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ORIGINAL ARTICLE
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Abstract
Purpose  Inflamed, prone-to-rupture coronary plaques are an important cause of myocardial infarction and their early iden-
tification is crucial. Atherosclerotic plaques are characterized by overexpression of the type-2 somatostatin receptor (SST2) 
in activated macrophages. SST2 ligand imaging (e.g. with [68 Ga]Ga-DOTA-TOC) has shown promise in detecting and 
quantifying the inflammatory activity within atherosclerotic plaques. However, the sensitivity of standard axial field of 
view (SAFOV) PET scanners may be suboptimal for imaging coronary arteries. Long-axial field of view (LAFOV) PET/
CT scanners may help overcome this limitation. We aim to assess the ability of [68 Ga]Ga-DOTA-TOC LAFOV-PET/CT in 
detecting calcified, SST2 overexpressing coronary artery plaques.
Methods  In this retrospective study, 108 oncological patients underwent [68 Ga]Ga-DOTA-TOC PET/CT on a LAFOV sys-
tem. [68 Ga]Ga-DOTA-TOC uptake and calcifications in the coronary arteries were evaluated visually and semi-quantitatively. 
Data on patients’ cardiac risk factors and coronary artery calcium score were also collected. Patients were followed up for 
21.5 ± 3.4 months.
Results  A total of 66 patients (61.1%) presented with calcified coronary artery plaques. Of these, 32 patients had increased 
[68 Ga]Ga-DOTA-TOC uptake in at least one coronary vessel (TBR: 1.65 ± 0.53). Patients with single-vessel calcifications 
showed statistically significantly lower uptake (SUVmax 1.10 ± 0.28) compared to patients with two- (SUVmax 1.31 ± 0.29, 
p < 0.01) or three-vessel calcifications (SUVmax 1.24 ± 0.33, p < 0.01). There was a correlation between coronary artery 
calcium score (CACS) and [68 Ga]Ga-DOTA-TOC uptake, especially in the LAD (p = 0.02). Stroke and all-cause death 
occurred more frequently in patients with increased [68 Ga]Ga-DOTA-TOC uptake (15.63% vs. 0%; p:0.001 and 21.88% vs. 
6.58%; p: 0.04, respectively) during the follow-up period.
Conclusion  [68 Ga]Ga-DOTA-TOC as a marker for the macrophage activity can reveal unknown cases of inflamed calcified 
coronary artery plaques using a LAFOV PET system. [68 Ga]Ga-DOTA-TOC uptake increased with the degree of calcifica-
tion and correlated with higher risk of stroke and all-cause death. [68 Ga]Ga-DOTA-TOC LAFOV PET/CT may be useful 
to assess patients’ cardiovascular risk.

Keywords  Whole-body PET/CT · LAFOV PET/CT · Inflamed coronary plaques · Atherosclerosis · Somatostatin receptor 
imaging
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Introduction

In patients with coronary artery disease (CAD), inflamed 
and prone-to-rupture coronary plaques are associated 
with higher risk of major adverse cardiac events (MACE) 
[1]. Accordingly, numerous invasive and non-invasive 
approaches for their early identification and characterization 
have been tested. Among various possible imaging targets, 
macrophage infiltration, especially sustained by pro-inflam-
matory monocyte-derived macrophages (M1-phenotype), 
have emerged as a potential marker of plaque vulnerability 
[1, 2]. In fact, lipid-derived metabolites such as low-density 
lipoprotein (LDL), that can be found in coronary plaques, 
are known to stimulate the migration of macrophages into 
the arterial intima, wherein they mature and become phago-
cytic [2, 3]. These “activated” macrophages then upregulate 
inflammatory metabolic pathways causing the progression 
of CAD [1, 4].

Positron emission tomography (PET) is an excellent tool 
for the assessment and the characterization of various meta-
bolic processes. Metabolic radiotracers like [18F]FDG proved 
reliable in the evaluation of inflamed plaque [5], but lacks 
specificity for the identification of activated macrophages. In 
this regard, somatostatin receptor 2 (SST2) imaging may rep-
resent an important advance, as SST2, a G-protein-coupled 
transmembrane protein, is overexpressed by M1-macrophages 
[6, 7]. Consistent with this concept, it was reported that SST2 
imaging yields improved accuracy in discriminating high-risk 
versus low-risk coronary lesions than [18F]FDG [8, 9].

While SST2 imaging with PET has proven promising 
in the evaluation of inflamed vascular plaque in patients 
investigated for oncological reasons [10, 11], its wider 
implementation has been precluded by its lower diagnos-
tic accuracy compared to [18F]FDG as a result of its lower 
sensitivity. The relatively low total number of activated 
macrophages in plaques causes low signal-to-noise ratio 
(SNR) in SST2 imaging, whereas [18F]FDG is imported 
by glucose transporters (GLUT), which are upregulated 
on a wide variety of inflammatory cells and not limited to 
macrophages [12, 13]. Other potential challenges include 
motion artifacts (cardiac and respiratory), shorter half-life 
(68 min vs. 110 min) and lower positron yield of the 68 Ga 
compared to for example 18F [14]. Hence, areas affected 
by an infiltration of M1-macrophages are difficult to image 
on conventional PET scanners due to low signal collection 
efficiency and limited resolution [15, 16]. This gap has now 
been closed with the introduction of new silicon photomul-
tiplier (SiPM)-based, long-axial field-of-view (LAFOV) 
PET/CT scanners. The recent clinical implementation of 
LAFOV PET/CT with 15 fold improvement in sensitiv-
ity and a spatial resolution of approximately 3 mm allows 
for identification and quantification of small areas with 

low radiotracer uptake [17–21]. The higher sensitivity of 
LAFOV systems results in higher temporal resolution [22]. 
This could be of utility in gated acquisitions and facilitate 
the imaging of structures vulnerable to motion artifacts, 
such as the coronary arteries.

This study aims to evaluate the detectability of calcified 
coronary artery plaques overexpressing SST2 on LAVOF 
PET scanners. To investigate SST2 overexpression as marker 
of plaque vulnerability, PET findings were correlated to car-
diovascular risk factors and clinical outcomes.

Materials and methods

Patient population and clinical information

This is a single-center, retrospective observational study 
collecting data from a cohort of oncologic patients 
(n = 113) who underwent clinical routine [68  Ga]
Ga-DOTA-TOC (DOTA = tetraazacyclododecane 
tetraacetic acid and TOC = D-Phe-c(Cys-Tyr-D-Trp-Lys-
Thr-Cys)-Thr(ol)) PET/CT scans between January 2021 
and December 2021 on a LAFOV PET/CT [23]. Patients 
with known coronary artery disease were excluded for the 
analysis (n = 5). Electronic medical records were searched 
for the presence of established cardiovascular risk fac-
tors [24] (Table 1). Clinical records of MACE (myocar-
dial infarction, hospitalization for cardiac reasons, stroke, 
coronary artery revascularization) and/or all-cause death 
during the follow-up period were also collected (Table 2). 
Patients were followed up for 21.5 ± 3.4 months. Patients’ 
characteristics are outlined in the Supplementary Material 
(Table 1).

Imaging protocol

PET images were acquired 60  min after intravenous 
injection of 152.2 ± 9.2 MBq [68 Ga]Ga-DOTA-TOC on 
a LAFOV PET/CT scanner (Biograph Vision Quadra, 
Siemens Healthineers, Erlangen, Germany). Images were 
acquired in list-mode for 10 min in a single-bed position 
(skull-vertex to mid femur). Image reconstruction was 
performed as previously described using high sensitivity 
mode (HS, (MRD) maximum ring difference of 85) [18]. 
The used MRD enabled a uniform sensitivity profile across 
the axial FOV [19]. Non-contrast enhanced, low-dose CT 
images were used for attenuation correction and to iden-
tify and score calcified coronary artery plaques [25]. CT 
characteristics were published previously [26, 27]. The 
same CT acquisitions were used to assess coronary artery 
calcium score (CACS).
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Image evaluation

Two nuclear medicine physicians independently from each 
other evaluated all images. Appropriate workstations and 
software were used for quantitative image analysis and iden-
tification of target lesions (Syngo.via, Siemens Healthineers, 
Erlangen, Germany) [28].

Standardized uptake values (SUVmax/peak) of calcified 
plaques were assessed by manually placing a volume-of-
interest (VOI) with a 40%-iso-contour around the lesion, 
as previously described [26, 29]. For the assessment of 
background activity (expressed as SUVmean), 10 cm3 VOI 
were manually drawn in the descending aorta (blood pool). 
Target-to-background ratio (TBR) was calculated as the ratio 
of SUVmax of the calcified plaque and the mediastinal blood 
pool (SUVmean). A plaque was defined as [68 Ga]Ga-DOTA-
TOC-avid with visual detectable uptake if TBR was > 1.00.

Patients grouping

Patients were subdivided in two groups according to the pres-
ence of calcified plaques. Patients with calcified coronary 
plaques were further divided into patients with and without 
[68 Ga]Ga-DOTA-TOC uptake. Patients with calcified plaques 
were also grouped according to the number of affected coronary 
vessels (score 1–3). CACS was calculated using the Syngo.via 
Calcium-Score tool according to Agatston, with a threshold of 
130 Hounsfield Units (HU) as previously described [25, 30].

Statistical analysis

Statistical analysis was performed using Graphpad Prism 
Version 8 (San Diego, California). Data are presented either 
as mean ± standard deviation (SD) or as median and range. 

Comparisons between different groups (with/without coronary 
calcification, with/without [68 Ga]Ga-DOTA-TOC uptake) were 
performed using Fisher’s exact test for proportions and with 
Student’s T-test after testing for normal distribution applying 
Kolmogorov–Smirnov test for continuous values. Correlation 
between [68 Ga]Ga-DOTA-TOC uptake and calcifications was 
tested either using Pearson’s correlation coefficient or using a 
linear correlation model. Uptake changes after peptide receptor 
radionuclide therapy (PRRT) in semi-quantitative image param-
eters (e.g., SUV) were characterized using paired Student’s 
T-test. P values < 0.05 were considered statistically significant.

Results

Calcified coronary artery plaques and patient‑based 
sensitivity

A total of 108 patients were included in the analysis, without 
known coronary artery disease (CAD). Of these, 66 patients 
(61.1%) had calcified plaques of any degree in the coronary 
arteries. Calcified plaques were detected in one single vessel 
in 30/66 patients (45.5%), in two vessels in 12/66 (18.2%), 
and in three vessels in 24/66 (36.4%). Mean CACS was 21.0 
(1.8–271.0). Most affected coronary arteries were left ante-
rior descending artery (LAD 18.40 (IQR 0–192.6), right 
coronary artery (RCA) 3.8 (0-IQR 69.9), left main (LM) 
0 (IQR0-36.2), and left circumflex artery (LCX) 0 (IQR0-
28.0)), respectively.

Among patients with detectable calcified plaques, 
increased [68 Ga]Ga-DOTA-TOC uptake was present in 
at least one coronary artery in 32 patients (48.48%), with 
SUVmax 1.21 ± 0.30, SUVpeak 1.01 ± 0.23, TBR 1.65 ± 0.53 
(Figs. 1, 2). In patients with calcifications, increased [68 Ga]

Table 2   Major adverse cardiac events (MACE) during follow up 
overall and for patients with calcified coronary artery plaques. Out-
lined are patients’ characteristics for both subgroups (either in per-

centages (%) or in mean ± SD) in both subgroups (with and without 
[68 Ga]Ga-DOTA-TOC uptake)

P-values < 0.05 are considered statistically significant, indicated by an asterisk (“*”)

Overall (n = 108) Subgroub: patients with calcified coronary arteries 
(n = 66)

MACE during follow-up With [68 Ga]
Ga-DOTA-TOC 
uptake (n = 32)

Without [68 Ga]
Ga-DOTA-TOC 
uptake (n = 76)

p-value With [68 Ga]
Ga-DOTA-TOC 
uptake (n = 32)

Without [68 Ga]
Ga-DOTA-TOC 
uptake (n = 34)

p-value

Stroke 15.63% 0% 0.001 (*) 15.63% 0% 0.02 (*)
Myocardial Infarction 0 0 1.00 0 0 1.00
Hospitalization for cardiac reasons 0 0 1.00 0 0 1.00
Coronary artery re-vascularization 0 0 1.00 0 0 1.00
Death 21.88% 6.58% 0.04 (*) 21.88% 8.82% 0.18
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Ga-DOTA-TOC uptake was found in in the LM in 6%, in 
LAD in 69%, in LCX in 16% and in RCA in 9%. No patients 
had focally increased [68 Ga]Ga-DOTA-TOC uptake in a 
coronary artery without corresponding calcified plaque.

Global and single-vessel CACS for all 108 patients were 
compared with regard to the [68 Ga]Ga-DOTA-TOC uptake. 
Patients were divided into two groups (with and without 
uptake). Global and single-vessel CACS was significantly 
higher in the subgroup with coronary [68 Ga]Ga-DOTA-TOC 
uptake (130.4 (20.00–509.50) vs. 0 (0–17.30), p: < 0.01). 
Global and single-vessel CACS are outlined in Table 3.

Correlation of [68 Ga]Ga‑DOTA‑TOC uptake 
and calcification

There was a significant correlation between CACS and 
[68 Ga]Ga-DOTA-TOC uptake (p = 0.03 for SUVmax and 
p = 0.04 for SUVpeak).

Sub-analysis of the relationships between CACS in each cor-
onary vessel and [68 Ga]Ga-DOTA-TOC uptake showed a signif-
icant, positive correlation in LAD (SUVmax p: 0.02 and SUVpeak 
p:0.02) (Fig. 3). Conversely, there was no significant correlation 
in LM, LCX and RCA for both SUVmax and SUVpeak.

Fig. 1   Study flowchart. Study 
flowchart showing patient 
selection and included patients. 
LAFOV, long-axial field-of-
view; PRRT, peptide receptor 
radionuclide therapy

Fig. 2   Example image revealing [68  Ga]Ga-DOTA-TOC uptake 
in calcified LAD plaque. A 78 y/o male patient with neuroendo-
crine tumor (NET) of the ileum was referred for [68  Ga]Ga-DOTA-
TOC LAFOV PET/CT. An unknown calcified plaque with signifi-

cant [68  Ga]Ga-TOTA-TOC uptake (SUVmax: 1.75, TBR: 2.50) was 
detected in the LAD. A shows the maximum intensity projection 
(MIP), B shows a coronal CT image, and C shows the coronal PET 
image
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Patients with single-vessel calcifications showed lower 
[68  Ga]Ga-DOTA-TOC uptake (SUVmax: 1.10 ± 0.34; 
SUVpeak: 0.90 ± 0.25) compared to patients with two- 
(SUVmax: 1.31 ± 0.34, SUVpeak: 1.03 ± 0.24, p < 0.01) 
or three-vessel calcifications (SUVmax: 1.21 ± 0.26, 
SUVpeak: 1.02 ± 0.22, p < 0.01) (Fig. 4). Conversely, the 

localisation of the calcified plaques in different ves-
sels did not correlate with a different degree of [68 Ga]
Ga-DOTA-TOC uptake (Supplementary Material). How-
ever, unlike LAD, the frequency of calcified plaques with 
[68 Ga]Ga-DOTA-TOC uptake was low (LM n = 2, RCX 
n = 5, RCA n = 3).

Table 3   One hundred eight patients received [68 Ga]Ga-DOTA-TOC 
PET/CT. Shown are the Calcium Scores (median and range) or the 
left main (LM), left anterior descending (LAD), left circumflex 

(LCX), right coronary artery (RCA), and global calcium score in both 
subgroups (with and without coronary tracer uptake)

P-values < 0.05 are considered statistically significant, indicated by an asterisk (“*”)

Calcium score (n = 108) With coronary [68 Ga]Ga-DOTA-TOC uptake 
(n = 32)

Without coronary [68 Ga]Ga-DOTA-TOC uptake 
(n = 76)

p-value

LM 1.3 (0–43.20) 0 (0–0) 0.02 (*)
LAD 36.9 (0.95–229.80) 0 (0–5.88) 0.02 (*)
LCX 3.2 (0–31.15) 0 (0–0) 0.05 (*)
RCA​ 11.4 (0–191.05) 0 (0–0) 0.01 (*)
Global 130.4 (20.00–509.50) 0 (0–17.30)  < 0.01 (*)

Fig. 3   Linear correlation of Calcium Score and SUVmax/peak. Indicated are the linear regression models (best fit and standard deviations) of 
global (A/B) and LAD (C/D) calcium score to SUVmax (A/C) and SUVpeak (B/D); p-values are given
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Correlation with cardiac risk factors

Patient-specific cardiovascular risk factors (e.g., hypercholester-
olaemia, hypertension, smoking, diabetes, family history of heart 
diseases, prior cardiovascular events, peripheral artery disease 

(PAD), and prior stroke) for an occurrence of a major cardiac 
event were collected. Patients with calcified coronary plaques 
more frequently had hypertension compared to patients with-
out sclerotic lesions (34.9% vs. 16.7%, p: 0.04). Furthermore, 
there was a tendency toward higher proportion of hypercholes-
terolemia (18.2% vs. 11.9%) and prior history of stroke (7.6% 
vs. 0%) in patients with calcified coronary plaques, however 
without statistical significance (p = 0.43 and 0.15, respectively).

Follow‑up

Patients with increased [68 Ga]Ga-DOTA-TOC uptake of the 
calcified coronary plaques had higher rate of all-cause death 
(21.9% vs. 6.6%; p: 0.04) as well as stroke (15.6% vs. 0%; 
p:0.001) compared to patients without (Table 2). Subgroup 
analysis of patients with calcified coronary arteries showed that 
stroke during the follow-up period occurred significantly higher 
(15.6% vs. 0%; p: 0.02), whereas no significant difference in the 
appearance of all-cause death was seen between patients with 
and without [68 Ga]Ga-DOTA-TOC plaque uptake.

Overall, 12 patients died during the follow-up period. A 
total of 3/12 suffered from organ failure; cause of death for 
9/12 was not known.

[68 Ga]Ga‑DOTA‑TOC uptake before and after PRRT​

Four of 108 patients (3.7%) underwent PRRT. Coronary 
[68 Ga]Ga-DOTA-TOC uptake at LAFOV PET/CT pre- 
and post PRRT was compared. Semi-quantitative analy-
sis (SUVmax/peak) revealed decreased tracer uptake in the 
calcified coronary artery plaques after PRRT (SUVmax: 
1.46 ± 0.14 vs. 0.94 ± 0.19, p: 0.01 and SUVpeak: 1.19 ± 0.06 
vs. 0.87 ± 0.20, p: 0.03) (Fig.  5). Two patients showed 

Fig. 4   [68 Ga]Ga-DOTA-TOC uptake by the number of calcified ves-
sels. Shown is the [68  Ga]Ga-DOTA-TOC uptake by the number of 
calcified vessels. Patients showed one, two, or three calcified coro-
nary arteries (number of calcified vessels 1–3) and were grouped 
accordingly. Patients with ≥ 2 affected coronary arteries showed sig-
nificantly higher tracer uptake (“*”) characterized by SUVmax

Fig. 5   [68 Ga]Ga-DOTA-TOC 
uptake before and after PRRT. 
Shown is the [68 Ga]Ga-DOTA-
TOC uptake in coronary artery 
plaques, SUVmax (A) and 
SUVpeak (B) before (blue) and 
after (green) peptide receptor 
radionuclide therapy (PRRT). 
Seen was a significant degrees 
of [.68 Ga]Ga-DOTA-TOC 
uptake (“*”)
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significant [68  Ga]Ga-DOTA-TOC uptake in calcified 
plaques within LAD (Ca-Score range: 5.1–351.6) and 2 
within RCA (Ca-Score range: 16.5–218.1). None of these 
patients had prior history of cardiac disease. Representa-
tive images of [68 Ga]Ga-DOTA-TOC uptake pre- and post 
PRRT are outlined in Fig. 6.

Discussion

In this study, we report the first data for [68 Ga]Ga-DOTA-
TOC imaging to detect inflamed calcified coronary artery 
plaques using a LAFOV PET/CT system. Previous work 
indicated that PET-based SST2 imaging has a clear poten-
tial in the detection of inflamed vascular plaques, with a 
more specific affinity compared to [18F]FDG [8, 9], but 
to-date, the detection of SST2 positive calcified plaques 
in routine PET/CT has been challenging. Li et al. report 
increased [68 Ga]Ga-DOTA-TATE uptake in 4/16 patients 
with calcified plaques within large arteries, resulting in a 
detection rate of 25% [31]. The detection and quantifica-
tion of [68 Ga]Ga-DOTA-TOC uptake in small vessels such 
as the coronary arteries has been even more challenging 
due to intrinsic, relative limitations in spatial and tempo-
ral resolution of contemporary standard-axial field-of-view 
(SAFOV) PET/CT systems. Such analog PET-systems with 
photomultiplier tubes (PMT) have lower contrast-to-noise 
ratios (CNR) and inferior time-of-flight resolution compared 

to new SiPM-based PET-systems [15, 32]. The introduction 
of digital whole-body PET/CT systems like LAFOV PET/
CT scanners has important advantages compared to previ-
ous generation scanners [33]. SiPM-based LAFOV systems 
have improved sensitivity, higher signal-to-noise ratios and 
allow for a more precise localization of small target lesions, 
which is expected to translate into a higher detection rate of 
small lesions compared to standard PET scanners [19, 26].

In this regard, we here report a patient-based sensitiv-
ity for [68 Ga]Ga-DOTA-TOC in calcified coronary arteries 
of 49% with LAFOV PET/CT system. This value is higher 
compared to that reported by Li et al. [31], wherein also 
larger arteries were investigated. Differently from previous 
reports, we observed significant higher [68 Ga]Ga-DOTA-
TOC uptake in patients with calcifications in more than one 
vessel. Moreover, increased [68 Ga]Ga-DOTA-TOC uptake 
in coronary arteries correlated with the global- and LAD- 
CACS. In this context, we report higher TBR compared to 
the previous report by Rominger et al. (our TBR: 1.65 ± 0.53; 
Rominger et al.: 1.21 ± 0.30);, which may reflect the noise 
reduction and increased sensitivity of a LAFOV PET system 
[9, 10, 26, 34]. However, also differences in the clinical sta-
tus of their patients may have impacted these results, and this 
may also explain why TBR in our study was generally lower 
than reported by Mojtahedi et al. (2.04 ± 1.76). It should be 
noted that none of our patients had known CAD, while 9.1% 
of patients in the study by Mojtahedi et al. had prior history 
of revascularization.

Fig. 6   [68  Ga]Ga-DOTA-TOC uptake before and after PRRT. A 80 
y/o male patient with metastatic neuroendocrine tumor of the pan-
creas was treated with peptide receptor radionuclide therapy (PRRT). 
Shown are maximum intensity projections (MIP – A/E), axial fusion 

images (B/F), stand alone PET (C/G) and stand-alone CT (D/H) 
images of a calcified inflamed RCA plaque (marked with a red 
arrow). A–D show the [68 Ga]Ga-DOTA-TOC uptake before and E–H 
after PRRT​
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Another important difference to previous reports is that 
we focused on the detection of increased DOTA-TOC uptake 
in calcified coronary plaques only. While this choice reflects 
the retrospective nature of the present study (only a low-dose 
CT and no CT-based coronary angiography was available), 
still inflamed plaques with macrocalcifications are impor-
tant to detect. Previous report showed that the most frequent 
increased uptake of SST2-tracers occurs in calcified plaques. 
Rominger et al. and Mojtahedi et al. reported that increased 
uptake was present in 75% of coronary artery calcifica-
tions as well as in plaques with high density (> 71 HU) [9, 
10]. Likewise, Malmberg et al. showed that high CACS is 
an independent predictor of increased SUVmax with [64Cu]
Cu-DOTA-TATE [2]. Not less important, plaque calcification 
is a marker of atherosclerosis, and higher CACS is widely 
recognized as a robust predictor of MACE [35, 36]. It should 
be noted that the presence of calcifications in a vascular 
plaque is a prerequisite for its vulnerability, and there is still 
a contention regarding the pattern of calcification predictive 
of higher risk of rupture [37]. Although spotty calcifications 
have been reported as a potential risk factor for the devel-
opment of higher degree of inflammation [38], inconsistent 
findings were seen with regard to largely calcified plaques. 
Some papers demonstrated that plaque calcification was 
higher in asymptomatic patients than in symptomatic patients 
[39], other works showed that a larger calcification volume 
was associated with a higher prevalence of intra-plaque hem-
orrhage [40]. Of note, studies specifically investigating the 
role of a different calcification pattern in coronary plaques 
with increased uptake of SST2-tracers are missing.

Our work expands on the association between calcified 
plaques with increased uptake of SST2-ligands and cardio-
vascular risk. Stroke occurred more often in patients with 
[68 Ga]Ga-DOTA-TOC uptake in the calcified coronary 
plaques than in patients without detectable uptake (p < 0.01). 
More importantly, patients with [68 Ga]Ga-DOTA-TOC avid 
calcified plaques had higher rate of all-cause death com-
pared to patients without [68 Ga]Ga-DOTA-TOC avid calci-
fied plaques. Our data are in line with prior observations 
based on the evaluation of both calcified and non-calcified 
plaques, wherein increased uptake of DOTA-TATE within a 
coronary plaque was associated with higher rate of MACE 
independently from other established risk factors [9, 10, 41]. 
The fact that a similar predictive value also applies to calci-
fied, possibly inflamed plaques in a medium-term follow-up 
gives confidence to also consider inflamed calcified plaques 
as determinants of cardiovascular risk. Of note, although 
all-cause death was used as surrogate for MACE, none of 
the patients in the study died from oncological reasons, and 
although a precise cause could not be identified in 9/12 
patients, a cardiac origin for the death cannot be ruled out.

In the patients undergoing PRRT, we identified a decrease 
in [68  Ga]Ga-DOTA-TOC uptake within the calcified 

coronary plaques post-therapy (SUVmax: 1.46 ± 0.14 pre vs. 
0.94 ± 0.19 post, p: 0.01). This finding is consistent with 
previous reports. Schatka et al. also showed that [68 Ga]
Ga-DOTA-TATE uptake decreases after the PRRT in large 
vessels [42]. However, we are now able to present first data 
on the effect of PPRT on vessels as small as coronary arter-
ies. This confirms that the higher sensitivity of LAFOV PET/
CT allows for detecting small changes in [68 Ga]Ga-DOTA-
TOC uptake even in small vessels. Having in mind that 
[68 Ga]Ga-DOTA-TOC uptake is a marker for macrophage 
activity, we can assume that PRRT may reduce the degree 
of plaque inflammation [42]. As such, [68 Ga]Ga-DOTA-
TOC LAFOV PET/CT might be able to identify changes of 
the plaque inflammation even in small vessels and might be 
useful to monitor anti-inflammatory therapy.

Since the presence of increased [68 Ga]Ga-DOTA-TOC 
uptake correlates with a worse clinical outcome the degree 
of uptake may represent the degree of inflammation rather 
than unspecific activity. As such, we postulate that LAFOV 
PET/CT might afford the detection of prognostic relevant 
inflammatory changes in vivo [43]. Reduced tracer uptake 
after PRRT may also suggest a reduction in the activity of 
plaque inflammation. While this may serve as a hypotheti-
cal therapeutic optional in patients with high cardiovascular 
risks, it also raises the notion that LAFOV-based [68 Ga]
Ga-DOTA-TOC PET/CT might serve as a tool for the moni-
toring of other cardiac therapies. Further studies investigat-
ing the influence of PRRT on vascular inflammation and as 
a tool for therapeutic monitoring are warranted.

Some limitations of our study should be acknowledged. 
First, as LAFOV systems were recently introduced, our 
patient sample is small. At the time of investigation, neither 
ECG-triggered acquisitions nor algorithms to correct for 
motion artifacts were available for this scanner. Therefore, 
CT-based coronary angiography (CCTA) was not performed. 
Thus, as previously mentioned, the retrospective nature of 
our study prevented us to evaluate the impact of [68 Ga]
Ga-DOTA-TOC uptake in non-calcified plaques. Addition-
ally, we included oncologic patients referred for a [68 Ga]
Ga-DOTA-TOC PET/CT and did not select patients with 
CAD, who might have been treated by a cardiologist in the 
follow-up period. However, our cohort represents a real world 
setting where the aim is to characterize cardiac lesions of risk 
for inflammation as soon as possible. In this regard, it should 
be noted that patients were not on oncologic therapies other 
than somatostatin analogs, which exclude a potential bias due 
to therapeutic regimen. Furthermore, the fact those patients 
were also not on cardiologic therapy and did not change their 
therapeutic regimen after PET excludes another potential bias 
in the evaluation of the prognosis. Most calcified plaques 
were located in the LAD. The frequency of calcified plaques 
with [68 Ga]Ga-DOTA-TOC uptake apart from LAD was low. 
Therefore, the prognostic impact of lesion location could not 
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be properly assessed. This is a limitation of our data and 
should be addressed in further studies. However, the cor-
rect identification of significant stenosis (potentially caused 
by inflamed plaques) in the LAD represents a paramount of 
importance for therapy decision. In fact, a > 50% stenosis of 
the proximal LAD with evidence of ischemia is currently 
considered a robust indication for a successful revasculari-
zation [44, 45]. The fact that no correlation between car-
diovascular risk factors and the degree of uptake was found 
differs from what reported in the previous studies [9, 10]. 
The fact that a different camera system was used may partly 
explain this discrepancy, as well as the fact that our popula-
tion did not consist of patients with CAD. But an explanation 
of this aberrance requires further investigations. Finally, we 
here considered active only plaques with TBR ≥ 1. Hitherto, 
no clear cut-off is known for the detection of SST2 positive 
plaques and most evaluation relay on visual interpretation. 
Previous studies on inflamed plaques considered in the final 
analysis all lesions irrespective from their TBR [9, 10]. It 
should be noted that previous works also considered soft 
plaques. In this regard, the fact that applying our threshold 
to calcified plaques yielded significant associations with the 
degree of calcification and with follow-up data gives reliance 
in considering it adequate on LAFOV PET to identify con-
ceivably inflamed plaques. The degree of such inflammation 
is then essential to stratify cardiovascular risk.

While additional prospective head-to-head comparisons 
with, e.g., [18F]FDG are needed to support our data and 
implement LAFOV PET/CT in clinical routine, the results 
of our study support the concept that LAFOV PET sys-
tems may serve as an important tool to identify patients at 
increased risk of MACE.

Conclusion

Using [68 Ga]Ga-DOTA-TOC as a marker for the M1-mac-
rophage infiltration and subsequent inflammation within 
calcified coronary plaques in LAFOV PET/CT imaging 
revealed conceivably inflamed coronary plaques in onco-
logic patients without history or symptoms of CAD. LAFOV 
PET could be utilized to assess the inflammation of calcified 
coronary artery plaques. Patients with higher burden of cal-
cified plaques showed significantly higher [68 Ga]Ga-DOTA-
TOC uptake, which correlated with higher risk of all-cause 
death and stroke. If the present results will be confirmed 
in large prospective trials, [68 Ga]Ga-DOTA-TOC LAFOV 
PET/CT may be considered an useful tool to assess the pres-
ence of inflamed, prone-to-rupture coronary plaques, with 
important advantages in cardiovascular risk stratification.
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