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Abstract

Negative capacitance and hyperdimensional computing for unconventional low-power
computing

by

Justin C. Wong

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sayeef Salahuddin, Chair

Properties that emerge from the collective behavior of constituents at different length
scales can be exploited to reduce power consumption below conventional limits in com-
puting. At the device level, ferroelectric-dielectric coupling (“negative capacitance”) can
reduce energy consumption below 1/2CV

2 in capacitors. However, this effect is still not
well understood. We construct a microscopic model and analyze energy flow from the per-
spective of Poynting’s theorem to clear up these misunderstandings. At the circuit level,
high-dimensional distributed representations relax requirements on signal-to-noise ratio and
supply voltage, and enable new architecture designs. Computing with these representations
(“hyperdimensional computing”) is natural for performing energy efficient cognitive com-
puting at the application level. However, data in practice is always measured in some sort
of representation, which may not be natural for hyperdimensional computing. We bridge
this gap by proposing to use an approximation of the bispectrum to map data measured
in practice into high-dimensional distributed representations for use with hyperdimensional
computing.
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2.1 (a) Conventional unit cell of a ferroelectric perovskite (ABO3). There are eight
A cations (dark gray), one B cation (black), and six O anions (white). We divide
the O ions into two groups: the two O‖ ions at the ends of the dashed vertical
line, which denotes the line of B ion displacement; and the remaining four O⊥
ions. For simplicity, we assume that all relative displacements are along the z-
axis. (b) Schematic of the dipole fields in the (200) plane. The O‖ ions produce
polarizing fields (blue) at the B ion while the O⊥ ions produce depolarizing fields
(red). The O‖ ions are more polarized, so their fields dominate. The result is an
overall polarizing field at the B ion. . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Different forces on a B cation. z̄B is the mean displacement of the B ions. (a) Force
due to the local effective ionic potential energy. This force normally stabilizes
B ions at zero displacement. (b) Force due to the collective dipole field after
the depolarization field has been screened by free charges. This force tends to
spontaneously displace B ions, but will be reduced if the depolarization field
is not screened. (c) Net force (black) where we have assumed that the local
effective interatomic forces are not strong enough to stabilize B ions at zero
displacement. The net force is zero at three points but is only stable at two of
the points. This resembles the S curve rotated on its side. Without free charges to
screen the depolarization field, the dipole field will be weaker, and the interatomic
forces may be able to stabilize the B ions. In that case, the ferroelectric will not
spontaneously polarize in a vacuum. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Net force (black) on a B cation due to a local effective ionic potential (blue), a
collective dipole field (orange), and an external electric field (green). z̄B is the
mean displacement of the B ions. (a) A negative external electric field is applied,
forcing the B ions to displace in the −ẑ direction on average. (b) The external
electric field is switched and set to the coercive field; the net force becomes zero
at two points. Only one point is stable, so the B ions displace in the +ẑ direction
on average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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2.4 (a) Polarization versus electric field corresponding to Fig. 2.3. This is the S curve,
and every point on it can be mapped to a microscopic configuration of relative ion
displacements. (b) Corresponding potential energy landscape. This double-well
potential does not take into account thermal energy and is not a thermodynamic
potential, but it resembles the standard Landau free energy landscape. . . . . . 15

2.5 Net force on a B cation when a depolarization field is present. The solid black
curve is the force without the depolarization field; the red line is the force due
to the depolarization field; and the dashed black curve is the net force. (a)
Depolarization field slightly reduces the remnant polarization. (b) Depolarization
field is strong enough to suppress the polarization to zero. (c) Depolarization
field suppresses polarization close to zero but not quite zero. In this case, the
combination is still in the negative capacitance region but will have hysteresis. . 17

2.6 Paths of energy flow during charging and discharging of a capacitor
with a ferroelectric. a, Schematic of energy flow paths during charging (left)
and discharging (right) of a ferroelectric-dielectric capacitor. New paths of en-
ergy flow emerge between the ferroelectric and dielectric during charging and
discharging. These paths are not present in conventional dielectric capacitors. b,
Energy landscapes in a ferroelectric-dielectric capacitor. If the dielectric is suffi-
ciently thick, then its energy landscape FDE will dominate the energy landscapes
FFE and F of the ferroelectric and overall system respectively. The dielectric
polarization PDE then forces the ferroelectric near its phase transition at zero
polarization (PFE = 0) via a strong depolarization field. This puts the ferroelec-
tric into a higher energy state in which energy can be extracted from the phase
transition. c, Schematic of the total electric fields in a ferroelectric-dielectric ca-
pacitor. When an external electric field is applied, the ferroelectric and dielectric
both polarize by different amounts, resulting in a depolarization field. Since the
ferroelectric is stabilized in a higher energy state near zero polarization, it releases
energy when polarized. This extra energy contributes towards further strength-
ening the depolarization field, which subsequently further polarizes and charges
the dielectric. The resultant electric fields EFE and EDE in the ferroelectric and
dielectric respectively end up pointing in opposite directions. . . . . . . . . . . . 21
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2.7 Power comparison during charging and discharging of a capacitor with-
out/with a ferroelectric. Negative power corresponds to power supplied. a,
Power versus time during charging of a capacitor without a ferroelectric (left) and
with a ferroelectric added (right). The ferroelectric and dielectric parameters are
set such that |CFE/CDE| = 2 (see c and Fig. 2.8 for more information) where CFE

is the ferroelectric capacitance, and CDE is the dielectric capacitance. The voltage
source supplies less power when the ferroelectric is coupled to the dielectric, and
the amount of power radiated is reduced. The dielectric still receives the same
amount of energy because the ferroelectric supplies the missing power. b, Power
versus time during discharging of the same capacitors from a (without a ferroelec-
tric, left; and with a ferroelectric, right). The dielectric acts as the source during
discharging, and a fraction of its power is delivered to the ferroelectric instead of
completely radiating away as in the conventional case. c, Total energy dissipated
as a function of the capacitance matching |CFE/CDE| after charging and discharg-
ing. The energy is normalized to 1/2CDEV

2
DE, which is the conventional amount

of energy dissipated without a ferroelectric. The inset shows that the capacitor
becomes nonlinear when a ferroelectric is added, resulting in charge-dependent
energy dissipation. The curves shown here were calculated by charging to and
discharging from the end of the linear region. . . . . . . . . . . . . . . . . . . . 24

2.8 Energy balancing and capacitance matching. a, Energy landscapes show-
ing perfect energy balancing ∆DE ≈ ∆FE (left) and imperfect energy balancing
∆DE > ∆FE (right) between the ferroelectric and dielectric. Even with perfect
energy balancing, the ferroelectric eventually runs out of energy stored in its
phase transition. This occurs at the end of the linear region, after which point
the ferroelectric can no longer supply energy to the dielectric and must receive
energy from an external source to continue polarizing. b, Total energy dissipated
as a function of the capacitance matching |CFE/CDE| after storing charge Q on
the capacitor plates. CFE is the ferroelectric capacitance, and CDE is the dielec-
tric capacitance. The energy dissipated is normalized to 1/2CDEV

2
DE, which is

the energy conventionally dissipated without a ferroelectric. Qcrit is the charge
corresponding to the end of the linear region. c, Total energy dissipated as a
function of the capacitance matching |CFE/CDE| after discharging Q amount of
charge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Poynting vector calculations. a, Schematic of overall energy flow from the
source to the ferroelectric-dielectric capacitor during charging. b, Poynting vector
field along the side of the capacitor and near the center during charging. x is the
in-plane spatial coordinate, and z is the spatial coordinate along the capacitor
axis. c, Poynting vector field along the side of the capacitor and near the center
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Chapter 1

Introduction

1.5 billion smartphones were sold in 2017 [1]. This is in addition to the more than 2.5 billion
smartphones estimated to already be in use in the world [2]. This number is still growing and
is projected to continue growing as smartphone penetration increases in countries around the
world [3]. Add in the more than 17 billion connected devices from the growing internet of
things (IoT) [4], and we have a rapidly expanding ecosystem of technology that is increasingly
reliant on low power electronics. In order to support this ecosystem and allow it to continue
to flourish, our underlying hardware needs to become more energy efficient.

To further complicate matters, the recent successes of deep artificial neural networks
have sparked a “deep learning revolution” [5]. A wide range of industries are now racing to
adopt deep learning in their technologies [6, 7, 8] including everyday technologies such as
mobile applications and the IoT [9, 10, 11, 12]. However, training deep networks requires
copious amounts of training data and time and is computationally expensive due to the
need to frequently update potentially billions of weights over numerous training epochs [13,
14]. Furthermore, training a network to complete a new task typically requires retraining
multiple layers—or even an entirely new neural network from scratch in many cases—on
new training data [14, 15]. Clearly, this approach is energy inefficient and computationally
infeasible for embedded systems. In order to solve this energy problem, we need innovations
at every level of the computing stack.

At the device level, energy consumption cannot be reduced in conventional metal-oxide-
semiconductor field-effect transistors (MOSFETs) due to thermal limits arising from Boltz-
mann statistics [16, 17]. Salahuddin and Datta proposed to overcome this limit in 2008 by
using ferroelectric negative capacitance [18]. However, this effect is still not well understood.
Some believe it is simply a theoretical artifact from an unphysical model and cannot exist.
Even with the growing experimental evidence [19, 20, 21, 22, 23] for ferroelectric negative
capacitance, there are still conceptual shortcomings surrounding the existence of negative ca-
pacitance, its stabilization, and whether or not it would actually provide any energy savings
if it could work.

If we did succeed in overcoming the thermal barrier at the device level, there are still
signal-to-noise ratio (SNR) requirements at the circuit level needed to maintain logical con-



CHAPTER 1. INTRODUCTION 2

sistency, especially in memory [24, 25, 17]. Clever circuit design can improve noise immunity
by rejecting internal noise sources to an extent [25]. However, there are still noise sources
such as device variation and crosstalk that worsen with scale and increased integration den-
sity [25, 26]. High-dimensional distributed representations can improve noise immunity and
are natural for energy efficient cognitive computing (“hyperdimensional computing”) [27,
28, 29]. Hyperdimensional computing can potentially perform more human-like inference
[27] with less data and in one shot compared to conventional machine learning methods [28,
29]. However, the mathematics of using hyperdimensional computing to solve major learning
problems are still not well understood.

In this thesis, we address these problems in three chapters:

• Chapter 2 fills in the theoretical gaps of ferroelectric negative capacitance. We first
construct a simple but physically intuitive microscopic model to illustrate how negative
capacitance arises and can be stabilized in a prototypical displacive ferroelectric. We
show that the phenomenological model originally used to derive ferroelectric negative
capacitance can have correspondences with physical crystal configurations. Then, we
analyze energy flow in a ferroelectric-dielectric system from the perspective of Poynt-
ing’s theorem. We show that overall energy dissipation is reduced below the 1/2CV

2

limit during charging and discharging.

• In Chapter 3, we discuss the notion of information representation and its implications
in computation. In the context of automata theory and formal languages, we illustrate
how distributed representations can be more computationally efficient than local repre-
sentations. High-dimensional distributed representations possess even greater potential
computational efficiency and are robust against errors due to redundancy.

• Chapter 4 proposes a method for bridging the gap between data measured in practice
and high-dimensional distributed representations. We propose to use an approxima-
tion of the bispectrum to encode data measured in practice into high-dimensional
distributed representations for use in hyperdimensional computing. We then apply our
method to a small dataset of music to demonstrate one-shot unsupervised learning.

Finally, we end in Chapter 5 with a brief summary of the key results and discuss future
work.
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Chapter 2

Negative Capacitance

After the publication of constant-field scaling rules by Dennard et al. in 1974 [30], the semi-
conductor industry raced to reap the benefits of Dennard scaling in metal-oxide-semiconductor
field-effect transistors (MOSFETs). By reducing device dimensions, supply voltages could
also be reduced while preserving electric field intensities inside MOSFETs to maintain con-
stant power density [30, 31, 16, 17]. The net result was faster devices, higher circuit densities,
and lower power dissipation per circuit [30, 31, 16, 17]. Unfortunately, constant-field scaling
rules could only be followed approximately since not all device factors scale with geometry.
Temperature and material energy band gap are two primary nonscaling factors that result in
nonscaling threshold voltage and built-in potential [16, 17]. Consequently, supply voltages
could not be scaled as aggressively as device dimensions, resulting in increased electric fields
and short-channel effects. To mitigate the worsening of these effects with scale, Baccarani et
al. defined generalized scaling rules that preserve electric field profiles and potential profiles
[32]. However, this did not work without limit since electric field intensities still increased.
Nevertheless, this golden era of geometrical scaling continued for decades from the 1970s
until around 2006 when leakage effects began to dominate [33].

As geometrical scaling came to an end, a new era of equivalent scaling began [34, 33]. By
changing certain device characteristics, transistor dimensions could be equivalently scaled
instead of physically scaled. Metal gates and high-κ dielectrics enabled equivalently thinner
oxides without needing to physical decrease oxide thickness [35]. The use of germanium and
strained silicon increased carrier mobility, resulting in faster devices [36, 37, 38, 39, 40, 35].
Non-planar structures such as the FinFET enabled better gate control over the semiconduc-
tor channel to mitigate short-channel effects [41, 42]. While these innovations helped devices
continue to scale, they still did not change the fundamental limitations imposed by the non-
scaling factors mentioned above. Consequently, equivalently scaling only brought devices
closer to their fundamental physics limitations. Nonscaling temperature, for example, still
places a lower limit on subthreshold swing due to Boltzmann statistics.

To overcome this Boltzmann limit, Salahuddin and Datta proposed in 2008 to replace the
gate oxide with a ferroelectric insulator exhibiting negative capacitance [18]. This would,
in theory, reduce the body factor below the ideal limit of one, resulting in an effective am-
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plification of the gate voltage at the semiconductor channel and steeper subthreshold slope.
This idea was exciting [43, 44] but was not without controversy: (1) in their original work,
Salahuddin and Datta used a phenomenological model of ferroelectricity, which has no di-
rect correspondence with physical configurations, leading some to believe that ferroelectric
negative capacitance is an artifact of the phenomenological model; (2) even if ferroelectric
negative capacitance does exist, it must be unstable and cannot be stabilized without mak-
ing the capacitance positive or breaking the ferroelectric into domains; and (3) the use of
negative capacitance does not reduce net energy cost since there must be an active source
that supplies extra energy. These controversies have somewhat subsided over the past decade
due to growing experimental evidence [19, 20, 21, 22, 23] of ferroelectric negative capaci-
tance. However, there are still conceptual gaps and misunderstandings regarding the origin
of ferroelectric negative capacitance and the above main criticisms.

In this chapter, we demystify ferroelectric negative capacitance and address the above
criticisms. First, we construct a simple and physically intuitive microscopic model of ferro-
electricity to demonstrate how negative capacitance can arise and be stabilized in a phys-
ical configuration of ions. We provide a correspondence between the microscopic model
and phenomenological models to alleviate concerns about ferroelectric negative capacitance
artificially manifesting from the use of a phenomenological model. Finally, we analyze en-
ergy flow from the perspective of Poynting’s theorem during charging and discharging of a
ferroelectric-dielectric capacitor to show that energy flows directly from the ferroelectric into
the dielectric during charging and vice versa during discharging. Thus, net energy dissipation
is reduced because no active source is needed to supply extra energy.

2.1 Introduction

2.1.1 Subthreshold Swing and the Boltzmann Limit

Recall from solid state physics that the density of electron states in the n-th energy band of
an ideal crystal is given by [45, 46, 47]

Dn(ε) =

∫
Sn(ε)

dS

4π3

1

|∇εn(k)|
(2.1)

where Sn(ε) is the surface of constant energy ε in k-space corresponding to the n-th energy
band; and εn(k) is the dispersion relationship. Assuming the crystal is a semiconductor, we
can perform a Taylor series expansion of the dispersion relationship about a critical point
k0 corresponding to the conduction or valence band edge:

εn(k) = εn(k0) + [(k− k0) · ∇]εn(k0) +
1

2
[(k− k0) · ∇]2εn(k0) + · · · (2.2)

Note that the linear terms go to zero since we are expanding about a critical point, and the
quadratic terms can be diagonalized via a transformation to principal axes [46]. Truncat-
ing this expansion at second-order results in the usual parabolic approximation where the
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curvature is characterized by an effective mass tensor. This results in ellipsoidal surfaces of
constant energy and a density of states with the following trend:

Dnk0(ε) ∼ (ε− εn(k0))η (2.3)

η is a constant factor that depends on the dimensionality of the material (e.g. η = 1/2 for a
three-dimensional crystal). To account for degeneracy, we sum the density of states over all
energy bands and corresponding critical k-points:

D(ε) =
∑
n,k0

Dnk0(ε) ∼ (ε− ε0)η (2.4)

Note that we have now replaced the degenerate energy level εn(k0) with simply ε0.
The thermal average occupancy of these states is dictated by the Fermi-Dirac distribution

[48]

f(ε) =
1

1 + exp
(
ε−µ
kBT

) (2.5)

where µ is the chemical potential or Fermi level; kB is the Boltzmann constant; and T is
temperature. In the classical concentration limit (e.g. in a non-degenerately doped material),
the Fermi-Dirac distribution approaches the Boltzmann distribution [48]:

f(ε) ≈ exp

(
−ε− µ
kBT

)
(2.6)

Thus, the distribution of electrons as a function of energy is given by

dn = f(ε)D(ε) dε ∼ (ε− ε0)η exp

(
−ε− µ
kBT

)
dε (2.7)

Notice that Boltzmann statistics dominates the density of states, resulting in an overall
exponentially decaying distribution of electrons with increasing energy. This means that if we
can decrease the electron energy relative to the chemical potential, then we can exponentially
increase the number of electrons. We can accomplish this by applying an appropriate electric
field that establishes a surface potential ψs in the semiconductor:

dn ∼ [(ε− qψs)− (ε0 − qψs)]
η exp

[
−(ε− qψs)− µ

kBT

]
dε (2.8)

∼ (ε− ε0)η exp

(
−ε− µ
kBT

)
exp

(
qψs

kBT

)
dε (2.9)

This is the basis of the field-effect transistor. Although the above analysis focused on electron
states, the results apply equally to holes.

In a metal-oxide-semiconductor field-effect transistor (MOSFET), this mechanism is used
to modulate the conductivity of a semiconducting channel to turn the channel “on” or “off”.
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The modulating electric field is controlled by a gate voltage Vg applied at a gate terminal
on the other side of an oxide sitting on the semiconductor. Simultaneously, an additional
lateral electric field may be applied across the length of the channel to induce a current across
the channel. When the gate voltage is above a certain threshold voltage VT, the number of
charge carriers in the channel—and, in turn, the channel conductivity—will be high enough
for substantial current to flow. Reducing the gate voltage below the threshold voltage will,
ideally, lower the channel conductivity enough to stop the current flow. In other words, the
subthreshold current is ideally zero. Unfortunately, this does not happen due to Boltzmann
statistics as explained next.

From (2.9) and the discussion above, the number of charge carriers in the channel in-
creases exponentially with the semiconductor surface potential. Consequently, the subthresh-
old current also has an exponential dependence on the surface potential:

Is ∼ exp

(
qψs

kBT

)
(2.10)

Thus, the change in gate voltage needed to change the current by an order of magnitude is
given by [49, 31, 16, 17]

S =
∂Vg

∂ log10(Is)
=
∂Vg

∂ψs

∂ψs

∂ log10(Is)
=

kBT

q
ln(10)︸ ︷︷ ︸

≈60 mV/decade
at T=300 K

(
1 +

Cs

Cins

)
︸ ︷︷ ︸

m

(2.11)

This is called subthreshold swing. The first underbraced term manifests from the underlying
Boltzmann statistics (as evident by the presence of the Boltzmann constant and tempera-
ture) and is known as the “Boltzmann limit” on subthreshold swing. At room temperature
(T ≈ 300 K), the Boltzmann limit is ≈ 60 mV/decade. The second underbraced term m is
called the body factor, which characterizes the capacitive coupling ∂Vg/∂ψs between the gate
terminal and the semiconductor surface. If the gate has perfect control over the channel,
then m = 1 and the subthreshold swing is only limited by Boltzmann statistics. Generally,
however, there is capacitive coupling between the semiconductor surface and other parts
of the device, resulting in a semiconductor capacitance Cs. Thus, the gate insulator Cins

and semiconductor capacitance Cs form a capacitive voltage divider that increases the body
factor (i.e. m > 1) assuming positive capacitances and, consequently, increases subthreshold
swing.

This is undesirable because an ideal switch should have zero subthreshold swing in order
to abruptly switch with infinitesimally small changes in gate voltage. From (2.11), we see
that the subthreshold swing can be minimized by reducing the Boltzmann limit and the
body factor. The Boltzmann limit, however, cannot be changed without expending addi-
tional energy to cool below room temperature. Alternatively, the Boltzmann limit can be
circumvented by using other devices that simply do not rely on Boltzmann statistics. One
popular example is the tunnel field-effect transistor (TFET), but it comes with its own prac-
tical challenges [50, 51]. Instead, the semiconductor industry has traditionally focused on



CHAPTER 2. NEGATIVE CAPACITANCE 7

decreasing the body factor as close as possible to the presumed ideal limit of m = 1 by
maximizing gate control. Geometrical scaling and equivalent scaling (e.g. high-κ dielectrics,
metal gates, and non-planar multigate structures) have directly improved gate control by
decreasing the equivalent oxide thickness or increasing the gate area around the channel
to increase Cins [35, 41, 42]. Other technologies, such as fully depleted silicon-on-insulator
(FD-SOI) technology, indirectly improve gate control by instead reducing the semiconductor
capacitance Cs [52]. These examples are just some of the innovations that have allowed the
semiconductor industry to improve gate control close to its presumed ideal limit of perfect
capacitive coupling, leaving subthreshold swing practically limited by just the Boltzmann
limit. Thus, it would seem that there are no further improvements that can be made aside
from cooling below room temperature.

2.1.2 Negative Capacitance

In 2008, Salahuddin and Datta proposed to use negative capacitance to overcome the Boltz-
mann limit [18]. By replacing the gate insulator with a material that exhibits negative
capacitance, the body factor can, in principle, be decreased below its presumed ideal limit.
In other words, instead of striving for perfect capacitive coupling (m = 1), we seek to effec-
tively amplify the gate voltage at the channel (m < 1). This idea is fairly straightforward if
we simply examine (2.11). However, it is not immediately obvious what negative capacitance
means or how we can find a material system that exhibits such a property.

In a general sense, negative capacitance can be understood in terms of positive feedback
[47, 18, 53]. Following Salahuddin and Datta’s derivation [18], if we have an ordinary linear
capacitor C, and we apply a voltage v, then we expect the capacitor to store charge q = Cv.
However, if there is a positive feedback effect, then the charge will amplify the input voltage
v → v+αfq where αf characterizes the strength of the feedback. This results in more charge
q = C(v + αfq) stored in the capacitor. Solving for charge in terms of voltage, we obtain an
expression for the effective capacitance:

Cins =
C

1− αfC
(2.12)

Notice that the effective capacitance becomes negative if the feedback is strong enough (i.e.
αfC > 1), but the system becomes unstable. We can stabilize the negative capacitance by
placing a positive capacitor Cs in series. This results in an equivalent capacitance for the
combined system:

Ceq =
CinsCs

Cins + Cs

=
|Cins||Cs|
|Cins| − Cs

(2.13)

If the positive capacitor is thick enough (i.e. Cs < |Cins|), then the overall capacitance
remains positive, and the system is stable even though the insulator capacitance is still
negative.

This analysis implies that any charge-based system with positive feedback may exhibit
negative capacitance. In 2014, I published a paper exploring the possibility of achieving
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negative capacitance with an electromechanical positive feedback effect [54] and wrote a
Master’s report on it in 2015 [55]. I found that electromechanical negative capacitance is
possible in principle but difficult to achieve in materials commonly used in electronic devices.
In contrast, Salahuddin and Datta proposed to use ferroelectrics as their material system.
In order to understand how ferroelectrics may exhibit negative capacitance, we must first
discuss Landau theory.

2.1.3 Landau Theory

Ferroelectrics are most commonly modelled using a phenomenological theory known as Lan-
dau theory. Landau theory takes into account transformations of crystal symmetry in order
to model a Landau free energy density fL(η, T ) as a function of an order parameter η and
temperature T [56, 57]. The order parameter is chosen to reflect the symmetry transforma-
tions of interest. For example, polarization and magnetization are the typically chosen order
parameters for ferroelectrics and ferromagnets respectively.

By taking into account known transformations of crystal symmetry, the Landau free
energy density can be expanded into a series that reflects the same symmetries. For example,
if we consider a one-dimensional order parameter that displays even symmetry under a phase
transition as the temperature varies, then the Landau free energy density has the form

fL(η, T ) = f0 +
1

2
α(T )η2 +

1

4
β(T )η4 +

1

6
γ(T )η6 + · · · (2.14)

where α(T ), β(T ), and γ(T ) are Landau free energy coefficients. Notice that the model has
no direct correspondences with physical configurations of the crystal, but it often ends up
working well in practice because it approximates the “true” free energy density, which is
normally calculated from first principles or extracted from experiments [57]:

fL ≈ f = u− Ts (2.15)

u is the internal energy density, and s is the entropy per unit volume. The exact differential
is

df = du− d(Ts)

= (T ds+ ζ dη)− (T ds+ s dT )

= −s dT + ζ dη (2.16)

where ζ and η are generalized force and displacement respectively and are thermodynamic
conjugate variables. Thus, the free energy density is minimized under small fluctuations in
temperature and order parameter:

(δf)T,η = 0 (2.17)

The generalized force is determined by

ζ =

(
∂f

∂η

)
T

(2.18)
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Similar expressions can be found for the entropy per unit volume as well as the usual Maxwell
relations.

If we now consider a ferroelectric with one-dimensional order parameter P for polarization
and generalized force E for electric field, then from (2.14) the Landau free energy density is

fL(P, T ) = f0 +
1

2
α0(T − T0)P 2 +

1

4
βP 4 +

1

6
γP 6 (2.19)

Notice that we have truncated the series at sixth order, and we have assumed a continuous
phase transition where the second-order Landau free energy coefficient α(T ) is linear in
temperature for simplicity (α0 is positive, and T0 is the phase transition temperature). In
order for the ferroelectric to have overall stability, γ must be positive. We also assume β > 0
for simplicity. From (2.18) and (2.15), the electric field is

E =

(
∂f

∂P

)
T

≈
(
∂fL

∂P

)
T

= α0(T − T0)P + βP 3 + γP 5 (2.20)

If we now plot polarization as a function of electric field, then we obtain the ferroelectric S
curve, which has a region of negative slope. This is the negative capacitance region. If we
differentiate the electric field with respect to polarization, then we can calculate the inverse
electric susceptibility:

1

ε0χe

=

(
∂E

∂P

)
T

= α0(T − T0) + 3βP 2 + 5γP 4 (2.21)

ε0 is vacuum permittivity. For small polarizations, the inverse electric susceptibility is

1

ε0χe

≈ α0(T − T0) (2.22)

Thus, if we cool the ferroelectric below the critical temperature, then the electric suscep-
tibility becomes negative at small polarizations! This is the basis of ferroelectric negative
capacitance. In general, however, ferroelectrics are unstable near zero polarization. Thus,
it is conventionally believed that (2.22) is never applicable at equilibrium and that we must
instead use (2.21), which predicts a positive susceptibility at equilibrium.

2.2 Microscopic Origin of the S Curve

The conventional analysis of a negative capacitance transistor uses a top-down approach that
relies heavily on a phenomenological model of ferroelectricity: a Landau free energy function
is expanded about an order parameter into a mathematical series that takes into account
known transformations of the crystal symmetry. The coefficients of this series expansion
are then fit a posteriori to experimental data. While this phenomenological approach often
works well enough in practice, it lacks any physical intuition at the microscopic scale. This
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results in an uncomfortable disconnect: ferroelectric negative capacitance requires the ex-
istence of an unstable region in a theoretical S curve P-E loop, but this S curve is derived
from a phenomenological energy that has no direct correspondences with any microscopic
configurations. This has led some to view the S curve as merely an artifact or theoretical
construct that does not exist in real ferroelectrics. In this section, we resolve this confusion
by using a bottom-up approach from simple microscopics to illustrate how the ferroelectric S
curve can correspond to physical configurations in a real crystal and is not simply theoretical.

We start by considering the ions of an ideal three dimensional ferroelectric crystal. We
use the adiabatic principle to model an effective ionic potential energy that includes the
electronic polarizabilities of the ions. We then separate this potential energy into local
effective potential energies Vi(ui) for each ion where ui is the relative displacement of the
i-th ion from its surrounding valence electrons. Thus, each ion experiences a local effective
interatomic force described by

F
(i)
ion = −∇Vi (2.23)

The ions also interact with each other nonlocally, which we model using Coulomb forces
(we neglect lattice distortions for simplicity). As the ions vibrate, they form pseudodipoles
pi through ion displacement and electronic polarization. Each pseudodipole produces an
electric field at a position r given by

E
(i)
dipole(r) =

3[pi · (r−Ri)](r−Ri)− pi |r−Ri|2

4πε0 |r−Ri|5
(2.24)

where Ri is the idealized equilibrium lattice site of the i-th ion. Thus, there is a nontrivial
superposition of short-range and long-range Coulomb forces that results in a collective dipole
field

Ep(r) =
∑
i

E
(i)
dipole(r) (2.25)

where the summation iterates over all ions in the crystal. We expect this field to dominate
local interatomic forces for certain crystal configurations, resulting in a lattice instability
that leads to a ferroelectric phase transition.

Next we use (2.24) and (2.25) to calculate the collective dipole field. The summation in
(2.25) is generally nontrivial and is conditionally convergent for infinite crystals. However,
if we use a mean field approximation and replace the individual dipole moments with their
corresponding averages, then the summation can be decomposed into simpler sums over
different interpenetrating sublattices that correspond to different ions. These lattice sums
can be evaluated using a variety of methods, and we provide references to some in [58, 59].
The resultant dipole field evaluated at a B ion is then given approximately by

Ep(RB) ≈ 〈pA〉
4πε0vcell

(
−4π +

4π

3

)
+
〈pB〉

4πε0vcell

(
−4π +

4π

3

)
+
〈pO‖〉

4πε0vcell

(
−4π +

4π

3
+ 30

)
+

2〈pO⊥〉
4πε0vcell

(
−4π +

4π

3
− 15

) (2.26)
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a b
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y

z

A cation B cation O anion
Polarizing Field

Depolarizing Field

Figure 2.1: (a) Conventional unit cell of a ferroelectric perovskite (ABO3). There are eight
A cations (dark gray), one B cation (black), and six O anions (white). We divide the O
ions into two groups: the two O‖ ions at the ends of the dashed vertical line, which denotes
the line of B ion displacement; and the remaining four O⊥ ions. For simplicity, we assume
that all relative displacements are along the z-axis. (b) Schematic of the dipole fields in the
(200) plane. The O‖ ions produce polarizing fields (blue) at the B ion while the O⊥ ions
produce depolarizing fields (red). The O‖ ions are more polarized, so their fields dominate.
The result is an overall polarizing field at the B ion.

where each parenthesized sum (−4π + · · · ) is the result of a corresponding sublattice sum;
〈pA〉, 〈pB〉, 〈pO‖〉, and 〈pO⊥〉 are the mean dipole moments of the A, B, O‖, and O⊥ ions
respectively; and vcell is the volume of a unit cell. The O‖ ions are the O ions that lie
along the line of B ion displacement while the O⊥ ions are the remaining O ions (see Fig.
2.1a). To further complicate matters, the dipole field in (2.26) is dependent on the mean ion
dipole moments, which are in turn dependent on the dipole field—a self-consistent solution
is needed. These calculations are beyond the scope of this section (Slater has performed such
a calculation for BaTiO3 in [60]), but we provide the qualitative result here: the polarization
of a ferroelectric perovskite is typically dominated by the ion displacement of the B cations
and by the electronic polarization of the O‖ anions. Thus, we assume that the remaining
ions have 〈pA〉 ≈ 〈pO⊥〉 ≈ 0, and the dipole field simplifies to

Ep(RB) ≈ 〈pB〉
4πε0vcell

(
−4π +

4π

3

)
+
〈pO‖〉

4πε0vcell

(
−4π +

4π

3
+ 30

)
(2.27)

If we also assume that 〈pB〉 and 〈pO‖〉 contribute approximately equally to the polarization
(i.e. 〈pB〉 ≈ 〈pO‖〉), then we can write the dipole field in terms of macroscopic polarization
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P:

Ep(RB) ≈ −P

ε0
+

P

3ε0
+

15P

4πε0
(2.28)

Notice that −P/ε0 is simply the macroscopic electric field that arises due to bound charge
at the surface of a dielectric and is the depolarization field that acts to suppress polarization
in typical dielectrics. P/3ε0 is the standard Lorentz correction due to treating the dipoles
as a continuum in a spherical cavity. These two terms combine into −2P/3ε0, which is the
usual dipole field in the Clausius-Mossotti picture. However, in the case of our perovskite
ferroelectric, the O anions contribute a large positive term ∼ 15P/4πε0, which makes the
overall dipole field positive in the direction of polarization at the B cations. We can under-
stand it better by examining the schematic shown in Fig. 2.1b where we have sketched the
dipole fields of the O‖ and O⊥ ions in the (200) plane. The O‖ ions produce polarizing fields
at the B ions while the O⊥ ions produce depolarizing fields. However, |〈pO‖〉| � |〈pO⊥〉|
as discussed above, so the O‖ dipole fields end up dominating. Thus, there is an overall
polarizing field that tends to spontaneously polarize the B ions, which in turn help polarize
the O‖ ions.

In addition to the contributions from polarization, we also need to account for the local
effective potential energies. For simplicity, we assume all relative displacements are along
the z-axis and are denoted by zi. Thus, we can perform a simple series expansion of the
local effective potential energies

Vi(zi) ≈
1

2

∂2Vi
∂z2

i

∣∣∣∣
0︸ ︷︷ ︸

ai

z2
i +

1

4!

∂4Vi
∂z4

i

∣∣∣∣
0︸ ︷︷ ︸

bi

z4
i (2.29)

where we have set Vi(0) = 0 and eliminated odd-order terms based on crystal symmetry.
We also truncate the series at fourth order for simplicity. We emphasize that this energy
expansion is not the same as expanding a Landau free energy function. The effective ionic
potential energy is quite general here, and its coefficients have no direct correspondence with
the order of a ferroelectric transition. The coefficients are calculated from first principles,
but we leave their values unspecified for generality. We do assume ai, bi > 0, however, for
ease of discussion.

At this point, we have nearly all of the forces we need to describe our ferroelectric via
the dynamics of B cations:

FB
ion(z̄B) ≈ −(2aBz̄B + 4bBz̄

3
B)ẑ (2.30)

Fp(RB) ≈ qB

(
−P

ε0
+

P

3ε0
+

15P

4πε0

)
(2.31)

FB
ion(z̄B) is the force on an average B ion due to the local effective interatomic forces where

z̄B is the mean B ion displacement; Fp is the force due to the collective dipole field; and
qB is the effective charge of a B ion. If we now consider the short circuit condition, then
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a b c

Figure 2.2: Different forces on a B cation. z̄B is the mean displacement of the B ions. (a)
Force due to the local effective ionic potential energy. This force normally stabilizes B ions
at zero displacement. (b) Force due to the collective dipole field after the depolarization
field has been screened by free charges. This force tends to spontaneously displace B ions,
but will be reduced if the depolarization field is not screened. (c) Net force (black) where we
have assumed that the local effective interatomic forces are not strong enough to stabilize B
ions at zero displacement. The net force is zero at three points but is only stable at two of
the points. This resembles the S curve rotated on its side. Without free charges to screen
the depolarization field, the dipole field will be weaker, and the interatomic forces may be
able to stabilize the B ions. In that case, the ferroelectric will not spontaneously polarize in
a vacuum.

free charge will flow and screen the depolarization field. Note that this is a pragmatic
approximation since all ferroelectrics have finite leakage in practice and will eventually be
in a “short circuit” condition at thermal equilibrium. The macroscopic electric field then
becomes E = (D − P)/ε0 = 0 where D is the electric flux density. Thus, there is now an
external electric field D/ε0 that provides an external force

Fext = qB

(
D

ε0

)
(2.32)

If we now plot all of the forces for a B cation, then we obtain the results shown in Fig.
2.2. Fig. 2.2a shows the force due to the effective ionic potential energy, which ordinarily
stabilizes B cations at zero displacement. Fig. 2.2b shows the force due to the collective
dipole field after the depolarization field has been screened by free charges. This force tends
to spontaneously displace B ions. If we assume that the effective interatomic forces are not
strong enough to stabilize the B ions, then we obtain the net force shown in Fig. 2.2c. Notice
that the net force looks like a rotated S.

In Fig. 2.3a, we replace the short circuit with a voltage source and apply an external
electric field in the −ẑ direction. This shifts the S curve vertically such that there is only a
single mean ion displacement for which the net force is zero and stable—the ferroelectric is
poled in the −ẑ direction. In Fig. 2.3b, we switch the direction of the external electric field,
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a b

Figure 2.3: Net force (black) on a B cation due to a local effective ionic potential (blue),
a collective dipole field (orange), and an external electric field (green). z̄B is the mean
displacement of the B ions. (a) A negative external electric field is applied, forcing the B
ions to displace in the −ẑ direction on average. (b) The external electric field is switched
and set to the coercive field; the net force becomes zero at two points. Only one point is
stable, so the B ions displace in the +ẑ direction on average.

and set its value to the coercive field. Notice that there are now two mean ion displacements
for which the net force is zero, but only one is stable. Thus, the ions will displace in the +ẑ
direction on average, and the polarization will switch.

Finally, we can express the net force in terms of polarization and macroscopic electric
field. The net force is

FB
ion + Fp + Fext = −(2aBz̄B + 4bBz̄

3
B)ẑ + qB

(
P

3ε0
+

15P

4πε0

)
+ qB

(
D−P

ε0

)
︸ ︷︷ ︸

E

(2.33)

As discussed previously, 〈pB〉 ≈ 〈pO‖〉, so we can relate the mean B ion displacement with
polarization via P = 2qBz̄Bẑ/vcell. If we now set the net force to zero and solve for the
macroscopic electric field, then we obtain the following relationship along the z-axis:

E =

(
aBvcell

q2
B

− 1

3ε0
− 15

4πε0

)
P +

(
bBv

3
cell

2q4
B

)
P 3 (2.34)

This is the S curve (Fig. 2.4a). Thus, we have demonstrated that every point in the S curve
corresponds to microscopic configurations of relative ion displacements. If we integrate the
electric field with respect to polarization, then we obtain the potential energy landscape
shown in Fig. 2.4b. This is a double-well potential and resembles the standard Landau
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a b

Figure 2.4: (a) Polarization versus electric field corresponding to Fig. 2.3. This is the S
curve, and every point on it can be mapped to a microscopic configuration of relative ion
displacements. (b) Corresponding potential energy landscape. This double-well potential
does not take into account thermal energy and is not a thermodynamic potential, but it
resembles the standard Landau free energy landscape.

free energy landscape. Of course, our analysis has assumed zero temperature, and thermal
energy will reduce the accessibility of the configurations considered thus far. We can correct
for this by taking into account the kinetic energies of the ions and writing down an effective
Hamiltonian. The true free energy can then be determined from the canonical partition
function, and it will predict a second-order phase transition under the assumptions made
in this section (e.g. ai, bi > 0). We also neglected lattice distortions, effectively removing
electromechanical coupling (i.e. piezoelectricity and electrostriction). Adding elastic interac-
tions to the model could result in additional structural transitions (e.g. cubic → tetragonal
→ orthorhombic).

2.3 Stabilization in the Negative Capacitance Region

Let us now consider the gate stack of a MOSFET with a ferroelectric gate insulator. For
simplicity, let us assume that the semiconductor capacitance is replaced by a linear dielectric
capacitor. Then from charge conservation,

DFE = ε0EFE + P = ε0εrEs = Ds (2.35)

where DFE and Ds are the electric flux densities along the gate axis for the ferroelectric and
dielectric respectively; EFE and Es are the electric fields across the ferroelectric and dielectric
respectively; and εr is the relative permittivity of the dielectric. At Vg = 0 (i.e. the short
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circuit condition), the dielectric field is related to the ferroelectric field by

Es = −
(
tFE

ts

)
EFE (2.36)

where tFE and ts are the thicknesses of the ferroelectric and dielectric respectively. This can
be used with (2.35) to obtain the electric field across the ferroelectric:

EFE =
−P/ε0

1 + εr

(
tFE

ts

) (2.37)

In other words, the series combination leads to a depolarization field on the ferroelectric
layer. Since EFE = (DFE − P )/ε0, we can also solve for the charge Q = DFE = Ds on the
plates:

Q =
P

1 + 1
εr

(
ts
tFE

) (2.38)

Notice that the charge decreases when we add a dielectric and further decreases if we increase
the dielectric thickness. Thus, the depolarization field arises because we are effectively
reducing the screening charge when we add a dielectric. Fig. 2.5a shows the effect of
this depolarization field on the force-displacement diagram. Essentially it adds another
contribution to the depolarizing (ionic potential) part of the field. As a result, the net force
in Fig. 2.2 curves towards zero at smaller deflections or polarizations. In other words, the
effect of the depolarization field is the suppression of polarization. The deleterious effect of
the depolarization field has long been known in the context of ferroelectric memory devices
[61, 62, 63] and standard memory design concepts emphasize on ways to suppress this field.
For example from (2.37), we can see that increasing the thickness of the ferroelectric layer
with respect to the dielectric layer would be one direct way to suppress the depolarization
field. In this context, significant research has gone into unintended dielectric formation
(often called the “dead layer”) between a ferroelectric and a metal electrode and its effect
on suppression of polarization through the generation of a depolarization field. One solution
that has been proposed to resolve this issue is the use of an oxide electrode that prevents
the formation of a dead layer [64].

Returning to negative capacitance, Fig. 2.5b shows a situation in which the depolarization
field is so strong that the only available solution where the net force is zero is also where the
polarization is zero. This is where we would like to be for negative capacitance operation.
On the unperturbed force-displacement curve, we can see that if we apply an external field to
increase the polarization from this point, then the ferroelectric will be acting in the regime in
which the net polarizing field is larger than the net depolarizing field inside the ferroelectric.
In other words, the material will exhibit enhanced polarization. This enhancement is what
boosts the electric field at the ferroelectric-dielectric interface.

To complete this discussion, we show another situation in Fig. 2.5c in which the depo-
larization field suppresses the polarization close to zero but not exactly to zero. Notice that
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Figure 2.5: Net force on a B cation when a depolarization field is present. The solid black
curve is the force without the depolarization field; the red line is the force due to the depo-
larization field; and the dashed black curve is the net force. (a) Depolarization field slightly
reduces the remnant polarization. (b) Depolarization field is strong enough to suppress the
polarization to zero. (c) Depolarization field suppresses polarization close to zero but not
quite zero. In this case, the combination is still in the negative capacitance region but will
have hysteresis.

there are two stable points again where the net force can be zero. In other words, there
will be hysteresis. However, the polarization is still suppressed enough that the ferroelectric
is stabilized in a region where the net polarizing field wins over the net depolarizing field.
Thus, the ferroelectric exhibits negative capacitance albeit with small hysteresis. This region
may be unattractive for logic applications but is, nonetheless, important to understand and
analyze in experimental data.

Let us now examine how strong a depolarization field is needed to stabilize the ferroelec-
tric at zero polarization as in Fig. 2.5a. We have already derived a relationship between
electric field and polarization for a ferroelectric in (2.34), but the addition of a dielectric
imposes the constraint derived in (2.37):

EFE =

(
aBvcell

q2
B

− 1

3ε0
− 15

4πε0

)
P +

(
bBv

3
cell

2q4
B

)
P 3 =

−P/ε0
1 + εr

(
tFE

ts

) (2.39)

We can solve this equation for the possible polarizations, and there are three solutions in
general:

P =

0

±
√

2q4B
bBv

3
cell

√(
1

3ε0
+ 15

4πε0
− aBvcell

q2B

)
− 1/ε0

1+εr( tFE
ts

)

(2.40)

Stabilizing the ferroelectric at zero polarization requires us to eliminate the two non-zero
solutions. We can accomplish this by making them imaginary, which occurs under the
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condition
1/ε0

1 + εr

(
tFE

ts

) > 1

3ε0
+

15

4πε0
− aBvcell

q2
B

or equivalently,

ε0εr
ts

<
1

tFE

(
1

1
3ε0

+ 15
4πε0
− aBvcell

q2B

− ε0

)
(2.41)

Note that this condition is equivalent to the stability condition originally implied in (2.13).
The fact that stabilization in the negative capacitance region happens for values of P

where the potential energy versus polarization curve (Fig. 2.4b) has a negative curvature
has often led to some confusion in the community as to how one can obtain a stable state
in this seemingly “unstable” region. The point of the above analysis is to show that the
ferroelectric becomes stable in a region of the configuration space in which the net force on
an average dipole is zero. These configurations, in fact, correspond to the most stable overall
state for the ferroelectric-dielectric series combination although they might correspond to an
unstable state for an unperturbed (isolated) ferroelectric. The second key point that we want
to emphasize is the fact that every state in this negative capacitance regime is associated with
physically defined structures of the unit cell.

The above analysis also provides some important insights:

1. It is more advantageous for negative capacitance operation if the ferroelectric can
smoothly traverse the configuration space to transition to a zero polarization state. In
that context, a second order phase transition material seems more appropriate than a
first order phase transition material.

2. In the same token, if a substrate strain is present, it may be difficult for the ferro-
electric to transition to zero polarization as it will involve acting against the substrate
strain. Therefore, for epitaxially grown heterostructures, it may be more preferable
for the ferroelectric to break into domains and stabilize the negative capacitance state
in the domain walls. In fact, this has recently been observed in epitaxially grown su-
perlattices. On the other hand, such constraints from the substrate are not present
for polycrystalline ferroelectrics, and, therefore, it might be much easier for the entire
volume of the material to stabilize into the negative capacitance state. We therefore
believe that polycrystalline ferroelectrics such as doped HfO2 are more appropriate for
negative capacitance operation. We suggest that one should sandwich such a ferroelec-
tric layer with an amorphous dielectric layer, which should more easily accommodate
changes in strain.
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2.4 Breaking the Fundamental Energy Dissipation

Limit

Half of the energy is always lost when charging a capacitor [65]. Even in the limit of vanish-
ing resistance, half of the charging energy is still lost—to radiation instead of heat. While
this fraction can technically be reduced by charging adiabatically, it otherwise places a fun-
damental limit on the charging efficiency of a capacitor. Here we show that this 1/2 limit
can be broken by coupling a ferroelectric to the capacitor dielectric. Maxwell’s equations
are solved for the coupled system to analyze energy flow from the perspective of Poynt-
ing’s theorem and show that (1) total energy dissipation is reduced below the fundamental
limit during charging and discharging; (2) energy is saved by “recycling” the energy already
stored in the ferroelectric phase transition; and (3) this phase transition energy is directly
transferred between the ferroelectric and dielectric during charging and discharging. These
results demystify recent works [66, 20, 67, 19, 21, 68, 22, 23] on low energy negative capac-
itance devices as well as lay the foundation for improving fundamental energy efficiency in
all devices that rely on energy storage in electric fields.

Ferroelectrics have recently been shown to exhibit a negative capacitance effect [18, 20,
23] when placed in a series combination with a dielectric film. Under appropriate condi-
tions, the dielectric leads to a strong depolarization field that forces the ferroelectric into its
normally unstable near-zero polarization states. These results have garnered considerable in-
terest in ferroelectric negative capacitance due to its potential to reduce power consumption
below thermodynamic limits in electronic devices [18]. In field-effect transistors, for exam-
ple, negative capacitance has been proposed as a solution to end the “Boltzmann tyranny”
on subthreshold swing [18, 43, 44]. However, negative capacitance has traditionally been
understood to require a source (e.g. a battery) that supplies extra energy [69]. This begs
the following question: if extra energy must be supplied by some source, then where is the
energy coming from in ferroelectric negative capacitance and is any energy truly saved?
To answer this question, we considered energy flow during charging and discharging of a
ferroelectric-dielectric capacitor. We solved Maxwell’s equations for the coupled system and
used Poynting’s theorem to show how energy flows.

2.4.1 Poynting’s Theorem

Poynting’s theorem is a statement of conservation of energy for a system of charged particles
and can be written as a differential continuity equation:

∂u

∂t
+∇ · S = −J · E (2.42)

The integral form is ∫
Ω

(
∂u

∂t
+∇ · S

)
d3r = −

∫
Ω

(J · E) d3r (2.43)
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where the volume Ω can be arbitrary, but we take it as the volume occupied by the compo-
nents of the circuit to establish appropriate boundary conditions. This differential equation
can be numerically solved for the current density J if the remaining variables can be expressed
in terms of current density. We accomplish this by establishing a consistent relationship be-
tween internal energy density u and electric field E for a given current density. First, an
initial electric field is assumed, and the state of the ferroelectric-dielectric system is deter-
mined by minimizing the free energy in (2.49) with respect to small polarization fluctuations.
This determines the ferroelectric and dielectric polarization states, which allow us to deter-
mine the internal energy density u and charge density ρ. This charge density can be used
in conjunction with a given current density to solve Maxwell’s equations by determining the
retarded scalar and vector potentials:

V (r, t) =
1

4πε0

∫
ρ(r′, t′)

|r− r′|
δ

(
t′ − t+

|r− r′|
c

)
dt′ d3r′ (2.44)

A(r, t) =
µ0

4π

∫
J(r′, t′)

|r− r′|
δ

(
t′ − t+

|r− r′|
c

)
dt′ d3r′ (2.45)

The solutions to Maxwell’s equations are then

E(r, t) = −∇V − ∂A

∂t
(2.46)

B(r, t) = ∇×A (2.47)

To reduce numerical error, we directly solved Maxwell’s equations by analytically combining
(2.44)-(2.47) and evaluating the resulting Jefimenko’s equations. Notice that the electric field
computed here must be equal to the electric field initially assumed when determining the
internal energy density. Thus, the electric field and internal energy density must be solved
for consistently, and this can be accomplished for a given current density. From (2.45) and
(2.47), the magnetic field B only depends on current density, so the Poynting vector S can
also be computed for a given current density:

S =
E×B

µ0

(2.48)

The only remaining unknown quantity is the current density, which can now be solved for
using Poynting’s theorem.

2.4.2 Energy Flow and Dissipation

We performed our analysis in the limit of zero resistance in order to understand the funda-
mental charging and discharging energy costs. The results are shown schematically in Fig.
2.6a. During charging, input energy flows from an energy source to the dielectric, and a
fraction of that energy is dissipated. This dissipation is dominated by electromagnetic radi-
ation in the limit of zero resistance. Notice that there is an additional path of energy flow
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Figure 2.6: Paths of energy flow during charging and discharging of a capaci-
tor with a ferroelectric. a, Schematic of energy flow paths during charging (left) and
discharging (right) of a ferroelectric-dielectric capacitor. New paths of energy flow emerge
between the ferroelectric and dielectric during charging and discharging. These paths are
not present in conventional dielectric capacitors. b, Energy landscapes in a ferroelectric-
dielectric capacitor. If the dielectric is sufficiently thick, then its energy landscape FDE will
dominate the energy landscapes FFE and F of the ferroelectric and overall system respec-
tively. The dielectric polarization PDE then forces the ferroelectric near its phase transition
at zero polarization (PFE = 0) via a strong depolarization field. This puts the ferroelectric
into a higher energy state in which energy can be extracted from the phase transition. c,
Schematic of the total electric fields in a ferroelectric-dielectric capacitor. When an external
electric field is applied, the ferroelectric and dielectric both polarize by different amounts,
resulting in a depolarization field. Since the ferroelectric is stabilized in a higher energy state
near zero polarization, it releases energy when polarized. This extra energy contributes to-
wards further strengthening the depolarization field, which subsequently further polarizes
and charges the dielectric. The resultant electric fields EFE and EDE in the ferroelectric and
dielectric respectively end up pointing in opposite directions.
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from the ferroelectric to the dielectric that is not present during charging in conventional
capacitors. This implies that the ferroelectric is supplying extra energy to the dielectric.
During discharging, the dielectric acts as the energy source and normally dissipates all of its
energy when in a conventional capacitor. However, there is a new path of energy flow that
allows the dielectric to transfer a fraction of its energy back to the ferroelectric. Thus, we see
schematically how energy may be internally recycled in the coupled ferroelectric-dielectric
system. However, it is still unclear where the extra energy comes from and how it transfers
between the ferroelectric and dielectric.

The origin of this extra energy can be understood from a thermodynamic perspective as
shown in Fig. 2.6b. Due to their phase transition, ferroelectrics possess a higher energy,
zero polarization state in their energy landscape. This is in contrast to dielectrics, which
have a minimum in their energy landscape at zero polarization. Consequently, coupling a
ferroelectric to a dielectric results in a large divergence in polarization at the interface. This
establishes a strong depolarization field that stabilizes the ferroelectric near its unstable zero
polarization state. The net effect is an electrically-induced transition towards a phase of
higher crystal symmetry and can be thought of as an effective shift in the phase transition
temperature [18, 23]. This electrical influence is in conflict with the natural temperature-
induced transition towards lower crystal symmetry. Thus, we can electrically extract energy
from the phase transition by modulating this conflict with an applied electric field. The
extracted energy is then transferred between the ferroelectric and dielectric via propagation
of the depolarization field as shown schematically in Fig. 2.6c. Notice that the electric field
points in opposite directions from the ferroelectric-dielectric interface due to the negative
permittivity of the ferroelectric near its phase transition. It is worth noting that this result
was directly obtained from our calculations without any consideration a priori of negative
electric susceptibilities or capacitances.

For our quantitative analysis, we modelled the coupled ferroelectric-dielectric system
using the electric Gibbs free energy (which we will refer to as simply free energy for the
remainder of this section):

G =

∫
(f − E ·P) d3r (2.49)

f is the Helmholtz free energy density as a function of temperature and polarization P;
and E is electric field. Note that f , E, and P all vary with position r, and the functional
form of f depends on the material energy landscape. The dielectric was modelled as a
linear dielectric, and its electric susceptibility and thickness were normalized as a single
tuning parameter. The ferroelectric energy landscape was modelled after Pb(Zr0.52Ti0.48)O3

using Landau-Devonshire phenemonological parameters [57]. We could have used Ginzburg-
Landau theory to take into account slow spatial variations in the polarization. However,
such fine details would simply add finer spatial variations to our calculated energy flow; the
overall flow would remain the same as long as the ferroelectric was still locally stabilized
near its zero polarization state. We also assumed a one-dimensional order parameter since
polarization is expected to lie primarily along the capacitor axis. Finally, we solved for
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the stationary states of the coupled ferroelectric-dielectric system by minimizing the free
energy with respect to small polarization fluctuations δP under constant electric field and
isothermal conditions.

The dynamics of the system were described with Poynting’s theorem (2.42). The inter-
nal energy density u inside the ferroelectric and dielectric was determined by solving for the
states of the coupled ferroelectric-dielectric system (as described in the previous paragraph).
The form of the Poynting vector S was obtained by solving Maxwell’s equations using re-
tarded scalar and vector potentials. For ease of calculation, we considered a simple wire loop
geometry containing a voltage source and the ferroelectric-dielectric capacitor at diametri-
cally opposite positions. With u and S, it is possible to numerically solve the differential
equation (2.42) and compute the power supplied and consumed over time as shown in Fig.
2.7a-b. During charging (Fig. 2.7a), less power is supplied by the energy source when a
ferroelectric is coupled to the dielectric, and less power is lost to radiation. However, the
dielectric still receives the same amount of energy, and we find that the ferroelectric supplies
the missing part using the energy stored in its phase transition. During discharging (Fig.
2.7b), the dielectric radiates energy, but the ferroelectric appears to “capture” a fraction of
it back to replenish its phase transition energy when coupled to the dielectric. The total
energy dissipated is shown in Fig. 2.7c as a function of the “capacitance matching” between
the ferroelectric and dielectric. We find that the amount of energy dissipated is reduced
below the conventional 1/2CV

2 during charging and discharging, and it is minimized when
the ferroelectric and dielectric capacitances are equal (i.e. |CFE/CDE| → 1). It should be
noted that the capacitor becomes nonlinear when a ferroelectric is added (inset of Fig. 2.7c),
resulting in charge-dependent energy dissipation. We charged to the end of the linear region
and then discharged completely to calculate the curves in Fig. 2.7c.

The capacitance matching can be better understood by examining the energy landscapes
shown in Fig. 2.8a. In the left set of landscapes, the energy available in the ferroelectric
phase transition closely matches the energy “needs” of the dielectric in the linear region.
This allows the ferroelectric to supply nearly all of the energy needed to charge the dielectric.
Consequently, minimal additional energy is needed from an external source, and less energy
will be lost to radiation while propagating from the source to the dielectric. This is an
example of perfect energy balancing. In contrast, the right half of Fig. 2.8a shows an
example of poor energy balancing. The energy available in the ferroelectric is insufficient for
charging the dielectric. Consequently, more energy is needed from an external source, and
more energy will be lost to radiation while propagating to the dielectric. We can control
the energy balancing by tuning the energy landscapes. This is accomplished by changing
film thickness or electric susceptibility (e.g. by changing temperature or strain; or using
different materials). Since these parameters directly affect the system’s capacity to store
energy in an electric field, the energy balancing can be thought of as a capacitance matching
between the ferroelectric and dielectric. In the linear region, for example, the ferroelectric
capacitance is negative due to the negative curvature of the energy landscape and should
be equal and opposite to the dielectric capacitance for proper matching. The ferroelectric is
able to supply energy to the dielectric within this linear region. However, it will eventually
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Figure 2.7: Power comparison during charging and discharging of a capacitor with-
out/with a ferroelectric. Negative power corresponds to power supplied. a, Power versus
time during charging of a capacitor without a ferroelectric (left) and with a ferroelectric
added (right). The ferroelectric and dielectric parameters are set such that |CFE/CDE| = 2
(see c and Fig. 2.8 for more information) where CFE is the ferroelectric capacitance, and CDE

is the dielectric capacitance. The voltage source supplies less power when the ferroelectric is
coupled to the dielectric, and the amount of power radiated is reduced. The dielectric still
receives the same amount of energy because the ferroelectric supplies the missing power. b,
Power versus time during discharging of the same capacitors from a (without a ferroelectric,
left; and with a ferroelectric, right). The dielectric acts as the source during discharging, and
a fraction of its power is delivered to the ferroelectric instead of completely radiating away as
in the conventional case. c, Total energy dissipated as a function of the capacitance matching
|CFE/CDE| after charging and discharging. The energy is normalized to 1/2CDEV

2
DE, which is

the conventional amount of energy dissipated without a ferroelectric. The inset shows that
the capacitor becomes nonlinear when a ferroelectric is added, resulting in charge-dependent
energy dissipation. The curves shown here were calculated by charging to and discharging
from the end of the linear region.
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Figure 2.8: Energy balancing and capacitance matching. a, Energy landscapes show-
ing perfect energy balancing ∆DE ≈ ∆FE (left) and imperfect energy balancing ∆DE > ∆FE

(right) between the ferroelectric and dielectric. Even with perfect energy balancing, the fer-
roelectric eventually runs out of energy stored in its phase transition. This occurs at the end
of the linear region, after which point the ferroelectric can no longer supply energy to the
dielectric and must receive energy from an external source to continue polarizing. b, Total
energy dissipated as a function of the capacitance matching |CFE/CDE| after storing charge
Q on the capacitor plates. CFE is the ferroelectric capacitance, and CDE is the dielectric
capacitance. The energy dissipated is normalized to 1/2CDEV

2
DE, which is the energy con-

ventionally dissipated without a ferroelectric. Qcrit is the charge corresponding to the end
of the linear region. c, Total energy dissipated as a function of the capacitance matching
|CFE/CDE| after discharging Q amount of charge.
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run out of stored energy and begin requiring energy from an external source to continue
polarizing. This is reflected by the change in the energy landscape’s curvature from negative
to positive at the end of the linear region. This is also reflected in the charge dependency
of the energy dissipation as shown in Fig. 2.8b-c. No matter how perfectly matched the
ferroelectric and dielectric are, the energy dissipation increases for greater amounts of charge
during both charging (Fig. 2.8b) and discharging (Fig. 2.8c).

Finally, we explicitly show how energy transfers between the ferroelectric and dielectric
by computing the Poynting vector at various positions in and around the system. The overall
energy flow during charging is shown schematically in Fig. 2.9a. Notice that energy flows
from the source to the ferroelectric-dielectric system, but some of it radiates away. If we
zoom in on the capacitor (Fig. 2.9b), we see that energy flows directly from the ferroelectric
to the dielectric through the surrounding space. The Poynting vector diverges outwards
(energy is decreasing) at the center of the ferroelectric and inwards (energy is increasing) at
the dielectric center. During discharging (Fig. 2.9c), the Poynting vector diverges oppositely
compared to the charging case. The dielectric acts as the source with some of its energy
flowing into the ferroelectric through the surrounding space while the remainder radiates
away.

In conclusion, we have shown that it is possible to improve upon the otherwise funda-
mental limit on energy dissipation of 1/2CV

2 during charging and discharging of a capacitor
by coupling a ferroelectric to the dielectric. We used a thermodynamic model to show that
the dielectric can stabilize the ferroelectric near its phase transition, enabling extraction
of the energy stored in the phase transition. Poynting’s theorem and Maxwell’s equations
then explicitly showed that this stored energy directly flows between the ferroelectric and
dielectric during charging and discharging. The net result is a reduction in total energy
dissipation below the conventional limit. This reduction can be maximized by balancing the
energy stored in the ferroelectric phase transition with the energy needed by the dielectric.
These results provide the framework for understanding and improving fundamental energy
efficiency in all devices that operate on storing energy in electric fields.
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Figure 2.9: Poynting vector calculations. a, Schematic of overall energy flow from
the source to the ferroelectric-dielectric capacitor during charging. b, Poynting vector field
along the side of the capacitor and near the center during charging. x is the in-plane spatial
coordinate, and z is the spatial coordinate along the capacitor axis. c, Poynting vector field
along the side of the capacitor and near the center during discharging.
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Chapter 3

It’s Too Noisy

3.1 Introduction

In Chapter 2, we discussed how negative capacitance can, in principle, be used to reduce
the body factor in metal-oxide-semiconductor field-effect transistors (MOSFETs) below the
presumed ideal limit. Instead of striving for perfect capacitive coupling between the gate
and channel, negative capacitance goes beyond by effectively amplifying the gate voltage
at the channel. This circumvents the Boltzmann limit on subthreshold swing, allowing for
reduced threshold voltage without increasing leakage current or sacrificing Ion/Ioff (the ratio
of transistor ON state current to OFF state current). Thus, negative capacitance helps
soften the subthreshold barrier on supply voltage scaling. Unfortunately, however, this is
still insufficient for enabling arbitrary reductions in supply voltage.

There are other nonscaling barriers that prevent supply voltage scaling. For example,
temperature is still nonscaling and, consequently, imposes other thermal limits (aside from
the Boltzmann limit on subthreshold swing) such as thermal noise. Even with the regenera-
tive properties of complementary metal-oxide-semiconductor (CMOS) technology, inverters
and NAND/NOR gates still require supply voltages at least 4 ∼ 10 times (depending on fan-
in) the thermal voltage to maintain logical consistency [24, 25, 17]. Negative capacitance
can help relax this constraint by improving voltage transfer characteristics to increase noise
margins, but the noise margins will still be limited by voltage swing even with infinite gain
and perfect switching. These noise margins must still be large enough to overcome other
nonscaling internal noise sources that cannot be easily rejected with clever circuit designs.
These requirements are even stricter in memory arrays, which are in lower signal-to-noise
ratio (SNR) situations due to additional noise sources such as crosstalk [25, 26]. Further-
more, process tolerance results in variation in device properties such as channel length, oxide
thickness, and threshold voltage. This variation worsens with scale unless process tolerances
are improved proportionally. Thus, the threshold voltage and supply voltage must be kept
sufficiently high to maintain necessary noise margins and SNR.

In this chapter, we use the concept of high-dimensional distributed representations to
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alleviate the noise problems mentioned above. We first discuss the implications of choosing
a particular representation for information. Then, we highlight the differences between local
and distributed representations. Local representations can have certain advantages but often
result in computational intractability due to explosions in representational complexity. In
contrast, distributed representations can be used to perform computations with more efficient
space complexity and are robust against errors. Increasing the dimensionality of distributed
representations further increases their robustness against errors.

3.2 Representations of Information

Representations of information—or knowledge representations—are so ubiquitous that we
often fail to appreciate their importance or consider their consequences. As an obvious
example, in computer science we often choose different data structures to represent different
kinds of information. This choice of data structure strongly influences the rules that must
then be followed to subsequently transform the represented information. Queues and stacks,
for example, push and pop elements in completely different fashions. Using one over the
other can make certain problems more readily solvable while making others more difficult.
Thus, the choice of representation can significantly affect the kind of information processing
that can be performed efficiently. Although we used a computing example here, this same
idea extends well beyond the realm of computing.

The familiar Hindu-Arabic numeral system, for example, is just one possible representa-
tion of the concept of numbers. It consists of an alphabet

Σ = {0, 1, 2, . . . , 9} (3.1)

where the elements of this alphabet are the symbols of the representation and are referred
to as digits. We can then string together these symbols to form different words or numbers.
As a trivial example,

Σ1 = {0, 1, 2, . . . , 9} (3.2)

is a set of representations for single digit numbers (not to be confused with Σ, which is the
alphabet of digits and not a set of number representations). Similarly,

Σ2 = {00, 01, 02, . . . , 09, 10, 11, 12, . . . , 99} (3.3)

is a set of representations for numbers up to two digits. Notice that 0 and 00 are two
different representations of the same number zero. In fact, there are infinitely many repre-
sentations that can be obtained for each number in the Hindu-Arabic numeral system by
simply prepending leading zeros. Thus, with

Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 · · · (3.4)

we obtain the set of all representations of all natural numbers N. In other words, we are able
to represent every element of an infinite set of numbers using a finite alphabet. To represent
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other number systems, we can add more symbols to our alphabet. For example, we can add
a negative sign and a decimal point to our alphabet to extend the Hindu-Arabic numeral
system to the decimal numeral system to represent all real numbers R.

If we now attempt to perform arithmetic, then we find that our choice of number repre-
sentation has a significant impact on our arithmetic algorithms. For example, the addition
of two numbers requires us to map any two numbers to their sum:

N× N→ N (3.5)

This map contains an infinite number of elements and would be impossible to memorize.
However, by using the finite alphabet in (3.2) to represent all possible natural numbers N,
we can construct a simpler map that only adds single digit numbers:

{0, 1, 2, . . . , 9} × {0, 1, 2, . . . , 9} → {0, 1, 2, . . . , 18} (3.6)

Thus, we only need to memorize a map containing 102 elements (or half of that if we under-
stand commutativity). To add numbers with arbitrary digits, we simply use the concept of
a carry digit. Similarly for multiplication, we can memorize a reduced map of products of
single digit numbers (i.e. a multiplication table) and then use long multiplication to multiply
numbers with arbitrary digits.

This concept of alphabets, symbols, and words is the same notion used in the theory of
computation where problems are formulated as languages [70]. The same problem can be
formulated as different languages over different alphabets, but the grammar for transforming
words will necessarily change. Thus, by choosing appropriate representations, certain prob-
lems can become more readily solvable. As a pivotal example, Claude Shannon’s recognition
of the logical equivalence of boolean algebra with certain types of electrical circuits [71]
helped launch binary representations as the representation of choice in digital computing.

3.2.1 Local Representations

Continuing from the numeral system example used above, we can consider an extreme exam-
ple of a representation using a countably infinite set of symbols for the alphabet Σ. Thus, by
definition, there exists a bijection (i.e. a one-to-one correspondence) between this alphabet
and the set of natural numbers N. In other words, we represent each natural number using
a single symbol rather than a word composed of multiple symbols. This is an example of a
local representation because each symbol of the alphabet only codes for a single entity or con-
cept. This “local” notion will hopefully make more sense when we contrast with distributed
representations in the next subsection.

Perhaps a more accessible example might be the representation of words in the Chinese
writing system. In the Chinese “alphabet”, there are at least 85,000 symbols or Chinese
characters [72] (though only a fraction are commonly used in practice [73, 74]). This is a local
representation because each of the symbols represents a single word. (Technically, modern
Chinese characters actually approximately represent syllables [75], and most modern Chinese
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words are actually written using two symbols [76]. However, we ignore this for illustrative
purposes since this is still on the “local representation” end of the representation spectrum).
The primary advantage of this representation is that words and pronunciation are decoupled
[77] since words are local to individual symbols. This enables the many different Chinese
dialects to all use the same Chinese alphabet as their own written language.

On the other hand, there are many disadvantages with using this kind of representation.
The most obvious disadvantage is the need to memorize a large set of symbols (i.e. one
symbol per word). This is in analogy with the numeral system example presented at the
beginning of this subsection where we used a countably infinite alphabet set to represent the
set of natural numbers. Performing arithmetic with such a local representation amounts to
finding maps

+ : N× N→ N (3.7)

· : N× N→ N (3.8)

for the addition + and multiplication · binary operations. As discussed prior to this sub-
section, these maps contain infinite elements and would be impossible to implement in a
computer due to bounded memory. In fact, it is impossible to construct a finite automata
over an infinite alphabet.

Another key disadvantage of local representations is their susceptibility to errors. If
we incur a single symbol error in a local representation, then the entire representation can
change completely. In the Chinese example, a single symbol error results in an entirely
different word. Clearly, this type of representation will not be helpful for addressing the
noise problems presented at the beginning of this chapter.

3.2.2 Distributed Representations

Let us now contrast the Chinese writing system with the English writing system. In the
English writing system, the alphabet contains 26 symbols called letters:

Σ = {a, b, . . . , z} (3.9)

We string together these letters to form words:

Σ∗ = {a, b, . . . , z, aa, ab, . . . } (3.10)

The English language L is then defined as the subset of Σ∗ that contains all of the valid
English words:

L = {w ∈ Σ∗|w is a valid English word} (3.11)

Thus, each word is represented using multiple symbols. This is an example of a distributed
representation. In a distributed or “holographic” representation, every unit plays a role in
the representation [78, 79, 27]. (The term “holographic” is in reference to holograms, which
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encode light field information as interference patterns of reference waves and diffracted waves
[80].)

If we have some understanding of the individual symbols such as pronunciation rules
(e.g. vowel and consonant sounds), then we can even infer the written representations of
words that we hear. This is impossible in a local representation such as the Chinese writing
system—if we do not know a word, then there is little hope of inferring its symbol. This same
idea also extends to inferring the meaning of new words based on understandings of root
words and affixes. Thus, we can continue this iterative coarse graining to build distributed
representations upon distributed representations.

Distributed representations are also robust to errors and exhibit graceful degradation in
contrast to local representations. As a simple illustrative example, we can slhffue the leettrs
in wdros, and we can still [hopefully] understand. Yes, we are technically cheating here
since short operative words are preserved, and we can use context. However, this is precisely
another example of a distributed representation, just at a higher level! In this case, the
sentences are the “words”, and the original words are now the “symbols” in the alphabet.

Perhaps a better example might be spelling errors or typos. Consider the word “rep-
resentation”. If we incorrectly spell it as “reprezentation”, then most people will still be
able to infer the intended word. We could even omit letters without making the word too
unrecognizable: “reprezntation”. Longer words are even more robust to errors: “antidises-
tablishmentarianism” versus “antidisestablshmentarianism”. Can you find the mistake? In
contrast, short words are less robust to errors even with the use of distributed represen-
tations. For example, the word “the” can become an entirely different word if we simply
replace a single symbol: “tie”. Thus, the dimensionality of a distributed representation
affects robustness against errors.

3.3 High-Dimensional Distributed Representations

We now have the solution we were looking for at the beginning of this chapter—we can soften
the SNR barrier on supply voltage scaling by using high-dimensional distributed representa-
tions. These representations provide us with noise immunity because they can continue to
properly transmit information even in the presence of errors. From an information theory
perspective, this should be of no surprise since this is simply a consequence of Shannon’s
theorem [81]. However, rather than using these high-dimensional representations solely as
codes for error correction purposes (e.g. when communicating across a noisy channel), we
are proposing to use them as the native representations themselves and directly compute
with them. This would allow us to take advantage of the added computational efficiency
provided by distributed representations as illustrated in the previous section.

Unfortunately, these representations also present a slew of new problems. High-dimensional
representations require more bits per representation, resulting in larger word sizes and lower
information rates. This will worsen the already problematic von Neumann bottleneck by
increasing energy and bandwidth needed to transfer data between memory and the central
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processing unit (CPU). Furthermore, if we use these representations to help reduce supply
voltages, then circuits will run even slower due to smaller drive currents. Thus, to actually
benefit from these representations, we will need in-memory logic—i.e. processing-in-memory
(PIM)—to circumvent the von Neumann bottleneck. However, PIM has been proposed for
decades [82] but has yet to meet widespread adoption due to various challenges [83]. Using
different logic may alleviate some of these challenges but would change the kinds of compu-
tation that can be performed efficiently. Furthermore, it is still unclear at this point what
kind of logic is needed to compute with these high-dimensional distributed representations.
These issues will be addressed in the next chapter.
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Chapter 4

Hyperdimensional Computing

4.1 Introduction

In the previous chapter, we discussed the benefits of using distributed representations over
local representations. We found that distributed representations enable us to perform com-
putations with more efficient space complexity and are robust against errors. Their robust-
ness improves with increasing dimensionality, enabling them to exhibit graceful degradation.
This makes the use of high-dimensional distributed representations a potential solution for
reducing signal-to-noise ratio (SNR) requirements on supply voltages. However, these rep-
resentations also have larger word sizes, which can severely increase energy consumption
and limit performance due to data transfer between the central-processing unit (CPU) and
memory (i.e. the von Neumann bottleneck [84]).

This problem can be solved by processing-in-memory (PIM) (i.e. using in-memory logic).
However, this is a non-trivial solution—it has been proposed for decades [82] but has yet
to meet widespread adoption due to various challenges [83]. For example, in-memory logic
cannot efficiently access conventional CPU structures needed for efficient modern computing
such as virtual memory and cache coherence mechanisms [85, 86, 83]. Thus, this would
not necessarily work well for efficient general purpose computing. Furthermore, it is unclear
what kind of logic is needed—how do we compute with high-dimensional distributed rep-
resentations? What kinds of problems can we solve efficiently using these representations?
Boolean algebra no longer applies, so we will need a new algebra.

Hyperdimensional computing is the answer. It is a cognitive computing model that relies
on the systematic transformation of high-dimensional distributed representations [27]. Its
operations are distributed and are consequently highly parallel, making it natural for per-
forming energy efficient cognitive computing. It has already been successfully demonstrated
to perform cognitive tasks such as language recognition and hand gesture recognition [28,
29, 87]. It performs one-shot learning [28, 29], eliminating the need for frequent weight up-
dates commonly performed in conventional machine learning methods that rely on gradient
descent. This alleviates the speed problem described in the previous chapter that arises from
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reducing supply voltage.
With all the benefits that hyperdimensional computing purportedly brings, there is still

one key link missing. While hyperdimensional computing provides well-defined operations
for computing with high-dimensional distributed representations and also clearly defines how
to construct these representations from random vectors, it does not define how to encode
existing data into these representations. In practice, data is always measured in some sort
of representation. A digital image, for example, is typically recorded as a raster image (i.e.
a matrix of pixels). Thus, we need to find a way to map existing data representations to
our desired high-dimensional distributed representations. This missing link is no fault of
hyperdimensional computing, which is a complete framework for the scope it is defined for.
We must simply bridge this gap before we can make use of this framework.

In this chapter, we propose to use higher-order spectra to bridge this gap. Higher-order
spectra are natural candidates for encoding our desired representations due to their properties
such as shift invariance, additivity, and homogeneity [88, 89, 90]. They capture nonlinear
interactions [89, 91] and can be used to reconstruct the original data up to a single group
operation [92]. Unfortunately, they are computationally expensive in both time and space.
Even the third-order spectrum (i.e. the bispectrum)—which is the “lowest” higher-order
spectrum—is too computationally expensive for practical widespread usage.

To address this problem, we discuss ways to approximate the bispectrum. This amounts
to a low-rank approximation problem, which can be solved using singular value decompo-
sition. However, this requires a full calculation of the bispectrum prior to approximation.
Instead, we propose to approximate the bispectrum in one-shot without calculating it a
priori. This is akin to a low-rank approximation with missing data (or a weighted low-
rank approximation), which is an NP-hard problem [93]. We test our approach on a small
dataset of music and successfully demonstrate one-shot unsupervised learning. Specifically,
we demonstrate the following: (1) discovery of underlying structure; (2) song recognition;
and (3) genre clustering.

4.2 Encoding with Random Vectors

Consider a p-dimensional vector of real-valued random variables

XT = (X1, X2, . . . , Xp) ∈ Rp (4.1)

Note that the vector space can also be defined over a different field such as binary numbers
{0, 1} or complex numbers C. If each random variable is independently and identically
distributed (i.i.d.) with mean µ1 and variance σ2, then the expected squared norm of a
random vector is given by

E ||X||2 = E

p∑
j=1

|Xj|2 = p(µ2
1 + σ2) (4.2)
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Thus, we expect random vectors to have length

||X|| ∼
√

E ||X||2 ∼ √p (4.3)

In other words, the tips of random vectors tend to reside on the surface of a sphere with
radius ∼ √p. The variance of the squared norm is

Var ||X||2 = E ||X||4 − (E ||X||2)2

= E

(
p∑
j=1

|Xj|2
)2

−

(
E

p∑
j=1

|Xj|2
)2

= [pµ4 + (p2 − p)(µ2
1 + σ2)2]− [p(µ2

1 + σ2)]2

= p[µ4 − (µ2
1 + σ2)2]

where µ4 = EX4
j is the fourth moment of any of the i.i.d. random variables. Assuming the

moments are finite, the fractional fluctuations of the squared norm are√
Var ||X||2
E ||X||2

∼ 1
√
p

(4.4)

These fluctuations tend towards zero when the dimensionality p is high. Consequently, the
random vectors are tightly concentrated near the surface of the sphere [94]:

||X||2 ∼ p±O(
√
p) (4.5)

||X|| ∼ √p±O(1) (4.6)

In other words, if we draw random points, then they will lie near the surface of the sphere
with high probability.

Let us now examine the angle between two random vectors X, Y ∈ Rp. The expected
squared inner product is

E(XTY )2 = E

(
p∑
j=1

XjYj

)2

= E

p∑
j=1

(
X2
j Y

2
j +

∑
k 6=j

XjXkYjYk

)

=

p∑
j=1

[
E(X2

j ) E(Y 2
j ) +

∑
k 6=j

E(Xj) E(Xk) E(Yj) E(Yk)

]
= p(µ2

1 + σ2)2 + (p2 − p)µ4
1

Combining this result with (4.2), we expect the cosine angle between two random vectors to
tend towards

cos∠(X, Y ) ∼

√
E(XTY )2

E ||X||2 E ||Y ||2
∼ 1
√
p

(4.7)
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Consequently, as the dimensionality p increases, we expect random vectors to have cos∠(X, Y ) ∼
0 or ∠(X, Y ) ∼ π/2. In contrast for two dimensions (p = 2), we would expect random
vectors to have cos∠(X, Y ) ∼ 1/

√
2 or ∠(X, Y ) ∼ π/4. Thus, random vectors become

approximately orthogonal in high dimensions.
In summary, (4.7) shows that random vectors in high dimensions are approximately or-

thogonal. This provides us with an exponential number of approximately orthogonal vectors
that can be used to construct representations. These representations are fully distributed due
to their i.i.d. elements. Furthermore, (4.3) and (4.4)-(4.6) show that these random vectors
are concentrated near the surface of a sphere. This allows us to utilize various operations to
systematically construct new distributed representations from existing representations. For
example, computing the mean of a set of random vectors results in a mean-vector that is
similar to its constituent vectors with statistical significance. Unitary transformations can
also be performed to rotate vectors to other points on the sphere surface. These properties
form the basis of hyperdimensional computing [27].

The above derivations were intentionally performed in a simple and intuitive way to
illustrate the key concepts behind hyperdimensional computing, but there are more general
concentration inequalities that can be proved rigorously [94]. The basic results above also
apply to vector spaces defined over other fields such as the binary numbers and complex
numbers. For binary vectors, the L1 norm or Hamming distance is a more natural distance
metric [27].

4.3 Higher-Order Statistics

Since hyperdimensional computing does not define a way to map existing data representa-
tions to high-dimensional distributed representations, we instead turn to higher-order statis-
tics for their convenient properties. Consider a random field (a generalization of a random
process), which is simply a collection of random variables

{Xt : t ∈ T} (4.8)

where T is an arbitrary index set. If we are dealing with time-domain data, then the elements
of the index set are time. If we are dealing with images, then the elements of the index set
can be pixel coordinates.

The random field has a joint probability distribution

Pr(. . . , Xt, . . . ) (4.9)

for all t ∈ T . The characteristic function is the Fourier transform of the probability distri-
bution [95]:

φ(t) = E(ei
∑

t∈T tXt) (4.10)

We can define n-th order moments in terms of the characteristic function [95]:

µn(t1, t2, . . . , tn) = (−i)n ∂nφ

∂t1∂t2 · · · ∂tn

∣∣∣∣
0

(4.11)
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where tj ∈ T for j = 1, 2, . . . , n. For order n > 2, these moments are considered higher-
order moments or higher-order statistics [88, 89]. Note that there are multiple higher-order
moments depending on the random variables selected by the indices.

Alternatively to moments, we can also define cumulants [95]:

κn(t1, t2, . . . , tn) = (−i)n ∂n ln(φ)

∂t1∂t2 · · · ∂tn

∣∣∣∣
0

(4.12)

Notice that this equation is identical to the equation for moments except that it is defined in
terms of the natural logarithm of the characteristic function. This provides cumulants with
a few important properties that moments do not have [89, 90]:

• Shift Invariance: First-order cumulants are shift equivariant, but second-order and
higher cumulants are shift invariant. Thus, a translation such as X + c where c is a
constant does not affect second-order and higher cumulants.

• Additivity: The cumulant of a sum of random variables is simply the sum of the
individual cumulants. This can be useful when there are additive noise sources that
have zero higher-order cumulants (e.g. Gaussian noise).

• Homogeneity: Scaling a random variable by a constant multiplies its cumulant by that
same constant raised to the degree of homogeneity (i.e. the cumulant order). For
example, if we scale a random variable X by a constant c, then its n-th order cumulant
κn will become cnκn. We can exploit this property later to attain some amount of
scaling invariance.

We will be able to exploit some of these properties later. From (4.11) and (4.12), we can also
see that moments are cumulants are related. In fact, moments can be expressed in terms
of cumulants and vice versa using Bell polynomials, which have a profound combinatorial
interpretation [96, 90, 97].

4.4 Higher-Order Spectra

Instead of attempting to directly estimate cumulants from data, it is often more computa-
tionally efficient to estimate cumulant spectra using the fast Fourier transform. Cumulant
spectra are simply Fourier transforms of cumulant generating functions. Thus, the n-th order
spectrum is given by the Fourier transform of the n-th order cumulant generating function:

Kn(f1, f2, . . . , fn) = F{κn(t1, t2, . . . , tn)} (4.13)

fj are Fourier space indices conjugate to the original indices tj ∈ T . Third-order or higher
cumulant spectra are considered higher-order spectra. If the original index elements were
points in time, then the conjugate indices are angular frequencies (note that we use f instead
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of ω here because we later use ω for elements of an outcome set Ω). Similarly, if the original
index elements were positions, then the conjugate indices are wavevectors.

As an example, let us consider the second-order spectrum. First, we compute the second-
order cumulant generating function:

κ2(t1, t2) = (−i)2 ∂
2 ln(φ)

∂t1∂t2

∣∣∣∣
0

= (−i)2

(
1

φ

∂2φ

∂t1∂t2
− 1

φ2

∂φ

∂t1

∂φ

∂t2

)∣∣∣∣
0

= (−i)2[E(iXt1iXt2)− E(iXt1) E(iXt2)]

= E(Xt1Xt2)− E(Xt1) E(Xt2) (4.14)

If we assume zero mean for simplicity, then this becomes

κ2(t1, t2) = E(Xt1Xt2) (4.15)

Now we compute the Fourier transform. Recall that random variables are simply measurable
functions between measurable spaces. For example, the random variable Xt : Ω → S is a
measurable function between a probability space (Ω,F , P ) and a measurable space (S,S).
The random variables are indexed by t ∈ T but are only functions of outcomes ω ∈ Ω. More
explicitly, the random variables can be written as functions X(ω; t) where ω is the variable
and t is just an index parameter. Thus, we simply transform the indices:

K2(f1, f2) = F{κ2(t1, t2)}

= F

∫
Ω

Xt1(ω)Xt2(ω) dP

=

∫
Ω

Xf1(ω)Xf2(ω) dP

= E(Xf1Xf2) (4.16)

In other words, the second-order spectrum simply consists of second-order moments in
Fourier space. If the random field is homogeneous (i.e. the joint distribution is station-
ary), then we lose a degree of freedom, and the support for the spectrum reduces. In this
case, the spectrum is non-zero only when energy or momentum is conserved (this notion
stems from physics where energy ∼ angular frequency and momentum ∼ wavevector):∑

j

fj = 0 (4.17)

Thus, the spectrum reduces to

K2(f) = E(XfX−f )

= E(XfXf )

= E(|Xf |2) (4.18)
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This is the power spectrum.
Similarly for third-order, the cumulant generating function is

κ3(t1, t2, t3) = E(Xt1Xt2Xt3)− E(Xt1) E(Xt2Xt3)− E(Xt2) E(Xt1Xt3)

− E(Xt3) E(Xt1Xt2) + 2 E(Xt1) E(Xt2) E(Xt3)
(4.19)

If we again assume zero mean, then this simplifies to

κ3(t1, t2, t3) = E(Xt1Xt2Xt3) (4.20)

Taking the Fourier transform, we obtain the third-order spectrum

K3(f1, f2, f3) = E(Xf1Xf2Xf3) (4.21)

This is the “lowest” higher-order spectrum. Confusingly, this particular spectrum is also
known as the bispectrum because if we again assume a homogeneous field, then the support
reduces, and we are only left with two degrees of freedom as per (4.17):

K3(f1, f2) = E(Xf1Xf2X−(f1+f2))

= E(Xf1Xf2Xf1+f2) (4.22)

(Similarly, the fourth-order spectrum is referred to as the trispectrum.) Notice that unlike
the power spectrum, the bispectrum retains phase information. This allows us to reconstruct
original data from the bispectrum up to a single phase shift.

Let us now consider some of the issues with estimating higher-order spectra. In practice,
we do not have perfect information about random variables and their distributions. Instead,
we have samples of random variables. This means that taking the Fourier transform amounts
to computing the discrete Fourier transform, and our frequency range is limited by sampling
rate fs. However, the usual Nyquist frequency fs/2 is effectively lower for higher-order spec-
tra. For example, in (4.22) for the bispectrum, we see that the effective Nyquist frequency
becomes fs/4 because we require sum frequencies f1 + f2. This reduction in Nyquist fre-
quency worsens as the spectrum order increases, making it increasingly difficult to estimate
higher order spectra.

To make matters worse, the sample size N of the transform limits the frequency resolu-
tion. We want to use large sample sizes for adequate frequency resolution, but this requires
large memory space. For example, in (4.22) we see that the bispectrum of a homogeneous
random field requires O(N2) elements. This may not seem like much from a space complexity
perspective but can end up quite large in practice. As a concrete example, consider a music
song sampled at 44.1 kHz (standard CD quality [98]). One second of this song contains 44100
samples. Thus, a Fourier transform of one second contains 22051 unique frequency bins due
to the Nyquist frequency. However, as discussed above, the effective Nyquist frequency for
the bispectrum reduces by another half. Consequently, the bispectrum of this one second
requires the storage of 110262 elements or ∼ 108 elements. If we assume 8 bytes per element
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(4 bytes each for the real and imaginary parts), then this amounts to ∼ 109 bytes or ∼ 1 GB
for just one second of music! The bispectrum of a full song (assuming a duration of four
minutes or 240 seconds) would require 2402 times more memory or ∼ 60 TB. Furthermore,
these calculations assumed a homogeneous random field, but a song is unlikely to have a
stationary joint distribution. Thus, we would need to compute the full bispectrum in (4.21),
which requires O(N3) elements.

This is clearly impractical and computationally infeasible—and this was only for com-
puting a single bispectrum sample. Recall from (4.21) and (4.22) that the bispectrum is
actually an expectation. Thus, even if we could calculate all of the elements described
above, we would have to perform this calculation multiple times over different outcomes
and then compute an ensemble average. It is likely for these computational challenges that
the bispectrum has not experienced widespread usage. To make any practical usage of the
bispectrum in hyperdimensional computing, we will need a way to efficiently approximate
it.

4.5 Approximating the Bispectrum

Based on the Eckart-Young-Mirsky theorem, the best low-rank approximation of a matrix
is determined from singular value decomposition (SVD) when “best” is measured by the
Frobenius norm [99, 100]. The computational complexity of SVD is O(N3), which seems
like a tractable problem from a computational complexity perspective but can still become
practically difficult if n is large. Furthermore, computing the SVD requires the full matrix of
elements. As discussed in the previous section, it is computationally infeasible to compute
the bispectrum. Thus, we need a way to approximate the bispectrum without calculating
it in full a priori. This amounts to a low-rank approximation problem with missing data
(or, equivalently, a weighted low-rank approximation problem)—this is an NP-hard problem
[93].

Fortunately, the bispectrum possesses special structure that we can exploit. Assuming a
homogeneous random field, we can sketch out the structure of (4.22):

K3 = E


Xf0|Xf0|2
Xf0|Xf1|2 X2

f1
Xf2

Xf0|Xf2|2 Xf1Xf2Xf3 X2
f2
Xf4

Xf0|Xf3|2 Xf1Xf3Xf4 Xf2Xf3Xf5 X2
f3
Xf6

...
. . .

 (4.23)

The bispectrum is symmetric, so we only show the elements in the lower triangle. Notice
that different elements contain different amounts of information. For example, the first
row/column contains the power spectrum. Therefore, each element of the first row/column
effectively only contains amplitude information for a single frequency. In contrast, the diag-
onal elements each contain amplitude and phase information for two different frequencies.
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Similarly, the subdiagonal elements each contain amplitude and phase information for three
different frequencies. Thus, we can approximate the bispectrum by efficiently sampling the
elements that are likely to contain more information (e.g. sampling the subdiagonal ele-
ments). Unfortunately, at the time of writing this thesis, this choice of elements is still
mostly heuristic. We are currently working on a more formal and rigorous analysis for the
future.

4.6 Example: One-Shot Unsupervised Learning on

Music

In this section, we apply our bispectrum approximation approach together with hyperdi-
mensional computing to demonstrate one-shot unsupervised learning on a small dataset of
music. For simplicity, we convert songs from stereo to mono and downsample them to 22.05
kHz (half CD quality). Even with these parameters and our approximation method, it is
still computationally difficult to estimate the bispectrum of a full song. Instead, we assume
that a song can be decomposed into sections that are approximately locally stationary and
ergodic. Thus, we compute the short-time Fourier transform (STFT) of a song x[n] using a
window function w[n]:

Fm[k] =
N−1∑
n=0

x[n+m]w[n]e−i2πkn/N (4.24)

Fm[k] is the k-th Fourier coefficient of the song frame starting at sample m (note that we use
F here instead of conventional notation X to prevent confusion with the random variables
discussed in the previous sections); n is the sample number; and N is the window size (e.g.
22050 samples for one second). We assume the window function is positioned such that it
is zero for n < 0 and n > N − 1. The remaining window behavior for 0 ≤ n ≤ N − 1 is
dependent on the specific choice of window function, and there are tradeoffs for choosing
different window functions. The window size should be small enough to capture the smallest
locally invariant features (e.g. if we want to capture features that have lengths on the order
of seconds, then the window size should be on the order of seconds). Larger features are of
less concern because they can be captured across multiple small frames. On the other hand,
the window size should also be large enough to accurately estimate Fourier coefficients.
(Alternatively, the estimated local bispectrum of a larger frame can be approximated by
using a smaller window and mixing Fourier coefficients across multiple frames.) This conflict
in window size and resolution suggests that a different basis such as wavelets might be more
natural, but this is future work.

We store the collection of Fourier transforms {Fm[k]} in a data matrix X where each row
corresponds to the Fourier coefficients of a different frame. However, instead of computing
the Fourier transform of every possible frame, we save on computation by only considering
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Figure 4.1: t-SNE visualization of the STFT of “Everything has Changed” by Taylor Swift
featuring Ed Sheeran. There is some amount of clustering, but it is otherwise difficult to
find any apparent intuitive structure here.

frames that are positioned at integer multiples of a constant shift ∆m where 0 < ∆m ≤ N :

{Fm[k] : m is an integer multiple of ∆m} (4.25)

Thus, adjacent frames overlap by N −∆m samples.

4.6.1 Discovering Underlying Structure

Let us now try to visualize any structure that might already be present in the STFT in
our data matrix X by using a standard data visualization algorithm such as t-distributed
stochastic neighbor embedding (t-SNE) [101]. An example visualization is shown in Fig. 4.1.
Notice that there is no apparent structure other than some small amount of clustering. We
will need to discover hidden structure by using unsupervised learning.

To accomplish this, we encode each feature vector in our data matrix into a high-
dimensional distributed representation—a hypervector—using the subdiagonal of the bis-
pectrum (4.22). There are likely better choices of elements to sample from the bispectrum,
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Figure 4.2: t-SNE visualization of the local bispectra estimates for “Everything has Changed”
by Taylor Swift featuring Ed Sheeran. There is much more apparent structure here than in
the original STFT shown in Fig. 4.1.

but we are still investigating this as discussed in Section 4.5. If we need amplitude scale
invariance, then we can normalize the hypervectors at this point with respect to their norms
to exploit cumulant homogeneity. Note that it can also help to follow up with a short mov-
ing average filter, e.g. five seconds, over the hypervectors to approximate ensemble averages
assuming local ergodicity, but this essentially amounts to smoothing with a low-pass filter
and is optional.

Thus, we obtain a new set of features that we can again visualize using t-SNE as shown in
Fig. 4.6.1. Clearly, we have captured significantly more structure with our high-dimensional
distributed representation than with the original STFT. Different points now cluster together
in contiguous segments. It would be useful if we could understand where these features are
coming from and why they might be clustering in this way. Fortunately, the operations
we have performed so far are completely transparent, so we can determine the song frame
that each point came from. Thus, we can label the points with approximate timestamps
(remember that the points are not perfectly localized in time) as in Fig. 4.3. If we play
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Figure 4.3: A “map” of the song “Everything has Changed” by Taylor Swift featuring Ed
Sheeran. Data points locally cluster into contiguous segments that appear to intuitively
capture different musical motifs. These segments also tend to cluster on a global scale to
form regions that correspond to different parts of song structure (e.g. verses, the bridge,
the chorus, etc.). The timestamps provide a sense of directionality due to the flow of time;
different segments appear to flow correctly into different regions according to the structure
of the song. However, not everything is correct (e.g. some points are oddly placed), but we
are visualizing high-dimensional data in two dimensions—some structure will be lost. The
timestamps are also approximate since the points are not perfectly localized in time.
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through the song, then we can determine whether or not the structure we are looking at
has any intuitive meaning. We find that contiguous segments appear to intuitively capture
musical motifs. These segments also tend to cluster on a global scale to form different regions
that correspond to different parts of a song (e.g. verses, the chorus, etc.). The segments have
directionality due to the flow of time and appear to flow naturally from region to region with
the flow of the song. Thus, in one shot—no gradient descent or other iterative optimization—
we have uncovered a remarkable amount of structure in a completely unsupervised fashion.

4.6.2 Song Recognition

In addition to discovering underlying structure, we can also test our high-dimensional dis-
tributed representations in recognizing song slices that have never been seen before. Recall
that our representations only encoded song frames of a fixed size with rigid alignment (e.g.
every half second). In contrast, song slices in general can have arbitrary sizes and offsets.
For example, at a sampling rate of 22.05 kHz, it is possible to have a frame shifted by
1 sample/22050 Hz ≈ 45.351µs. Clearly, there are many more song slices of different sizes
and offsets that we have not encoded. However, we should still be able to infer which song
they come from.

To accomplish this, we first construct an overall representation of each song by com-
posing together our existing representations. Assuming that our approximate bispectrum
encoder provides us with sufficiently invariant and orthogonal high-dimensional distributed
representations, then we can simply superpose these representations together (i.e. compute
the mean-vector). This results in a single hypervector for each song. In other words, we
represent each song as a collection of approximate locally invariant bispectra.

For testing, we draw random song slices of a given size from random start positions in a
given song. We encode the slice using the same algorithm described above (i.e. estimate local
bispectra from the STFT and then superpose the spectra together). Thus, each test slice
is encoded as a single hypervector. We then measure the distance between this hypervector
and all known song hypervectors. The song with the nearest hypervector is the predicted
song.

We performed this test separately for ten classical songs, ten jazz songs, and a Taylor
Swift album as shown in Fig. 4.4. Notice that recognition accuracy is lowest for short
song slices, which simply do not have enough information to reliably distinguish between
songs. Accuracy naturally improves for longer song slices. If we now test all of these songs
together in a single experiment, then we might expect greater confusion among the songs.
The result is shown in Fig. 4.5. Notice that there is minimal apparent degradation in
accuracy, especially for longer song slices. The curves from Fig. 4.4 appear to simply overlay
each other. However, a closer look reveals that there is a degradation for shorter song slices
because of the greater possibility of confusion with more songs. This degradation is quite
slight, demonstrating the quality of our approximate bispectra encoder.

To provide some perspective on these results, keep in mind that we are compressing songs
by orders of magnitude in one shot. For reference, Table 4.6.2 compares the compression
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Classical Jazz

Taylor Swift

Figure 4.4: Song recognition accuracy for random slices of songs. Sample time refers to the
duration of a song slice. Each colored curve corresponds to a particular song. The thick black
curve is the mean performance averaged across all songs. Note that each plot is a separate
experiment (e.g. we only test classical songs against classical songs in the “Classical” plot).
Notice that accuracy improves with increasing sample time.
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Figure 4.5: Song recognition accuracy for random slices of songs. All the songs from Fig.
4.4 are tested together here. Sample time refers to the duration of a song slice. Each colored
curve corresponds to a particular song. The thick black curve is the mean performance
averaged across all songs. Notice that accuracy improves with increasing sample time.

ratios (Original Memory Size / Compressed Memory Size) of MP3 against our hyperdi-
mensional computing approach used here for the songs in the experiments above. MP3 was
configured to use variable bitrate (with an average bitrate of 160 kbps) and could only achieve
a compression ratio of ∼ 7. In contrast, our high-dimensional distributed representations
compress these songs by more than two orders of magnitude. Of course, our representations
are highly distorted and cannot be used for music playback. However, we still retain enough
information to recognize random song slices of different sizes.

Notice that longer songs are compressed by greater amounts because our hypervectors
have a fixed size. Consequently, longer songs tend to perform worse because we are storing
too much information into a single hypervector. This can be alleviated by simply using
multiple hypervectors to represent longer songs. In fact, all of the curves in Fig. 4.5 increase
in accuracy if we use more hypervectors per song. If we want to go beyond one shot learning,
then we can even anneal these multiple hypervectors to better partition the local bispectra
estimates to obtain a better representation.

Interestingly, if we use the diagonal of the bispectrum instead of the subdiagonal, then
all of the curves in Fig. 4.5 lower in accuracy. Similarly, if we use the power spectrum
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Table 4.1: Compression ratios for MP3 versus hyperdimensional (HD) computing.

Compression Ratio
Song Size (kB) MP3 HD
Beethoven - 5th Symphony 21537.0 6.799 250.044
Beethoven - Fur Elise 7544.3 8.424 87.589
Chopin - Ballade No. 1 in G minor 23600.4 7.008 274.000
Chopin - Nocturne No. 2 in E-flat Major, Op. 9, No. 2 10381.5 7.503 120.529
Hall of the Mountain King 6588.1 7.292 76.488
Liszt - Hungarian Rhapsody No.2 20299.5 6.344 235.677
Mozart - Turkish March 9129.4 6.735 105.992
Rachmaninov - Piano Concerto in C Minor 28986.8 6.779 336.536
Richard Wagner - Ride Of The Valkyries 12926.3 9.104 150.074
The Nutcracker - March 5630.3 7.111 65.368
Billy Strayhorn - Chelsea Bridge 8530.9 6.045 99.044
Bob Haggart (John Coltrane) - What’s New? 9744.8 7.150 113.137
Bob Haggart - What’s New? 12382.9 7.374 143.765
Chick Corea (Steve Gadd) - Windows 27873.0 6.728 323.605
Chick Corea - Mirror, Mirror 16176.4 7.343 187.808
Chick Corea - Windows 8300.3 7.237 96.366
Duke Ellington - Sophisticated Lady 7962.8 8.131 92.448
John Coltrane - Giant Steps 12352.5 7.254 143.413
Miles Davis - Blue in Green 14540.7 7.577 168.817
Thelonious Monk - Evidence 22632.8 7.370 262.766
Taylor Swift - State of Grace 12735.6 6.967 147.860
Taylor Swift - Red 9607.8 7.192 111.547
Taylor Swift - Treacherous 10454.8 7.084 121.380
Taylor Swift - I Knew You Were Trouble 9462.6 7.021 109.860
Taylor Swift - All Too Well 14175.7 7.160 164.580
Taylor Swift - 22 9996.6 7.267 116.060
Taylor Swift - I Almost Do 10532.3 7.259 122.280
Taylor Swift - We Are Never Ever Getting Back To-
gether

8318.1 7.247 96.573

Taylor Swift - Stay Stay Stay 8865.4 6.759 102.927
Taylor Swift - The Last Time (feat. Gary Lightbody) 12877.4 7.335 149.507
Taylor Swift - Holy Ground 8740.8 6.962 101.480
Taylor Swift - Sad Beautiful Tragic 12268.2 7.557 142.433
Taylor Swift - The Lucky One 10347.4 7.206 120.133
Taylor Swift - Everything has Changed (feat. Ed
Sheeran)

10569.1 7.105 122.707

Taylor Swift - Starlight 9500.4 7.222 110.300
Taylor Swift - Begin Again 10233.2 7.128 118.807
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Figure 4.6: t-SNE visualization of song hypervectors. Songs from the same genre/artist tend
to cluster together.

instead of the bispectrum, then we observe an even further degradation in accuracy. In
contrast, sampling more elements from the bispectrum will improve performance since our
approximation of the bispectrum will improve. This heuristically confirms our discussion in
Section 4.5 regarding choosing elements with more information.

4.6.3 Genre Clustering

Now that we have composed representations of overall songs, we can see if our representations
have uncovered any apparent structure at the song level. If we treat the song hypervectors
as feature vectors, then we can use t-SNE to visualize their structure as shown in Fig.
4.6. Notice that songs from the same genre (or Taylor Swift) tend to cluster together.
Unfortunately, we do not have many songs here (it turns out that music is a poor choice
for data due to copyright issues). Instead, we can use 30 second song clips from analogous
genres (replace Taylor Swift with pop) in the George Tzanetakis (GTZAN) dataset. The
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Figure 4.7: t-SNE visualization of song hypervectors encoded from the George Tzanetakis
(GTZAN) dataset. Our high-dimensional distributed representations result in some amount
of natural genre clustering.

visualization of the corresponding song hypervectors is shown in Fig. 4.7. Notice that the
genres tend to cluster together, and our representations uncovered this structure through
one-shot unsupervised learning. At this point, we can easily add a multilayer perceptron to
perform genre classification using our song representations if we so desired. However, genre
classification is actually an ill-posed problem because music genres are not well-defined [102,
103, 104, 105]. Nonetheless, the use of music in this entire section was simply meant to serve
as an illustrative example.
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Chapter 5

Conclusion

In conclusion, we were able to fill in some of the theoretical gaps described in Chapter 1,
but there is still much work left to do:

• In Chapter 2, we demystified ferroelectric negative capacitance by constructing a mi-
croscopic model to illustrate how negative capacitance arises and can be stabilized in a
prototypical displacive ferroelectric. We found that the phenomenological model used
to originally derive ferroelectric negative capacitance can have correspondences with
physical crystal configurations. Thus, the S curve that some believe is a theoretical
artifact is in fact quite real.

However, in our model, we used a mean-field approximation, which essentially results
in a single domain ferroelectric. In practice, ferroelectrics often break into multiple
domains, which can significantly complicate the dipolar fields. This many-body prob-
lem can be solved using simulation, but then we lose physical intuition. Alternatively,
it would be more illuminating to model ferroelectric negative capacitance using renor-
malization group theory and examine order parameter fluctuations when the negative
capacitance is stabilized by depolarization fields.

• Additionally in Chapter 2, we analyzed energy flow in a ferroelectric-dielectric system
from the perspective of Poynting’s theorem. We showed that the ferroelectric supplies
extra energy to the dielectric during charging by transferring the energy stored in its
phase transition. This energy is transferred back to the ferroelectric from the dielectric
during discharging. Thus, there is no extra energy needed from an external source
because the ferroelectric’s phase transition energy is recycled, and the overall energy
dissipation is reduced below the 1/2CV

2 limit during charging and discharging.

However, similarly to the microscopic model, we assumed a single domain ferroelectric.
A multidomain ferroelectric will have a more complex pattern of energy flow due to
more complicated dipolar fields. We do not believe this will affect the overall energy
dissipation, but it still might be worth investigating.



CHAPTER 5. CONCLUSION 53

• In Chapters 3 and 4, we discussed how computing with high-dimensional distributed
representations is natural for energy efficient cognitive computing. However, the actual
hardware implementation details play a key role in determining whether or not we ac-
tually save any energy. The high-dimensional representations will require in-memory
logic to avoid the von Neumann bottleneck, but this logic can be difficult to design
depending on the logic needed. At this point in time, it is still not entirely clear what
exact operations are needed to perform non-trivial cognitive tasks using hyperdimen-
sional computing. We need to continue studying the mathematics of hyperdimensional
computing to better understand the hardware requirements.

• In Chapter 4, we proposed to use an approximation of the bispectrum to encode data
into high-dimensional distributed representations. Using this approach together with
hyperdimensional computing, we were able to successfully perform one-shot unsuper-
vised learning on a small dataset of music for demonstration purposes.

However, finding a low-rank approximation of the bispectrum without calculating it
in full a priori is an NP-hard problem. Instead, we discussed ways to approximate
the bispectrum in one-shot by sampling specific elements based on the structure of
the bispectrum. As an example, we suggested to sample the subdiagonal elements.
However, this choice is still largely heuristic, and there are likely better choices. This
problem must be formalized and analyzed more rigorously to provide us with a better
understanding of which elements of the bispectrum to sample.
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