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Abstract 

A convex polygon with n sides can be triangulated by O(nl.85 ) 

triangles, without any obtuse angles. The construction uses a novel 
form of geometric divide and conquer. 
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1 Introduction 

A number of recent papers [1, 2, 3, 4, 6, 8] have studied Steiner triangulation 
problems in which the angles in the triangulation are limited in some way. 

A Steiner triangulation of a planar straight line graph (PSLG) is a col­
lection of triangles that cover the graph and meet face to face. Edges of the 
graph may be subdivided in the triangulation, but they must be covered by 
triangle edges. Vertices of the graph must be covered by triangle corners; 
the remaining triangle corners are called Steiner points. The goal is typically 
to find a triangulation minimizing the number of triangles, or equivalently 
minimizing the number of Steiner points. 

Without further restriction, any PSLG can be triangulated without in­
troducing any Steiner points. However the problem becomes considerably 
more difficult if the angles used in the triangles must lie in some range 
o: :::; () :::; (3. If a > 0°, or if f3 < goo, then even for such simple inputs as 
point sets and convex polygons, the number of triangles must depend not 
only on the size of the PSLG, but also on its geometry [4]. For this reason 
no polynomial time triangulation algorithm is possible in this case. However 
algorithms are known for these problems [1, 4, 6], which run in time poly­
nomial in the combined input and output size, and which in some cases use 
a number of triangles within a constant factor of the minimum possible [4]. 

Here we consider the problem that arises when the angles must not be 
obtuse; in the notation of the previous paragraph, o: = 0° and f3 = go 0

• 

This problem has applications in finite element mesh generation, both due 
to the numerical properties of finite element systems based on nonobtuse 
triangles [l] and due to the simple relation of such a triangulation with its 
dual [1, 3, 5]. There is also a more geometric motivation for this problem: a 
non-obtuse triangulation must be the Delaunay triangulation of its vertices; 
therefore, if we triangulate the inside and outside of a polygon with nonob­
tuse triangles, we cover the edges of the polygon with Delaunay edges. It is 
also the case that, by placing sites near the corners of such a triangulation, 
the polygon edges can be covered by boundaries of cells in a Voronoi dia­
gram [8]; such a cover has applications in computational learning theory [8]. 

Several types of PSLG are known to have polynomial size nonobtuse 
triangulations. A point set can trivially be triangulated with 0( n2 ) right 
triangles. Polygons can be triangulated with 0( n 2

) non-obtuse triangles [3]. 
If the PSLG is a triangulation of a simple polygon, O(n4) triangles suf­
fice [3]. For certain other PSLGs, we can prove !l(n2

) lower bounds. This 
includes nonobtuse triangulation of PSLG's formed by triangulating (con-
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vex) polygons [3, 7], simultaneous triangulation of the inside and outside 
of a (non-convex) polygon [8], and triangulation of a collection of disjoint 
edges. In fact these lower bounds hold for any f3 < 180°. Therefore (except 
for the O(n4 ) bound, which seems unlikely to be tight) it seemed that the 
correct complexity for many of these problems was 0(n2 ). 

Doubt was cast on this by an earlier result of Bern et al. [4). They showed 
that an algorithm based on quadtrees could triangulate a point set using only 
0 ( n) acute triangles. In this paper we give the second such subquadratic 
nonobtuse triangulation result. We show that a convex polygon with n 

faces can be triangulated using 0( nl.85 ) nonobtuse triangles. Our algorithm 
starts by forming an O(n2)-size triangulation based on a method of Bern 
and Epp stein [3], selects portions of the triangulation resembling rectangular 
grids, and then "thins" those grids using a novel form of divide and conquer. 

Other nonobtuse triangulations of Bern and Eppstein [3] contain similar 
rectangular and fan-shaped grids of triangles. Therefore it is likely that the 
methods of this paper can be extended to improve the bounds for triangu­
lating arbitrary polygons and other PSLG's. 

2 Initial quadratic triangulation 

We first describe the initial stages of our algorithm, in which we form a 
grid of O(n2 ) rectangles, together with O(n) triangles along the border of 
the grid. This is essentially the same as a method described by Bern and 
Eppstein [3], but we repeat the description for completeness. 

We start by partitioning the polygon vertically and horizontally. We 
later refine the grid by adding more horizontal and vertical lines, in order to 
be able to triangulate the region between the grid and the polygon boundary. 

The choice of horizontal and vertical axes is made so that the longest 
diagonal of the polygon (called the main dia_gonal) is oriented horizontally. 
This diagonal will appear in its entirety as one of the horizontal segments of 
the partition. We assume that the main diagonal is not part of the boundary 
of the polygon; otherwise our construction can be somewhat simplified. 

First, draw a vertical line segment through each vertex of the polygon, 
extending to the boundaries of the polygon. These lines divide the polygons 
into quadrilaterals with two vertical sides. Each vertex of a quadrilateral will 
either be an original input vertex, or a point where a vertical line touches the 
polygon boundary. Draw a horizontal line segment through each such point; 
extend the line segment to the last possible vertical segment. In other words, 
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Figure 1. Convex polygon with path from subdivision point. 

each endpoint of a horizontal segment should lie either on a vertical segment, 
or on the vertex inducing the horizontal, and each horizontal segment should 
be as long as possible with this property. 

Our algorithm periodically extends the partition by adding a new vertical 
line from boundary to boundary of the polygon. When we add a new vertical 
line, we also add horizontals from its endpoints to the last verticals as before, 
and lengthen each other horizontal segment for which the new vertical is now 
the last vertical. We extend the partition only O(n) times; thus we end up 
with 0 ( n2 ) rectangles and 0 ( n) subdivided right triangles. Our method for 
removing subdivisions in these triangles is based on the following fact. 

Lemma 1. If a right triangle has one subdivision point on a leg, it can be 
triangulated with three right triangles, by adding a new subdivision point 
on the hypotenuse. D 

If a subdivision point is alone in its triangle, then this will clearly remain 
the case for the corresponding subdivision point after an extension of the 
partition. Thus our strategy will be simply to extend the partition until 
each triangle has at most one subdivision point. 

Consider, without loss of generality, the chain of triangles extending up 
and to the right from the left endpoint of the main diagonal. For each 
subdivision point on one of these triangles, we "bounce" a path as follows. 
First draw a horizontal segment from the point to the polygon's boundary, 
and extend the subdivision by drawing a vertical line where the horizontal 
meets the boundary. This eliminates the original subdivision point, but 
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creates a new one below the main diagonal. Now repeat the process to move 
the subdivision back above the main diagonal. Figure 1 depicts a convex 
polygon with its partition extended by a path. 

The new subdivision point may fall on the chain extending up and to 
the left of the right endpoint of the main diagonal, instead of on the original 
chain. However it can be shown that, if this happens, the reverse cannot be 
the case: paths from the up-left chain cannot end on the up-right chain. If 
we first process the chain that can send points to the other chain, there will 
be no problem. So we now ignore points sent to the opposite chain. 

For a subdivision point p at height y from the main diagonal, define 
J (y) to be the height of the new subdivision point that would be created by 
bouncing a path from p. This function has the following properties. 

Lemma 2. The function f(y) is continuous, monotone, and piecewise lin­
ear with 0 ( n) breakpoints in linearity. 

Proof: By construction, f is the composition of four such functions, 
corresponding to the four chains among which the path bounces. D 

fi.s a consequence, f (y) - y is also continuous and piecewise linear. We 
partition the plane into horizontal strips so that within each strip f (y) - y 
has the same sign (positive, negative, or zero). We extend the partition 
by bouncing paths at points with heights at which f(y) - y changes sign; 
these paths form rectangles and therefore do not introduce new subdivisions; 
because there are O(n) breakpoints, there are O(n) strips and therefore O(n) 
rectangles drawn in this stage. The rectangles ensure that no triangle of the 
partition contains portions of more than one strip. Because of the following 
fact, we may consider each strip independently. 

Lemma 3. For each y, J(y) is in the same strip as y. D 

Now consider a triangle with more than one subdivision point in a strip 
where f (y) > y, and let p and q be the lowest two points in this triangle, 
with p lower than q. Bouncing the path from q creates a new subdivision 
point higher than q, and cuts off a triangle in which pis the lone subdivision 
point. We can repeat this process until all subdivision points in the strip are 
alone. Each extension creates a new lone subdivision point; therefore, after 
0 ( n) extensions all subdivision points are alone in their triangles. In strips 
where f(y) < y, the process is similar, beginning with the highest two points 
that are not alone. Finally, in a strip where f(y) = y, bouncing a path from 
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a subdivision point creates a rectangle. So in this case, all subdivision points 
can be immediately removed. 

At this point, every remaining subdivision point is alone in its triangle. 
We describe the current state of the triangulation. 

Lemma 4. Given a convex polygon, we can partition it into O(n2) rectan­
gles and 0( n) triangles meeting face to face. The rectangles can be divided 
into four subsets, each of which is bounded by a horizontal line, a verti­
cal line, and a monotonic "staircase" which makes steps of one rectangle 
horizontally, and either one or two rectangles vertically. 

Proof: The rectangles can be divided horizontally along the long diagonal; 
each subset then can be divided into two pieces at the point of maximum 
vertical extent. This gives the desired partition into four subsets. The 0 ( n) 
right triangles around the boundary each have at most a single subdivision 
on their vertical sides, from which fact the description of the "staircase" 
boundary then follows. Each boundary triangle can be further divided into 
three unsubdivided right triangles by Lemma 1. D 

3 Finding rectangular subproblems 

Our triangulation now proceeds as follows. We form a grid as above; from 
this grid we pick out larger rectangles. Each large rectangle will be divided 
into smaller rectangles, say a X b of them. Then the large rectangle will have 
a-1 subdivisions each on its left and right boundaries, and b-1 subdivisions 
each on the top and bottom boundaries, for a total of 2( a+ b - 2). The 
subdivisions on opposite sides of the large rectangle match up to each other. 
Our strategy will be to triangulate each large rectangle separately. We are 
allowed to do anything we want in the interior of the large rectangle, but the 
boundary must end up with exactly the subdivisions specified. Obviously 
we could triangulate the regions with 0 (ab) triangles; we improve on that 
in the next section. Here we describe how to find the large rectangles. 

Recall that our small rectangles are grouped into regions with one verti­
cal side, say x small rectangles high, one horizontal side, y small rectangles 
long, and one "stairstep" side. Initially x and y are both 0( n ). Figure 2 
depicts such a region. The small rectangles are drawn as squares. The 
stairstep side here makes steps of one rectangle vertically, and either one or 
two horizontally; the roles of horizontal and vertical are exchanged from the 
previous section, so that the figure will fit better on the page. 
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Figure 2. Grouping small rectangles into larger rectangular regions. 

Given such a stair-shaped region of small rectangles, we can find one 
large rectangle easily as follows. Extend a horizontal line at the level corre­
sponding to the x /2 row of rectangles. Drop a vertical where this horizontal 
hits the stairstep boundary. This leads to a large rectangle that is x /2 small 
rectangles high, and between x /2 and x rectangles long. The remainder of 
the small rectangles are in two stairstep regions, above and to the right of 
the large rectangle, each of height x /2. If we repeat this process recursively, 
we get one large rectangle of height x /2, two of height x /4, and in general 
2i rectangles of height x /2i+l. Thus we have the following lemma. 

Lemma 5. If a rectangle with m subdivisions on its sides, and with match­
ing subdivisions on opposite sides, can be triangulated using R( m) nonob­
tuse triangles, without introducing any new subdivisions, then any convex 
polygon can be triangulated with O(T(m)) nonobtuse triangles, whereT(m) 
satisfies the recurrence 

T(m) = R(m) + 2T(m/2) (1) 

Proof: We produce four groups of small rectangles, with sides horizontal, 
vertical, and stair step, as in Lemma 4. There will be 0 ( n) additional tri­
angles, but this number will be dominated by the solution to Recurrence 1. 
Then the construction above partitions each group into rectangular regions 
with heights (measured in numbers of small rectangles) matching the recur­
rence above, and lengths (again measured in small rectangles) proportional 
to the heights. Since the number of subdivisions on the boundary of each 
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Figure 3. Removing interior lines from subdivided rectangle: (a) Two small rect­
angles merge, removing a subdivision; (b) previous figure and its reverse combine 

to remove lines from the grid. 

rectangular region is proportional to the height plus the length, the recur­
rence correctly describes the total time. D 

4 Rectangles with subdivisions 

Our algorithm for triangulating the large rectangles found in the previous 
section is based on the following observation. 

Lemma 6. If a rectangle has a single subdivision point on a vertical side, 
and its width is more than either of the distances between the subdivision 
and the top or bottom of the rectangle, then the rectangle can be non­
obtusely triangulated without introducing more subdivisions. D 

Such a rectangle is illustrated in Figure 3( a). We use this observation to 
remove line segments from the rectangular grid formed by the subdivisions 
of our large rectangle. 

Let a column be a set of vertically adjacent small rectangles; then the 
width of the column is the distance between the subdivisions that form it. 
Similarly let a row be a set of horizontally adjacent small rectangles, and let 
the height of a row be the distance between subdivisions that form it. 

Then if two columns have widths a and b, and two adjacent rows have 
heights c and d, and if a and b are both greater than c and d, we can remove 
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the portion of horizontal line, separating the two rows, between the two 
columns. This process produces triangles, at the endpoints of the removed 
line segment, that may not be changed by later modifications to the grid. In 
order to gain any benefit from this process, we must remove many horizontal 
lines using the same columns. Figure 3(b) illustrates several horizontal lines 
being removed by the same two columns. 

We now quantify how many lines can be removed at a time. 

Lemma 7. Let a rectangle be given with m subdivisions on the vertical 
sides (so it has m + 1 rows). Let a and b be the widths of two columns, with 
min( a, b) at least as large as ( 1/2 + E )m of the row heights. Then Em - 1 
horizontal lines can be eliminated between the columns. 

Proof: There are (1/2-E)m+l rows that are too high to satisfy Lemma 6, 
and each one protects the lines above and below it. Thus there are m-2Em+ 
2 lines protected, so 2Em - 2 lines that can be removed. In the worst case, 
the removable lines will be all adjacent to each other, and we will be able to 
remove at most half of them. Therefore we can remove Em - 1 lines. D 

We are now ready to describe our algorithm. As before, suppose there 
are m rows and n columns. Let x be the 2/3-median of the row heights; i.e., 
m/3 rows are higher than x and 2m/3 are less high. Similarly let y be the 
2/3-median of the columns. 

Assume x < y; the opposite case is treated symmetrically. Let a be 
the leftmost column with width at least x and let b be the rightmost such 
column. Then because n/3 rows have height at least y > x, columns a and 
b are separated by at least n/3 columns. Also note that a and b are wider 
than the height of 2m/3 rows; therefore by Lemma 7 we can eliminate m/6 
rows between the two columns. 

This gives us three subproblems, which are solved recursively. The sub­
problems consist of (1) the columns between 1 and a - 1, with all m rows; 
(2) the columns between a+ 1 and b - 1, with 5m/6 rows; and (3) the 
columns between b + 1 and n, with all m rows. We also triangulate columns 
a and b, using m triangles. This partition and row elimination is shown in 
figure 4(a). The total number of triangles used is 

R(m, n) = R(a - 1,m) + R(b- a- l,5m/6) + R(n-b,m) + m. 

If we solve for the worst case time, by allowing all possible choices of a 

and b (with b - a ~ m/3) and by including the dual case in which x > y, 
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Figure 4. Recursive division into smaller rectangles: (a) single split, split into three 
parts with fewer rows in middle; (b) outer subproblems split again, eliminating 
columns. 

we achieve a bound that is slightly better than linear. Instead of solving 
this recurrence, we first make an observation that allows us to improve our 
algorithm and hence our bounds. 

Let us examine more carefully subproblems (1) and (3). By construction, 
all columns in the subproblems have widths smaller than x, which is still 
the 2/3-median of the row heights. Therefore, by choosing the topmost 
and bottommost rows with heights at least x, we can apply Lemma 7 to 
eliminate half of the columns between the two rows. 

Unfortunately this second level of improved row and column elimination 
can not be continued to a third level and so on; this failure occurs because 
the first level split the problem according to columns which were chosen 
larger than the 2/3-median of the rows; in the second level it is rows that 
are chosen, but they are compared to the row median. So the second level 
recursion is not the same as the first level, and the trick can not be extended. 

Thus we can subdivide each of the two subproblems into three sub­
subproblems, giving a recursion which divides each rectangle into seven 
parts, as depicted in figure 4(b ). The recurrence describing the possible 
arrangements of the seven parts is quite complicated. But as indicated by 
the numbers in the figure, we can make some simplifying assumptions about 
the dimensions of each subproblem. We do not attempt to prove these 
assumptions; instead we use them heuristically to simplify the recurrence, 
giving a solution as a function of m and n. Then it can be verified that this 
is also the solution of the true recurrence. 

Our assumptions are as follows: 
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• In the worst case, subproblems (1) and (3) have equal numbers of 
columns, i.e. a = n - b. Similarly, the corresponding sub-subproblems 
have equal numbers of rows. This follows from the fact that the worst 
case number of triangles is at most linear in each of n and m. 

• In the worst case, subproblem (2) will use exactly m/3 columns, and 
the corresponding sub-subproblems will use exactly n/3 rows. This 
is clear enough for the sub-subproblems, because eliminating extra 
columns is unlikely to increase the number of triangles. In subproblem 
(2), again we would expect eliminating rows to decrease the number 
of triangles. But this would also shrink the area involved in the more 
efficient second-level recursion. So we must verify that row elimination 
is the stronger effect. 

• If m < n the worst case happens when x > y and the first level re­
cursion splits the problem along rows of the rectangle. If m > n the 
worst case happens when x < y and the rectangle splits by columns 
This is heuristically justified as follows. Suppose the problem is split 
by columns (as depicted in the figures). Then by the previous two 
assumptions the subproblem sizes are (m/3, n/3), (m/3, n/6), and 
(5m/6, n/3). In each case the ratio n/m increases in the subproblems 
compared to the original problem. If we split by rows, the subproblem 
sizes would give the same values of the products nm, but the ratio 
n/m would decrease. For a fixed value of mn, we expect more trian­
gles when the ratio n/ m is farthest away from 1 (e.g. when m = 1 or 
n = 1 the number of triangles must be 0( mn ), but when m = n we 
have sub quadratic bounds). So the worst case should be the one in 
which these ratios are farthest from 1, and that will happen when the 
problems are split as described. 

With these assumptions, we can describe the number of triangles used 
by the following recurrence, for the case m < n. 

R(m, n) = R(m/3, 5n/6) + 2R(m/6, n/3) + 4R(m/3, n/3) + O(n). 

The first term represents subproblem (2), the second term represents the 
two corresponding sub-subproblems, and the third term represents the four 
remaining sub-subproblems. 

The recurrence solves to O(m0·8475n). The exponent in the solution was 
derived numerically. It is an approximate solution to the equation 

(5/6 + 4. 1/3)(1/3)x + (2 · 1/3)(1/6Y = i. 
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We show below that this time bound is the true solution to the unsim­
plified recurrence that actually describes our algorithm. Let us state the 
results of this section. 

Lemma 8. A rectangle subdivided into m rows and n columns, with m < 
n, can be triangulated using 0 ( m0·8475n) nonobtuse triangles, without in­
troducing any new subdivisions. 

Theorem 1. Any convex polygon can be nonobtusely triangulated with 
O(nl.8475) triangles. 

Proof: By Lemmas 5 and 8, the number of triangles satisfies the recurrence 

T(n) = R(n, n)+ 2T(n/2) = O(nl.8475) + 2T(n/2). 

But this solves to O(nl.8475 ). o 

5 Complete solution of recurrence 

For completeness, we prove that the true recurrence describing our rectangle 
triangulation algorithm has the solution we claimed. We assume throughout 
that m < n. By induction we can assume T( m', n') = c( m') 0 ·8475n' for some 
c and for all m'n' < mn. This is clearly true for m = 1 since then the result 
is simply 0 ( n), and in fact 2n triangles suffice. 

First suppose that the initial subdivision is by rows. Then the following 
recurrence describes the number of triangles needed. Here m1 + m2 + m 3 = 
m, ni + n2 + n3 = n4 + n5 + ns = n, m2 ~ m/3, n2 ~ n/3, and n5 ~ n/3. 
Note that m' < n' for all subproblems involved, so the inductive hypothesis 
can be used directly. 

R(m,n) = R(m1,n1)+R(m1/2,n2)+R(m1,n3) 

+R(m2, 5n/6) 

+R( m3, n4) + R( m3/2, n5) + R( m3, n5) 

+O(n) 

cm~·8475n1 + c( mi/2)0.8475n2 + cm~·8475n3 

+cmg·8475(5n/6) 

+cm~·8475n4 + c( m3/2)0.8475ns + cm~·8475n6 

+O(n) 
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cm~·8475n1 + c( m1/2)0.8475n2 + cm~·8475n3 

+cmg·8475( 5n/6) 
+cm~·8475n4 + c( m3/2)0.8475ns + cm~.8475n6 

+O(n) 

< cm~·8475 (0.85192n) + cmg·8475 (0.83334n) 

+cm~·8475(0.85192n) + O(n) 

c( m~.8475 + mg.8475 + m~·8475)(0.SSl92n) 

-cmg·8475(0.01858n) + O(n) 

< c(l.1824m0·8475)(0.85192n) 

-c(0.39414m0·8475)(0.01858n) + 0( n) 

< 0.99999cm0
·
8475n + O(n). 

So if c is large enough the result is O(m0
·
8475n) as claimed. 

In the other case, the initial subdivision is by columns. For any possible 
such subdivision, we can construct an alternate subdivision by rows, in which 
the ratios of ni/n and mi/m switch roles to match the recurrence above. So 
in the alternate problems, the products mini are the same as they would be 
in the original problems. But the aspect ratio ni/ mi is larger in the alternate 
subproblems than in the originals. In some cases the original aspect ratio 
may even be smaller than one (i.e., in the original problem, ni may be smaller 
than mi)· But in the latter case mi/ni will be smaller than the alternate 
value of ni/ mi. In the inductive hypothesis, reducing the aspect ratio and 
fixing the product m' n' can only decrease the total number of triangles. 
So subdivision by columns is preferable to subdivision by rows, and cannot 
occur as the worst case. 

6 Conclusions 

We have shown that o( n2 ) nonobtuse triangles suffice to triangulate any 
convex polygon. Our algorithm can be somewhat improved; in particu­
lar, choosing .678-medians instead of 2/3-medians leads to an exponent of 
1.84 736. Perhaps we should use different medians for the rows and columns, 
depending somehow on the ratio n/m. 

Our method depends only on finding subproblems in the form of a rect­
angular mesh. If we represent meshes implicitly in terms of their row heights 
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and column widths, the computation time will be governed by the same re­
currence as the number of triangles; hence this too will be o(n2). 

The best known nonobtuse triangulation algorithm for non-convex poly­
gons [4] uses 0( n2 ) triangles, and forms configurations resembling such 
meshes; perhaps our algorithm can be extended to work in this case. Re­
cently Bern et al. [2] have shown how to triangulate any polygon with 
O(nlog n) triangles, with no angle larger than 135°; their algorithm is again 
based on finding rectangular subproblems, but in their case linearly many 
triangles suffice for each subproblem. Perhaps their techniques and ours can 
be combined to yield better combined bounds on angles and numbers of 
triangles. It at least seems likely that our algorithm can be used to approx­
imate a non-obtuse triangulation, by which we mean all angles must be at 
most 90° + E for some f specified as part of the input. 

It is also possible that a different algorithm can solve the same problems 
more efficiently. Quadtree-based algorithms can give linear sized nonobtuse 
triangulations of point sets [4]; perhaps quadtrees can be useful for the 
convex polygon problem as well. 

There is another question that arises naturally from this work. The 
rectangular subproblems we solve can themselves be thought of as convex 
polygons which we triangulate. However we operate under the further re­
striction that all Steiner points be interior to the polygon; none are allowed 
to subdivide the boundary. With this restriction, we can still triangulate 
the polygons in subquadratic complexity. Can we characterize the polygons 
which can be so triangulated? How many triangles are needed in general? 

This question is related to a final open question, raised by Bern and 
Epp stein [3]. Is it possible to find a polynomial size nonobtuse triangula­
tion of an arbitrary planar straight line graph? One way of achieving this 
would be to refine the graph until all regions are triangulable without adding 
more boundary subdivisions; therefore it is important to know what sorts 
of regions are possible, and how many triangles are needed in each. 
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