
UCSF
UC San Francisco Previously Published Works

Title
Gene-Specific Effects on Brain Volume and Cognition of TMEM106B in Frontotemporal Lobar 
Degeneration.

Permalink
https://escholarship.org/uc/item/7hv590fn

Journal
Neurology, 103(8)

Authors
Vandebergh, Marijne
Ramos, Eliana
Corriveau-Lecavalier, Nick
et al.

Publication Date
2024-10-22

DOI
10.1212/WNL.0000000000209832
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7hv590fn
https://escholarship.org/uc/item/7hv590fn#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE OPEN ACCESS

Gene-Specific Effects on Brain Volume and Cognition
of TMEM106B in Frontotemporal Lobar Degeneration
Marijne Vandebergh, PhD, Eliana Marisa Ramos, PhD, Nick Corriveau-Lecavalier, PhD,

Vijay K. Ramanan,MD, PhD, John Kornak, PhD, CarlyMester, BA, Tyler Kolander, BA, Danielle E. Brushaber, BS,

Adam M. Staffaroni, PhD, Daniel H. Geschwind, MD, PhD, Amy A. Wolf, BS, Kejal Kantarci, MD,

Tania Gendron, PhD, Leonard Petrucelli, PhD, Marleen Van den Broeck, BS, Sarah Wynants, BS,
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Abstract
Background and Objectives
TMEM106B has been proposed as a modifier of disease risk in FTLD-TDP, particularly in GRN
pathogenic variant carriers. Furthermore, TMEM106B has been investigated as a disease modifier
in the context of healthy aging and across multiple neurodegenerative diseases. The objective of
this study was to evaluate and compare the effect of TMEM106B on gray matter volume and
cognition in each of the common genetic FTD groups and in patients with sporadic FTD.

Methods
Participants were enrolled through the ARTFL/LEFFTDS Longitudinal Frontotemporal Lo-
bar Degeneration (ALLFTD) study, which includes symptomatic and presymptomatic indi-
viduals with a pathogenic variant in C9orf72, GRN, MAPT, VCP, TBK1, TARDBP, symptomatic
nonpathogenic variant carriers, and noncarrier family controls. All participants were genotyped
for the TMEM106B rs1990622 SNP. Cross-sectionally, linear mixed-effects models were fitted
to assess an association between TMEM106B and genetic group interaction with each outcome
measure (gray matter volume and UDS3-EF for cognition), adjusting for education, age, sex,
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and CDR+NACC-FTLD sum of boxes. Subsequently, associations between TMEM106B and each outcome measure were
investigated within the genetic group. For longitudinal modeling, linear mixed-effects models with time by TMEM106B
predictor interactions were fitted.

Results
The minor allele of TMEM106B rs1990622, linked to a decreased risk of FTD, associated with greater gray matter volume in
GRN pathogenic variant carriers under the recessive dosage model (N = 82, beta = 3.25, 95% CI [0.37–6.19], p = 0.034). This
was most pronounced in the thalamus in the left hemisphere (beta = 0.03, 95% CI [0.01–0.06], p = 0.006), with a retained
association when considering presymptomaticGRN pathogenic variant carriers only (N = 42, beta = 0.03, 95%CI [0.01–0.05], p
= 0.003). Theminor allele ofTMEM106B rs1990622 also associated with greater cognitive scores among allC9orf72 pathogenic
variant carriers (N = 229, beta = 0.36, 95% CI [0.05–0.066], p = 0.021) and in presymptomatic C9orf72 pathogenic variant
carriers (N = 106, beta = 0.33, 95% CI [0.03–0.63], p = 0.036), under the recessive dosage model.

Discussion
We identified associations of TMEM106B with gray matter volume and cognition in the presence of GRN and C9orf72
pathogenic variants. The association of TMEM106Bwith outcomes of interest in presymptomaticGRN andC9orf72 pathogenic
variant carriers could additionally reflect TMEM106B’s effect on divergent pathophysiologic changes before the appearance of
clinical symptoms.

Introduction
Frontotemporal lobar degeneration (FTLD) is one of the
leading causes of dementia in individuals younger than 65
years and represents 10%–20% of all dementias. The term
frontotemporal dementia (FTD) is used as an umbrella term
for the spectrum of clinical manifestations that may result
from FTLD, such as progressive changes in behavior or lan-
guage difficulties. Some patients may also develop amyo-
trophic lateral sclerosis (ALS) or parkinsonism. One-third of
patients show a strong family history, with most common
genetic causes of FTD being autosomal dominant pathogenic
variants in the progranulin (GRN) gene,1,2 the microtubule-
associated protein tau (MAPT) gene,3 and the chromosome 9
open reading frame 72 (C9orf72) gene.4

Apart from autosomal dominant pathogenic variants causing
FTD, additional genetic risk factors have been identified. In a
genome-wide association study (GWAS) for the subgroup of
patients with FTLD characterized by TDP-43 pathology
(FTLD-TDP), TMEM106B was identified as a risk factor.5

The major allele (A) of the lead variant in the TMEM106B
locus (rs1990622) was associated with an increased risk for
developing FTLD-TDP or, alternatively, the minor allele (G)
conferred protection. Of interest, the association with
TMEM106B was most pronounced in the subset of patients
with FTLD-TDP carrying a GRN pathogenic variant,5 im-
plying that disease risk imposed by autosomal dominant
pathogenic variants is also subject to genetic modifiers. In a

GWAS of symptomatic GRN cases vs population controls,
individuals carrying the minor TMEM106B haplotype indeed
showed a 50% lower chance of developing disease symptoms
as compared with GRN pathogenic variant carriers without
the minor TMEM106B haplotype.6 Several other reports support
the reduced disease penetrance associated with the minor (pro-
tective) TMEM106B haplotype,7 in particular in patients with
GRN pathogenic variants.8 Strikingly, an obligateGRN pathogenic
variant carrier was still unaffected in their 80s and found to be a
homozygous carrier of the minor TMEM106B haplotype.9 This
suggests that carrying 2 copies of the TMEM106B minor allele
may counteract the disease-causing effects of theGRN pathogenic
variant. A protective effect of the minor allele of TMEM106B
rs1990622 SNP has also been demonstrated in C9orf72 repeat
expansion carriers, although less prominent compared with GRN
pathogenic variant carriers.10 Although this has implications for
genetic counselling, genotyping TMEM106B in GRN pathogenic
variant carriers in the diagnostic setting is not routinely being
performed.

TMEM106B has also been investigated as a disease modifier
in the context of healthy aging. In elderly adults, the major
risk allele of rs1990622 is associated with a smaller volume
of the superior temporal gyrus, especially in the left hemi-
sphere,11 with more advanced TDP-43 pathology at au-
topsy,12 increased biological aging in the prefrontal
cortex,13 worse cognitive function,13 and decreased neuro-
nal proportion.14 Moreover, in patients with FTD carrying 2

Glossary
AD = Alzheimer disease; ALS = amyotrophic lateral sclerosis; CBS = corticobasal syndrome; FTD = frontotemporal dementia;
FTLD = frontotemporal lobar degeneration; GWAS = genome-wide association study; PD = Parkinson disease; ROI = region
of interest.
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copies of the risk allele (AA) compared with the (AG+GG)
group, lower cortical gray matter volumes in the frontal,
temporal, cingulate, and insula cortices were noted.15

TMEM106B has also been shown to be a modulator of gray
matter volume in presymptomatic pathogenic variant car-
riers16 and of cognitive trajectories over time among pa-
tients with clinical FTD.17 However, associations of
TMEM106B with structural imaging and cognition within
different FTD genetic groups remain to be investigated.
Beyond FTLD, TMEM106B has been implicated in TDP-43
pathology in Alzheimer disease (AD),18 cognition in Par-
kinson disease (PD),17 and ALS, though with conflicting
findings in directionality of effects in ALS.19,20

In this study, we aimed to investigate the modifying effects
of TMEM106B in the largest collection of patients with
systematically ascertained FTD and families from the
ARTFL/LEFFTDS Longitudinal Frontotemporal Lobar
Degeneration (ALLFTD) study, on gray matter volume and
cognitive measures. Understanding the modifying effects of
TMEM106B across genetic FTD subtypes is crucial in light of
genetic counselling and the development of gene-based
therapies.

Methods
Study Participants and Genetic Analysis
Participants were enrolled through Advancing Research and
Treatment for Frontotemporal Lobar Degeneration
(ARTFL, NCT02365922) and Longitudinal Evaluation of
Familial Frontotemporal Dementia Subjects (LEFFTDS,
NCT02372773)21 which combined into the ARTFL/
LEFFTDS Longitudinal Frontotemporal Lobar De-
generation (ALLFTD, NCT04363684) study. These stud-
ies enrolled participants through a consortium of 27 centers
across the United States and Canada between 2015 and
2023. Here, we report data from the most recent study visits
for each participant as of October 26, 2023.

ALLFTD participants had genetic testing at the University of
California, Los Angeles, using published methods.22 Briefly,
DNA samples were screened for genes previously implicated
in neurodegenerative diseases, including GRN,MAPT, TBK1,
VCP, TARDBP, using targeted sequencing or whole-exome
sequencing. The presence of hexanucleotide repeat expan-
sions in C9orf72 was detected using both fluorescent and
repeat-primed PCR. TMEM106B rs1990622 genotyping was
performed by real-time PCR on a LightCycler 480 System
using Taqman SNP Genotyping Assays (#C__11171598_
20). Assays were run in duplicate.

Genome-wide SNP genotyping data were used to perform
lineage analysis using PLINK, as previously described.23

Briefly, QCwas performed to remove individuals with low call
rate and filter autosomal SNPs for missingness, frequency, and
deviation from Hardy-Weinberg equilibrium. Genetic ances-
try was inferred by projecting genotyped samples into the

principal components of the 1000 Genomes reference panel,
using R package bigsnpr. Identity-by-descent (IBD) estimates
were then calculated to determine relatedness, followed by
family-network identification and pedigree reconstruction
using PRIMUS.23

Individuals with clinical data (clinical phenotype, age at visit)
and genetic data (pathogenic variant in C9orf72, GRN,
MAPT, VCP, TBK1, TARDBP, or noncarrier) available were
retained. For affected nonpathogenic variant carriers, we
only retained those with an FTD spectrum disorder, de-
fined as either behavioral variant FTD (bvFTD), FTD with
amyotrophic lateral sclerosis, corticobasal syndrome
(CBS), progressive supranuclear palsy (PSP), agrammatic/
nonfluent primary progressive aphasia, or semantic vari-
ant PPA.

Data Collection of Outcome Measures

Neuroimaging Outcome: Gray Matter Volume
Image acquisition and processing were conducted as de-
scribed previously.24 Before any preprocessing of the images,
all T1-weighted images underwent quality control assessment
at the Mayo Clinic Rochester in which images with excessive
motion or other image artifacts were excluded. The images
were processed by the UCSF Memory and Aging Center
Imaging Core. The N3 algorithm was used for bias field
correction of the T1-weighted images,25 and SPM12 (Well-
come Trust Center for Neuroimaging, London, UK,26

fil.ion.ucl.ac.uk/spm) unified segmentation for segmentation
of the images.27 By nonlinear registration template generation
using the Large Deformation Diffeomorphic Metric Mapping
framework,28 a customized group template was generated
from the segmented gray and white matter tissues and CSF.
Participants’ native space gray and white matter were geo-
metrically normalized to the group template, modulated, and
then smoothed in the group template. The applied smoothing
used a Gaussian kernel with 8;mm full width half maximum.
Every step of the transformation was carefully inspected
from the native space to the group template. From in-
dividual participants’ smoothed, modulated gray matter in
template space, regional volume estimates were calculated
by taking the mean of all voxels in several a priori regions of
interest (ROIs).29 The ROIs are summarized in eTable 1.
All measures were expressed as a percentage of total in-
tracranial volume.

Cognitive Outcome
Cognition was defined using the National Alzheimer’s Co-
ordinating Center UniformData Set (v3.0) executive function
composite score (UDS3-EF), as described previously.30,31

The UDS3-EF is an item response theory-based composite
derived from 7 total UDS3-EF test scores: category fluency
(animals and vegetables; total correct), lexical fluency (F and
L words; total correct), number span backward (total correct
trials), and Trail Making Test parts A and B (correct lines per
minute).30,31
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Neurofilament Light Chain Concentrations
Plasma neurofilament concentrations were determined as
described previously.32 Neurofilament light chain (NfL)
concentrations were quantified in duplicate using the ultra-
sensitive HDX analyzer by single-molecule array (Simoa)
technology (Quanterix) by investigators blinded to clinical
group allocation.32

Statistical Analysis
All analyses were conducted in R (version 4.2.2). Linear
mixed-effects analyses were conducted with the function
‘lmer’ in the R package ‘lme4’ (version 1.1.31).

For all cross-sectional analyses, the last available visit with the
outcome measure available was used. Linear mixed models

Table 1 Demographic Characteristics for ALLFTD Participants (N = 1,798)

Characteristic All pathogenic variant carriers C9orf72+ GRN+ MAPT+ Noncarriers

Sample size 523 254 118 124 1,275

Age at visit (y), mean (SD) 53.95 (14.09) 53.74 (14.03) 59.36 (12.32) 48.73 (12.91) 62.82 (12.27)

Female, n (%) 293 (56.02) 146 (57.48) 61 (51.69) 72 (58.06) 618 (48.47)

Education (y), mean (SD) 15.48 (2.59)
NA: 2

15.51 (2.50) 15.42 (2.97) 15.55 (2.44)
NA: 1

16.05 (2.62)

Race, n

EUR 501 249 110 119 1,159

Non-EUR 18 2 7 2 98

Unknown 3 3 1 0 18

TMEM106B rs1990622, n

A/A 210 97 54 47 405

A/G 243 120 56 60 626

G/G 70 37 8 17 244

CDR®+NACC-FTLD Global, n

0 209 109 43 47 279

0.5 74 38 13 19 187

≥1 221 94 60 54 766

Unknown 19 13 2 4 43

Primary clinical phenotype, n

Clinically normal 210 110 44 48 284

MBI/MCI 46 23 9 13 57

bvFTD 174 76 38 51 334

ALS 12 12 0 0 0

FTD-ALS 17 14 0 0 20

PPA 17 5 9 1 242

CBS 15 2 10 1 138

PSP 4 2 0 2 200

Other 28 10 8 8 0

UDS3-EF (composite z-score) mean (SD) −0.55 (1.46)
NA: 90

−0.56 (1.41)
NA: 30

−0.75 (1.50)
NA: 33

−0.35 (1.57)
NA: 18

−1.24 (1.39)
NA: 228

Abbreviations: ALS = amyotrophic lateral sclerosis; bvFTD = behavioral variant frontotemporal dementia; CBS = corticobasal syndrome; CDR+NACC FTLD
Global = CDR Dementia Staging Instrument plus Behavior and Language domains from the National Alzheimer’s Disease Coordinating Center Fronto-
temporal Lobar Degenerationmodule global score; EUR = European; FTD = frontotemporal dementia; MBI/MCI =mild behavioral impairment/mild cognitive
impairment; PPA = primary progressive aphasia; PSP =progressive supranuclear palsy; UDS3-EF =National Alzheimer’s Coordinating Center UniformData Set
(v3.0) executive function composite score.
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were fitted for the assessment of the main effect of the genetic
groups according to their affection status (symptomatic/
asymptomatic) on outcome variables, with individuals grou-
ped by genetic status and affection status (eTable 2), with
education, sex, age at visit, and CDR Dementia Staging In-
strument plus Behavior and Language domains from the
National Alzheimer’s Disease Coordinating Center Fronto-
temporal Lobar Degeneration module (CDR+NACC-
FTLD) sum of boxes score33 as fixed covariates and pedi-
gree as a random effect. Owing to sample size limitations
(<10), only nonpathogenic variant carriers and individuals
with a pathogenic variant in C9orf72, GRN, or MAPT were
considered.

To investigate the effect of the TMEM106B rs1990622 ge-
notype on gray matter volume and cognition, linear mixed
models were fitted with education, age, sex, genetic status, and
the CDR+NACC-FTLD sum of boxes as covariates. The
statistical analyses were performed under an additive (AA vs
AG vs GG) and recessive [(AA+AG) vs GG] genetic model,
where A and G are the major and minor allele, respectively.
Secondary subgroup analyses were conducted in affected in-
dividuals only, a participant was defined as affected when the
primary clinical phenotype was different from ‘clinically
normal’.

In addition, the effect ofTMEM106B genotype on graymatter
volume and cognition was assessed in linear mixed-effects
models with interaction testing between the TMEM106B
genotype and genetic groups (noncarrier, GRN, MAPT, or
C9orf72). If p < 0.05 for the interaction term TMEM106B*-
genetic group, linear mixed models were fitted for the indi-
viduals belonging to that genetic group, respectively
(subgroup analyses), with education, age at visit, sex, and
CDR+ NACC-FTLD sum of boxes as a covariate.

In longitudinal models, we used linear mixed-effects models
with random slopes and intercepts [(time since baseline |
participant ID) + (1 | pedigree ID)] to evaluate the associa-
tion between TMEM106B genotype dosage and longitudinal
changes in gray matter volume and cognition. Each partici-
pant’s baseline was defined as the first study visit with available
imaging and cognitive data. Only participants with at least 2
timepoints and with at least 1 visit with a clinical phenotype
different from clinically normal were included. To determine
whether TMEM106B genotype dosages were associated with
rates of change in clinical outcomes, we examined the in-
teraction between TMEM106B genotype dosage and time
since baseline visit, adjusting for baseline age, sex, education,
and baseline CDR+NACC-FTLD sum of boxes. In addition,
each genetic group was analyzed in separate models.

For the analyses with the gray matter volumes as outcome, the
primary analysis was conducted with the total gray matter
volume as outcome. If p < 0.05 for the association of
TMEM106B genotype with total gray matter volume, sec-
ondary analyses with the individual ROIs were conducted.

Sensitivity analyses were conducted excluding individuals
with non-European ancestry.

Standard Protocol Approvals, Registrations,
and Patient Consents
The ALLFTD study was approved through the Trial In-
novation Network at Johns Hopkins University. Local ethics
committees at each of the sites approved the study, and all
participants provided written informed consent or assent with
proxy consent.

Data Availability
Deidentified human/patient clinical, demographic, imaging,
and plasma NfL data are available from ALLFTD on request.
Investigators are required to complete the Request Clinical
Data form on the request portal34 and to review the data
sharing and publication policy. Data that could identify a
participant are not provided. Any additional information re-
quired to reanalyze the data reported in this paper is available
from the lead contact and ALLFTD.

Results
Association of Genetic Group and Affection
StatusWith GrayMatter Volume and Cognition
A total of 1,798 participants met the inclusion criteria for this
study (Table 1). For gray matter volumetric measures, data
were available for 958 participants (eTable 3). The UDS3-EF
composite score was available for 1,581 participants
(eTable 4).

First, we investigated the association between the gene-
affection status (combined pathogenic variant and affection
status) and our outcomes of interest: total gray matter volume
and cognition (defined by UDS3-EF composite score),
adjusting for education, age at visit, sex, and CDR+NACC-
FTLD sum of boxes. As expected, being symptomatic, re-
gardless of genetic status, was associated with lower total gray
matter volumes and lower UDS3-EF scores (eTable 5). In
addition, being a presymptomatic C9orf72 pathogenic variant
carrier was associated with lower total gray matter volumes
(beta = −1.99, 95% CI [−2.80 to −1.19], p = 1.68 × 10−6)
compared with clinically normal nonpathogenic variant car-
riers (eTable 5).

Association of TMEM106B rs1990622 With Gray
Matter Volume
Next, we investigated the association between TMEM106B
rs1990622 and total gray matter volume in the complete co-
hort, including patients with sporadic and genetic FTD, pre-
symptomatic carriers and nonpathogenic variant carrier
controls. In linear mixed models with genetic status, years of
education, sex, age at visit, and CDR+ NACC-FTLD sum of
boxes score as fixed covariates and pedigree as a random
effect, TMEM106B rs1990622 did not statistically associate
with total gray matter volume with our sample sizes, neither in
the additive dosage model nor in the recessive model
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(eTable 6). In subgroup analyses in all affected individuals,
including sporadic and genetic FTD, TMEM106B rs1990622
did also not statistically associate with total gray matter vol-
ume (eTable 7) (p > 0.05).

Fitting the linear mixed-interaction model between
TMEM106B rs1990622 and genetic group (nonpathogenic
variant carrier, GRN, MAPT or C9orf72), with fixed

covariates: years of education, sex, age at visit, and CDR+-
NACC-FTLD sum of boxes and with pedigree as a random
effect, a protective effect of the minor allele of TMEM106B
rs1990622 on total gray matter volume was observed with
additive and recessive TMEM106B dosages in interaction
analyses with GRN (Table 2). In both the additive and re-
cessive models, statistically significant protective effects on the
gray matter volumes of the right caudal anterior cingulate,

Table 2 LinearMixedModel Statistics for TMEM106 rs1990622 byGenetic Group Interaction on Total GrayMatter Volume

Additive Recessive

Coeff (95% CI) p Value Coeff (95% CI) p Value

Education 0.09 (−0.001 to 0.17) 0.054 0.09 (−0.06 to 0.05) 0.052

Age at visit −0.20 (−0.22 to −0.18) < 2 × 10−16 −0.20 (−0.21 to −0.18) < 2 × 10−16

Sex (female) 1.84 (1.42 to 2.27) < 2 × 10−16 1.84 (1.40 to 2.25) < 2 × 10−16

CDR®+NACC-FTLD SB −0.45 (−0.50 to −0.41) < 2 × 10−16 −0.46 (−0.51 to −0.41) < 2 × 10−16

GRN −1.92 (−2.99 to −0.86) 0.0004 −1.48 (−2.33 to −0.68) 0.0004

C9orf72 −2.11 (−2.95 to −1.26) 1.3 × 10−6 −2.27 (−2.94 to −1.66) 8.04 × 10−12

MAPT −1.40 (−2.44 to −0.35) 0.009 −1.51 (−1.13 to −0.72) 0.0002

TMEM106B −0.12 (−0.50 to 0.26) 0.55 −0.46 (−1.18 to 0.23) 0.201

TMEM106B*GRN 1.33 (0.05 to 2.60) 0.049 4.23 (0.95 to 7.67) 0.014

TMEM106B*C9orf72 −0.17 (−0.96 to 0.63) 0.604 0.03 (−1.43 to 1.64) 0.971

TMEM106B*MAPT −0.07 (−1.09 to 0.94) 0.881 1.38 (−1.13 to 2.84) 0.182

Abbreviations: CDR+NACC-FTLD SB = CDR Dementia Staging Instrument plus Behavior and Language domains from the National Alzheimer’s Disease
Coordinating Center Frontotemporal Lobar Degeneration module sum of boxes score.

Table 3 Linear Mixed Model Statistics for TMEM106B rs1990622*GRN Interaction on Individual Gray Matter Regions

Additive Recessive

Coeff (95% CI) p Value Coeff (95% CI) p Value

Right caudal anterior cingulate 0.006 (0.003 to 0.009) 0.0008 0.01 (0.0008 to 0.02) 0.033

Right caudate 0.009 (0.002 to 0.02) 0.009 0.02 (−0.003 to 0.03) 0.106

Left rostral anterior cingulate 0.006 (0.0008 to 0.01) 0.022 0.02 (0.003 to 0.03) 0.016

Left frontal cortex 0.13 (0.02 to 0.24) 0.022 0.40 (0.10 to 0.68) 0.008

Right posterior cingulate 0.005 (0.0005 to 0.009) 0.029 0.009 (−0.002 to 0.02) 0.107

Right cerebellum 0.09 (0.004 to 0.17) 0.040 0.29 (0.07 to 0.50) 0.009

Left caudate 0.007 (0.0002 to 0.01) 0.044 0.02 (−0.001 to 0.03) 0.073

Right frontal cortex 0.11 (−0.0007 to 0.23) 0.052 0.37 (0.08 to 0.67) 0.014

Left thalamus 0.008 (−0.0008 to 0.02) 0.075 0.04 (0.02 to 0.07) 9.05 × 10−5

Right thalamus 0.007 (−0.002 to 0.02) 0.120 0.04 (0.01 to 0.06) 0.002

Left cerebellum 0.06 (−0.01 to 0.14) 0.113 0.26 (0.06 to 0.46) 0.013

Left parietal cortex 0.06 (−0.001 to 0.12) 0.056 0.19 (0.03 to 0.35) 0.018

Left temporal cortex 0.03 (−0.05 to 0.11) 0.508 0.23 (0.02 to 0.45) 0.032

Results are depicted for regions with p < 0.05 for either the additive or recessive TMEM106B genotype dosage*GRN interaction.
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right cerebellum, left rostral caudal anterior cingulate, and left
frontal cortex were observed (Table 3). In the recessive
model, the most significantly associated region was the left
thalamus (p < 9.05 × 10−5, Table 3).

In subgroup analyses in GRN pathogenic variant carriers,
TMEM106B remained associated with the total gray matter
volume in the recessive model (beta = 3.25, 95% CI
[0.37–6.19], p = 0.034), with the left thalamic region as an
individual region of interest with the highest association (beta
= 0.03, 95% CI [0.01–0.060], p = 0.006) (eTable 8). Ex-
cluding the non-European GRN pathogenic variant carriers,
TMEM106B remained associated with the total gray matter

volume and left thalamic gray matter volume (beta = 3.44,
95% CI [0.72–6.23], p = 0.018 and beta = 0.03, 95% CI
[0.01–0.06], p = 0.006, respectively).

GRN pathogenic variant carriers with the TMEM106B
rs1990622*GG genotype are presymptomatic pathogenic
variant carriers (Figure 1). Therefore, exploratory analyses
were conducted that include only presymptomatic GRN
pathogenic variant carriers. TMEM106B remained associated
with the total gray matter volume (beta = 3.20, 95% CI
[0.80–5.68], p = 0.016) and left thalamic gray matter volume
(beta = 0.03, 95% CI [0.01–0.05], p = 0.003) in pre-
symptomatic GRN pathogenic variant carriers in the recessive

Figure 2 Scatter Plot Depicting the Age at Visit (X-Axis) and NfL Levels (Y-Axis) For All GRN Pathogenic Variant Carriers With
Imaging Data and NfL Levels Measured, According to TMEM106B rs1990622 Genotype

Blue dots: presymptomatic GRN pathogenic variant carriers, red dots: symptomatic GRN pathogenic variant carriers, green dots: GRN pathogenic variant
carriers that converted from presymptomatic to symptomatic status. The lines connect data points that come from the same GRN pathogenic variant carrier.

Figure 1 Left Thalamic Gray Matter Volume in GRN Pathogenic Variant Carriers, Grouped by Symptomatic Status and
TMEM106B rs1990622 Genotype Dosages
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model after controlling for years of education, sex, and age at
visit (eTable 9). Excluding the non-European GRN pre-
symptomatic individual did not materially affect the findings
with observed estimates of beta = 3.16, 95% CI [0.73–5.68], p
= 0.018 and beta = 0.03, 95%CI [0.01–0.05], p = 0.003 for the
total gray matter volume and left thalamic gray matter volume,
respectively.

Themean age of onset of the affectedGRN pathogenic variant
carriers in our total cohort with bvFTD, CBS, or PPA as
primary diagnosis is 59.23 ± 9.23 years old. The pre-
symptomatic GRN pathogenic variant carriers that carry the
TMEM106B rs1990622*GG genotype are 29, 45, 49, and 68
years old at their last visit. NfL levels were available for the
presymptomatic GRN pathogenic variant carriers with
TMEM106B rs1990622*GG with an age at visit of 29 and 68
years old, respectively. Figure 2 depicts the age at visit and
NfL levels for all GRN pathogenic variant carriers with NfL
levels available at the time of imaging. Visually, it can be
observed that the presymptomatic GRN pathogenic variant
carrier with TMEM106B rs1990622*GG genotype with a
current age of 68 years had among the lowest NfL levels
(7.967 pg/mL), compared with both symptomatic (mean =
61.250 pg/mL) and presymptomatic TMEM106B
rs1990622*AA and rs1990622*AG genotype GRN patho-
genic variant carriers (mean = 24.774 pg/mL) within the
same age range (65–77 years).

Longitudinally, the analyses were conducted with the additive
model for TMEM106B rs1990622 in affected GRN patho-
genic variant carriers. Statistical analyses were conducted for
comparison of the rs1990622*AA group vs rs1990622*AG in

affected GRN pathogenic variant carriers. We found no dif-
ferences in the rate of decline in total gray matter volume
across rs1990622*AG carriers vs rs1990622*AA carriers (beta
= 0.536, 95% CI [−1.25 to 2.19], p = 0.526).

Association of TMEM106B rs1990622
With Cognition
In linear mixed models with genetic status, years of education,
sex, age at visit, and CDR+ NACC-FTLD sum of boxes score
as fixed covariates and pedigree as a random effect,
TMEM106B rs1990622 did not statistically associate with
UDS3-EF across the complete cohort, neither in the additive
dosage model nor in the recessive model (eTable 6), or in
subgroup analyses in all affected individuals (eTable 7).

Fitting the linear mixed-interaction model between
TMEM106B rs1990622 and genetic group (nonpathogenic
variant carrier, GRN, MAPT, or C9orf72), with as fixed
covariates years of education, sex, age at visit, and CDR+-
NACC-FTLD sum of boxes and with pedigree as a random
effect, an effect of TMEM106B rs1990622 on UDS3-EF score
in C9orf72 pathogenic variant carriers was observed with re-
cessive TMEM106B dosages (Table 4).

In subgroup analyses in C9orf72 pathogenic variant carriers,
TMEM106B remained associated with UDS3-EF in the re-
cessive model (beta = 0.36, 95% CI [0.05–0.66], p = 0.021),
and in subgroup analyses in presymptomatic C9orf72 patho-
genic variant carriers (beta = 0.33, 95% CI [0.03–0.63], p =
0.036). Similar estimates were obtained on conducting sen-
sitivity analyses in C9orf72 pathogenic variant carriers of
European ancestry only (beta = 0.40, 95% CI [0.09–0.70], p =

Table 4 Linear Mixed Model Statistics for TMEM106B rs1990622 by Genetic Group Interaction on UDS3-EF

Additive Recessive

Coeff (95% CI) p Value Coeff (95% CI) p Value

Education 0.06 (0.04 to 0.08) 3.49 × 10−11 0.06 (0.04 to 0.08) 2.62 × 10−11

Age at visit −0.03 (−0.04 to −0.03) < 2 × 10−16 −0.03 (−0.04 to −0.03) < 2 × 10−16

Sex (female) −0.02 (−0.11 to 0.07) 0.696 −0.02 (−0.11 to 0.07) 0.690

CDR®+NACC-FTLD SB −0.16 (−0.17 to −0.15) < 2 × 10−16 −0.16 (−0.17 to −0.15) < 2 × 10−16

GRN −0.07 (−0.34 to 0.20) 0.591 0.03 (−0.17 to 0.23) 0.781

C9orf72 0.02 (−0.18 to 0.22) 0.834 0.09 (−0.06 to 0.23) 0.239

MAPT 0.14 (−0.13 to 0.41) 0.317 0.09 (−0.11 to 0.30) 0.380

TMEM106B −0.07 (−0.15 to 0.004) 0.064 −0.12 (−0.26,0.01) 0.070

TMEM106B*GRN 0.24 (−0.06 to 0.54) 0.114 0.75 (−0.01 to 1.51) 0.052

TMEM106B*C9orf72 0.16 (−0.03 to 0.35) 0.096 0.42 (0.05 to 0.79) 0.026

TMEM106B*MAPT −0.09 (−0.35 to 0.17) 0.487 −0.11 (−0.60 to 0.39) 0.673

Abbreviations: CDR+NACC-FTLD SB = CDR Dementia Staging Instrument plus Behavior and Language domains from the National Alzheimer’s Disease
Coordinating Center Frontotemporal Lobar Degeneration module sum of boxes score.
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0.011) and presymptomatic C9orf72 pathogenic variant car-
riers of European ancestry only (beta = 0.40, 95% CI
[0.10–0.71], p = 0.011). In symptomatic C9orf72 pathogenic
variant carriers, there was no effect of TMEM106B on UDS3-
EF (beta = 0.31, 95% CI [−0.19 to 0.81], p = 0.232).

We did not identify statistically significant longitudinal tra-
jectory differences according to TMEM106B genotype group
(data not shown). In presymptomatic C9orf72 pathogenic
variant carriers with at least 2 visits, there was no significant
decline in cognitive trajectory over time. However, taking into
account all the longitudinally collected visits in pre-
symptomatic C9orf72 pathogenic variant carriers, we found in
both the additive (beta = 0.22, 95%CI [0.05–0.39], p = 0.014)
and recessive (beta = 0.45, 95% CI [0.13–0.78], p = 0.008)
model (eTable 10), that the minor allele of TMEM106B
rs1990622 is associated with an increased UDS3-EF score, in
line with the cross-sectional data taking only the last visit into
account.

Discussion
TMEM106B was initially identified as genetic risk factor for
FTLD-TDP. Since then, it has been shown to not only act
as a modifier of disease penetrance in FTLD-TDP but also
as a modifier of pathologic, imaging, and clinical charac-
teristics of FTD and related neurodegenerative diseases. To
further confirm the association of TMEM106B SNPs with
imaging and clinical characteristics in FTD and to evaluate
its role in the different genetic groups of autosomal dom-
inant FTD, we performed association analyses in the largest
available systematically ascertained cohort of patients
with FTD.

In our complete cohort with imaging data available, no sig-
nificant association of gray matter brain volumes with
TMEM106B was detected. However, in GRN pathogenic
variant carriers, carrying 2 copies of the minor allele of
TMEM106B was associated with a larger total gray matter
volume. This was most pronounced in the thalamus in the left
hemisphere, a finding that remained in a subgroup of pre-
symptomatic GRN pathogenic variant carriers. Thalamic at-
rophy is a common feature in frontotemporal dementia, and
especially in GRN pathogenic variant carriers, asymmetry in
thalamic volumes is apparent.35 Furthermore, GRN pre-
symptomatic pathogenic variant carriers display changes in
intrinsic connectivity networks, with the thalamus as a key
hub.36 This is in line with findings in mice with homozygous
GRN deletions (GRN−/−),37 wheremicroglial activation in the
ventral thalamus drives neurodegeneration in the thalamo-
cortical circuit.37 Of interest, patients with FTLD-GRN and
GRN−/− mice show similar transcriptomic and histopatho-
logic changes in the thalamus, not only in microglia but also in
astrocytes, promoting neurodegeneration.38 Other regions
that appear altered in response to TMEM106B are the frontal,
temporal, parietal, anterior cingulate areas, insula, and

cerebellum, in line with known patterns of atrophy described
in GRN pathogenic variant carriers39 and in patients with
FTLD-TDP type A, the pathology uniformly present in pa-
tients with GRN pathogenic variants. In addition, previous
research showed an effect of TMEM106B in these regions in a
clinically diagnosed FTD cohort.15

Importantly, the GRN pathogenic variant carriers with 2
copies of the minor allele of TMEM106B were all pre-
symptomatic at time of imaging. With a mean age of onset of
59 years in affected GRN pathogenic variant carriers in our
total cohort, it cannot be excluded that these presymptomatic
GRN pathogenic variant carriers will still develop FTD at a
later age; however, one of these presymptomatic GRN path-
ogenic variant carriers remained without symptoms at 68
years of age. The strikingly low NfL level of this participant
compared with GRN pathogenic variant carriers within the
same age range (65–77 years), also well below the mean value
of phenoconverters,40 supports the hypothesis that carrying 2
copies of the minor allele of TMEM106B might offer pro-
tection against developing FTD, or at a minimum a delay in
disease onset.

In C9orf72, we did not observe an association between
TMEM106B and (sub)cortical atrophy. In fact, at the pre-
symptomatic stage, we found that irrespective of the
TMEM106B genotype, the presence of C9orf72 is associated
with lower gray matter volumes in comparison with clinically
normal nonpathogenic variant carriers, consistent with prior
work showing structural brain changes occurring 10–40
years before onset.39 In GRN pathogenic variant carriers, on
the other hand, changes in brain volume occur only within a
few years proximity to onset of symptomatic FTD.24,41

Moreover, although the rate of volume loss differs between
C9orf72 and GRN, with an attenuated atrophy rate after
onset of symptomatic FTD in C9orf72 and with an accel-
eration of atrophy rate after onset in GRN, their rate of
functional decline is similar.41 Hence, there might be earlier
and divergent pathophysiologic changes in C9orf72 as
compared with GRN pathogenic variant carriers in the pre-
symptomatic phase, with the early loss of gray matter volume
in C9orf72 pathogenic variant carriers masking a potential
effect of TMEM106B.

In contrast to structural imaging, we did identify a pro-
tective effect of the TMEM106B rs1990622 minor allele on
cognition in C9orf72, especially in presymptomatic C9orf72
pathogenic variant carriers. With participants with a
C9orf72 repeat expansion already showing signs of neuro-
degeneration (e.g., gray matter loss) before symptom on-
set, we hypothesize that TMEM106B is able to modulate
the resilience against developing clinical FTD during these
early stages of disease. In support of this hypothesis, ho-
mozygosity for the minor allele has been shown to protect
C9orf72 carriers from developing FTD but not from de-
veloping ALS.10 Moreover, discordance between the
presence of disease pathology and effects on cognition in
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the aging population is a known phenomenon, and
TMEM106B has been suggested as a potential modifier of
this “cognitive resilience,” with the minor allele of
TMEM106B rs1990622 being associated with a better
performance than expected based on pathologic burden.42

Previous studies focusing on presymptomatic genetic FTD
have identified modulating effects of TMEM106B genotype
on gray matter volume in pathogenic variant carriers
(combining GRN, C9orf72, MAPT) vs noncarrier family
controls.16 It is important that a different distribution in
genetic groups between our study and the previously con-
ducted studies16 can be noted, with GRN being the largest
group and MAPT being the smallest group in the previous
studies, while in this study, the pathogenic variant carriers
are enriched for C9orf72 and MAPT carriers, with GRN
being the smallest group (22% vs 56% in the previous
studies). Furthermore, in this study, we also included a
sporadic FTD cohort without pathogenic variants identified
in the known FTD genes. Hence, we investigated the asso-
ciation of TMEM106B with gray matter volume and cogni-
tion in each genetic group separately through interaction
modelling and subgroup analyses. We identified associations
of TMEM106B in theGRN and C9orf72 genetic groups. This
is in line with TMEM106B being identified as a modifier in
those with TDP-43 pathology5,6 but not in most other
clinical FTD cohorts of non-TDP43 or unknown pathology,5

with a few exceptions7,15 potentially due to a substantial
proportion of cases with FTLD-TDP pathology.7,15 Beyond
FTLD-TDP, TMEM106B is associated with hippocampal
sclerosis of aging,18 with or without accompanying Alz-
heimer type pathology, with hippocampal sclerosis in Lewy
body disease,44 and with limbic-predominant age-related
TDP-43 proteinopathy (LATE-NC),45 all characterized by
the presence of TDP-43 proteinopathy. Furthermore, TDP-
43 inclusions are also present in Alzheimer disease and
Parkinson disease,46 explaining the broader modifying roles
of TMEM106B in endophenotypes such as cognition across
neurodegenerative diseases.

Strikingly, TMEM106B filaments form aggregates in the brain
in elderly and across neurodegenerative diseases,47 with the
risk allele associated with greater fibril formation48 and en-
hanced TDP-43 dysfunction.49 Although fibril accumulation
has been found to be a common age-related phenomenon,
fibril aggregates were especially abundant in patients with
GRN pathogenic variants.50 Both progranulin and
TMEM106B are important players in lysosomal health.47

TMEM106B is a transmembrane glycoprotein that primarily
localizes to lysosomal membranes where it is proteolytically
processed. Progranulin is cleaved in the lysosome into func-
tional granulins, and homozygous loss-of-function pathogenic
variants in GRN cause the lysosomal storage disorder neu-
ronal ceroid lipofuscinosis 11. In addition to convergence of
pathomechanisms betweenGRN andTMEM106B, TMEM106B-
induced lysosomal defects due to increased TMEM106B expres-
sion have been shown to be C9orf72-dependent.51 Altogether,

these studies support a specific role for TMEM106B as a modifier
in FTLD-TDP pathophysiology.

We acknowledge that there are limitations with this work.
The UDS3-EF endpoint is composed of tests heavily loaded
on dorsolateral frontal function, which may lead to an un-
derestimation of cognitive impairment, in particular in par-
ticipants with PPA. However, executive functioning is
affected in all FTD genetic groups and clinical phenotypes,52

and it is shown that processing speed and executive func-
tioning deficits seem early in presymptomatic familial
FTD.39 Although we investigated modifying effects of
TMEM106B in the largest collection of patients with sys-
tematically ascertained FTD and families from the ALLFTD
study, generalization of our findings may be hampered as
individuals in this study presented with high educational
levels (mean of 15.88 years). Furthermore, the number of
individuals with a GRN pathogenic variant and 2 copies of
the minor (protective) allele of TMEM106B is small. This
supports a role for TMEM106B in reducing disease pene-
trance but consequently also leads to an un-
derrepresentation of GRN pathogenic variant carriers
homozygous for the minor TMEM106B allele in research
studies. Therefore, extensive recruitment of unaffected
family members ofGRN pathogenic variant carriers followed
by genetic analyses of TMEM106B andGRN will be required
to specifically identify those individuals who carry a GRN
pathogenic variant and 2 copies of the TMEM106B minor
allele to validate our findings. In addition, to reach the
maximum sample size for each outcome measure of interest,
the last visit with the measure of interest available was se-
lected. In this way, the analyses differ in their set of unique
individuals and their respective time point of assessment,
precluding multivariate analysis of variance studies to assess
simultaneously associations between TMEM106B, imaging,
and cognition in the same cohort. Although we used the
largest data set possible, some of our negative statistical as-
sociations may be due to small sample sizes. Despite these
limitations, we confirmed TMEM106B as a modifier in GRN
and C9orf72 pathogenic variant carriers, and reported dis-
tinct effects in different genetic groups. Importantly, we
showed that TMEM106B already exerts effects in the pre-
symptomatic stage of disease. With clinical trials ongoing for
gene-based therapies for GRN and C9orf72 pathogenic var-
iant carriers, it is important to take TMEM106B genetic
status into account in the clinical trial design and recruitment
of participants.
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