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Abstract

This work formulates frictionless contact between solid bodies in terms of a repulsive potential 

energy term and illustrates how numerical integration of the resulting forces is computationally 

similar to the “pinball algorithm” proposed and studied by Belytschko and collaborators in the 

1990s. We thereby arrive at a numerical approach that has both the theoretical advantages of a 

potential-based formulation and the algorithmic simplicity, computational efficiency, and 

geometrical versatility of pinball contact. The singular nature of the contact potential requires a 

specialized nonlinear solver and an adaptive time stepping scheme to ensure reliable convergence 

of implicit dynamic calculations. We illustrate the effectiveness of this numerical method by 

simulating several benchmark problems and the structural mechanics of the right atrioventricular 

(tricuspid) heart valve. Atrioventricular valve closure involves contact between every combination 

of shell surfaces, edges of shells, and cables, but our formulation handles all contact scenarios in a 

unified manner. We take advantage of this versatility to demonstrate the effects of chordal rupture 

on tricuspid valve coaptation behavior.
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1. Introduction

The atrioventricular heart valves (i.e., the mitral and tricuspid valves) are structures in the 

heart that permit blood flow from the atria into the ventricles during diastole, as the heart 

relaxes. They then block blood from being pumped back out when the heart contracts, 

during systole. The semilunar valves (i.e., the aortic and pulmonary valves) play the opposite 

role, permitting blood to be pumped out of the ventricles, into the aorta and pulmonary 

artery, during systole, and preventing backflow into the ventricles during diastole.

The semilunar valves function in a relatively simple way: each one consists of three (or 

occasionally two) cup-like leaflets (cusps), attached to the sides of its respective artery. The 

convex sides of the leaflets face the ventricles, so that the leaflets fill up in reaction to 

backflow. When this happens, the convex sides of the leaflets contact one another, blocking 

flow. The mechanism of the atrioventricular valves is much more complicated. They are 

generally considered to have several distinct leaflets, but, in reality, these leaflets form 

contiguous sheets of tissue. These contiguous structures crumple up against themselves 

during systole to block off the channels between the ventricles and the atria. In as much as 

3% of the human population [1], parts of an atrioventricular valve may even prolapse into 

the atrium. The atrioventricular valves’ mechanics are further complicated by a web-like 

network of tendons—the chordae tendineae, or “heart strings”—which tether the leaflets to 

the inside of the ventricles.

Computer simulations of the mechanics of heart valves play an increasingly important role 

in research into treatments for valvular heart disease. The need for and history of such 

simulations are reviewed in [2, 3]. As one might imagine, the treatment of contact mechanics 

is a major concern in these computations and proves to be especially difficult in the case of 

atrioventricular valves. Our previous work on aortic valve simulations [4–7] pointed out that 

to “avoid stagnation in pathological configurations, we typically select the resolution of the 

nonlinear algebraic solution by choosing a fixed number of iterations rather than a 

percentage by which the residual must be reduced” [4, page 1028]. Subsequent autopsies of 

poorly-converged steps indicated that contact forces were to blame for these “pathological 

configurations”.

Similar disclaimers can be found in other literature on aortic valve analysis. For example, to 

ensure completion of forward solves in an inverse modeling procedure, Aggarwal and Sacks 

[8] adhered to the following policy for terminating augmented Lagrangian iteration for 

contact: “After 10 augment iterations, the solution at current load was assumed to be 

converged irrespective of the gap and Lagrange multiplier values, and simulation was 

continued onto the next time step” [8, page 917]. It is clear that simulation of even the 

relatively simple contact of the aortic valve is fraught with difficulties. This has led some 

authors to instead apply brute-force explicit solution procedures that do not require solving a 

nonlinear algebraic problem at each step. However, Morganti et al. [9] reported that 

converging an explicit computation to a qualitatively-accurate configuration of a closed 

valve using standard finite elements in the thoroughly-optimized commercial code LS-

DYNA [10] required more than 550 hours [9, Table 2] (i.e., more than 20 days). While the 

cited study indicates that using LS-DYNA’s isogeometric analysis capabilities in place of 
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finite elements provided enormous improvements over that figure, the coarsest isogeometric 

computation still required a time step of 2.3 × 10−7 s [9, Table 2], which is several orders of 

magnitude smaller than the time step used for fluid–structure interaction (FSI) simulations in 

[4].

In light of these difficulties with aortic valve simulations, the outlook appears bleak for 

properly-converged implicit simulation of the more complicated atrioventricular valves, 

especially if one intends to study pathological configurations, such as prolapse, or 

incorporate FSI. Some example analyses of normal mitral valve structural mechanics using 

ABAQUS [11] can be found in [12–14]. Lee et al. [13, Section 10.4.3] indicate that “implicit 

dynamic analysis with automatic time stepping” was feasible in some cases, but the same 

authors note in [14, Section 2.6] that explicit dynamics using a time step of 10−6 s and mass 

scaling (as only the quasi-static limit was of interest) proved to be “a more general 

computational framework for future extensions, such as in vivo modeling and surgical 

simulations” [14, page 1287]. It is our experience that, even with the best commercial off-

the-shelf software, some degree of case-by-case troubleshooting is frequently needed to 

solve complex contact problems using implicit methods. In the case of atrioventricular valve 

analysis, preprocessing and troubleshooting labor may be magnified by the involvement of 

contact between different combinations of 2D surfaces (leaflets) and 1D curves (representing 

the chordae tendineae and/or the edges of leaflets). Analysis methods that treat these 

different contact scenarios as separate cases are not only difficult to implement, but also 

often require additional pre-processing effort by the end user, to identify contact surfaces 

and curves, specify types of contact, and set a variety of options for each case (often by trial-

and-error).

To approach the challenging problem of atrioventricular valve dynamics in a way that can be 

directly combined with the fluid–structure interaction (FSI) analysis methods of [4–7], 

which treat structural mechanics implicitly, we develop a novel contact formulation that 

builds on the concept of using repulsive forces that derive from a potential, as studied by 

Sauer and De Lorenzis [15]. We modify this framework to use volume rather than surface 

potentials, which can be applied to lower-dimensional objects (e.g., shells or cables) by 

multiplying surface or contour integrals over those objects with factors of thickness or cross-

sectional area. This eliminates the need for special cases to handle contacts between objects 

of different co-dimensions to physical space. We discretize the integrals to compute contact 

potential energy using direct numerical quadrature (as applied to the case of electrostatic 

repulsion in [15, Section 5.3]), resulting in an n-body problem to determine contact forces. 

In general, this would require a Barnes–Hut [16] or fast multipole [17] approximation for 

computational efficiency. However, we simplify the n-body problem by using a compactly-

supported potential with a limited range, so that each quadrature point interacts with only a 

handful of neighbors1 The geometry of the contacting bodies is thus approximated by a 

union of spherical potential supports, intersections of which are penalized in the potential 

energy functional for the system. The resulting discrete problem is similar in structure to that 

solved by the “pinball algorithm” proposed in Belytschko and Neal [20], but we use a 

1Another interesting approach to avoiding nonlocal interactions is to store contact potential energy as elastic potential energy of a 
fictitious material filling the void between objects [18, 19].
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different penalty function to apply forces to intersecting pinballs (i.e., supports of potential 

functions centered at quadrature points). Another related approach to contact was developed 

earlier by Sauer [21], motivated by coarse-graining of inter-atomic potentials, but, in the 

present work, we do not attempt to derive contact forces from any more basic physical 

principles; our choice of penalty function is motivated by calculations indicating the 

minimal level of singularity needed to prevent intersection of contacting bodies. We find that 

this potential-based contact formulation, combined with a specialized globalization strategy 

for nonlinear solution using Newton’s method and an adaptive time stepping technique, 

provides a reliable way to solve complicated contact problems with shell and cable 

structures, including atrioventricular valve dynamics.

The remainder of this paper is structured as follows. The formulation of the contact potential 

energy is detailed in Section 2, and its implementation using numerical quadrature is 

discussed in Section 3. The generic structural dynamics problem used for exposition in these 

sections is then specialized to the dynamics of a thin shell coupled to cables in Section 4. 

The contact formulation is tested in the context of this problem using several benchmarks. 

The right atrioventricular (i.e., tricuspid) valve is then modeled as an instance of this thin 

shell and cable problem in Section 5. Both normal and pathological tricuspid valve dynamics 

are successfully simulated. Section 6 summarizes our findings and discusses several other 

possible applications and extensions of the developed techniques.

2. Volume potentials for contact

To treat contact between objects of various co-dimensions to physical space, we first 

consider the case of solid bodies of co-dimension zero, then scale by factors of thickness and 

cross-sectional area to adapt the theory to thin shells of co-dimension one and cables of co-

dimension two. We adopt this approach, in contrast to the surface potential framework of 

Sauer and De Lorenzis [15], for maximal geometric versatility. While the use of a surface 

potential allows for analytical simplification in the case of smooth surfaces [15, Appendix 

A], it requires additional information about the surface geometry. Formulation in terms of a 

volume potential permits contact to be modeled between objects represented by clouds of 

quadrature points, requiring no special treatment for contact between structures of arbitrary 

co-dimensions, with corners, edges, and other features that would complicate traditional 

contact algorithms. Further, volume potential based contact is compatible with meshfree 

discretizations that allow new surfaces to emerge spontaneously, through material rupture 

(e.g., the semi-Lagrangian reproducing kernel particle method (RKPM) [22]). It might be 

construed as a disadvantage that volume potentials result in a thin layer of body forces, as 

opposed to a true surface traction, but this force field could easily be integrated in the 

direction orthogonal to the surface as a post-processing step if surface tractions are desired. 

Alternatively, for bodies with well-defined surface parameterizations and no possibility of 

rupture, contact surfaces could be treated like structures of co-dimension one, by introducing 

a thickness length scale.

For simplicity of exposition, we assume, initially, that contact occurs between two disjoint 

bodies. The extension to multiple bodies is straightforward. The extension to self-contact is 
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formulated in Section 2.2. The contact potential energy of two bodies with reference 

configurations Ω0
1 and Ω0

2 is given by

Ec = ∫
Ω0

2∫Ω0
1ϕ (r12) dX1dX2, (1)

where Xi ∈ Ω0
i  and

r12 = ‖(X2 + y (X2)) − (X1 + y (X1))‖
ℓ2 = ‖r12‖

ℓ2, (2)

in which y is a displacement field defined over Ω0
1 ∪ Ω0

2 and ‖v‖
ℓp = ∑i = 1

d ∣ vi ∣p
1
p  for v ∈ 

ℝd and p ≥ 1. To allow objects of nonzero co-dimension to simultaneously contact other 

objects from any direction, we must strongly enforce non-penetration of objects. This 

requires that Ec → ∞ as the distance between ∂Ωt
1 and ∂Ωt

2 approaches zero.

Remark 1—This potential energy term models frictionless contact. The absence of 

frictional effects is clear, as the formulation does not introduce any dissipative mechanisms. 

For bodies with smooth boundaries, and with typical choices of ϕ, one expects the resulting 

contact forces to be approximately normal to the boundaries. A detailed explanation of how 

tangential force contributions cancel is provided by Sauer and De Lorenzis [15, Appendix 

A] for the case of surface potentials. The cited article also comments briefly on how 

potential-based contact can be extended to include friction.

Remark 2—Enforcement of a gap between objects may also be useful in conjunction with 

immersed discretization schemes, in which the motion of a Lagrangian solid is derived from 

a velocity field represented on an Eulerian background mesh, either directly (e.g., [23, 24]), 

or through the computation of some coupling traction (e.g., [4, 25]). For example, in the 

standard material point method [24], a single continuous Eulerian velocity field represents 

the structure’s motion, so sliding contact proves difficult unless material points from 

different parts of the structure are prevented from coming within a background mesh 

dependent distance of one another. In the setting of immersed FSI, Kadapa et al. [26] report 

that stable simulation of fluid–rigid-body interaction using an immersed approach based on 

Nitsche’s method requires that the rigid bodies maintain a background mesh dependent 

distance between one another. The enforcement of a gap between immersed representations 

of structural components may seem to be at odds with the oft-touted advantage of immersed 

discretizations in representing topology changes. However, if gap width is tuned to match 

the size of elements in the background discretization, then it is, by construction, insufficient 

to resolve any spurious flow of material. (Thus, in a strange twist of irony, the numerical 

methods most capable of representing topology change tend to require it the least strictly.)
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2.1. Selection of a potential

For computational tractability, we require that potentials have a finite range. To enforce non-

penetration, we also clearly need ϕ(r) → ∞ as r → 0. However, too weak a singularity 

might still permit interpenetration of objects. For instance, consider a finite-thickness slab of 

electrically-charged material (i.e., ϕ(r) ~ 1/r): a simple application of Gauss’s theorem shows 

that the resulting electric field perpendicular to the slab never diverges, so that another 

charged object might tunnel through this slab with a finite amount of work (cf. [15, Section 

3, Example 11, Remark 1]). To determine a sufficient strength of singularity for ϕ, let us 

consider smooth (or, at small scales, essentially flat) surfaces of Ω1 and Ω2 in contact. Our 

goal in designing ϕ is for the total repulsive force in the normal direction acting on ω1 ⊂ Ω1, 

as illustrated in Figure 1, to diverge.

Let us assume that, for r less than some (1) length scale, the potential has the form

ϕ(r) 1
rp − 1 (for r sufficiently small) . (3)

As mentioned above, the obvious inadequacy of electrostatic repulsion for contact modeling 

leads us to the assumption that p > 2. The z-component of the force on ω1 can be bounded 

from below as follows:

Fz ≿ ∫
ω1

∫
ωx

−ϕ′(D) cos θdξ dx, (4)

where the integration variables x and ξ have the axial and radial coordinates (r, z) and (ρ, ζ) 

respectively, as shown in Figure 1, and D and θ depend on the integration variables x and ξ 
via

D = ρ2 + (z + ζ2) (5)

and

cos θ = (z + ζ)/ ρ2 + (z + ζ)2 . (6)

This is only a lower bound because it neglects additional repulsive forces on x ∈ Ω1 due to 

Ω2 \ωx. Integrating first over ωx, we get
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∫
ωx

ϕ′(D) cos θ dξ ∫
0

H∫
0

R 2πρ(z + ζ)

(D2)
p + 1

2
dρdζ (7)

= ∫
0

H
−

p + 1
2 − 1 −1

π(z + ζ)

(D2)
p + 1

2 − 1
0

R

dζ (8)

= ∫
0

H C1(z + ζ)

((z + ζ)2)
p + 1

2 − 1
+ C2 dζ (9)

=

C3 log (z + ζ)2 + C4 p = 3

−
C5

((z + ζ)2)
p + 1

2 − 2
+ C6 p ∈ (2, ∞ )\{3}

0

H

(10)

=
−C3 log z2 + C7 p = 3

C8z3 − p + C9 p ∈ (2, ∞ )\{3}
, (11)

where Ci are (possibly non-constant) finite coefficients and terms whose precise values are 

not important to the question of whether or not Fz is infinite. Integrating next over ω1, we 

obtain

Fz ≳ ∫
ω1

−C3 log z2 + C7 p = 3

C8z3 − p + C9 p ∈ (2, ∞ )\{3}
dx (12)

= πR2∫
0

H −C3 log z2 + C7 p = 3

C8z3 − p + C9 p ∈ (2, ∞ )\{3}
dz . (13)

Kamensky et al. Page 7

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To ensure that this lower bound diverges, we need to take p ≥ 4. To have the desired 

asymptotic behavior in the limit of r12 → 0 while maintaining a smooth but compactly-

supported force field, we propose to model contact with the following force–separation law:

−ϕ′(r12) =

kc

(r12)p − c2 r12 < rin

c1 (r12 − rout)
2 rin ≤ r12 ≤ rout

0 otherwise

. (14)

where rin and rout are length scales governing the support of the potential function, and kc is 

a dimensional constant. As discussed above, we assume p ≥ 4, to enforce non-penetration. 

The scalars c1 and c2 are uniquely determined by smoothness and continuity constraints:

c1 =
pkc

2 (rout − rin) rin
p + 1 (15)

and

c2 =
kc
rin

p − c1 (rin − rout)
2 . (16)

An instance of this force law is illustrated in Figure 2.

As alluded previously, the extension of this concept to structures of nonzero co-dimension is 

accomplished by essentially performing one-point quadrature in the degenerated 

direction(s), to obtain surface, line, or point potentials, scaled by appropriate length, area, or 

volume factors. The conditions for non-penetration of potentials integrated on lower-

dimensional geometries may be less severe. For instance, as shown in [15, Appendix A], the 

force field due to a less-singular 1/r2 potential integrated over a smooth surface is sufficient 

to produce divergent repulsive forces. The even milder electrostatic 1/r potential of an 

infinite line of charge can easily be shown, using Gauss’s theorem, to result in an electric 

field that diverges as one approaches the wire. However, these results are not robust for 

surfaces and curves with edges and endpoints, as often encountered in practical examples.

2.2. Extension to self-contact

In many cases of practical interest, there is no clear way to partition a structure into distinct 

parts that may contact one another; a body must be capable of contacting itself. To 

accomplish this, we consider all solid parts to be a single body with reference configuration 

Ω0 and modify the potential energy of contact to be
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Ec = ∫
Ω0\BRself

(X1)
∫

Ω0
ϕ (r12) dX1dX2, (17)

where BRself (X1) is the Euclidean ball of radius Rself around X1 and r12 is defined as before, 

but with both X1 and X2 in Ω0. The radius Rself must be selected in a problem-dependent 

way. It is clearly bounded below by the range of the contact potential, but, in general, must 

be somewhat larger, to prevent material compression from being identified as self-contact. If 

chosen too large, however, it might fail to identify some instances of self-contact.

3. Numerical implementation

In this section, we consider various aspects of implementing the proposed approach in finite 

element simulations. For simplicity, we consider a generic structural dynamics problem on 

the time interval (0, T). A specific example will be formulated in Section 5. The generic 

problem we consider in this section is: Find displacement y ∈ y such that for all test 

functions z ∈ y

B(y, z) + DzEc(y) = F(z), (18)

where the forms B and F encapsulate the non-contact-related physics of the problem, y and 

y are displacement trial and test function spaces, and Dz is a functional derivative in 

direction z. Restricting y and z to yh and zh in finite-dimensional spaces 𝒮y
h and 𝒱y

h results in 

a finite element semi-discretization of the first term on the left-hand side of (18). We focus 

in this section on the discretization of the second term, which generates the contact forces.

We propose to compute the double integral in the definition of Ec numerically, using the 

same collection of quadrature points for each layer of integration. This results in a discrete 

Np-body problem:

Ec (y) ≈ ∑
i = 1

N p
∑
j = 1

N p wiw jϕ ri j Ri j > Rself
0 otherwise

, (19)

where Np is the number of quadrature points,

ri j = (Xi + y(Xi)) − X j + y X j ℓ2, (20)
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Ri j = Xi − X j ℓ2, (21)

Xi is the ith quadrature point and wi is its weight. The weights {wi} are assumed to include 

any additional length, area, or volume factors needed to convert surface, line, or point 

quadrature rules into volume quadrature. In this way, there is no difference in treatment 

between various co-dimensions of structural components when computing contact forces.

To ensure that the singular behavior is recovered as the distance between bodies shrinks all 

the way to zero, one would need to employ an adaptive quadrature rule; otherwise, a point 

from Ω2 could slip in between two points on the surface of Ω1 with a finite amount of work, 

making it possible for Ω2 to tunnel through Ω1, due to quadrature errors. Alternatively, one 

can prevent tunneling of objects through one another with a fixed quadrature rule by 

including an impenetrable core of infinite potential in the force–separation law. Consider the 

following modified force law:

−ϕ
∼′ (r12) = ∞ r < 0

−ϕ′(r) otherwise, (22)

where r = r12 − rmin and ϕ′ is as defined in (14). The support of the modified potential is of 

radius rmin + rout. (A procedure to avoid states of infinite energy during iterative nonlinear 

minimization of energy is given in Section 3.4.) If the zones of infinite potential about 

quadrature points in a body overlap, then the body is essentially impenetrable. For elastic 

bodies, tunneling is still technically possible, as adjacent points may be stretched apart, as 

illustrated schematically in Figure 3, but this would likely involve stresses well beyond the 

ultimate strength of most practical materials. We have nevertheless been able to produce this 

behavior by mashing objects together under displacement control. A similar concern is 

illustrated in [21, Figure 5.7].

3.1. Searching for interacting pairs of points

Due to the limited range of ϕ, the forces in the Np-body problem (19) can be evaluated 

efficiently. Assuming that the spatial number density of points is bounded below, there are 

only (Np) nonzero terms in the double summation (19). We can avoid considering 

unnecessary pairs of points by sorting all of the quadrature points into the cells of a uniform 

grid, of cell size greater than or equal to the range rout + rmin of the potential. Then we only 

need to consider interactions between one point and others in the same or adjacent grid cells.

To describe the algorithm used precisely, we introduce some notation. Let the number of 

grid cells be Nc. These cells are a collection of disjoint subsets of ℝd denoted {ωi}i = 1
Nc  and 

cover the entire deformed configuration of the solid. The locations of the quadrature points 

in the current configuration are {xi}i = 1
N p . We assume, as is especially true in the case of 

structures with nonzero co-dimension, that, while Nc may be very large, the vast majority of 
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these grid cells are unoccupied at any given time. Thus operations of cost Θ(Nc)2 (such as 

iterating over all elements of {ωi}) should be avoided. Aside from allocating memory for the 

grid cells while initializing the data structure, operations to re-sort the points {xi} into new 

cells as the structure deforms should only iterate over occupied cells, of which there can be 

at most Np. Operations of cost Θ(Np) are necessarily acceptable; otherwise, it would be 

impossible to apply the contact forces, regardless of how they are computed.

We now introduce the necessary data structures for our algorithm:

• L is an array of Np integers. This will be used to store linked lists of indexes of 

quadrature points. Because points fall within unique grid cells, these lists can all 

fit within a single array of size Np. The storage and traversal of these lists is 

clarified below.

• S is a stack of integers. This is used to keep track of the indexes of occupied grid 

cells. S is initialized to be empty.

• O is an array of Nc Boolean variables. O(i)3 indicates whether or not grid cell i is 

occupied. O is initialized to false once, when it is first allocated, costing Θ(Nc) 

operations.

• H is an array of Nc integers. If O(i) is true, then H(i) indicates the head of a 

linked list of indexes of points from the set {xj} contained in grid cell ωi. The 

array H is initialized to zero once, when it is first allocated, costing Θ(Nc) 

operations.

The procedure for sorting elements of {xi} into grid cells {ωi} after the structure changes its 

configuration can be divided into two phases: purge the data structures of information about 

the previous configuration, then populate the data structures with information about the new 

configuration. The first phase, purging, is accomplished through the following steps:

1. Set the list L to zero. (Cost: Θ(Np), because L is of size Np.)

2. While S is not empty, pop index i from S, then set O(i) to false and H(i) to zero. 

(Cost: (Np), because at most Np cells can be occupied by Np points, assuming 

each is in a unique cell.)

The second phase is accomplished by doing the following for each element xk of the set 

{xi}:

1. Identify the index i such that xk ∈ ωi. This can be accomplished in (1) time, 

because the {ωj} are elements of a uniform grid.

2. If O(i) is false, set it to true and push i onto the stack S. (If O(i) is already true, 

do not redundantly push i.) This step also has cost (1).

3. Update the linked list of points within this cell:

a. Store the old head of the linked list: h0 ← H(i).

2Asymptotic notation in this section follows standard computer science conventions. See, e.g., [27].
3Note that, in the present document, this is distinguished from “big ” asymptotic notation by font.
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b. Set xk’s index as the new head: H(i) ← k.

c. Connect the new head to the linked list: L(k) ← h0.

These steps cost (1) time.

The cost of updating the data structures to reflect a change in the configuration of the 

structure is therefore Θ(Np). Once the data structures have been populated by the above 

algorithm, the list of points from {xj} contained in an occupied cell ωi can be traversed by 

looking at the point xi1, where i1 = H(i), then looking at xi2, where i2 = L(i1), and so on, 

until L(in) = 0, indicating the end of the list.4 If we assume that the points {xi} are 

distributed such that the number falling within any cell is (1), then the cost of computing 

forces between all points in a cell and any adjacent occupied cells is (1).

Remark 3: If the memory cost of storing H and O is prohibitive, random subsets of {ωi} 

can be mapped to bins of a hash table, through some nontrivial hash function mapping the 

cell index range {1, …, Nc} onto a smaller range {1, …, NH}, with NH < Nc. However, 

increasing the load factor (Np/NH) in this way comes at the cost of possibly computing 

moderately more zero forces between out-of-range pairs of points. We have not found it 

necessary to use hash functions other than the identity map in our computations, as memory 

was never a limiting factor.

3.2. Comparison with the pinball algorithm

As mentioned in Section 1, the fully-discrete penalization energy (19) can be construed as a 

variant of the pinball algorithm proposed by Belytschko and Neal in [20]. The idea of the 

pinball approach is to approximate the geometry of a structure by a collection of balls, 

referred to as “pinballs”, for the purposes of collision detection. Overlap of pinballs from 

different contacting bodies is then penalized, to prevent structures from intersecting one 

another. A refinement of this approach by Belytschko and Yeh, called the “splitting pinball 

method” [28, 29], tested for collisions using a hierarchical approach, such that, if two 

pinballs are detected as overlapping, each of them is split into a collection of finer pinballs 

(which may themselves be split, and so on, up to some user-defined recursion depth), to 

better approximate the underlying structural geometry.

Despite its simplicity and intuitive appeal, the pinball method remains relatively obscure 

today. It is, however, implemented in several actively-maintained production codes for 

explicit dynamics, such as EUROPLEXUS [30] and LS-DYNA [10]. According to the LS-

DYNA manual [31], the original pinball method is “not recommended and is included only 

for back compatibility” [31, page 11–64], but the splitting variant [28, 29], added fairly 

recently in LS-DYNA R7.1, “is recommended when modeling complex contacts” [31, page 

11–65]. Approaches with some similar features to the pinball algorithm have been developed 

independently for use in meshfree methods, where it is natural to consider the structure 

geometry as a collection of spheres and use these spheres to detect collisions. An example of 

such a method would be the kernel contact approach proposed by Guan et al. [22, Section 4].

4This structure is inspired by the cluster maps used in FAT file systems.
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We may view each quadrature point in our discrete formulation as a pinball of radius (rout + 

rmin)/2. The original paper on the pinball method [20] includes a separate definition of the 

surface normal vector at each pinball, but, in the later splitting approach, “The penalty force 

is always exerted in the direction between pinball centers, which enables the method to 

handle edge-to-surface, surface-to-surface and edge-to-edge contact” [29, page 382], which 

is more similar to what is done in the potential-based formulation of this paper. If we 

reinterpret the pinball approach as a quadrature scheme for a distributed contact force, the 

splitting variant is essentially adaptive quadrature.

3.3. Linearization of pairwise interactions

The interaction energy of two quadrature points at material positions X1 and X2 (separated 

by more than Rself at time zero) can be written as

e12 = Cϕ (r12), (23)

where the scalar C accounts for quadrature weights of the two points. The contribution of 

this pair of points to the variational problem (18) is

Dze12 = d
dεe12(y + εz)

ε = 0
= Cϕ′ (r12) r12 · (z2 − z1), (24)

where r̂12 = r12/||r12||ℓ2 and zi = z (Xi). The linearization of this virtual work (needed to 

resolve static or dynamic equilibrium via Newton–Raphson iteration) is the Hessian

DΔy (Dze12) = d
dε (Dze12) (y + εΔy)

ε = 0
(25)

= Cϕ″ (r12) (Δy2 − Δy1) (r12 ⊗ r12) (z2 − z1) + C
ϕ′ (r12)

r12
(Δy2 − Δy1) (I − r12 ⊗ r12) (z2

− z1),

(26)

where I is the identity map and Δyi = Δy (Xi).
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3.4. Solution algorithm

The singular nature of the contact potential warrants special care in the time stepping and 

non-linear algebraic solution procedures for discretized instances of our generic problem 

(18). We find that reliably obtaining “fire and forget” robustness in computations using our 

proposed formulation requires a combination of adaptive time stepping and modifications to 

Newton’s method for nonlinear solution within each time step. For generality, we spell out 

our solution algorithm for use with the modified potential (22); the potential (14) can be 

recovered by taking rmin → 0.

Let us suppose that the generic problem (18) represents nonlinear elasticity in the 

Lagrangian description. Then we write

B(y, z) = ρ0ÿ + A1(y, z) + A2(y. , z) . (27)

If we discretize in time using the generalized-α procedure, (18) yields the following problem 

within each time step: Given yn, ẏn, and ÿn, find yn+1 such that, for all z,

R(yn + 1, z) = ∫
Ω0

ρ0ÿ
n + αm · z dΩ + A1 (y

n + α f , z) + A2(y.
n + α f , z) + DzEc (y

n + α f ) − F(z)

= 0,

(28)

where ρ0 is the mass density in the reference configuration Ω0 and ÿn+αm, ẏn+αf, and yn+αf 

are the “α-level” acceleration, velocity, and displacement (interpolating between the n and n
+1 level data), which can be expressed in terms of the unknown function yn+1 and the data 

from the previous time step. The velocity and acceleration ẏn+1 and ÿn+1 are also defined in 

terms of yn+1 and n-level quantities, thus providing all data needed for the subsequent step; 

full formulas are given in [32], using the same notation. In this work, we restrict the 

selection of generalized-α parameters to the one-parameter family of methods detailed in 

[32], where the parameter ρ∞ ∈ [0, 1] controls the spectral radius of the amplification matrix 

in the high-frequency limit. If we pose the problem (28) over finite dimensional test and trial 

spaces, with the test space spanned by the basis {N1, …,NNDOF}, we get a nonlinear 

algebraic problem for NDOF unknown coefficients. For mild instances of the problem, 

starting from good initial guesses, this can be resolved using Newton iteration. In our 

notation, the standard Newton iteration procedure would begin with y0
n + 1 and, at the kth 

iteration would execute: Find Δyk, such that for all A ∈ {1, …, NDOF},
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DΔyk
R yk

n + 1, NA = − R yk
n + 1, NA , (29)

then set

yk + 1
n + 1 = yk

n + 1 + Δyk . (30)

The iteration continues until

‖Rk‖
ℓ2

‖F0
k‖

ℓ2
≤ ε, (31)

or until some divergence criterion is encountered, where

[Rk]
A

= R yk
n + 1, NA , (32)

F0
k ∈ ℝ

NDOF is a reference force vector, and ε > 0 is a dimensionless tolerance. The best 

choice of F0
k is problem-dependent; a common choice for static problems or problems with 

prescribed loads in all time steps is to set its components equal to the external force form F 
applied to each basis function of the test space.

Newton iteration is only locally convergent, meaning that, if y0
n + 1 is too far from a fixed 

point, the iteration may fail to converge. One way to increase the radius of convergence is to 

use a line search, which modifies (30) to

yk + 1
n + 1 = yk

n + 1 + αrelaxΔyk, (33)

where the scalar αrelax is selected to minimize ||Rk+1||ℓ2. Solving for αrelax generally requires 

repeated assembly of the residual vector, to execute a 1D minimization scheme. A cheaper 

alternative is to compute αrelax in a heuristic way, with the goal that ||Rk+1||ℓ2 is never “too 

big”. We have developed a heuristic algorithm for computing αrelax that is tailored to our 

contact potential formulation and pinball-style discretization.

In our nonlinear solution approach, we assume that the initial guess for the Newton iteration 

is y0
n + 1 = yn. Such a “same-displacement” predictor is not typically considered ideal for 
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dynamic problems, but it prevents the iteration from beginning in a configuration with 

extreme or infinite contact forces. Then, in each iteration, we compute the relaxation 

parameter αrelax as follows:

1. Initialize αrelax ← 1 and F ← 0.

2. While F = 0,

a. Identify tentative n + 1 and n + αf level displacement fields using the 

current value of αrelax and the formula (33).

b. If one or both of these tentative configurations leads to an infinite 

potential (i.e., there are quadrature points closer together than rmin), 

then reduce αrelax by half: αrelax ← αrelax/2. Otherwise, set F = 1.

c. If there exist a pair of quadrature points in the tentative n+1 level 

configuration that are closer together than fsingularrin + rmin and the 

maximum nodal displacement magnitude Δymax of the increment 

αrelaxΔyk is greater than fmaxΔyrout, reduce αrelax further:

αrelax min αrelax, f maxΔyrout/Δymax . (34)

This step prevents iterates from rapidly escaping the modified Newton 

method’s radius of convergence if the iteration wanders into a region of 

extremely large contact forces. The dimensionless parameters fsingular ≥ 

0 and fmaxΔy > 0 are user-defined.

In principle, if this step alters αrelax, we should re-set F ← 0, to check again for the error 

state of an infinite potential. However, this possibility is extremely unlikely and does not 

justify the extra computational cost. We omit this precaution in practice, and have never 

encountered the error state in computations.

With empirically-selected fmaxΔy and fsingular, this heuristic method of limiting the Newton 

increment size can make the nonlinear iteration much more robust. However, the iteration is 

still prone to stagnation or divergence when the time step size is too large. To remedy this 

problem, we adopt an adaptive scheme for time step selection. Much of the existing 

literature on adaptive time stepping is focused on improving accuracy. Typical criteria for 

reducing or increasing time step size are based on comparing the solutions obtained from 

higher and lower order schemes, to estimate the level of error in the current time step. (See, 

e.g., [33, Algorithm 1].) However, the application of such a criterion presupposes that the 

algebraic problem at the current time step is sufficiently tractable to obtain the high- and 

low-order solutions. For contact problems, this may not be a safe assumption. We follow the 

alternate philosophy of reducing the time step only when it is necessary to permit progress 

of the simulation and coarsening if the nonlinear problem is resolved with few iterations. 

This is based on the assumption that a prescribed maximum time step provides sufficient 

accuracy, and adaptivity is applied strictly for solubility purposes. One might also attempt to 

combine accuracy-based and progress-based criteria, but we have not investigated this 

possibility in detail. Our adaptive time stepping scheme has the following free parameters:
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• Δtmax: The maximum time step.

• Icoarsen: A number of nonlinear solver iterations indicating rapid convergence and 

suggesting that the time step is unnecessarily small.

If the nonlinear solver diverges, Δt ← Δt/2 and the time step is recomputed. If the nonlinear 

solver converges in a number of iterations less than or equal to Icoarsen and the index i that 

the time step would have had if the entire computation was performed with step size Δt 
satisfies mod(i, 2) = 0, then Δt ← min{2Δt, Δtmax}. The constraint that i must be even to 

coarsen ensures that there always exists a sub-sequence of time steps at times 0, Δtmax, 

2Δtmax, …, which is convenient for post-processing and visualization purposes.

The performance of the adaptive time stepping scheme hinges critically on the choice of 

divergence criterion in the nonlinear solver. The simplest choice is to enforce a maximum 

number of steps. However, this may prove wasteful in comparison with monitoring the 

nonlinear residual’s progress and aborting the iteration if it fails to decrease by a sufficient 

amount. An overly-eager divergence test, on the other hand, may shrink the time step 

excessively. To balance these two concerns, we introduce two additional free parameters, to 

define the divergence test in the Newton iteration:

• 0 < fprogress < 1: The fraction by which the residual must reduce between 

iterations.

• Icheck > 1: The nonlinear iteration index after which we check for divergence.

• Imax > 1: The absolute maximum number of iterations allowed.

Divergence of the nonlinear iteration at step k is thus signalled by the condition

(k > 1) ∧
‖Rk‖

ℓ2

‖F0
k‖

ℓ2
> f progress

‖Rk − 1‖
ℓ2

‖F0
k − 1‖

ℓ2
∧ ‖Rk‖

ℓ2 > f progress‖Rk − 1‖
ℓ2 ∧ (k ≥ Icheck)

∨ (k > Imax) .

(35)

The term (||Rk||ℓ2 > fprogress ||Rk−1||ℓ2) is only necessary if the reference force vector F0
k

actually depends on k.

Remark 4: It may sound reasonable to simply set Icheck = 2 and demand monotonic 

progress. However, in contact problems, we often observe an increase in the nonlinear 

residual from k = 1 to k = 2, as new contacts initiate. If Icheck = 2, then a pathological pattern 

of refinement may be triggered, in which contact occurs at k = 2, the step is flagged as 

divergent, the time step is halved, one smaller step converges, then, on the next step, contact 
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occurs at k = 2, the step is flagged, and so on, resulting in a demonstration of Zeno’s 

paradox. We therefore recommend selecting Icheck ≥ 3.

3.5. Summary of parameters

We have introduced a number of free parameters in the specification of the potential, ϕ, and 

our solution algorithm. This section lists these parameters and comments on their qualitative 

effects.

• Parameters of the potential function:

– p is dimensionless and determines the strength of the singularity in the 

potential. To ensure non-penetration, it should be chosen ≥ 4. Excessive 

singularity may make computations less tractable, and we primarily use 

p = 4.

– kc has dimensions of MLp−5T−2 and scales the overall stiffness of the 

potential. Larger values may require smaller time steps.

– rin is the length scale over which the singular part of the potential acts 

and rout − rin is the distance over which the polynomial part of the 

potential acts. Reducing rout toward zero will approach a classical 

contact constraint, but will also make the contact forces stiffer, 

requiring smaller time steps to resolve impact events.

– rmin is the radius within which the potential goes to infinity. In 

problems with high contact pressures, it may be helpful to set this so 

that quadrature points are spaced more closely than rmin.

• Parameters of the solution algorithm:

– fsingular ≥ 0 is dimensionless and determines what fraction of the 

singular part of the potential function’s domain (rmin < r12 < rin) 

generates sufficiently-rapidly-varying forces to warrant prophylactic 

relaxation of the nonlinear iteration. Larger values may slow down the 

nonlinear iteration, but may also prevent divergence and subsequent 

time step refinement.

– fmaxΔy > 0 is dimensionless and determines the maximum allowable 

nodal displacement of a nonlinear solution increment, as a fraction of 

rout, when relaxation is deemed necessary based on the choice of 

fsingular. Smaller values slow down the nonlinear iteration, but may 

prevent divergence and subsequent time step refinement.

– Δtmax is the maximum allowed time step size and should be selected to 

ensure sufficient time resolution, as the dynamic time stepping 

algorithm of Section 3.4 is based only on ease or difficulty of nonlinear 

solution, not time accuracy of the solution.

– Icoarsen is an integer indicating what number of nonlinear iterations 

suggest that the time step is unnecessarily small. Smaller values of 

Icoarsen make coarsening less likely, and may lead to overly-
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conservative time step sizes. However, larger values may lead to false 

positives, in which the time step is coarsened, the nonlinear solution 

diverges, and the time step is refined again. Such false positives also 

result in unnecessary computation.

– 0 < fprogress < 1 indicates a fraction by which the nonlinear residual 

must be reduced between nonlinear iterations for the solution process to 

be viewed as making progress. Selecting this too large may permit long, 

slowly-converging nonlinear solves in situations where it might be more 

efficient to simply take more time steps. Setting this too small results in 

excessive temporal refinement.

– Icheck > 1 is an integer indicating how many iterations to take before 

testing for divergence or stagnation with fprogress. Its selection is 

discussed in Remark 4.

– Imax is an integer indicating the absolute maximum number of iterations 

allowed in a nonlinear solution process. Given reasonable choices of 

fprogress and Icheck, this can be set quite large, or even infinite with little 

impact on performance.

Determination of more precise, quantitative guidelines for parameter selection is deferred to 

future studies.

4. Specialization to isogeometric analysis of shell and cable structures

In this section, we fill in the details of a particular case of the generic problem (18) 

considered earlier. To be able to model atrioventricular valves, we need to devise a coupled 

problem consisting of shell structure and cable sub-problems. We specify this problem by 

defining

B(y, z) = Bsh ysh, zsh + Bca(yca, zca) + ∑
i = 1

Nλ
λi · zsh Xi

λ, sh − zca Xi
λ, ca

+ ∑
i = 1

Nλ
δλi · ysh Xi

λ, sh − yca Xi
λ, ca ,

(36)

where we consider the test and trial functions to be tuples

y = {ysh, yca, λ1, …, λNλ
} ∈ 𝒮y

sh × 𝒮y
ca × ℝd × … × ℝd = 𝒮y (37)

and
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z = {zsh, zca, δλ1, …, δλNλ
} ∈ 𝒱y

sh × 𝒱y
ca × ℝd × … × ℝd = 𝒱y . (38)

We likewise define

F(z) = Fsh zsh + Fca(zca) . (39)

In the above notation, symbols superscripted with “sh” are associated with the shell structure 

subproblem and symbols superscripted “ca” are associated with the cable subproblem. 

(Point evaluations of “y” and “z” in the contact energy formulation above are understood to 

employ whichever solution component is relevant.) Each vector λi is a Lagrange multiplier 

to enforce matching displacements of the material point Xi
λ, sh on the shell structure and 

point Xi
λ, ca on the cable structure, the latter typically being an endpoint of an individual 

cable. We formulate the constraint in this way to more naturally accommodate non-

conforming discretizations, in which the displacement of the shell structure at Xi
λ, sh is not 

controlled by a single vector-valued unknown (e.g., the displacement of a “node” in 

traditional finite element analysis, which could simply be shared between the cable and shell 

subproblems in a conforming discretization). For computational convenience, we 

approximate these Lagrange multipliers using penalty forces, i.e.,

λi ≈ βsh−ca ysh Xi
λ, sh − yca Xi

λ, ca , (40)

where βsh–ca > 0 is a penalty parameter. We thereby replace B with

Bpen(y, z) = Bsh ysh, zsh + Bca(yca, zca) + ∑
i = 1

Nλ
βsh−ca ysh Xi

λ, sh − yca Xi
λ, ca

· zsh Xi
λ, sh − zca Xi

λ, ca .

(41)

In general, one might estimate appropriate values for βsh–ca from problem data and mesh 

element size, using dimensional analysis. In this work, we simply select an effective value of 

βsh–ca based on numerical experiments, as we are primarily focused on a specific class of 

problems.
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4.1. Shell structure subproblem

The shell subproblem forms Bsh and Fsh are defined and discretized as in [34]. Breifly, the 

shell structure is modeled using Kirchhoff–Love thin shell assumptions, with an arbitrary 

hyperelastic constitutive model. The thin shell problem in terms of displacement demands at 

least H2 regularity of the test and trial spaces; to satisfy this requirement in a standard 

Bubnov–Galerkin discretization, we use smooth spline function spaces to represent the 

geometry and displacement in an isogeometric fashion. Smooth isogeometric surface 

discretizations are also known to improve performance in contact problems [35–37]. In 

particular, we solve for a displacement y of the current midsurface configuration Γt from its 

reference configuration Γ0 and let

Bsh w, ysh = ∫
Γ0

w · hthρ0ÿsh dΓ + ∫
Γ0
∫

−hth/2

hth/2
δE:S dξ3dΓ + ∫

Γ0
w · Cshhthρ0y. sh dΓ (42)

and

Fsh (w) = ∫
Γ0

w · ρ0hthf dΓ + ∫
Γt

w · hnet dΓ, (43)

where ρ0 is the mass density in the reference configuration, hth is the shell thickness, S is the 

second Piola–Kirchhoff stress, E is the Green–Lagrange strain, δE is its functional 

derivative in the direction w, Csh is a mass damping coefficient, f is the prescribed body 

force, and hnet is the sum of the tractions prescribed on the two sides of the shell structure. 

The Green–Lagrange strain is determined from y according to the kinematic assumptions of 

Kirchhoff–Love shell theory, as detailed in [34]. In the examples of this paper, we determine 

S using a variety of hyperelastic constitutive models, which we specify in the sequel.

4.2. Cable subproblem

Our definitions of the forms Bca and Fca are based on the isogeometric bending-stabilized 

cable formulation of Raknes et al. [38]. The cited work uses kinematic assumptions to 

express the mechanics of the cable in terms of a 1D middle curve, parameterized by 

coordinate ξ1. Let points in the reference configuration S0 of this curve be parameterized 

X(ξ1) and points in the deformed configuration St be parameterized x (ξ1), such that x (ξ1) 

= ϕ(X(ξ1)), where ϕ : S0 → St is the motion of the deforming curve. The displacement yca : 

S0 → ℝd is then given by

yca X ξ1 = x ξ1 − X ξ1 . (44)

Covariant and contravariant basis vectors for the reference configuration are
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G1 = ∂X
∂ξ1 and G1 =

G1
‖G1‖

ℓ2
. (45)

Because of the small thickness of the cables in our target applications, we omit bending 

terms present in formulation of [38] and define

Bca(w, yca) = ∫
S0

w · A0ρ0ÿca dS + ∫
S0

δε EcaA0‖G1‖
ℓ2
4 ε dS + ∫

S0
w · CcaA0ρ0y. ca dS (46)

and

Fca(w) = ∫
S0

w · A0ρ0f0 dS − ∫
St

w · h dS, (47)

where

ε = 1
2

∂x
∂ξ1 · ∂x

∂ξ1 − ∂X
∂ξ1 · ∂X

∂ξ1 (48)

is the extensional strain,

δε = ∂w
∂ξ1 · ∂x

∂ξ1 (49)

is its functional derivative in the direction w, ρ0 is the mass density (per unit volume) in the 

reference configuration, f0 is a body force in the reference configuration, h is a traction (per 

unit length) in the current configuration, A0 is the cable’s cross-sectional area in the 

reference configuration, the Young’s modulus, Eca, determines the tensile stiffness of the 

cable, and the mass damping coefficient Cca provides dissipation. The use of a Young’s 

modulus to determine stiffness is based on the assumption of a St. Venant–Kirchhoff 

material model. The justification for this assumption in the context of modeling chordae 

tendineae is discussed in Section 5.2.2.

4.3. Quadrature of contact energy

For all computations in this paper, we numerically-integrate the contact force form DzEc 

(yn+αf) in (18) with the same collection of quadrature points used to integrate the weak 

forms of the shell and cable subproblems. This choice is not necessary, and, in cases where 
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shell and cable elements are substantially larger than the length scale parameter rout in the 

contact potential formulation, it may be a poor choice, as it would lead to either unnecessary 

over-integration of structural mechanics, or inaccurate under-integration of contact forces.

4.4. Numerical testing

We now use several benchmark problems to demonstrate the properties of the proposed 

contact method. For the examples in this section, we model the shell structure as a St. 

Venant–Kirchhoff material, i.e., S = ℂ E, where ℂ is the fourth-order isotropic elasticity 

tensor determined by Young’s modulus E and Poisson’s ratio ν.

4.4.1. Sphere and plate subjected to gravitational force—The first test problem 

involves two shell structures: a sphere (of radius 0.125) and a thin circular plate (of radius 

0.35), initially positioned as shown in Figure 4. A zero-displacement boundary condition is 

applied to the edge of the circular plate, and both the sphere and plate are subject to 

gravitational force and damping until a static equilibrium configuration is reached. The 

material parameters of both shell structures are E = 2.1 × 105 and ν = 0.3. The plate has 

density ρ0 = 1 and thickness hth = 0.003. The sphere is made heavier and more resistant to 

bending by setting ρ0 = 10 and hth = 0.03. Gravitational acceleration is set to 980.665. The 

parameters used to define the contact potential are p = 4, kc = 1.0, rin/(rout − rmin) = 0.5, 

rmin/rout = 0.5, and rout = 0.01.

The midsurfaces of these shells can be represented exactly using bivariate cubic T-splines 

[39], allowing an isogeometric discretization. Three T-spline meshes, denoted as M0, M1 

and M2, are used in this study. M1 is a global h-refinement of M0, and M2 is an h-

refinement of M1. M0, M1 and M2 contain a total of 690, 1565 and 5180 Bézier elements, 

respectively. The Bézier elements of M1 is shown in Figure 4. The T-spline meshes are 

generated by the Autodesk T-Splines Plug-in [40] for Rhinoceros [41]. Problems are 

considered to have reached a static equilibrium configuration when the ℓ∞ norm of the vector 

of changes in x3-direction displacement unknowns between two time steps is smaller than 

10−8. A representative numerical solution is shown in Figure 5. Figure 6a shows the vertical 

slice cutting through the center of the model, qualitatively demonstrating convergence of the 

displacement fields.

To show that quantities of interest associated with contact will converge with mesh 

refinement, we look at the convergence of the area of the contact region. In our target 

application of heart valve analysis, area of the contact region, or, the coaptation area (CA), is 

an important quantitative measure of how effective a valve is at blocking flow [9]. We 

calculate the CA by integrating the surface area over all Gauss points with nonzero contact 

forces.5 Figure 6b shows CA as a function of the number of Bézier elements in the model. 

The relative error in CA satisfies the convergence criterion |CA1 − CA2| < 0.01CA2, where 

CAi is the CA on mesh Mi.

5Tacit in this definition of CA is the assumption that rout is small relative to the overall length scale of the structure geometry. If rout 
were large relative to the structure, the entire surface of the structure would carry contact forces, and convergence of CA would be 
trivial.
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4.4.2. Sphere–plate impact—It is clear that a spatial semi-discretization of the problem 

(18) will conserve energy exactly (assuming that B and F derive from potentials, e.g., B 
from hyperelasticity and F from gravity). To demonstrate that this property can be recovered 

to a high degree of accuracy in fully discrete solutions, we use a benchmark proposed by 

Cirak and West [42] and later studied by Vouga et al. [43]. To study energy conservation, we 

integrate in time with the implicit midpoint rule, which is symplectic [44, Theorem VI.3.5], 

and can be obtained as a special case of generalized-α integration, with ρ∞ = 1 (i.e., no 

high-frequency dissipation).

The problem specification is reproduced from [42]. The problem uses the same T-spline 

mesh M1 as shown in Figure 4, but the sphere and the plate are both free to move. The 

sphere and the plate initially travel toward one another with a relative velocity of 100. Both 

objects are modeled as Kirchhoff–Love thin shells of thickness hth = 0.0035. The initial 

mass density of the shell structures is ρ0 = 0.0785. The constitutive parameters of the sphere 

and plate are E = 2.1 × 105 and ν = 0.3, as in Section 4.4.1. The parameters used to define 

the contact potential are p = 4, kc = 10.0, rin/(rout − rmin) = 0.7, rmin/rout = 0.5, and rout = 

0.003.

The maximum time step size is set to Δtmax = 10−6. Adaptive time stepping is never 

triggered for this problem using that time step, even for very small nonlinear convergence 

tolerances, so Δt = Δtmax in all steps. Several snapshots of the displacement solution are 

rendered in Figure 7. The kinetic, elastic, contact, and total energies are plotted as functions 

of time in Figure 8. It is clear that total energy is conserved well. The small proportion of 

total energy stored as contact potential energy is consistent with the contact potential 

approximating a workless constraint.

Remark 5: This benchmark is quite mild from the perspective of nonlinear solution, and the 

problem can be converged with even larger time steps. However, using too large a time step 

results in significant energy errors. Energy errors can be induced at the current time step by 

shrinking the contact length scale rout or increasing the penalty scaling parameter kc (but 

conservation is still, of course, recovered under refinement in time). Even when using a 

symplectic integrator, one must use sufficient resolution in time to obtain the oft-cited long-

time (near) energy conservation of such methods.6 A way to consistently achieve 

conservation without tuning of the time step or parameters might be to introduce an 

additional accuracy-based criterion for time step adaptation, as discussed in Section 3.4, but 

we have not investigated that possibility thoroughly.

4.4.3. Reef knot—To demonstrate the ability of the proposed approach to handle two-

sided self-contact of thin structures with free edges, we introduce a benchmark inspired by 

the similar reef knot example of [43, Section 8.4]. Two thin 58 cm × 2 cm rectangular 

ribbons, which consist of 1980 cubic B-spline elements, are positioned as a loosened reef 

knot. We constrain the ends of the ribbons to move only in the x-direction. To tighten the 

knot, we prescribe tractions of hnet = ±(104 dyn/cm2)e1 on the regions colored gray in Figure 

6It is possible to conserve energy exactly [44, Section IV.4], but this can actually disrupt the good qualitative behavior of symplectic 
integration that is frequently (and perhaps misleadingly) attributed to good long-time energy conservation [44, Example IV.4.4].
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9. The area of each gray region is 3.2395 cm2, yielding a force (F) with magnitude of 3.2395 

× 104 dyn acting on each end of the ribbon. The Young’s modulus of the ribbons is E = 1 × 

108 dyn/cm2, the Poisson’s ratio is ν = 0.4, the thickness is 0.004 cm, and the mass density 

is 1 g/cm3. The parameters defining the contact potential are p = 4, kc = 1.0 × 107 cmp−5s
−2g, rin/(rout − rmin) = 0.7, rmin/rout = 0.7, and rout = 0.1 cm. A damping traction of −(10 cm
−2s−1g) ẏ is applied to the shell structure midsurface throughout the analysis.

Figure 10 shows two snapshot of the reef knot tying simulation at t = 0.08 s and t = 0.4 s. 

Intersections of the ribbon midsurfaces with a planar slice illustrate the two-sided self-

contact of thin structures with free edges. Adaptive time step size over the history of the 

simulation is shown in Figure 11. It clearly shows that the adaptive subdivision of time step 

size is triggered when the contact comes into effect. More nonlinear iterations are needed to 

address the nonlinearity introduced by the numerical contact. As the simulation approaches 

steady state, the time step size are coarsen until the Δtmax is recovered.

5. Application to isogeometric analysis of atrioventricular valve dynamics

We now demonstrate the proposed contact methodology, and its integration with 

isogeometric shell and cable formulations, in the context of a specific application: the 

structural dynamics of the right atrioventricular valve, also referred to as the tricuspid valve. 

To focus on issues related to contact, we consider a pure structural mechanics problem, in 

which the surrounding blood flow is modeled by a pressure load on the valve leaflets and 

mass-proportional damping.

5.1. Geometrical modeling

We construct an idealized tricuspid valve geometry based on a combination of the model 

shown in [45] and segmented micro-CT images of porcine tricuspid valves from C.-H. Lee’s 

lab. The leaflets and chordae are described geometrically by cubic B-spline surfaces and 

curves. A number of studies have previously found such spline surfaces and curves to be 

convenient representations of atrioventricular leaflet and chordae geometries extracted from 

imaging data [14, 46, 47]. The Bézier element meshes of these spline structures are shown in 

Figure 12. The cross-sectional area of the chordae is about 0.00171 cm2 [45, 48], yielding a 

chordae radius of 0.023 cm. The leaflet thickness is 0.0396 cm [45, Table 1].

To demonstrate the capability of the proposed contact methods, we also consider a 

modification of the geometry described above. We model the atrioventricular valve 

pathology of prolapse, by severing the chordae highlighted in blue in Figure 12. This 

pathology is common in the left atrioventricular valve [49], but may also occur in the right 

side of the heart [50]. Prolapse of atrioventricular valves tends to cause regurgitation (i.e., 

flow of blood back into the atrium) during systole [1].

5.2. Material modeling

Accurate modeling of tricuspid valve structural mechanics requires careful attention to the 

constitutive modeling of the leaflet tissue. The extreme nonlinearity of a realistic soft tissue 

model also serves to test the robustness of the solution algorithm developed in Section 3.4.
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5.2.1. Leaflets—To model the leaflet tissue, we assume that the material is incompressible 

and the second Piola– Kirchhoff stress, S, is computed from the Green–Lagrange strain, E, 

using an isotropic Fung-type material model, in which the extracellular matrix and fiber 

stiffness contributions are modeled by neo-Hookean and exponential terms, respectively. 

Specifically,

S = 2
∂ψel
∂C − pC−1, (50)

where

ψel =
c0
2 (I1 − 3) +

c1
2 e

c2(I1 − 3)2
− 1 , (51)

and

∂ψel
∂C = 1

2 c0 + 2c1c2(I1 − 3)e
c2(I1 − 3)2

I . (52)

In the above, C = 2E + I is the right Cauchy–Green tensor, p is a Lagrange multiplier 

enforcing incompressibility7, and c0, c1, and c2 are material parameters. For the tricuspid 

valve, we use c0 = 10 kPa, c1 = 0.209 kPa, and c2 = 9.046. (c1 and c2 are obtained from [45, 

Table 2].) The leaflet mass density is 1 g/cm3.

Remark 6: The exponential term in (51) leads to nonlinearities that are especially difficult 

to resolve. We improve the robustness of our nonlinear solution procedure by assembling the 

tangent operator D( · )R(yk
n + 1, NA) (cf. Section 3.4) with a larger value of c0. This requires 

more iterations, but does not change the converged solution and makes the iterative 

procedure more robust. In the simulation of valve dynamics, we increase the c0 of the 

tangent operator to 200 kPa.

Remark 7: Native valve tissue is typically anisotropic, due to collagen fibers being oriented 

in a preferred direction. Material anisotropy is easily handled by Kirchhoff–Love shell 

formulations [51–53], but obtaining collagen fiber orientation data, incorporating it into an 

adequate constitutive model, and calibrating the parameters of that model are challenging 

research topics outside the scope of the present work, which is primarily focused on contact 

mechanics.

7For shell analysis, one can use the plane stress condition, S33 = 0, to analytically determine the Lagrangian multiplier p (see Kiendl 
et al. [34, Section 5.1] for details).
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5.2.2. Chordae—As mentioned in Section 4.2, we restrict the cable material to a simple 

St. Venant–Kirchhoff model. The St. Venant–Kirchhoff model is typically a poor choice for 

the stress–strain relation of biological soft tissue about its true reference configuration. 

However, it can be justified in the case of modeling the tensile response of chordae 

tendineae, if the reference configuration of the cable is understood to have already been 

stretched through the chordae’s soft “pre-transition” regime, in which most of the collagen 

fibers remain slackened and contribute no tensile stiffness. The Young’s modulus of the 

cable model is then selected to approximate the stiffer “post-transition” regime, in which 

most of the collagen fibers are recruited. Pre- and post-transition stiffness values for porcine 

mitral chordae were calculated by fitting ex vivo experimental data in [54, Table 1]. The 

cited work found that the pre-transition stiffness is several orders of magnitude smaller than 

the post-transition stiffness. Based on this data, we follow [55] and [56] in neglecting pre-

transition stiffness and considering the stress-free reference configuration of the chordae to 

include tensile strain up to the transition point. For our model of the tricuspid valve, we 

select a moderately higher effective post-transition stiffness of Eca = 4 × 108 dyn/cm2, in 

recognition of the fact that tricuspid chordae are typically stiffer [48] than the mitral chordae 

considered in the cited studies.

5.3. Boundary conditions

Contact in the atrioventricular valves is primarily a concern during systole, when these 

valves are closed. We simulate valve closure by applying a pressure follower load to the 

ventricular side of the leaflets. The pressure load as a function of time is

p = (25 mmHg) t /T t < T
1 otherwise, (53)

where the ramp-up time scale T is set to T = 0.01 s. The magnitude after time T is 

representative of normal tricsupid valve pressure gradients during systole [57]. Loss of 

energy to the surrounding blood is modeled with mass damping, in both the leaflets and the 

chordae. The damping coefficients Csh and Cca are both 2000 (dyn/g)/(cm/s). The shell 

structure subproblem is subject to a pinned boundary condition at the annulus. The 

connections of the chordae to the papillary muscles are subject to strongly-enforced 

homogeneous Dirichlet boundary conditions on displacement.

5.4. Computational setup

The B-spline surface and curves defining the leaflet and chordal geometry are directly used 

as an isogeometric computational model. The leaflets consist of 1540 cubic B-spline 

elements and the chordae contain 373 cubic B-spline elements. The pinned boundary 

condition at the valve annulus is enforced strongly in the discrete model by fixing the first 

row of control points. Adaptive time stepping is used with a maximum time step size of 

Δtmax = 10−4 s. The parameters defining the contact potential are p = 4, kc = 1.0 × 106 g cmp

−5 s−2, rin/(rout − rmin) = 0.7, rmin/rout = 0.2, and rout = 0.05 cm.
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5.5. Results

The closing behavior of the model with intact chordae is illustrated through a series of 

snapshots in Figure 13. The complex folding of the valve leaflets is clearly outside the scope 

of geometries like [4, Figure 20] for which our earlier contact approach was designed, but 

the potential-based method remains effective. While the closed configuration exhibits 

creases separating three general “leaflets” (to which the tricuspid valve owes its name), the 

divisions between these parts of the shell structure are not clear-cut, and self-contact is 

essential. Figure 14 visualizes the pinballs (Gauss points) on the chordae that are involved in 

contact. The shell–cable contact and the cable– cable contact are clearly shown. The steady-

state configuration shown in Figure 13f is compared, in Figures 15 and 16, with the steady-

state configuration resulting from removal of chordae tethering the anterior leaflet. The valve 

with ruptured chordae clearly exhibits prolapse of the anterior leaflet. The large, visible gap 

between the leaflets in the prolapsed case clearly illustrates that this pathological condition 

is associated with regurgitation.

Remark 8: The sharp curvature near the free edge of the prolapsed anterior leaflet (visible 

in Figures 15 and 16) is likely an artifact of our use of a pressure follower load on the 

ventricular side of the leaflet. This potentially-unphysical solution feature highlights the 

importance of incorporating fluid–structure interaction into atrioventricular valve prolapse 

models, as we plan to do in future studies.

6. Conclusion

The contact procedures that we developed in [4, Section 5.2] for isogeometric and immerso-

geometric analysis of aortic valves are not suitable for analysis of the more complicated 

atrioventricular valves. To develop a more versatile formulation, we build on the ideas 

outlined in [15] and find that, for a particular choice of quadrature and a potential function 

of limited range, one obtains a discrete scheme with some similarities to the pinball 

algorithm [20]. Singularities in our new formulation require specialized nonlinear solution 

and time stepping procedures for reliable convergence. The main limitation of the present 

study is the need for an ad hoc selection of parameters defining both the contact potential 

and the solution algorithm. In future extensions, we plan to develop a more principled 

procedure for selecting parameters. This will reduce computational cost, by avoiding 

unnecessary refinement in time and/or damping of the nonlinear iteration.

This will enable future immersogeometric fluid–structure interaction (FSI) simulations of 

atrioventricular valves using the technologies described in this paper for the structural 

subproblem. As mentioned in Remark 2, we consider the contact methodology discussed in 

this paper especially well suited for use in conjunction with immersed numerical 

approaches. However, additional research is required to determine how best to combine the 

nonlinear solution and adaptive time stepping algorithms described in Section 3.4 with 

existing FSI solution procedures.

The versatile formulation developed in this paper could also be applied to other challenging 

problems. The demonstrated effectiveness of our formulation for shell-against-shell contact 

Kamensky et al. Page 28

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



looks promising in the context of studying damage resulting from impacts against thin 

composite structures, which some of us have recently become interested in [58]. The 

formulation’s compatibility with point cloud geometry descriptions also leads us to consider 

applying it to meshfree discretizations of structures fragmenting after blast loading [59, 60], 

but the use of an unbounded potential function in explicit computations may lead to 

difficulties, warranting modifications to the present framework, such as reverting to a non-

singular force–separation law.
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Figure 1. 
Notation for the integral used to show that p ≥ 4 is sufficient for the z-component of force on 

ω1 to diverge.
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Figure 2. 
The function (14) with kc = 1, p = 4, rin = 1, and rout = 2.

Kamensky et al. Page 34

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Suppose that quadrature points XA and XB from body Ω1 are constrained to slide along the 

dashed line and coupled by an elastic force, represented by the blue spring. Even with rmin > 

0 and initially-overlapping regions of infinite penalty for points XA and XB, the contacting 

point XC from Ω2 can drive them apart if pushed with sufficient force.
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Figure 4. 
The Bézier elements of the T-spline sphere–plate model. (The sphere is a hollow shell 

structure.)
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Figure 5. 
The steady state of the sphere–plate interaction subject to gravitational force.
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Figure 6. 
Results of mesh independence study of the sphere–plate interaction subject to gravitational 

force.
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Figure 7. 
Snapshots of the sphere–plate impact problem at several time frames.
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Figure 8. 
The history of the kinetic, elastic, contact, and total energies for the sphere–plate impact 

problem.
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Figure 9. 
The reef knot problem setup. Black lines indicate the Bézier elements of the reef knot B-

spline surface. This is the stress-free configuration of the ribbons.
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Figure 10. 
Results with cross-sectional slices.
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Figure 11. 
Time step size and number of nonlinear iterations at each time step of the knot-tying 

simulation.
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Figure 12. 
The B-spline surface and elements of the tricuspid valve leaflet and the B-spline chordae.
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Figure 13. 
A series of snapshots illustrating the closing behavior of the tricuspid valve with intact 

chordae. Color indicates maximum in-plane eigenvalues of E (MIPE) on the atrial side of 

the leaflets.
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Figure 14. 
Cable pinballs with nonzero contact forces are highlighted in red, illustrating shell–cable and 

cable–cable contact. (Recall that pinballs near one another in the reference configuration do 

not interact.)
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Figure 15. 
Comparison of coaptation in normal and prolapsing valves.
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Figure 16. 
Comparison of MIPE contours in normal and prolapsing valves.
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