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Abstract

Segmenting objects of interest from 3D datasets is a common problem encountered in biological 

data. Small field of view and intrinsic biological variability combined with optically subtle 

changes of intensity, resolution and low contrast in images make the task of segmentation difficult, 

especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape 

information in addition to the appearance of the object of interest can often help improve 

segmentation performance. However, shapes of objects in tissue can be highly variable and design 

of a flexible shape model that encompasses these variations is challenging. To address such 

complex segmentation problems, we propose a unified probabilistic framework that can 

incorporate the uncertainty associated with complex shapes, variable appearance and unknown 

locations. The driving application which inspired the development of this framework is a 

biologically important segmentation problem: the task of automatically detecting and segmenting 

the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of 

human skin. RCM imaging allows noninvasive observation of cellular, nuclear and morphological 

detail. The DEJ is an important morphological feature as it is where disorder, disease and cancer 

usually start. Detecting the DEJ is challenging because it is a 2D surface in a 3D volume which 

has strong but highly variable number of irregularly spaced and variably shaped “peaks and 

valleys”. In addition, RCM imaging resolution, contrast and intensity vary with depth. Thus a prior 

model needs to incorporate the intrinsic structure while allowing variability in essentially all its 

parameters. We propose a model which can incorporate objects of interest with complex shapes 

and variable appearance in an unsupervised setting by utilizing domain knowledge to build 

appropriate priors of the model. Our novel strategy to model this structure combines a spatial 
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Poisson process with shape priors and performs inference using Gibbs sampling. Experimental 

results show that the proposed unsupervised model is able to automatically detect the DEJ with 

physiologically relevant accuracy in the range 10 – 20µm.

Keywords

Segmentation; shape model; 3D Bayesian model; Poisson process; dermis-epidermis

I. Introduction

Detecting and segmenting objects of interest from 3D datasets is an active area of research 

[1]. In medical images, structures of interest often have a complex and highly variable shape, 

making segmentation challenging [2]. Especially in microscopy images, this problem is 

compounded by subtle variation in contrast, resolution and intensity often making 

appearance based classification difficult [3], [4].

In this paper, we present a novel unsupervised generative framework that can be used for 

delineating the complex 3D boundary of an object. This probabilistic model can segment/ 

detect multiple complex-shaped objects simultaneously. The framework of our model can be 

adapted to different applications by choosing the appropriate shape prior based on domain 

knowledge. In developing this model, we were inspired by the problem of finding the 

boundary between superficial cellular epithelium and underlying connective tissue, a 

commonly encountered problem in tissue microscopy [5], [1], [6]. Specifically we address a 

special case of this general application; delineation of the boundary between epidermis (i.e., 

epithelium) and dermis (i.e., connective tissue) in 3D image stacks of reflectance confocal 

microscopy (RCM) images of human skin in vivo. We chose this application problem not 

only because of its practical relevance to detection and treatment of skin cancer, but also 

because difficulties it presents in terms of the high degree of variability of all relevant 

parameters makes it a good test case for a much wider class of 3D microscopy segmentation 

problems of interest.

In our proposed model, the DEJ is modeled as a union of an unknown number of “hill” 

shapes emerging at random locations using a Marked Poisson Process. These hill tops in 

human skin are irregular in both depth and lateral location with variability across individuals 

and even across different sites from the same patient. In addition, these hill tops that we 

model are very sparse compared to the 3D volume of space which motivates the use of 

Poisson as an appropriate prior. This model has three flexible components: a random number 

of objects at random locations, a parametrized shape model and a parameterized appearance 

model. Details of each component of the model are briefly described later in this Section and 

then formalized in Section II.

RCM is a relatively new non-invasive technique that is capable of capturing images of 

human skin down to the depth of 100 – 150µm [7]. En-face slices (parallel to the surface) are 

captured sequentially for increasing depths in skin and recorded as a z-stack of images (as 

illustrated in Figure 1). Skin biologists and clinicians are interested in the location of the 
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dermal-epidermal junction (DEJ) in these z-stacks because disorder and disease, including 

cancer usually start at this boundary [8].

The DEJ in skin typically has a 3D structure, marked by multiple hills and valleys 

undulations, called dermal papillae (hills) and epidermal rete ridges (valleys) (Figure 2). 

This structure is flexible, irregular, and subject to a high degree of inter and intra-subject (or 

specimen) variability [9]. In skin biology and clinical pathology, the presence, location, and 

morphology of the DEJ is a key attribute and changes in the architecture of DEJ exhibit key 

diagnostic information [10], [11]. Morphologic changes at the DEJ are the first and most 

important features that allow diagnosis of benign melanocytic lesions and early detection of 

their progression toward melanoma. For example, broadening of the dermal papillae and 

elongation of rete ridges in conjunction with proliferation of melanocytes (a brown pigment 

typically found in the epidermis) along the boundary is one of the earliest and most 

important indicator of melanoma, the most deadly form of skin cancer [12], [13]. As cancer 

spreads laterally along this boundary and/or in depth, the form of DEJ, as well as 

morphological structures around it, becomes a key determinant in cancer staging. The 

location of abnormal melanocytes relative to the DEJ (above in epidermis or below in 

dermis), determines the stage (depth of invasion) of the disease, which then guides diagnosis 

and treatment. Thus, the architecture of the DEJ is an important focus of biological and 

pathological work.

However, RCM images can be challenging to read and interpret. The images are in en-face 
orientation and record reflectance contrast, typically visualized in grayscale, whereas 

pathology is examined in orthogonal sections with the benefit of color stains. The signal-to-

noise and contrast in RCM images, while sufficient to reveal critical features, varies with 

skin pigmentation. Thus, the ability to delineate the DEJ and analyze features and 

morphologic patterns remains limited, at present, to well-trained experts [5]. Currently, the 

DEJ is identified in RCM by expert readers, who manually and laboriously read the images 

in sequence through the z-stacks. These experts form an international cohort of ‘early 

adopter’ clinicians, who have worked with RCM technology during the past decade and have 

become highly skilled in reading images. For novice (non-expert) clinicians in the wider 

cohort, however, who are keen to adopt RCM, learning to read images is challenging and 

requires substantial effort and time. This purely visual approach results in variable accuracy 

and repeatability [14], [15]. This is a major technical barrier limiting both wider adoption of 

RCM imaging and training for current and future dermatologists. Both the potential reward 

of RCM imaging and the importance of overcoming this barrier are being increasingly 

recognized by leaders in dermatology community. Recently, our group has introduced an 

automated image processing technique to assist clinicians in identifying the DEJ [4], [16]. 

However, this approach works on dividing the RCM slices into tiles, which are then 

classified, followed by post-detection interpolation, rather than model the structure of DEJ 

itself. Up to now we have not succeeded in developing a global generative model of the 

normal DEJ that utilizes its known physical/architectural structure. In this paper, a novel 

unsupervised algorithm that captures the structure of DEJ while allowing inter and intra-

subject variability is presented and validated against RCM z-stacks, to automatically detect 

the DEJ and assist biologists and clinicians in reading images with improved accuracy and 

repeatability.
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Figure 3 shows slices from two example stacks, one from dark and one from fair skin. As 

can be appreciated from these images, identifying the DEJ in RCM images is a difficult task 

due to subtle optical variations in resolution, intensity and low contrast that are hard to 

recognize. This results in subjectivity and high variability among readers. The complexity of 

the problem varies with skin type – with dark skin type being easier than fair due to the high 

reflectance contrast at the DEJ due to the presence of melanin, while in fair skin, the contrast 

is relatively low due to the lack of melanin, as illustrated in Figure 3. In our group’s previous 

work [4], [16], we adopted a fine-grained local strategy to first recognize DEJ characteristics 

at the scale of 16µm × 16µm tiles for dark skin and 25µm × 25µm tiles for fair skin, followed 

by post-detection interpolation. Larger tiles were used for fair skin in order to be able to 

extract statistically reliable textural features in the absence of reflectance contrast. Because 

of the intrinsic difficulty of the problem, we did not employ a generative 3D model of the 

DEJ itself, but instead classified tiles as being in the epidermis (above DEJ), in the dermis 

(below it), or in an “uncertainty region” around it, all based on discriminative features. 

Although we were successful at finding normal DEJ, any new type of abnormality would 

require re-thinking the approach. Thus we have been searching for a method which would 

allow us to model the DEJ with all its complexity and variability. In this work, we solve this 

problem by developing a global model of the DEJ which leverages what is known about its 

structure and has sufficient flexibility to incorporate inter and intra-subject (or specimen) 

variability. Our approach is based on Bayesian modeling, where domain knowledge is 

carefully incorporated into the prior probability distributions of the model parameters.

Marked Point Processes have been used in the past for detection and segmentation of 

multiple arbitrarily shaped objects (for example, cell nuclei) in microscopy images [6], [17]. 

A Poisson process is a special case of the point process and has several advantages, such as 

its independence property, that make a generative Bayesian setting possible. Our model will 

allow us to overcome limitations of more traditional segmentation methods which tend to 

segment small collections of single objects rather than a globally-defined surface. In 

summary, we designed a novel probabilistic model based on a marked spatial Poisson 

process that can take uncertainty in number, location, shape and appearance into account. 

Our model allows incorporation of domain knowledge information regarding the general 

shape of objects, while allowing shape parameter to vary across objects. This modeling 

strategy contributes to the field of probabilistic models for segmentation in 3D. Inference on 

such a model, involving trans-dimensional jumps, is typically performed using reversible 

jump Markov chain Monte Carlo (RJMCMC). Instead, we developed a Gibbs sampling 

framework which is another major contribution of this work. We demonstrate the 

performance of our model on real RCM image stacks from human skin, segmenting the DEJ 

for both dark and fair skin.

II. Model Formulation

In this section, we describe our notation and each component of the model in detail. Let the 

3D image stack of skin lie in a continuous space R3. We represent this continuous space by a 

piecewise constant basis. We only need samples at these discrete locations to represent the 

coefficients of the basis. RCM captures samples at these locations resulting in a data tensor 

X ∈ ℝNr×Nc×Nz, where Nr, Nc and Nz are the number of rows, columns and slices of the 
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image respectively. Each element in this tensor is a voxel, represented by a scalar (e.g., 

grayscale intensity value) or a vector (e.g., texture features). Let the total number of voxels 

in the image be denoted by N = [Nr × Nc × Nz].

One sample from a spatial Poisson process consists of a random number of points at random 

locations based on the underlying spatial Poisson intensity prior parameter. Let the number 

of these points generated from the Poisson process be denoted by M and the location of 

these M points be denoted by L = [l1, …, lM], where lm = [lx,m, ly,m, lz,m] which represent 

the location of mth object in 3D. Let the Poisson intensity be denoted by β(τ), where τ 
represents the location in 3D space of the RCM stack. Let the shape parameters at each 

location (L = [l1, …, lM]) be represented by S = [s1, …, sM], where each sm is a vector 

consisting of shape parameters (a probabilistic model of hills in this case). The hills (shape) 

are marks associated with the outcome of a spatial Poisson process and hence the model is 

called a marked spatial Poisson process. The exact shape of each hill determined by the 

value of shape parameters is unknown and inferred by the model. Therefore, the marks are 

latent and we have a latent marked Poisson process. Given the location and shape of each 

hill defining a boundary (DEJ) here, the appearance model of voxels above and below the 

boundary are generated from an appearance model of epidermis and dermis respectively. 

Note that the number of hills (M) is random and open ended making it possible to generate a 

flexible model of the DEJ. We summarize the generative process as follows:

1. Generate M points along with their location from a spatial Poisson Process 

(Figure 4(a)).

2. For each object, given its location, generate object boundaries from the shape 

model (Figure 4(b)).

3. Given the location of objects and their shape boundaries, data below the 

boundary is generated from a dermis appearance model and data above the 

boundary is generated from a epidermis appearance model (Figure 4(c)).

In the following subsections, we describe each of the three components of the model in 

detail.

A. Spatial Poisson Process

A Poisson process in general is defined on a locally compact metric space  with intensity 

measure Λ (which is finite on every compact set and has no atoms), as a point process on 

such that, for every compact set ℬ⊂ , the count N(ℬ) has a Poisson distribution with mean 

Λ(ℬ). In a spatial setting, one realization of the Poisson process consists of a random number 

of events (based on the underlying intensity value in the space) at random locations in the 

space R3. When β(τ) = β, it is called a homogeneous Poisson process. In a non-

homogeneous Poisson process, the intensity parameter β is not uniform across the region τ.

A Poisson process in general is used to model point data. It provides a likelihood value to 

every possible spatial pattern of points in a given space. One can incorporate prior 

knowledge about what kind of patterns are more likely to occur for a given application using 

this process. The Poisson intensity β is a function of the space on which the Poisson process 

is defined. For example, in our case, the space is 3D. The hill peaks that we want to model 
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using a Poisson process occur at varying depths in different parts of the stack. We therefore 

need a Poisson intensity defined across the 3D space. There are many ways in which this 

Poisson intensity parameter β(τ) can be specified. The simplest way is to assume that β(τ) is 

a constant across the space τ. This means that the probability of occurrence of a point is 

equal in all parts of the space. If one knows that specific parts of the space τ have a higher 

probability of occurrence of a point, a higher β value can be provided for that part. An 

example where was chosen as the prior on Poisson intensity along the depth of the z-stack is 

shown in Figure 5. The expected number of points in the space τ is given by β = ∫τ βdτ. We 

take advantage of these properties of a Poisson process resulting in a novel natural 

formulation for shape.

B. Shape Model

Each location (determined from the outcome of a Poisson process) is associated with a 

shape. In our case, the dermal-epidermal junction (DEJ) is composed of hills and valleys 

(see Figure 2). One can model the shape prior to be a hill peak. One could alternatively 

model the DEJ as a union of valleys (inverted hills). However, the basin of these inverted 

hills (valleys) is not always present in the RCM stack, as the stack is sometimes not deep 

enough to include the bottom of the valley. This makes modeling and inference harder, so we 

chose to model the hill peak. The height, orientation and size of the hill associated with each 

peak location is variable and this has to be captured in the shape prior of the model.

On the en-face (x−y) plane, the hill is an ellipse. The major and minor axis are variable and 

also change as a function of depth (they increase with depth in the z-direction). We propose 

the following 3D shape model for each hill to capture these properties, where each hill peak 

location is denoted by [lx, ly, lz] (outcome of the Poisson process). The ellipse has a center 

([lx, ly, lz]), a major axis (ρma), a minor axis (ρmi), and an orientation (ρo). Let ρma,o, ρmi,o 

both greater than zero represent the major and minor axis value at the peak of the hill. 

Therefore, the hill is assumed to have a flat top with strictly positive initial major and minor 

axis values. As we go down the hill along the z-stack, the major and minor axes parameters 

increase as a function of depth. Note that this increase is nonlinear (Figure 1) where the 

highest rate of increase occurs closer to the tip of the peak. This structure is captured by 

utilizing a log rate of increase in the major and minor axis, within which variation is 

controlled by parameters ρma,z and ρmi,z. The value of major (ρma,z) and minor (ρmi,z) axis 

at each depth z of the RCM stack is given by Equation 1.

(1)

The shape parameters of each hill are represented by s = [ρma,o, ρmi,o, ρo, wma, wmi]. A prior 

distribution on these parameters is chosen to capture the domain knowledge of possible 

shapes. An example of a random sample drawn from one hill shape model is shown in 

Figure 6. Note that we model the shape of the actual DEJ as a union of several hills. This is 
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consistent with the natural structure of DEJ. An example random sample from this union 

model presenting a possible DEJ boundary is shown in Figure 7.

C. Appearance Model

An appearance model captures the likelihood of a given voxel/pixel to belong to either 

epidermis or dermis. One can either employ the intensity values directly or utilize higher 

level features such as texture to calculate this likelihood value.

Because of the high degree of variability in these data, parameters of the appearance model 

are determined adaptively for every image stack and inference is performed in an 

unsupervised setting. A given RCM stack is determined to be from either “dark” or “fair” 

skin type by the clinician when it is captured. For dark skin, intensity values themselves are 

used as appearance features. Intensity in the range [0, 255] is utilized. For fair skin, higher 

level features are extracted because fair skin images have lower intensity contrast than dark 

skin, making segmentation difficult based on intensity alone. Clinicians rely on the variation 

in texture of the voxels corresponding to dermis and epidermis to locate DEJ visually in fair 

skin stacks, and that motivated us to extract texture parameters for our appearance model. 

We extracted these standard features over a sliding window of size [50 × 50] since that 

would cover at least two basal cell thicknesses (which is 10 – 15µm in diameter each 

corresponding to 20 – 30 pixels). Standard deviation, contrast, energy and two Gabor filter 

features are used (total of 5 features) for fair skin.

We assumed a Gaussian distribution for the appearance model (a multinomial Gaussian 

distribution for the fair skin type model). In order to calculate the parameters of this model 

(mean and variance/covariance), K-means clustering was performed on the features from 

bottom 50% of slices of the z-stack since the slices at the bottom of the z-stack are generally 

both dermis and epidermis voxels. Two clusters are obtained using K-means and the cluster 

that shows higher probability value for pixels in the bottom layer of the z-stack is chosen as 

the one belonging to dermis and is used to calculate the dermis appearance model 

parameters. Voxels in the other cluster are used to estimate the parameters of epidermis 

appearance model. The clustering result from K-means might be approximate and not fully 

consistent with respect to the structure of DEJ. However, this sensitivity is mitigated by the 

integration of appearance with the shape and spatial Poisson models.

To put this all together with more precision, let xn represent the feature vector of each voxel. 

Let the parameters of the Gaussian distribution representing the epidermis appearance model 

(voxels above the DEJ boundary) be given by mean μe and variance Σe and the dermis 

appearance model be given by mean μd and variance Σd. Let the appearance parameters of 

the model be denoted by αe = [μe, Σe] and αd = [μd, Σd], and all the appearance parameters 

be denoted by α = [αe, αd] for notational convenience. Once the location and shape of each 

hill is known, a boundary/partitioning of the 3D space is defined. The likelihood of the 

image given all the parameters is given by Equation 2.
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(2)

where, In is a random indicator variable that takes a value 1 when the pixel n is below the 

boundary (dermis) and 0 otherwise. Note that this random variable is a deterministic 

function of L and S. Therefore, the likelihood here is a product of the probability of each 

pixel in the RCM stack to belong to dermis/epidermis, based on the boundary defined by L 
and S.

D. Overall Model

For notational convenience, let θ = [β(τ), ζ, α]. The joint likelihood of the model is given 

by Equation 3.

(3)

where, ζ represents the hyper-parameters of the prior distribution on shape parameters. We 

call our new model MPP-skin.

III. Inference

Inference of the DEJ boundary, given the observation X involves inferring the posterior 

distribution of the parameters M, L and S, which is described in this section. Note that we do 

not know the dimension of the parameters L, S as the value of M is unknown, and a part of 

the inference. Reversible jump Markov chain Monte Carlo (RJMCMC) sampling is typically 

utilized in such a setting. However, it involves designing appropriate proposal distributions 

and selection of parameters for good acceptance ratio. Gibbs sampling on the other hand 

involves sampling directly from the conditional posterior distribution assuming that all the 

other random variables are known. This is a special case of Metropolis-Hastings algorithm 

where all proposals are always accepted [18]. We therefore make a design choice of using 

Gibbs sampling for inference on our model. Unfortunately, Gibbs sampling does not 

naturally lend itself to trans-dimensional jumps. In order to utilize Gibbs sampling for 

inference in our model, we leverage the independence property of the Poisson process.

A. Independence property of Poisson process

One of the useful properties of the Poisson process is that it follows the independence 

property [19]. This property states that, if the Poisson process is defined on a locally 
compact metric space , where ℬ ∈  and ℬ1, …, ℬm are disjoint compact sets, then N(ℬ1), 

…, N (ℬm) are independent [20]. This property is presented in Definition 1.3 of [20]. In the 

current setting, this implies that the number of points (hill s) in any small volume (ΔV ⊆ R3) 

of the 3D space R3, follow a Poisson distribution with intensity parameter β = ∫ΔV 

β(τ)dτ(Δτ). Let the disjoint compact volume in the current setting belong to each voxel in 

the 3D space R3.
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This implies that the probability of occurrence of a peak at any voxel n can be modeled as an 

independent random variable (that follows a Poisson distribution) with Poisson intensity 

parameter β(n), where β(n) = ∫τ(n)β(τ)dτ(n). Let G = [g1, …, gN] be a random variable 

representing the Poisson outcome at each voxel n. Each gn is therefore a discrete random 

variable representing the number of hill peaks at a particular index n. Note that the 

dimension of G is the same as the number of voxels in the image (N) and each gn indicates 

the number of hill peaks at voxel n. Note also that objects can overlap at a given voxel 

location.

The resulting model, after introduction of G is given by Equation 4.

(4)

The number of hills in the z-stack M is now given by . Note that L is deterministic 

given G. Let β = ∫τβ(τ)d(τ). A graphical representation of this model is shown in Figure 8.

(5)

B. Gibbs Sampling

Gibbs sampling is a special case of the Metropolis Hastings algorithm where inference 

involves drawing samples from the posterior distribution of each random variable assuming 

all the other random variables of the model are known. This is performed sequentially until 

convergence is achieved. We describe the sampling process for each random variable (G, S) 

of the model in this section.

p(gn|G−n, β1:N) is a Poisson random variable with intensity βn and is given by Equation 5. 

The sampling step for the variable gn given all the other parameters and observations of the 

model ({X, S, ζ, α}) is given by Equation 6.

(6)

where kp depicts the number of objects in the current state at voxel gn. Sampling the random 

variable gn involves three cases: remaining in the same state (gn = kp), jumping to a state (gn 

= kp − 1) with lower number of points (assuming k > 0) and adding a point (gn = kp + 1). 

Note that k here represents the number of hill peaks in the current state at voxel gn and kp 
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represents the number of hill peaks observed in the previous state. This involves calculating 

the likelihood for the three cases followed by normalization. After normalization, we have a 

discrete probability distribution. gn is sampled from this distribution. Equation 6 shows the 

distributions for deleting and adding a point. For a case where there are multiple points at gn, 

a random point is chosen to be deleted. Note that this type of sampling is very similar to the 

Gibbs sampling framework for Dirichlet process mixtures [21] also popularly known as the 

Chinese restaurant process (CRP). In the CRP, the number of clusters are unknown (modeled 

by a Dirichlet process prior) and each cluster is associated with a fixed number of 

parameters (mean and variance). Our method on the other hand consists of an unknown 

number of peaks at random locations modeled as a spatial Poisson process prior, and each 

location/peak is associated with shape parameters.

The sampling step for the variable sm is given by Equation 7.

(7)

The shape variables are assumed to be independent of each other. The shape prior p(sm|ζ), is 

not conjugate to the likelihood of the model, p(X|G, S, α). This implies that there is no 

closed form solution to Equation 7 and thus a sampling-resampling technique is utilized to 

approximate the posterior distribution. Convergence is defined experimentally as when the 

first order statistics of the random variables being sampled do not change more than a preset 

small threshold ε. Inference of the parameters G and S determines the segmentation of the 

dermal-epidermal junction in RCM images.

Implementation Details—For approximating the posterior distribution of shape 

variables, a fixed number (300) of shapes from the prior distribution were generated and 

their corresponding likelihood value calculated. Shape parameters were then sampled from 

these candidate shapes, by sampling from a discrete distribution (representing each shape 

model) whose weights were the normalized scores of Equation 7.

When sampling for G, we used a hybrid Gibbs sampler, starting with a blocked Gibbs 

sampler and then transitioning to single site sampling. Blocks of pixels in each slice of the 

3D stack were sampled for the value of G at first. Blocks that show very low likelihood for 

the occurrence of a hill peak were removed from further sampling. In other words, these 

were the pixels whose appearance is closer to background than foreground model. This is a 

way to get rid of obvious non-object center locations and helps save time on unnecessary 

sampling of obvious non-object pixels for the value of G. After one sweep of a blocked 

sampling approach on the entire stack, we were left with a set of blocks that have higher 

potential for occurrence of a hill peak in them. As a next step, we sampled every pixel 

location in these blocks for the value of G. The algorithm is implemented in MATLAB on a 

12GB RAM, 2.40GHz Intel quadcore computer with Windows OS and processing time 

varies from 3–12 hours depending on the data where each stack consisted of 45 – 70 slices 

with a resolution of 1000 × 1000 pixels in each slice.
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IV. Experiments and Results

We validated our proposed model on nine stacks of dark skin and fifteen stacks of fair skin, 

for all of which we have ground truth (expert labeling of the DEJ). These stacks of images 

were collected in vivo with a reflectance confocal microscope. Imaging was done on healthy 

skin of volunteers. No special preparation was needed before imaging. We only apply baby 

oil on the imaging area for optical index matching purposes. We used a commercial version 

of the microscope developed for skin imaging (Vivascope 1500, Caliber Imaging and 

Diagnostics, Rochester, NY), which is routinely used for clinical imaging and reported 

clinical studies [22], [23], [11], [24]. Images used in the study are collected from arm and 

trunk of relatively young and healthy skin volunteers between the age of 20–50. This version 

of the microscope has an imaging window that sticks to the area of interest. The field of 

view of a single RCM image is 0.5µm × 0.5µm.

Each stack is from a single skin site and consists of 45–70 image slices, where each slice is 

1000 × 1000 pixels, with a pixel (lateral) resolution of 0.5µm and optical sectioning (axial 

resolution) of 3µm. The axial distance between consecutive slices (z-step) is 1µm, which 

results in higher sampling than the optical sectioning thickness of the imaging system. The 

values of the hyperparameters (parameters of Poisson and shape priors) were chosen based 

on these experimental parameters, as we describe next.

A Gamma distribution was chosen to model the variation of Poisson intensity β(τ) along the 

depth of z-stack as its shape captured the prior information we have about the depth range 

where the DEJ usually starts. The DEJ starts in the range 50–100µm below the skin surface, 

which is where we expect to see the hill peaks. The Poisson intensity β(τ) should be such 

that it gives a higher probability to the RCM slices in this range (which corresponds to hill 

peaks approximately in the range 25–50th slice in depth here, as the acquisition of images 

starts well into the epidermis). Therefore, we chose to use the hyper-parameter values 10, 3 

(shape and scale parameter of a Gamma distribution) for the Gamma distribution (β(τz) ~ 

Γ(10, 3)) prior. This corresponds to a shape which gives maximum probability to slices in 

the range 25 – 50, as illustrated in Figure 5. Since in general we did not have prior 

knowledge about the regions in each slice where the DEJ has high/low probability of 

occurrence of hill peaks, we chose a uniform Poisson intensity prior in the x − y plane. This 

implies that two voxels belonging to different layers have different Poisson intensity values 

while the voxels belonging to the same layer have the same value.

In our experiments, shape parameters s = [ρma,o, ρmi,o, ρo, wma, wmi] were modeled by prior 

distributions that can capture the prior knowledge of all possible shapes. Parameters of the 

shape model, minor (ρmi) and major axis (ρmi) were assumed to be generated from a Gamma 

distribution. In our case, the average thickness of a basal cell is 10 – 15µm. Basal cells form 

the basal layer which is the bottom layer of epidermis, lying just above the DEJ. We 

assumed a Gamma distribution with the hyper-prior values 5 and 5 as this ensures a positive 

value with highest probability at 10.

(8)

Ghanta et al. Page 11

IEEE Trans Image Process. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



There is no preferential distribution of orientations and rate of increase of hills. Orientation 

(ρo) and rate of increase of major and minor axes (wma, wmi) are therefore assumed to be 

generated from a uniform distribution. Uniform distributions for wma, wmi were chosen to be 

between (2, 20) since a range beyond 20 as the upper limit did not bring significant change 

in the shape of the ellipsoid.

(9)

Values of all the hyper-parameters used in the experiments are reported in Table I

Performance of the algorithm was measured in terms of the absolute value of the error in 

localization of the DEJ along the z-axis for each voxel compared to ground-truth and its 

mean and variance were reported. Ground-truth annotations were given by consensus 

labeling by three experts.

Table II reports the results of our algorithm (MPP-skin) for dark skin RCM image stacks and 

Table III presents the results on the fair skin stacks. The tables report the mean and variance 

of the absolute value of distance between DEJ as detected by our algorithm and the expert 

labels. Down arrows in the table indicate that lower values are desirable. For comparison, we 

include the results from our previous approach Kurugol et al. [4], [16]. For reference, we 

also ran a standard graphcuts algorithm [25] for both skin types and report those results as 

well. Results from Table II and III showed that the graphcuts algorithm performs poorly 

compared to MPP-skin and [4], [16] for both dark and fair skin types. Results from Table II 

show that the proposed MPP-skin has equivalent performance compared to Kurugol et al. 
[4], [16], with a small advantage in average accuracy. For the fair skin case, the epidermis-
transition and transition-dermis error values were reported in [4], [16] rather than a single 
DEJ. However, we now have groundtruth labels available for a single DEJ junction rather 

than two junctions with uncertainty region, which was not the case at the time of the 

previous publication. We calculated the error value of the junctions reported in [4], [16] to 

this new single DEJ junction and reported the results in Table III. The average error values 

for fair skin are 9.71µm for epidermis-transition boundary (to the true DEJ boundary) and 

9.67µm for the transition-dermis boundary (to the true DEJ boundary). On the other hand, 

our algorithm reports an average error of 12.1µm. All of these errors are less than the size of 

single basal cell away from the boundary (basal cells are generally approximately 10 to 15 

microns in height). Thus the accuracies can be considered comparable.
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Figures 9 and 10 show an example DEJ boundary marked by an expert and automatically 

detected by our algorithm, MPP-skin on an en-face slice of image stack 1 and stack 12 in 

dark and fair skin respectively. Figure 11 shows a surface 3D plot of the DEJ detected by our 

algorithm on a sample dark and fair skin stack. Color indicates how far the DEJ is from the 

expert labels. Blue indicates smaller error and red indicates larger error.

V. Conclusion

Segmenting boundaries of interest in 3D microscopy images is often challenging due to high 

intra and inter-subject (or specimen) variability, and the complexity of the boundary 

structures. Incorporation of shape information about the object of interest can often help 

improve segmentation performance. In addition, the detection problem usually involves 

locating multiple occurrences of similar objects, where the locations are sufficiently variable 

that stochastic models are required. We present a novel strategy utilizing a marked Poisson 

process to address this problem and report on our application for automatically detecting the 

DEJ in 3D reflectance confocal microscopy images of human skin. The multiple hills and 

valleys topography of the DEJ was addressed by developing an unsupervised probabilistic 

model that incorporates not only appearance of the skin in RCM images, but also the shape, 

using a marked spatial Poisson process. Inference on the algorithm was accomplished using 

Gibbs sampling. Experimental results on in vivo measured data from human skin are 

presented for both dark (less challenging) and fair (more challenging) skin types. We show 

that this model is capable of detecting the DEJ for both skin types with an average error of 

5.41µm and 12.1µm for dark and fair respectively, compared to expert labeling, well within 

the range of clinical utility.

MPP-skin offers several advantages over our previous [4], [16] approach. First, Kurugol et 

al.’s approach does not detect the DEJ in fair skin and instead detects an uncertainty region 

between the epidermis and dermis. In contrast, our MPP-skin approach detects the DEJ in 

both skin types. Second, Kurugol et al.’s approach involves classification of tiles based on 

the extracted features followed by smoothing rather than a model for the DEJ, whereas, the 

MPP-skin provides an explicit model of the boundary. Third, [4], [16] is a supervised 

method (involving several SVM components for the fair skin model), whereas MPP-skin 

requires selection of distributions and parameters based on prior knowledge, but does require 

detailed labeling for parameter estimation. This modeling can be based on physically and 

physiologically meaningful structure rather than “blindly” learning parameters from data. 

Thus, if the structures are different in other data (stacks with different tissue structure), these 

differences can be incorporated meaningfully. Indeed, although the results reported here for 

the older method are based on a strict separation of training and test data, our experience has 

been that the method, because it relies on training a classifier, has been at times unreliable to 

train appropriately. On the other hand, the MPP-skin model relies only on the basic 

structural architecture of the DEJ with only a small number of physiologically meaningful 

fixed parameters, and thus should generalize more reliably. If there is a reason to believe that 

DEJ structure varies (e.g. with age or location), adapting MPP-skin to such settings would 

be very straightforward.
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The differences may be even more significant when the approaches are applied to diseased 

skin, where the DEJ may be disrupted or otherwise abnormal. In case of the supervised 

method, if this causes unexpected results, we anticipate that it will be difficult to distinguish 

between the presence of disease due to difficulty in appropriately training the model to 

capture normal variability. On the other hand, with the current generative model, non-

standard results or difficulty in fitting the model to data may well be a useful biomarker of 

abnormality in the skin structure.

Automation in DEJ delineation is a major step in the standardization of the image 

acquisition process. In the short term, standardization of mosaicing will lead to more rapid 

and repeatable imaging, both across locations on the body and longitudinally, within a single 

subject and across subjects. Shorter imaging sessions will increase patient comfort and save 

expense. In the longer term, standardization in data acquisition will make the adaptation of 

RCM imaging easier and enable the widespread use of this technology in clinics. Moreover, 

data collected in a standardized manner will facilitate larger cross-site studies, which will 

eventually lead to increase in sensitivity and specificity of RCM imaging in diagnosis. In 

this context, computational time could be a limitation which can be improved by using GPU 

based parallelization. In addition, the algorithm depends to an unknown degree, on the 

spacing of the slices in depth, which incurs a tradeoff between that resolution and imaging 

time. Finally, there are limitations to the shape model employed that we will try to 

generalize in the future.

Although we designed this model to solve the DEJ segmentation task, the underlying model 

can be applied to other multiple object segmentation applications utilizing the appropriate 

shape and appearance models for those domains. For instance, it could be used for detection 

and segmentation of multiple cells in both 2D and 3D microscopy images [3], [2], [26]. The 

shape and appearance models for these applications could either be determined from training 

data or domain knowledge of the application. For example, in 2D/3D cell microscopy or 

histopathology image data [3], [17], a parametric shape model of ellipses (ellipsoids in case 

of 3D [2], [26]), and a Gaussian model of intensity for appearance could be utilized. One 

could alternatively use a point distribution model parameterized by landmark points around 

the boundary as well [27]. In these examples, the parametrization of shape and appearance 

would change, while the underlying model of the marked Poisson process remains the same.
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Fig. 1. 
An illustration of the dermal-epidermal junction (DEJ) of human skin is shown in the left 

hand side figure. Green color indicates the DEJ boundary. Black dashed lines represent the 

section where RCM imaging captures slices. Right hand side figure shows a stack of these 

slices.
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Fig. 2. 
Hill and valley like structure of dermal-epidermal junction (DEJ) of human skin.
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Fig. 3. 
(a)–(e) and (k)–(o) show original unsegmented example en-face slices from a dark and fair 

skin stack respectively where the slice numbers go from top (epidermis) to bottom (dermis). 

(f)–(j) and (p)–(t) show the corresponding expert labels (shown in green) for dark and fair 

skin stacks respectively.
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Fig. 4. 
Generative model for dermis-epidermis segmentation. First, M points at random location are 

generated from a spatial Poisson process. The green circles represent these points. Lines in 

4(a) that connect to these points are drawn for clarity in visualization of depth. An object 

boundary involving hills is generated from a shape model at each location followed by 

modeling of appearance of voxels above and below the shape boundary.
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Fig. 5. 
Poisson intensity along the z-axis varies according to a Gamma distributionΓ(10, 3) shown 

in 5(a). Uniform Poisson intensity prior across the x–y plane is assumed with the integral 

Poisson intensity value ∑ρβ = 50. Green circles in 5(b) represent points generated from a 

random outcome of this Poisson model. Lines hat connect to these points are drawn for 

clarity in visualization of depth.
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Fig. 6. 
A random sample from the proposed shape model.
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Fig. 7. 
A random sample from the latent shape marked spatial Poisson process. This shape/

boundary is generated by sampling the hill peaks from a spatial Poisson process, followed 

by sampling the hill shape parameters from a shape prior model. Refer to text for more 

details.
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Fig. 8. 
Graphical representation of the MPP-skin model. Larger circles show random variables 

(random variables, shaded if observed, latent otherwise), while the much small circles show 

deterministic ones. Arrows show statistical dependency of the variables. Boxes around 

random variables, denoted by an upper case letter M/N, indicates that there are M/N such 

random variables.x are voxels and s the shape parameters. The hyperparameters α 
(appearance), β (position) and ζ (shape) determine the distribution of x.
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Fig. 9. 
Example images from an RCM stack of 45 images (1µm depth spacing) of dark skin, 

showing layers from lower epidermis, DEJ and papillary dermis. The topmost row shows 

images in depth (axial views), from left to right, collected at 0µm (epidermis), 29µm (DEJ), 

and 41µm (papillary dermis), with respect to the initial imaging level at the stratum 

corneumgranular layer boundary. Sagittal and coronal sections, oriented perpendicular to the 

plane of this page and located at the red and green lines in axial views, are shown in the 

second and third row, respectively. In all the views, DEJ boundary drawn by expert 

clinicians and the algorithmic delineation are shown in orange and light blue, respectively. 

Scale bars in sagittal and coronal views show 12.5µm.
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Fig. 10. 
Example images from an RCM stack of 60 images (1µm depth spacing) of fair skin, showing 

layers from lower epidermis, DEJ and papillary dermis. The topmost row shows images in 

depth (axial views), from left to right, collected at 0µm (epidermis), 28µm (DEJ), and 37µm 
(papillary dermis), with respect to the initial imaging level at the stratum corneumgranular 

layer boundary. Sagittal and coronal sections, oriented perpendicular to the plane of this 

page and located at the red and green lines in axial views, are shown in the second and third 

row, respectively. In all the views, DEJ boundary drawn by expert clinicians and the 

algorithmic delineation are shown in orange and light blue, respectively. Scale bars in 

sagittal and coronal views show 12.5µm.
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Fig. 11. 
Dermal-epidermal junction detected by our MPP-skin algorithm. Color indicates the error in 

DEJ detection compared to expert labels.
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TABLE I

Hyper-parameter values used in the experiments.

Model Component Prior distribution Parameter values

Poisson: (β(τ)) Gamma (10, 3)

Shape major and minor axis: (ρma, ρmi) Gamma (5, 5)

Shape orientation: (ρo) Uniform (0, π)

Shape rate of increase: (wma, wmi) Uniform (2, 20)
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TABLE II

Evaluation of the performance of our MPP-skin algorithm compared to our previous approach [4] for dark skin 

type. We report the mean and standard deviation of error in estimation of DEJ along the z-axis. All units are in 

µm.

Test set Graphcuts [25] ↓ Kurugol et al. [4], [16] ↓ MPP-skin ↓

Stack 1 17.71 ± 12.3 3.15 ± 3.26 3.6 ± 3.4

Stack 2 3.6 ± 14.0 7.13 ± 6.36 10.1 ± 5.3

Stack 3 8.7 ± 11.1 5.89 ± 4.58 4.2 ± 3.1

Stack 4 47.6 ± 5.3 3.49 ± 3.28 6.0 ± 5.5

Stack 5 6.7 ± 7.9 14.45 ± 7.45 4.9 ± 3.6

Stack 6 34.18 ± 6.2 2.99 ± 2.65 2.1 ± 3.0

Stack 7 22.3 ± 14.5 7.73 ± 6.7 6.0 ± 5.4

Stack 8 17.4 ± 8.1 7.04 ± 5.98 7.0 ± 5.3

Stack 9 18 ± 13 9.95 ± 7.61 4.8 ± 4.8

Average 19.5 ± 9.24 6.86 ± 4.78 5.41 ± 3.94
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TABLE III

Evaluation of the performance of our MPP-skin algorithm for fair skin type. We report the mean and standard 

deviation of error in estimation of DEJ along the z-axis. All units are in µm.

Test set Graphcuts [25]↓ Kurugol et al. [4], [16] ↓ MPP-skin ↓

Epidermis - Transition Dermis - Transition

Stack 1 20.94 ± 13.62 4.96 ± 8.27 4.87 ± 8.23 9.5 ± 7.8

Stack 2 16.08 ± 3.81 5.18 ± 8.61 5.24 ± 8.69 12.4 ± 8.31

Stack 3 11.86 ± 8.03 9.99 ± 8.59 8.36 ± 8.55 5.8 ± 5.53

Stack 4 41.99 ± 19.5 15.06 ± 12.02 14.13 ± 11.45 14.6 ± 5.9

Stack 5 15.87 ± 7.04 11.42 ± 5.22 12.02 ± 6.11 14.9 ± 5.2

Stack 6 13.36 ± 11.5 9.65 ± 10.43 9.31 ± 11.14 15.2 ± 10.1

Stack 7 15.75 ± 11.66 24.09 ± 15.65 22.22 ± 14.82 7.9 ± 7.4

Stack 8 13.2 ± 9.1 9.96 ± 10.29 10.50 ± 10.31 13.0 ± 7.8

Stack 9 22.81 ± 13.11 6.84 ± 11.83 6.94 ± 11.52 10.2 ± 9.0

Stack 10 9.5 ± 10.76 10.88 ± 9.38 11.49 ± 9.71 17.9 ± 8.9

Stack 11 21.44 ± 9.99 6.45 ± 11.21 6.76 ± 10.81 6.8 ± 4.1

Stack 12 8.98 ± 8.29 7.16 ± 5.53 7.37 ± 6.34 10.2 ± 6.8

Stack 13 23.28 ± 4.68 4.56 ± 4.38 4.48 ± 4.32 19.0 ± 5.6

Stack 14 18.54 ± 6.9 13.09 ± 13.72 15.27 ± 12.7 12.1 ± 7.0

Stack 15 11.01 ± 4.59 6.38 ± 10.06 6.04 ± 9.44 13.6 ± 6.83

Average 17.64 ± 9.5 9.71 ± 9.68 9.67 ± 9.62 12.1 ± 7.0
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