
UC Irvine
ICS Technical Reports

Title
Subquadratic nonobtuse triangulation of convex polygons

Permalink
https://escholarship.org/uc/item/7ht46601

Author
Eppstein, David

Publication Date
1991-07-15

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7ht46601
https://escholarship.org
http://www.cdlib.org/

Subquadratic Nonobtuse Triangulation

of Convex Polygon~~

David Eppsteinv

Department of Information and Computer Science
University of California, Irvine, CA 92717

Tech. Report 91-61

July 15, 1991

Abstract

A convex polygon with n sides can be triangulated by O(nl.85)

triangles, without any obtuse angles. The construction uses a novel
form of geometric divide and conquer.

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

)! .

1 Introduction

A number of recent papers [1, 2, 3, 4, 6, 8] have studied Steiner triangulation
problems in which the angles in the triangulation are limited in some way.

A Steiner triangulation of a planar straight line graph (PSLG) is a col
lection of triangles that cover the graph and meet face to face. Edges of the
graph may be subdivided in the triangulation, but they must be covered by
triangle edges. Vertices of the graph must be covered by triangle corners;
the remaining triangle corners are called Steiner points. The goal is typically
to find a triangulation minimizing the number of triangles, or equivalently
minimizing the number of Steiner points.

Without further restriction, any PSLG can be triangulated without in
troducing any Steiner points. However the problem becomes considerably
more difficult if the angles used in the triangles must lie in some range
o: :::; () :::; (3. If a > 0°, or if f3 < goo, then even for such simple inputs as
point sets and convex polygons, the number of triangles must depend not
only on the size of the PSLG, but also on its geometry [4]. For this reason
no polynomial time triangulation algorithm is possible in this case. However
algorithms are known for these problems [1, 4, 6], which run in time poly
nomial in the combined input and output size, and which in some cases use
a number of triangles within a constant factor of the minimum possible [4].

Here we consider the problem that arises when the angles must not be
obtuse; in the notation of the previous paragraph, o: = 0° and f3 = go 0

•

This problem has applications in finite element mesh generation, both due
to the numerical properties of finite element systems based on nonobtuse
triangles [l] and due to the simple relation of such a triangulation with its
dual [1, 3, 5]. There is also a more geometric motivation for this problem: a
non-obtuse triangulation must be the Delaunay triangulation of its vertices;
therefore, if we triangulate the inside and outside of a polygon with nonob
tuse triangles, we cover the edges of the polygon with Delaunay edges. It is
also the case that, by placing sites near the corners of such a triangulation,
the polygon edges can be covered by boundaries of cells in a Voronoi dia
gram [8]; such a cover has applications in computational learning theory [8].

Several types of PSLG are known to have polynomial size nonobtuse
triangulations. A point set can trivially be triangulated with 0(n2) right
triangles. Polygons can be triangulated with 0(n 2

) non-obtuse triangles [3].
If the PSLG is a triangulation of a simple polygon, O(n4) triangles suf
fice [3]. For certain other PSLGs, we can prove !l(n2

) lower bounds. This
includes nonobtuse triangulation of PSLG's formed by triangulating (con-

1

vex) polygons [3, 7], simultaneous triangulation of the inside and outside
of a (non-convex) polygon [8], and triangulation of a collection of disjoint
edges. In fact these lower bounds hold for any f3 < 180°. Therefore (except
for the O(n4) bound, which seems unlikely to be tight) it seemed that the
correct complexity for many of these problems was 0(n2).

Doubt was cast on this by an earlier result of Bern et al. [4). They showed
that an algorithm based on quadtrees could triangulate a point set using only
0 (n) acute triangles. In this paper we give the second such subquadratic
nonobtuse triangulation result. We show that a convex polygon with n

faces can be triangulated using 0(nl.85) nonobtuse triangles. Our algorithm
starts by forming an O(n2)-size triangulation based on a method of Bern
and Epp stein [3], selects portions of the triangulation resembling rectangular
grids, and then "thins" those grids using a novel form of divide and conquer.

Other nonobtuse triangulations of Bern and Eppstein [3] contain similar
rectangular and fan-shaped grids of triangles. Therefore it is likely that the
methods of this paper can be extended to improve the bounds for triangu
lating arbitrary polygons and other PSLG's.

2 Initial quadratic triangulation

We first describe the initial stages of our algorithm, in which we form a
grid of O(n2) rectangles, together with O(n) triangles along the border of
the grid. This is essentially the same as a method described by Bern and
Eppstein [3], but we repeat the description for completeness.

We start by partitioning the polygon vertically and horizontally. We
later refine the grid by adding more horizontal and vertical lines, in order to
be able to triangulate the region between the grid and the polygon boundary.

The choice of horizontal and vertical axes is made so that the longest
diagonal of the polygon (called the main dia_gonal) is oriented horizontally.
This diagonal will appear in its entirety as one of the horizontal segments of
the partition. We assume that the main diagonal is not part of the boundary
of the polygon; otherwise our construction can be somewhat simplified.

First, draw a vertical line segment through each vertex of the polygon,
extending to the boundaries of the polygon. These lines divide the polygons
into quadrilaterals with two vertical sides. Each vertex of a quadrilateral will
either be an original input vertex, or a point where a vertical line touches the
polygon boundary. Draw a horizontal line segment through each such point;
extend the line segment to the last possible vertical segment. In other words,

2

Figure 1. Convex polygon with path from subdivision point.

each endpoint of a horizontal segment should lie either on a vertical segment,
or on the vertex inducing the horizontal, and each horizontal segment should
be as long as possible with this property.

Our algorithm periodically extends the partition by adding a new vertical
line from boundary to boundary of the polygon. When we add a new vertical
line, we also add horizontals from its endpoints to the last verticals as before,
and lengthen each other horizontal segment for which the new vertical is now
the last vertical. We extend the partition only O(n) times; thus we end up
with 0 (n2) rectangles and 0 (n) subdivided right triangles. Our method for
removing subdivisions in these triangles is based on the following fact.

Lemma 1. If a right triangle has one subdivision point on a leg, it can be
triangulated with three right triangles, by adding a new subdivision point
on the hypotenuse. D

If a subdivision point is alone in its triangle, then this will clearly remain
the case for the corresponding subdivision point after an extension of the
partition. Thus our strategy will be simply to extend the partition until
each triangle has at most one subdivision point.

Consider, without loss of generality, the chain of triangles extending up
and to the right from the left endpoint of the main diagonal. For each
subdivision point on one of these triangles, we "bounce" a path as follows.
First draw a horizontal segment from the point to the polygon's boundary,
and extend the subdivision by drawing a vertical line where the horizontal
meets the boundary. This eliminates the original subdivision point, but

3

creates a new one below the main diagonal. Now repeat the process to move
the subdivision back above the main diagonal. Figure 1 depicts a convex
polygon with its partition extended by a path.

The new subdivision point may fall on the chain extending up and to
the left of the right endpoint of the main diagonal, instead of on the original
chain. However it can be shown that, if this happens, the reverse cannot be
the case: paths from the up-left chain cannot end on the up-right chain. If
we first process the chain that can send points to the other chain, there will
be no problem. So we now ignore points sent to the opposite chain.

For a subdivision point p at height y from the main diagonal, define
J (y) to be the height of the new subdivision point that would be created by
bouncing a path from p. This function has the following properties.

Lemma 2. The function f(y) is continuous, monotone, and piecewise lin
ear with 0 (n) breakpoints in linearity.

Proof: By construction, f is the composition of four such functions,
corresponding to the four chains among which the path bounces. D

fi.s a consequence, f (y) - y is also continuous and piecewise linear. We
partition the plane into horizontal strips so that within each strip f (y) - y
has the same sign (positive, negative, or zero). We extend the partition
by bouncing paths at points with heights at which f(y) - y changes sign;
these paths form rectangles and therefore do not introduce new subdivisions;
because there are O(n) breakpoints, there are O(n) strips and therefore O(n)
rectangles drawn in this stage. The rectangles ensure that no triangle of the
partition contains portions of more than one strip. Because of the following
fact, we may consider each strip independently.

Lemma 3. For each y, J(y) is in the same strip as y. D

Now consider a triangle with more than one subdivision point in a strip
where f (y) > y, and let p and q be the lowest two points in this triangle,
with p lower than q. Bouncing the path from q creates a new subdivision
point higher than q, and cuts off a triangle in which pis the lone subdivision
point. We can repeat this process until all subdivision points in the strip are
alone. Each extension creates a new lone subdivision point; therefore, after
0 (n) extensions all subdivision points are alone in their triangles. In strips
where f(y) < y, the process is similar, beginning with the highest two points
that are not alone. Finally, in a strip where f(y) = y, bouncing a path from

4

a subdivision point creates a rectangle. So in this case, all subdivision points
can be immediately removed.

At this point, every remaining subdivision point is alone in its triangle.
We describe the current state of the triangulation.

Lemma 4. Given a convex polygon, we can partition it into O(n2) rectan
gles and 0(n) triangles meeting face to face. The rectangles can be divided
into four subsets, each of which is bounded by a horizontal line, a verti
cal line, and a monotonic "staircase" which makes steps of one rectangle
horizontally, and either one or two rectangles vertically.

Proof: The rectangles can be divided horizontally along the long diagonal;
each subset then can be divided into two pieces at the point of maximum
vertical extent. This gives the desired partition into four subsets. The 0 (n)
right triangles around the boundary each have at most a single subdivision
on their vertical sides, from which fact the description of the "staircase"
boundary then follows. Each boundary triangle can be further divided into
three unsubdivided right triangles by Lemma 1. D

3 Finding rectangular subproblems

Our triangulation now proceeds as follows. We form a grid as above; from
this grid we pick out larger rectangles. Each large rectangle will be divided
into smaller rectangles, say a X b of them. Then the large rectangle will have
a-1 subdivisions each on its left and right boundaries, and b-1 subdivisions
each on the top and bottom boundaries, for a total of 2(a+ b - 2). The
subdivisions on opposite sides of the large rectangle match up to each other.
Our strategy will be to triangulate each large rectangle separately. We are
allowed to do anything we want in the interior of the large rectangle, but the
boundary must end up with exactly the subdivisions specified. Obviously
we could triangulate the regions with 0 (ab) triangles; we improve on that
in the next section. Here we describe how to find the large rectangles.

Recall that our small rectangles are grouped into regions with one verti
cal side, say x small rectangles high, one horizontal side, y small rectangles
long, and one "stairstep" side. Initially x and y are both 0(n). Figure 2
depicts such a region. The small rectangles are drawn as squares. The
stairstep side here makes steps of one rectangle vertically, and either one or
two horizontally; the roles of horizontal and vertical are exchanged from the
previous section, so that the figure will fit better on the page.

5

:::tttJ:t:: / ...
· I ! I ! :
I I I 'l I [i i I r i r , r ... r ...

1

.... r i [.. ..
.... , , r .. i 1
.... ~ [.... f r l l. t +
.... J L ... l. ... 1· J.. . .J. ... 1 j J..,! __.,.._.__.,.......

' i i I I ' I l l I f : : l l
.... f ~ i f 1 i 11. .. .1 f .. + f f l __ _
.... l. ... ~ f ~ f .. .,i ~ '"' t • ... : "" Ll f ,

! i l ! l i i i • I

Figure 2. Grouping small rectangles into larger rectangular regions.

Given such a stair-shaped region of small rectangles, we can find one
large rectangle easily as follows. Extend a horizontal line at the level corre
sponding to the x /2 row of rectangles. Drop a vertical where this horizontal
hits the stairstep boundary. This leads to a large rectangle that is x /2 small
rectangles high, and between x /2 and x rectangles long. The remainder of
the small rectangles are in two stairstep regions, above and to the right of
the large rectangle, each of height x /2. If we repeat this process recursively,
we get one large rectangle of height x /2, two of height x /4, and in general
2i rectangles of height x /2i+l. Thus we have the following lemma.

Lemma 5. If a rectangle with m subdivisions on its sides, and with match
ing subdivisions on opposite sides, can be triangulated using R(m) nonob
tuse triangles, without introducing any new subdivisions, then any convex
polygon can be triangulated with O(T(m)) nonobtuse triangles, whereT(m)
satisfies the recurrence

T(m) = R(m) + 2T(m/2) (1)

Proof: We produce four groups of small rectangles, with sides horizontal,
vertical, and stair step, as in Lemma 4. There will be 0 (n) additional tri
angles, but this number will be dominated by the solution to Recurrence 1.
Then the construction above partitions each group into rectangular regions
with heights (measured in numbers of small rectangles) matching the recur
rence above, and lengths (again measured in small rectangles) proportional
to the heights. Since the number of subdivisions on the boundary of each

6

Figure 3. Removing interior lines from subdivided rectangle: (a) Two small rect
angles merge, removing a subdivision; (b) previous figure and its reverse combine

to remove lines from the grid.

rectangular region is proportional to the height plus the length, the recur
rence correctly describes the total time. D

4 Rectangles with subdivisions

Our algorithm for triangulating the large rectangles found in the previous
section is based on the following observation.

Lemma 6. If a rectangle has a single subdivision point on a vertical side,
and its width is more than either of the distances between the subdivision
and the top or bottom of the rectangle, then the rectangle can be non
obtusely triangulated without introducing more subdivisions. D

Such a rectangle is illustrated in Figure 3(a). We use this observation to
remove line segments from the rectangular grid formed by the subdivisions
of our large rectangle.

Let a column be a set of vertically adjacent small rectangles; then the
width of the column is the distance between the subdivisions that form it.
Similarly let a row be a set of horizontally adjacent small rectangles, and let
the height of a row be the distance between subdivisions that form it.

Then if two columns have widths a and b, and two adjacent rows have
heights c and d, and if a and b are both greater than c and d, we can remove

7

the portion of horizontal line, separating the two rows, between the two
columns. This process produces triangles, at the endpoints of the removed
line segment, that may not be changed by later modifications to the grid. In
order to gain any benefit from this process, we must remove many horizontal
lines using the same columns. Figure 3(b) illustrates several horizontal lines
being removed by the same two columns.

We now quantify how many lines can be removed at a time.

Lemma 7. Let a rectangle be given with m subdivisions on the vertical
sides (so it has m + 1 rows). Let a and b be the widths of two columns, with
min(a, b) at least as large as (1/2 + E)m of the row heights. Then Em - 1
horizontal lines can be eliminated between the columns.

Proof: There are (1/2-E)m+l rows that are too high to satisfy Lemma 6,
and each one protects the lines above and below it. Thus there are m-2Em+
2 lines protected, so 2Em - 2 lines that can be removed. In the worst case,
the removable lines will be all adjacent to each other, and we will be able to
remove at most half of them. Therefore we can remove Em - 1 lines. D

We are now ready to describe our algorithm. As before, suppose there
are m rows and n columns. Let x be the 2/3-median of the row heights; i.e.,
m/3 rows are higher than x and 2m/3 are less high. Similarly let y be the
2/3-median of the columns.

Assume x < y; the opposite case is treated symmetrically. Let a be
the leftmost column with width at least x and let b be the rightmost such
column. Then because n/3 rows have height at least y > x, columns a and
b are separated by at least n/3 columns. Also note that a and b are wider
than the height of 2m/3 rows; therefore by Lemma 7 we can eliminate m/6
rows between the two columns.

This gives us three subproblems, which are solved recursively. The sub
problems consist of (1) the columns between 1 and a - 1, with all m rows;
(2) the columns between a+ 1 and b - 1, with 5m/6 rows; and (3) the
columns between b + 1 and n, with all m rows. We also triangulate columns
a and b, using m triangles. This partition and row elimination is shown in
figure 4(a). The total number of triangles used is

R(m, n) = R(a - 1,m) + R(b- a- l,5m/6) + R(n-b,m) + m.

If we solve for the worst case time, by allowing all possible choices of a

and b (with b - a ~ m/3) and by including the dual case in which x > y,

8

VI "
~

m/J,n/3

~ m/J,n/6 lin/6,a/J

I\

~

Figure 4. Recursive division into smaller rectangles: (a) single split, split into three
parts with fewer rows in middle; (b) outer subproblems split again, eliminating
columns.

we achieve a bound that is slightly better than linear. Instead of solving
this recurrence, we first make an observation that allows us to improve our
algorithm and hence our bounds.

Let us examine more carefully subproblems (1) and (3). By construction,
all columns in the subproblems have widths smaller than x, which is still
the 2/3-median of the row heights. Therefore, by choosing the topmost
and bottommost rows with heights at least x, we can apply Lemma 7 to
eliminate half of the columns between the two rows.

Unfortunately this second level of improved row and column elimination
can not be continued to a third level and so on; this failure occurs because
the first level split the problem according to columns which were chosen
larger than the 2/3-median of the rows; in the second level it is rows that
are chosen, but they are compared to the row median. So the second level
recursion is not the same as the first level, and the trick can not be extended.

Thus we can subdivide each of the two subproblems into three sub
subproblems, giving a recursion which divides each rectangle into seven
parts, as depicted in figure 4(b). The recurrence describing the possible
arrangements of the seven parts is quite complicated. But as indicated by
the numbers in the figure, we can make some simplifying assumptions about
the dimensions of each subproblem. We do not attempt to prove these
assumptions; instead we use them heuristically to simplify the recurrence,
giving a solution as a function of m and n. Then it can be verified that this
is also the solution of the true recurrence.

Our assumptions are as follows:

9

• In the worst case, subproblems (1) and (3) have equal numbers of
columns, i.e. a = n - b. Similarly, the corresponding sub-subproblems
have equal numbers of rows. This follows from the fact that the worst
case number of triangles is at most linear in each of n and m.

• In the worst case, subproblem (2) will use exactly m/3 columns, and
the corresponding sub-subproblems will use exactly n/3 rows. This
is clear enough for the sub-subproblems, because eliminating extra
columns is unlikely to increase the number of triangles. In subproblem
(2), again we would expect eliminating rows to decrease the number
of triangles. But this would also shrink the area involved in the more
efficient second-level recursion. So we must verify that row elimination
is the stronger effect.

• If m < n the worst case happens when x > y and the first level re
cursion splits the problem along rows of the rectangle. If m > n the
worst case happens when x < y and the rectangle splits by columns
This is heuristically justified as follows. Suppose the problem is split
by columns (as depicted in the figures). Then by the previous two
assumptions the subproblem sizes are (m/3, n/3), (m/3, n/6), and
(5m/6, n/3). In each case the ratio n/m increases in the subproblems
compared to the original problem. If we split by rows, the subproblem
sizes would give the same values of the products nm, but the ratio
n/m would decrease. For a fixed value of mn, we expect more trian
gles when the ratio n/ m is farthest away from 1 (e.g. when m = 1 or
n = 1 the number of triangles must be 0(mn), but when m = n we
have sub quadratic bounds). So the worst case should be the one in
which these ratios are farthest from 1, and that will happen when the
problems are split as described.

With these assumptions, we can describe the number of triangles used
by the following recurrence, for the case m < n.

R(m, n) = R(m/3, 5n/6) + 2R(m/6, n/3) + 4R(m/3, n/3) + O(n).

The first term represents subproblem (2), the second term represents the
two corresponding sub-subproblems, and the third term represents the four
remaining sub-subproblems.

The recurrence solves to O(m0·8475n). The exponent in the solution was
derived numerically. It is an approximate solution to the equation

(5/6 + 4. 1/3)(1/3)x + (2 · 1/3)(1/6Y = i.

10

We show below that this time bound is the true solution to the unsim
plified recurrence that actually describes our algorithm. Let us state the
results of this section.

Lemma 8. A rectangle subdivided into m rows and n columns, with m <
n, can be triangulated using 0 (m0·8475n) nonobtuse triangles, without in
troducing any new subdivisions.

Theorem 1. Any convex polygon can be nonobtusely triangulated with
O(nl.8475) triangles.

Proof: By Lemmas 5 and 8, the number of triangles satisfies the recurrence

T(n) = R(n, n)+ 2T(n/2) = O(nl.8475) + 2T(n/2).

But this solves to O(nl.8475). o

5 Complete solution of recurrence

For completeness, we prove that the true recurrence describing our rectangle
triangulation algorithm has the solution we claimed. We assume throughout
that m < n. By induction we can assume T(m', n') = c(m') 0 ·8475n' for some
c and for all m'n' < mn. This is clearly true for m = 1 since then the result
is simply 0 (n), and in fact 2n triangles suffice.

First suppose that the initial subdivision is by rows. Then the following
recurrence describes the number of triangles needed. Here m1 + m2 + m 3 =
m, ni + n2 + n3 = n4 + n5 + ns = n, m2 ~ m/3, n2 ~ n/3, and n5 ~ n/3.
Note that m' < n' for all subproblems involved, so the inductive hypothesis
can be used directly.

R(m,n) = R(m1,n1)+R(m1/2,n2)+R(m1,n3)

+R(m2, 5n/6)

+R(m3, n4) + R(m3/2, n5) + R(m3, n5)

+O(n)

cm~·8475n1 + c(mi/2)0.8475n2 + cm~·8475n3

+cmg·8475(5n/6)

+cm~·8475n4 + c(m3/2)0.8475ns + cm~·8475n6

+O(n)

11

cm~·8475n1 + c(m1/2)0.8475n2 + cm~·8475n3

+cmg·8475(5n/6)
+cm~·8475n4 + c(m3/2)0.8475ns + cm~.8475n6

+O(n)

< cm~·8475 (0.85192n) + cmg·8475 (0.83334n)

+cm~·8475(0.85192n) + O(n)

c(m~.8475 + mg.8475 + m~·8475)(0.SSl92n)

-cmg·8475(0.01858n) + O(n)

< c(l.1824m0·8475)(0.85192n)

-c(0.39414m0·8475)(0.01858n) + 0(n)

< 0.99999cm0
·
8475n + O(n).

So if c is large enough the result is O(m0
·
8475n) as claimed.

In the other case, the initial subdivision is by columns. For any possible
such subdivision, we can construct an alternate subdivision by rows, in which
the ratios of ni/n and mi/m switch roles to match the recurrence above. So
in the alternate problems, the products mini are the same as they would be
in the original problems. But the aspect ratio ni/ mi is larger in the alternate
subproblems than in the originals. In some cases the original aspect ratio
may even be smaller than one (i.e., in the original problem, ni may be smaller
than mi)· But in the latter case mi/ni will be smaller than the alternate
value of ni/ mi. In the inductive hypothesis, reducing the aspect ratio and
fixing the product m' n' can only decrease the total number of triangles.
So subdivision by columns is preferable to subdivision by rows, and cannot
occur as the worst case.

6 Conclusions

We have shown that o(n2) nonobtuse triangles suffice to triangulate any
convex polygon. Our algorithm can be somewhat improved; in particu
lar, choosing .678-medians instead of 2/3-medians leads to an exponent of
1.84 736. Perhaps we should use different medians for the rows and columns,
depending somehow on the ratio n/m.

Our method depends only on finding subproblems in the form of a rect
angular mesh. If we represent meshes implicitly in terms of their row heights

12

and column widths, the computation time will be governed by the same re
currence as the number of triangles; hence this too will be o(n2).

The best known nonobtuse triangulation algorithm for non-convex poly
gons [4] uses 0(n2) triangles, and forms configurations resembling such
meshes; perhaps our algorithm can be extended to work in this case. Re
cently Bern et al. [2] have shown how to triangulate any polygon with
O(nlog n) triangles, with no angle larger than 135°; their algorithm is again
based on finding rectangular subproblems, but in their case linearly many
triangles suffice for each subproblem. Perhaps their techniques and ours can
be combined to yield better combined bounds on angles and numbers of
triangles. It at least seems likely that our algorithm can be used to approx
imate a non-obtuse triangulation, by which we mean all angles must be at
most 90° + E for some f specified as part of the input.

It is also possible that a different algorithm can solve the same problems
more efficiently. Quadtree-based algorithms can give linear sized nonobtuse
triangulations of point sets [4]; perhaps quadtrees can be useful for the
convex polygon problem as well.

There is another question that arises naturally from this work. The
rectangular subproblems we solve can themselves be thought of as convex
polygons which we triangulate. However we operate under the further re
striction that all Steiner points be interior to the polygon; none are allowed
to subdivide the boundary. With this restriction, we can still triangulate
the polygons in subquadratic complexity. Can we characterize the polygons
which can be so triangulated? How many triangles are needed in general?

This question is related to a final open question, raised by Bern and
Epp stein [3]. Is it possible to find a polynomial size nonobtuse triangula
tion of an arbitrary planar straight line graph? One way of achieving this
would be to refine the graph until all regions are triangulable without adding
more boundary subdivisions; therefore it is important to know what sorts
of regions are possible, and how many triangles are needed in each.

References

[1] B.S. Baker, E. Grosse, and C.S. Rafferty. Nonobtuse triangulation of
polygons. Discrete Comput. Geom., 3:147-168, 1988.

[2] M. Bern, D. Dobkin, and S. Mitchell. Manuscript in preparation.

13

[3] M. Bern and D. Eppstein. Polynomial size non-obtuse triangulation of
polygons. 7th ACM Syrnp. Comput. Geom. (1991) 342-350.

[4] M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation.
31st IEEE Syrnp. Found. Comp. Sci. (1990) 231-241.

[5] M. Bern and J. Gilbert. Drawing the planar dual. Manuscript, 1991.

[6] L.P. Chew. Guaranteed-quality triangular meshes. Report TR-89-983,
Cornell U., 1989.

[7] M.S. Paterson. Personal communication, 1990.

[8] S. Salzberg, A. Delcher, D. Heath, and S. Kasif. Learning with a helpful
teacher. 12th Int. Joint Conf. Artificial Intelligence (1991) to appear.

14

