization of 
CT radiomic features in lung cancer. Sci Rep 2018; 8:10545. doi:10.1038/s41598-018-28895-9. 
[PubMed: 30002441] 

28. Nioche C, Orlhac F, Boughdad S. A freeware for tumor heterogeneity characterization in PET, 
SPECT, CT, MRI and US to accelerate advances in radiomics. J Nuc Med 2017; 58(supplement 
1):1316.

29. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans 
Syst Man Cybernet SMC 1973; 3:610–621. doi:10.1109/TSMC.1973.4309314.

30. Parekh V, Jacobs MA. Radiomics: a new application from established techniques. Expert 
Rev Precis Med Drug Dev 2016; 1:207–226. doi:10.1080/23808993.2016.1164013. [PubMed: 
28042608] 

Velichko et al. Page 10

Acad Radiol. Author manuscript; available in PMC 2023 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
(a) Representative example of axial contrast-enhanced CT scan in a 69-year-old patient with 

the breast cancer liver metastasis. (b) Hepatic metastasis segmentation (ROI #1) and normal 

liver segmentation (ROI #2) are marked by a contour lines. Close-up view of (c) the hepatic 

metastasis and (d) the normal liver segmentations. Image intensity adjusted close-up view of 

(e) the hepatic metastasis and (f) the normal liver segmentation.
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Figure 2. 
First-order histogram based features as a function of VOI’s volume for both hepatic 

metastasis and normal liver: (a) mean attenuation, (b) standard deviation, (c) histogram 

skewness, and (d) histogram kurtosis.
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Figure 3. 
Second order 3D GLCM features as a function of VOI’s volume for both hepatic metastasis 

and normal liver: (a) GLCM homogeneity, (b) GLCM contrast, (c) GLCM energy, (d) 

GLCM entropy, (e) GLCM correlation, and (f) GLCM dissimilarity.
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