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ABSTRACT
We describe a method for simulating exciton dynamics in protein–pigment complexes, including effects from charge transfer as well as
fluorescence. The method combines the hierarchical equations of motion, which are used to describe quantum dynamics of excitons, and
the Nakajima–Zwanzig quantum master equation, which is used to describe slower charge transfer processes. We study the charge transfer
quenching in light harvesting complex II, a protein postulated to control non-photochemical quenching in many plant species. Using our
hybrid approach, we find good agreement between our calculation and experimental measurements of the excitation lifetime. Furthermore,
our calculations reveal that the exciton energy funnel plays an important role in determining quenching efficiency, a conclusion we expect
to extend to other proteins that perform protective excitation quenching. This also highlights the need for simulation methods that properly
account for the interplay of exciton dynamics and charge transfer processes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0117659

I. INTRODUCTION

Photosynthetic systems rely on both electronic excitation
energy transfer (EET) and charge transfer (CT) processes to perform
the reactions that sustain life on Earth.1–5 For example, excitation
energy transfer (EET) and charge transfer (CT) play fundamental
roles in reaction centers,4 where light energy from the Sun is har-
vested to drive chemical reactions. Charge transfer is also likely
to have an important photo-protective function in photosynthetic
organisms,6–10 by quenching excess excitation energy and prevent-
ing damage to photosynthetic systems. The importance of coupled
charge and excitation energy transfer dynamics necessitates the
development of theoretical methods to accurately and efficiently
simulate them together. Here, we develop a theory to study both
processes using a hybrid approach that combines the hierarchi-
cal equation of motion (HEOM) with quantum master equations
(QMEs) to afford a computationally efficient method that is also
accurate.

Rapid excitation energy transfer has been studied extensively
using a variety of methods, with HEOM emerging as a flexible
and highly accurate approach for a large class of systems.11–13 The
HEOM method has enabled the simulation of EET in photosyn-
thetic complexes without invoking perturbation theory, enabling a
balanced description of both incoherent Förster EET and coher-
ent excitonic EET as well as transport dynamics intermediate
between these two regimes.14 Although the HEOM method has been
used extensively to study EET,12,15–25 it has been used less in the
study of combined EET and CT.26 This is largely because charge
transfer states typically couple much more strongly to the envi-
ronment than local electronic excitations. Typical reorganization
energies for CT processes are often in excess of 20kBT at room
temperature in polar environments due to the large changes in
charge density distributions on molecules involved in CT27 com-
pared to ∼1kBT for chlorophyll excitations. As a result of the large
system–bath coupling strength, direct HEOM calculations involving
CT states become very challenging.28–30 Recent developments using
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matrix product states,31–33 and their generalizations,34 or tree tensor
networks35 to solve the HEOM can help alleviate this problem,
but these methods are limited to linear coupling models between
the charge transfer states and harmonic environments. Alternative
methods such as MACGIC-QUAPI36,37 (a variant on the origi-
nal QUAPI method38–42) have been successfully applied to models
of coupled EET and CT in reaction centers,37 but dynamics with
this method can still be difficult to converge for large system sizes
and strong system–bath coupling. Approximate theories, such as
the modified-Redfield/generalized Förster theory,43–45 have been
applied to study CT processes in light harvesting complexes,26,46,47

but these methods do not always accurately describe the EET
dynamics in the absence of CT processes.21 Semiclassical approaches
have also been used to study exciton dynamics,48–54 but these meth-
ods often break down for systems with large system–bath couplings
as is encountered in CT processes. In order to facilitate the study
of reaction center and CT quenching processes in photosynthesis,
an accurate and computationally efficient method that can describe
coupled EET and CT processes is needed.

In this work, we present a theory combining the HEOM
method, which is used to model the EET dynamics of locally excited
states, with quantum master equation approaches used to describe
the charge transfer55–58 and radiative processes.19 Conceptually
similar hybrid approaches in which different degrees of freedom
are treated with different levels of theory have been used previ-
ously to extend the applicability of approximate theories,59–62 but
here we take the numerically exact HEOM method and make it
more computationally tractable through judicious approximations
on a subset of dynamical degrees of freedom. The working equations
of our method, obtained using a Zwanzig projection approach,63–65

are a set of simple linear differential equations for hierarchies of
auxiliary density operators (ADOs) for the different manifolds of
states in the system. Formally, the method can account for anhar-
monicity in the degrees of freedom coupled to the CT processes,
though in this work, we only consider linear response models for
the CT process. In Sec. II, we outline the model and the HEOM
method, and in Sec. III, we derive the hybrid HEOM/QME method.
In Sec. IV, we test the method against exact results for a dimer
of locally excited states coupled to a CT state in order to verify
the accuracy of the method. In Sec. V, we then apply the hybrid
HEOM/QME method to study charge transfer quenching in light
harvesting complex II (LHCII),1,21,45,66,67 a system that would be
intractable to study with direct HEOM calculations. Our simula-
tions of LHCII reveal the importance of the excitation energy funnel
in determining photo-protective quenching efficiency in the LHCII
complex, a result that we discuss further in Sec. VI. Finally, we draw
conclusions in Sec. VII.

II. THEORY
We consider the coupled energy and charge transfer of a

photoexcited chromophore system, like that found in naturally
occurring light harvesting complexes. In this section, we outline a
general model Hamiltonian and review HEOM.

A. Exciton and charge transfer model
The system we consider consists of chromophores and elec-

tron donors and acceptors. An example of such a system is the

FIG. 1. tructure of the Chla611–Chla612 dimer in LHCII with the lutein (lutein
620 denoted Lut1 for brevity as in Ref. 67) electron donor (PDB 1RWT, chain
C68). The electron transfer coupling is denoted by VCT and the electrostatic
inter-chromophore coupling is denoted by J.

Chla 611–Chla 612 dimer in LHCII shown in Fig. 1,67 where the
locally excited Chla states couple to each other and the locally
excited Chla 612 can also accept an electron from the nearby lutein
donor, which quenches the Chla∗ excitation. The chromophores
have a ground state ∣GS⟩ and a manifold of singly excited states,
which can be spanned by a local basis ∣LEn⟩, which are coupled
electrostatically. Such a system of coupled LE states can be well
described by a Frenkel exciton model.1 These locally excited states
can also undergo charge transfer, where either the excited electron
or hole transfers to a nearby acceptor or donor. For example, in
the LHCII sub-system depicted in Fig. 1, the CT state is formed
by electron transform from lutein to Chla 612. The charge trans-
fer states that can be formed by these processes are denoted as
∣CTn⟩. These states can undergo charge recombination to return
the system to ∣GS⟩. As well as coupling to each other, the LE and
CT electronic excitations couple to the nuclear degrees of freedom
on the chromophores, the donors/acceptors, and the surrounding
polarizable environment, which leads to decoherence and relax-
ation of these excited electronic states. For example, if we consider
the Chla dimer system depitced in Fig. 1,, the local excitation on
each Chla couples primarily to the vibrations localized on each
chlorophyll,1 but the CT excitation couples to the intramolecular
Chla and lutein vibrations, and the low frequency modes which
determine polarization of the surrounding protein and solvent envi-
ronment.27 The different nature of the coupling to the environment
for local and charge transfer excitations permits a partitioning of
the environment into degrees of freedom that couple primarily
to local excitations, the bLE degrees of freedom, and the degrees
of freedom that couple primarily to the charge transfer processes,
denoted by bCT, a partitioning that will be explained in more detail
below. Furthermore, the electronic states of the system couple to the
electromagnetic (EM) field, which creates radiative decay pathways
for the excited electronic states.19

The Hamiltonian for the system described above can be
written as

Ĥ = ĤLE + ĤCT + ĤGS + ĤLE,CT + ĤCT,GS + ĤEM + ĤD, (1)
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where the ground-state Hamiltonian ĤGS decomposes as

ĤGS = Π̂GS(T̂ + V̂0). (2)

Here, T̂ is the nuclear kinetic energy operator, V̂0 is the ground-
state potential energy operator, and Π̂GS is a projection operator
Π̂GS = ∣GS⟩⟨GS∣. Similarly, the Hamiltonian of the charge transfer
states is

ĤCT =
NCT

∑
n=1

Π̂CTn ĤCTn =

NCT

∑
n=1

Π̂CTn(T̂ + V̂CTn), (3)

with Π̂CTn = ∣CTn⟩⟨CTn∣ being a projection operator onto the CTn
state, which we assume is a CT state in which electrons and holes
are localized on specific acceptors and donors. For the locally
excited states, we take a similar form but include all the LE state
couplings Jnm,

ĤLE = (
NLE

∑
n=1
∣LEn⟩⟨LEn∣(En + T̂ + V̂LEn)

+ ∑
n>m

Jnm(∣LEn⟩⟨LEm∣ + ∣LEm⟩⟨LEn∣)) (4)

= ĤLE,s +
NLE

∑
n=1
∣LEn⟩⟨LEn∣(T̂ + V̂LEn), (5)

and we can again define an electronic projection operator Π̂LE
= ∑n∣LEn⟩⟨LEn∣, which commutes with ĤLE. The CT-GS diabatic
coupling term can be written as

ĤCT,GS =
NCT

∑
n=1

VCTn ,GS(∣CTn⟩⟨GS∣ + ∣GS⟩⟨CTn∣) (6)

and the locally excited state charge transfer diabatic coupling term
can be written as

ĤLE,CT =
NLE

∑
n=1

NCT

∑
m=1

VLEn ,CTm(∣LEn⟩⟨CTm∣ + ∣CTm⟩⟨LEn∣), (7)

with coupling constants VCTn ,GS and VLEn ,CTm . For simplicity, we
have made the Condon approximation, by assuming that the
diabatic state couplings have no nuclear coordinate dependence.

The electromagnetic field Hamiltonian ĤEM is given by19,24

ĤEM =∑
k,p

h̵ωk(â†
kp âkp +

1
2
), (8)

where âkp is the electromagnetic (EM) field annihilation operator for
mode k with polarization p and ωk = c0∣k∣. These EM field modes are
denoted by the bEM degrees of freedom. ĤD is the dipole coupling
operator between the molecular system and the EM field,19,24,69

ĤD = −μ̂ ⋅ Ê (9)

within a point dipole approximation for the system. Here, μ̂ is the
system transition dipole moment operator, with components for the
LEn state, μ̂n,α, with α = x, y, z, given by

μ̂α =
NLE

∑
n=1

μn,α(∣LEn⟩⟨GS∣ + ∣GS⟩⟨LEn∣), (10)

and Ê is the electric field operator at the origin,

Ê = i∑
k,p

√
h̵ωk

2V0 ε0
(âkp ekp − â†

kp e∗kp), (11)

where V0 is the volume of the system, ε0 is the vacuum permittiv-
ity, and ekp is a unit vector defining the polarization of the EM field
mode kp.

In describing the potential energy surfaces for the different dia-
batic states, we start by separating out the nuclear bath coordinates
that modulate the energy gap between the LEn state and the ground
state, which we denote the bLEn degrees of freedom. This is justified
by noting that the main degrees of freedom that modulate the LEn
energies are intramolecular vibrational modes on chromophore n
and its surrounding local environment. Given the CTn states involve
these chromophores, the CTn energies can also depend on the bLEn

degrees of freedom, as well as local modes on donors/acceptors
involved in the charge transfer, and delocalized modes correspond-
ing to environment polarization.1,12 These additional bath degrees
of freedom are denoted bCT. In what follows, we assume that the
bLE and bCT degrees of freedom are not coupled and are there-
fore uncorrelated, and the operators on these degrees of freedom,
indicated by superscript bLE and bCT labels, therefore commute.
This assumption is analogous to separating intramolecular and
environmental contributions to spectral densities used in modeling
condensed phase optical spectra70–72 and the separation of inner-
and outer-sphere contributions to electron transfer reorganization
energies.27,30

Within this assumption, we can write down a model Hamilto-
nian for the coupled LE and CT states as

Ĥ = ĤLE,s +
NLE

∑
n=1
∣LEn⟩⟨LEn∣ΔV̂bLEn

LEn

+

NCT

∑
n=1

Π̂CTn(ĤCTn ,s + ΔV̂bCT
CTn
+

NLE

∑
m=1

ΔV̂bLEm
CTn
)

+ ĤbLE
GS + ĤbCT

GS + Ĥ ET + ĤEM + ĤD. (12)

Here, ĤLE,s is the LE system Hamiltonian, containing the LE state
energies and couplings, and similarly ĤCTn ,s is the system Hamilto-
nian for CTn, which describes the energy of CTn and Ĥ ET = ĤLE,CT

+ ĤCT,GS. ΔV̂bLEn
LEn
= V̂LEn − V̂0 describes how the potential energy

surface of the ground state is perturbed by the electronic excitation
LEn; similarly, ΔV̂bCT

CTn
+∑m ΔV̂bLEm

CTn
= V̂CTn − V̂0 describes how the

ground state potential is shifted in the charge transfer state CTn.
The potential energy shift for the CT states is divided into a sum
of terms that are correlated with the LEm energy shifts, ΔV̂bLEm

CTn
, cor-

responding to reorganization of the intramolecular modes on each
chromophore, and the remaining uncorrelated component ΔV̂bCT

CTn
.

The reference ground state potentials for the bLE and bCT degrees of
freedom are given by ĤbLE

GS and ĤbCT
GS , respectively.
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B. The LE state potential energy surfaces
We can often assume that the LE state energy shift opera-

tors ΔV̂bLEn
LEn

have Gaussian statistics in the ground state reference
ensemble, meaning the third- and higher-order cumulants vanish.
Furthermore, we assume that the correlation functions ofΔV̂bLEn

LEn
can

be decomposed into a sum of contributions as follows:12,14

⟨ΔVbLEn
LEn
(t)ΔV̂bLEm

LEm
(0)⟩

bLE
= δn,m

Nb,n

∑
r=1

Cn,r(t), (13)

where ⟨⋅ ⋅ ⋅⟩bLE
= TrbLE[⋅ ⋅ ⋅ e

−βĤ bLE
GS ]/TrbLE[e

−βĤ bLE
GS ] and ΔVbLEn

LEn
(t)

= eiĤ bLE
GS t/h̵ΔVbLEn

LEn
e−iĤ bLE

GS t/h̵. Provided CbLE
n,r (t) is a smooth function, it

can be written in terms of a spectral density Jn,r(ω) as

CbLE
n,r (t) =

h̵
π ∫

∞

0
dωJn,r(ω)[coth(

βh̵ω
2
) cos(ωt)−i sin(ωt)]. (14)

With these assumptions, ĤbLE
GS can be written as a sum of inde-

pendent harmonic bath Hamiltonians and the LE state energy shift
terms ΔV̂bLEn

LEn
are linear in the bath mode displacements.13 These

assumptions are widely used in describing exciton dynamics and
largely hold due to the relatively weak coupling between the LE states
and the environment, meaning shifts in the potential energy surfaces
can be well approximated as simple shifts in a harmonic potential.1,12

Overall, this means that we can write the bLE Hamiltonians as12

ĤbLE
GS =

NLE

∑
n=1

Nb,n

∑
r=1

Nn,r

∑
α=1
(

p̂2
nrα

2mnrα
+

1
2

mnrαω2
nrα q̂2

nrα), (15)

ΔV̂bLEn
LEn
=

Nb,n

∑
r=1

B̂n,r =

Nb,n

∑
r=1

Nn,r

∑
α=1

cnrα q̂nrα, (16)

where the bath mode frequencies ωnrα and coupling coefficients cnrα
of the mode displacement operators q̂nrα appear in the bath cou-
pling operators B̂nrα. We also assume that the ΔV̂bLEm

CTn
terms, which

describe the correlation between the CT state and the LE state energy
shifts, can be written as linear in the bLE bath coupling operators in
Eq. (16), with coupling coefficients κCTn

m,r ,

ΔV̂bLEm
CTn
=

Nm,r

∑
r=1

κCTn
m,r B̂m,r. (17)

We can evaluate the spectral density for each bath, i.e.,

Jn,r(ω) =
π
2

Nn,r

∑
α=1

c2
nrα

mnrα ωnrα
δ(ω − ωnrα) (18)

in terms of these microscopic parameters in the Hamiltonian.

C. The hierarchical equations of motion
The hierarchical equations of motion provide a method for

simulating the dynamics of a system linearly coupled to a harmonic

bath. It was developed for Hamiltonians, like the ones we are
interested in, that can be decomposed as13

Ĥ = Ĥs +
Nb

∑
j=1
(Ĥb,j + V̂ j B̂j), (19)

where Ĥs is the sub-system Hamiltonian, V̂ j are system opera-
tors, and Ĥb,j is the Hamiltonian of harmonic bath j. The bath
displacement operators, B̂j, are defined as Ĥb,j = ∑

Nj
α=1 p̂2

jα/2mjα

+mjαω2
jα q̂2

jα/2 and B̂j = ∑
Nj
α=1 cj,α q̂j,α. as analogous to Eqs. (15) and

(16), where the index n, r is replaced with a single index j. Assum-
ing the bath displacement operator correlation functions can be
decomposed as

Cj(t) =
∞

∑
k=1

ajke−νjkt (20)

and using the Gaussian property of the harmonic baths, we can
obtain the system reduced density operator ρ̂(t) = Trb[ρ̂ tot(t)],
from a hierarchy of auxiliary density operators (ADOs) ρ̂n(t)
obeying the following equation of motion:11,13,73

d
dt
ρ̂n(t) = −

i
h̵
[Ĥs, ρ̂n(t)]−∑

j,k
njk νjk ρ̂n(t)+ Ξn ρ̂n(t)

−
i
h̵∑j,k

√

(njk + 1)∣ajk∣[V̂ j, ρ̂n+jk
]

−
i
h̵∑j,k

√
njk

∣ajk∣
(ajk V̂ j ρ̂n−jk

− a∗jk ρ̂n−jk
V̂ j), (21)

where n = (n1,0, n1,1, . . . , nj,k, . . .) is a multi-index that specifies the
excitation level of mode k for each bath j for a given hierarchy
element, n±jk = (n1,0, n1,1, . . . , nj,k ± 1, . . . ), and Ξn is a system super-
operator that accounts for finite truncation of the hierarchy. The
sub-system reduced density operator can be obtained as the zeroth
element of this hierarchy, ρ̂(t) = ρ̂0(t).

We can write down the truncated hierarchy as

∣ρ(t)⟩⟩ =∑
n
∣ρn(t)⟩⟩⊗ ∣n⟩⟩, (22)

where ∣n⟩⟩ is a basis vector corresponding to the auxiliary density
operator n and ∣ρn(t)⟩⟩ is the Liouville space vector of this ADO.
With this notation, we can write down the equation of motion more
compactly as29,33,74

d
dt
∣ρ(t)⟩⟩ = L∣ρ(t)⟩⟩ (23)

= (Ls ⊗ Iado − Is ⊗ Γ + Ξ + V)∣ρ(t)⟩⟩, (24)

where Ls = −(i/h̵)[Ĥs, ⋅ ] is the system Liouvillian, Is and Iado are
identity operators on the system Liouville space and the set of ADOs
respectively, Γ = ∑n γn∣n⟩⟩⟨⟨n∣ is a matrix of ADO decay rates,
Ξ = ∑n∈N Ξn ⊗ ∣n⟩⟩⟨⟨n∣ is a superoperator that accounts for finite
truncation of the hierarchy,73 and V is the term that couples differ-
ent ADOs within the hierarchy. Henceforth, we will swap between
the Liouville vector notation ∣ρ⟩⟩ and standard operator notation ρ̂,
as is most appropriate.
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III. THE HYBRID HEOM/QME METHOD
Using HEOM to study CT in these systems can be difficult

due to the large reorganization energies involved, which give rise
to large values of ajk for baths associated with CT processes. The
large coupling coefficients for certain modes means many ADOs are
needed to converge the HEOM dynamics. This can make HEOM
calculations involving CT states intractable when there are large
numbers of system states and baths. A simplification results as
the reorganization energy of the charge transfer processes is typi-
cally much larger than the electronic coupling between CT states
and LE states, and thus the use of perturbation theory, where the
coupling to the CT states is treated as a small parameter, can be
expected to give an accurate description of the coupled dynamics
of the LE and CT states.27,56,57 In this section, we describe how
Zwanzig projection can be used to construct a hybrid HEOM/QME
method in which radiative and electron transfer processes are treated
with perturbation theory while preserving the high accuracy of
the EET dynamics afforded by HEOM. Similar approaches have
been used to derive hybrid HEOM methods to describe radiative
processes in EET in protein–pigment complexes,19,23,75 but these
have not included charge transfer processes. The approach taken
here combines some of the ideas for describing radiative processes
in Ref. 19 with the Nakajima–Zwanzig theory-based approaches
that have been used to derive quantum master equations for spin
density operators of different charge transfer states in photoexcited
molecules.56–58

A. Zwanzig projection
Here, we use the Zwanzig projection operator approach to con-

struct a hybrid HEOM/QME method. We set up the problem by
formally including the bCT and EM field degrees of freedom as well
as the full set of electronic states, in the system Hamiltonian Ĥs in
the hierarchical equations of motion. This means that the “system”
Hamiltonian is taken to be

Ĥs = ĤLE,s +
NCT

∑
n=1

Π̂CTn(ĤCTn ,s + ΔV̂bCT
CTn
)

+ ĤbCT
GS + ĤLE,CT + ĤCT,GS + ĤEM + ĤD. (25)

The response of the system to the bLE couplings is treated with
the HEOM, with the set of NbLE = ∑n Nb,n LE baths indexed by
j = n, r, and

V̂n,r = ∣LEn⟩⟨LEn∣ +
NCT

∑
m=1

κCTm
n,r Π̂CTm , (26)

are the set of system–bath coupling operators. The coefficients κCTm
n,r

here describe how the bLE degrees of freedom are coupled to the CT
states as defined in Eq. (17).

The main variables of interest for this system, when the bLE
degrees of freedom are treated with the HEOM method, are the
reduced density operators for the LE states and the CT and GS state
populations. These populations are given by

σ̂A,s(t) = Π̂A Trb′[ρ̂0(t)]Π̂A, (27)

where ρ̂0(t) is the zeroth ADO of the hierarchy, Π̂A is a projec-
tion operator onto the manifold of electronic states with A = LE,
CTn or GS, and Trb′ denotes a trace over all bCT and bEM field degrees
of freedom, which we collectively refer to as b′. Since we aim to treat
the exciton dynamics with the HEOM, we construct the projection
operator for the HEOM ADOs as

P =∑
A
PA ⊗ Iado, (28)

PA = ρ̂bCT
A ρ̂ bEM Π̂A Trb′[ ⋅ ]Π̂A. (29)

Here, the local equilibrium density operator for the bCT degrees of
freedom in state A is ρ̂bCT

A = e−βĤ bCT
A /TrbCT[e

−βĤ bCT
A ], and ĤbCT

A = ĤbCT
GS

for A = GS or LE, where

ĤbCT
CTn
= ĤbCT

GS + ΔV̂bCT
CTn

, (30)

with the terms here defined as in Eq. (12). The EM field density
operator is approximated as the zero temperature equilibrium den-
sity operator of the bare EM field, where all field modes are in their
ground state, ρ̂ bEM = ⊗k,p∣0kp⟩⟨0kp∣. This approximation is justified
by the fact that we are only interested in spontaneous emission
processes since the field modes at the LE state energies are not
thermally excited at ambient temperatures, therefore, βhωkp ≈ 0 for
field modes resonant with the LE-GS energy gaps. This type of pro-
jection operator is analogous to that used in Refs. 56 and 57 for
electronic state spin density operators. This projected density oper-
ator contains the reduced density operator hierarchy, ∣σA(t)⟩⟩, for
each electronic state A,

P∣ρ(t)⟩⟩ =∑
A
∣ρbCT

A ⟩⟩⊗ ∣ρ
bEM⟩⟩⊗ ∣σA(t)⟩⟩, (31)

∣σA(t)⟩⟩ =∑
n
∣σA,n(t)⟩⟩⊗ ∣n⟩⟩, (32)

σ̂A,n(t) = Π̂A Trb′[ρ̂n(t)]Π̂A. (33)

An example of the partitioning into separate hierarchies for different
state manifolds, ∣σA(t)⟩⟩, is illustrated in Fig. 2 for a system with four
LE states, two CT states, and the ground state.

Using this projection operator P, we can obtain a quantum
master equation for the projected hierarchy of ADOs P∣ρ(t)⟩⟩ using
the Nakajima–Zwanzig equation,63–65

d
dt

P∣ρ(t)⟩⟩ = PLP∣ρ(t)⟩⟩ +∫
t

0
K(t − τ)P∣ρ(τ)⟩⟩ dτ, (34)

where the memory kernel K(t) is given by

K(t) = PLe(1−P)Lt
(1 −P)LP. (35)

The generalized master equations for ∣σA(t)⟩⟩ can be straightfor-
wardly obtained from this by tracing out the bCT and bEM degrees
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FIG. 2. chematic of the states, interstate coupling, and partitioning into reduced
hierarchies ∣σA(t)⟩⟩ for an example system with four LE states, two CT states,
and the GS.

of freedom. This gives the following general hybrid HEOM/QME
for ∣σA(t)⟩⟩:

d
dt
∣σA(t)⟩⟩=LA∣σA(t)⟩⟩ +∑

B
∫

t

0
KAB(t − τ)∣σB(τ)⟩⟩dτ, (36)

where LA = ⟨⟨1b′ ∣PALPA∣ρb′
A ⟩⟩ is the component of PLP that acts

on ∣σA(t)⟩⟩ and similarly KAB(t) is the component of KAB(t)
= ⟨⟨1b′ ∣PAK(t)PB∣ρb′

B ⟩⟩ that couples ∣σB(t)⟩⟩ to ∣σA(t)⟩⟩. Here, ∣1b′⟩⟩

is the identity operator on the bCT and EM degrees of freedom
and ∣ρb′

A ⟩⟩ = ∣ρ
bCT
A ⟩⟩⊗ ∣ρ

bEM⟩⟩ and the Liouville space inner product
is ⟨⟨A∣B⟩⟩ = Tr[Â †B̂].

B. Approximating the exact master equation
While Eq. (36) is formally exact, evaluating the kernel requires

evaluation of the exact dynamics generated by L, which is diffi-
cult due to the large Hilbert space associated with bCT and bEM.
However, in the absence of the excitonic dynamics, each can be
treated accurately with simplifying approximations. First, we make
the Markovian approximation, in which we assume the decay time
scale of KAB(t) is much faster than the dynamics of ∣σA(t)⟩⟩, and
therefore we approximate the time-convolution terms as55,56

∫

t

0
KAB(t − τ)∣σB(τ)⟩⟩ dτ ≈ ∫

∞

0
KAB(τ) dτ∣σB(t)⟩⟩. (37)

Second, we approximate the full kernel in Eq. (35) with its sec-
ond order approximation in perturbation theory.55,56 Here, the
perturbation Liouvillian LV is taken to be

LV = LET +LR, (38)

LET = −
i
h̵
[Ĥ ET, ⋅ ]⊗ Iado, (39)

LR = −
i
h̵
[ĤD, ⋅ ]⊗ Iado, (40)

where Ĥ ET is given by Eq. (12) and ĤD is given by Eq. (9). With this,
the kernel K(t) can be approximated as

K(t) ≈ K (2)(t) = PLV e(L 0+V )tLVP, (41)

where we have defined

L0 = L −LV − V. (42)

Because the baths are uncorrelated, the second order kernel can be
split as

K (2)(t) = K(2)ET (t) +K
(2)
R (t) (43)

= PLETe(L 0+V )tLETP +PLRe(L 0+V )tLRP, (44)

into an electron transfer term, K(2)ET (t), and a radiative decay term,
K(2)R (t).

The final simplification we make is to approximate the
reference propagator e(L 0+V )t appearing in the ET kernel as

e(L 0+V )t ≈ e(L 0+Ṽ )t , (45)

where Ṽ = ∑n,n′∈NK ∣n⟩⟩⟨⟨n∣V∣n
′
⟩⟩⟨⟨n′∣ is V projected onto a subset

of the ADOs. We make this approximation to reduce the density
of the coupling between elements of ∣σA(t)⟩⟩ in the equations of
motion and increase the computational efficiency of the method.
For the radiative decay term, we simply approximate e(L 0+V )t ≈ eL 0,st ,
where L0,s is just the coherent system dynamics term appearing in
L0. In deriving explicit expressions for terms appearing in the hybrid
HEOM/QME, it is important to note that L0 and V can be decom-
posed as L0 =⊕A,BL AB

0 and V = ⊕A,BV AB, where each term only
acts on coherences ∣A⟩⟨B∣ between electronic states in manifolds
A and B.

Applying the above set of approximations to Eq. (36) allows us
to write the hybrid HEOM/QME as

d
dt
∣σA(t)⟩⟩=LA∣σA(t)⟩⟩ +∑

B
RAB∣σB(t)⟩⟩, (46)

where RAB can be written as a sum of electron transfer and radia-
tive decay terms, RAB = RET

AB +RR
AB. We can write this system of

equations more explicitly as

d
dt
σ̂A,n(t) = −

i
h̵
[ĤA,s, σ̂A,n(t)] − γn σ̂A,n(t)

+ ΞA,n σ̂A,n(t) −
i
h̵∑j,k

√

(njk + 1)∣ajk∣[V̂A,j, σ̂A,n+jk
(t)]

−
i
h̵∑j,k

√
njk

∣ajk∣
(ajk V̂A,j σ̂A,n−jk

(t) − a∗jk σ̂A,n−jk
(t)V̂A,j)

+ ∑
B
∑
n′
RAB,nn′ σ̂B,n′(t), (47)
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where ĤA,s and V̂A,j are the components of the electronic state terms
in Ĥs and V̂ j projected onto the manifold of electronic states A (i.e.,
V̂A,j = Π̂A V̂ j Π̂A), ΞA,n is a superoperator that accounts for finite
truncation, projected on A, and RAB,nn′ is the component of RAB
that couples state σ̂A,n(t) to σ̂B,n′(t). Now that we have the gen-
eral form of the Markovian hybrid HEOM/QME, we just need to
evaluate the transfer operators RET

AB and RR
AB. This is detailed in the

following sections.

C. The electron transfer term
We start by considering the electron transfer term,RET

AB. By not-
ing that L0 + Ṽ does not mix populations and coherences between
the LE, CT, and GS manifolds, the elements of RET

AB where A ≠ B can
be evaluated straightforwardly as

RET
AB = L L,AB

H ET
GB

AB L R,BA
H ET
+L R,BA

H ET
GB

BA L L,AB
H ET

, (48)

where the L L/R,AB
H ET

terms are given by

L L,AB
H ET

σ̂ =
1
h̵
Π̂A Ĥ ET Π̂Bσ̂ (49)

L R,BA
H ET

σ̂ =
1
h̵
σ̂Π̂B Ĥ ET Π̂A (50)

and the GC
AB terms are given by

GB
AB = ∫

∞

0
dt GB

AB(t)S ET
ABeΛ

ET
ABtS ET

AB
−1

, (51)

where we have used the spectral decomposition of the projected
reference Liouvillian

(L AB
0 + Ṽ AB

ET)S ET
AB = Λ

ET
AB S ET

AB, (52)

where L AB
0 is defined as the block of L0 [as given in Eq. (42)] that acts

solely on AB coherences, and likewise for Ṽ AB
ET [with ṼET given in

Eq. (45)], and S ET
AB is the matrix of eigenvectors and ΛET

AB is the diag-
onal matrix of eigenvalues. Due to the block diagonal structure of
L AB

0 + Ṽ AB
ET, this can be straightforwardly evaluated. The correlation

function GC
AB(t) is given by

GC
AB(t) = TrbCT[e

−iĤ bCT
A t/h̵e+iĤ bCT

B t/h̵ρ̂bCT
C ], (53)

which is the moment generating function for the energy gap between
subsystems A and B, with ĤbCT

A defined in Eq. (30). The remaining
diagonal RET

AA terms are given by

RET
AA = −∑

B≠A
(L L,BA

H ET
GA

BA L L,BA
H ET
+L R,AB

H ET
GA

AB L R,AB
H ET
) (54)

as required to conserve population.
For practical calculations, we use the full version of these

expressions, but insight into the effect of ET on the exciton dynamics
can be gained by making some additional approximations. First, we
consider the limit where the system and LE bath time scales are long

compared to the decay time of GLE
CT,LE(t). In this limit, the RET

LE,LE
term becomes

RET
LE,LE = −

NCT

∑
n=1

kCTn←LE

2
{P̂n, ⋅ } −

i
h̵

NCT

∑
n=1

Δn[P̂n, ⋅ ], (55)

i.e., a sum of dissipative and conservative terms. Here, kCTn←LE is the
Fermi’s golden rule rate constant for ET from the LE manifold to the
CTn state,55

kCTn←LE =
∣VCTn←LE∣

2

h̵2 ∫

∞

−∞
GLE

CT,LE(t)e
−i(ECTn−Ē LE)t/h̵ dt, (56)

and ĒLE is an effective energy scale of the LE states such that ĤLE,s
≈ ĒLE Π̂LE, ĤCTn ,s = ECTn Π̂CTn , where the effective coupling constant

∣VCTn←LE∣
2
=

NLE

∑
m=1
∣VLEm ,CTn ∣

2 (57)

is given by a sum over couplings involving all of the LE states [as
given in Eq. (7)]. Finally, P̂n = ∣ψn⟩⟨ψn∣ is a projection operator onto
the reactive state in the LE manifold given by

∣ψn⟩ =
1

∣VCTn←LE∣

NLE

∑
m=1
∣LEm⟩VLEm ,CTn (58)

and Δn is an energy shift term given by

Δn =
∣VCTn←LE∣

2

h̵
Im∫

∞

0
GLE

CT,LE(t)e
−i(ECTn−Ē LE)t/h̵ dt, (59)

which in the limit of a highly activated reaction is given by

Δn ≈
∣VCTn←LE∣

2

ΔECTn←LE
, (60)

where ΔECTn←LE is the vertical energy gap from the LE state to the
CTn state.56,58

From this, we deduce that electron transfer has three main
effects on the exciton dynamics. First, the ET causes population loss
from the LE manifold from the reactive state ∣ψn⟩. Second, it causes
decoherence between the states ∣ψn⟩ state and the rest of the mani-
fold of LE states. Third, the energy shift terms perturb the exciton
dynamics, modifying the energy gaps and couplings between LE
states. If the reactive state is just a specific localized LE state, i.e.,
∣ψn⟩ = ∣LErn⟩, then the energy shift term just alters the energy of this
LE state, which in the excitonic basis introduces coupling between
delocalized excitonic states as well as shifting exciton state energies.
In the limit of Gaussian statistics for the bath and high temperature,
this reduces to Marcus theory.55,76,77 Equation (56) ignores the effect
of exciton formation, which shifts the free energy of states in the
LE manifold, thereby changing the rate constants for electron trans-
fer. The full hybrid HEOM/QME theory that we use in simulations,
however, includes this important effect.
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D. The radiative decay term
The radiative coupling terms can be derived in a similar man-

ner to the ET term, the details of which are given in the Appendixes.
Here, we simply state the final expressions for the two nonzero radia-
tive transfer terms RR

GS,LE and RR
LE,LE. The GS← LE transfer term is

given by

RR
GS,LE =

1
6h̵ε0c3

0π
∑

α=x,y,z
(L L

α S 0,s
LE,GS Ω

3
LE,GS(S 0,s

LE,GS)
−1L R

α

+ L R
α S 0,s

GS,LE Ω
3
GS,LE(S 0,s

GS,LE)
−1L L

α ). (61)

Similarly, the RR
LE,LE term can be evaluated as

RR
LE,LE = −

1
6h̵ε0c3

0π
∑

α=x,y,z
(L R

α S 0,s
LE,GS Ω

3
LE,GS(S 0,s

LE,GS)
−1L R

α

+ L L
α S 0,s

GS,LE Ω
3
GS,LE(S 0,s

GS,LE)
−1L L

α ), (62)

where L L
α σ̂ = Π̂GS μ̂α Π̂LEσ̂ and L R

α σ̂ = σ̂Π̂LE μ̂α Π̂GS, where
the dipole moment operators μ̂α are given in Eq. (10).
These expressions use the eigenvalue decompositions of
the blocks of L0,s, L GS,LE

0,s = S 0,s
GS,LE(iΩGS,LE)(S 0,s

GS,LE)
−1, and

L LE,GS
0,s = S 0,s

LE,GS(−iΩLE,GS)(S 0,s
LE,GS)

−1, where ΩGS,LE and ΩLE,GS
are diagonal matrices with real positive-valued entries. It should
be noted that the decay rates for the excitonic states ∣ϵn⟩ appear-
ing in these expressions exactly correspond to the standard
Wigner–Weisskopf decay rates.23

IV. EXCITON DIMER MODEL
As a test for the approximations that go into the hybrid

HEOM/QME method, we have performed simulations on a model
exciton dimer, consisting of two LE states, coupled to a single CT
state. The bCT bath is taken to be harmonic in this example, allowing
us to obtain exact dynamics directly with the HEOM method. The
LE system Hamiltonian for this model is

ĤLE,s =
Δϵ
2
∣LE1⟩⟨LE1∣ −

Δϵ
2
∣LE2⟩⟨LE2∣

+ J(∣LE1⟩⟨LE2∣ + ∣LE2⟩⟨LE1∣) (63)

and the CT state Hamiltonian is taken to be ĤCT,s = (ΔECT + λCT)

∣CT⟩⟨CT∣ and the CT bath shift operator is taken as ΔV̂bCT
CT = B̂CT,

where B̂CT is a harmonic bath displacement operator. The LE baths
and the bCT bath are taken to have Debye spectral densities11

J j(ω) =
λj

2
γDω

γ2
D + ω2 , (64)

where j = LE1, LE2, or CT labels the bath. In this model, we set
λLE1 = λLE2 = λLE and only the LE2 state is coupled to the CT state
with a coupling coefficient VLE2 ,CT = V . The correlation coefficients
κCT

LEn
describing the correlation between the CT state energy gap

and the LE state energy gaps are taken to be κCT
LE1
= 0 and κCT

LE2
= κ.

The structure of the coupling between states and the partitioning

into different HEOM/QME hierarchies, ∣σA(t)⟩⟩, is illustrated in
Fig. 3(a).

The HEOM/QME calculations were performed with the adap-
tive short iterative Arnoldi integrator described in the supplemen-
tary material of Ref. 78, with a Krylov subspace dimension of k = 9,
and an error tolerance parameter of ϵ = 10−12. The hierarchy was
truncated using the frequency cutoff criterion, with ADOs with
γn > Γc = 10γD excluded from the hierarchy. The same cutoff
scheme was used to truncate Ṽ in evaluating the electron transfer
kernel but with a looser choice of cutoff parameter Γc,ET = 2.5γD, so
overall couplings between only 6 of the 55 ADOs were accounted
for in evaluating RET

AB. The HEOM was closed using the termination
scheme and low temperature correction described in Ref. 78.

The exact HEOM calculations on the dimer model were also
performed using the adaptive short iterative Arnoldi integrator with
k = 9 and ϵ = 10−11. The problem was simplified by reducing the
number of baths from three to two as described in Appendix B—this
greatly reduced the number of ADOs needed in the exact cal-
culations. The hierarchy was truncated using a reorganization
energy weighted frequency cutoff scheme, wherein ADOs with a
weight wn = ∑jk νjk njk/λj > L̃ c are excluded from the hierarchy, with
L̃ c = 20. This scheme accounts for the fact that the hierarchy needs
to be deeper for the modes with of larger reorganization energy
baths because coupling coefficients down the hierarchy scale as
ajk ∝

√
λj. This more efficiently truncates the HEOM than other

schemes, such as the frequency cutoff scheme20 or the L, M cutoff
scheme.73

As a first example of the HEOM/QME method, we per-
formed simulations for the dimer model with βhγD = 0.25, βΔϵ = 1,
βV = 0.1, βλCT = 5, κ = 1, and βΔECT = −6 [labeled model A in
Fig. 3(b)], with a range of values of λLE and J. The initial condi-
tion was set to σ̂LE(0) = ∣LE1⟩⟨LE1∣ and σ̂CT(0) = 0. We look at three
regimes of the exciton dynamics: the damped coherent transport
regime (βλLE = 0.1 and βJ = 1), the vibrationally assisted transport
regime (βλLE = 1 and βJ = 1), and the incoherent Förster transport
regime (βλLE = 0.1 and βJ = 0.1). These model parameters are cho-
sen to be typical of coupled LE and CT states in light harvesting
complexes such as the Chla dimer coupled to lutein in Fig. 1.21

In Fig. 3(b), we compare the exact simulated dynamics to the
hybrid HEOM/QME dynamics, looking at three observables: the
total LE state population, pLE(t), the relative population difference
between the LE states, (pLE1(t) − pLE2(t))/pLE(t), and the relative
LE coherence, defined as 2 Re[⟨LE1∣σ̂LE,s(t)∣LE2⟩]/pLE(t). We see
that in this example, the hybrid HEOM/QME method performs
remarkably well in the three regimes of exciton dynamics, with only
small deviations in the long time limits of the relative LE population
differences and coherences. In particular, the time scale of decay of
the LE population is captured very well by the hybrid method for all
three models.

In a second, more challenging, test for the hybrid method, we
performed simulations for the same dimer model with βhγD = 1.75,
βΔϵ = 1, βV = 0.5, βλCT = 5, κ = 1, and βΔECT = −2 [labeled model
B in Fig. 3(b)]. In this example, the coupling between the CT and
the LE manifold is much larger, the free energy of the CT state
is higher, so back reaction effects are more significant. Further-
more, the characteristic bath frequency is comparable now to the LE
system frequencies, leading to significant non-Markovian effects in
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FIG. 3. (a) Schematic diagram showing the LE states and CT state in the dimer model, and the nonzero interstate couplings, together with the partitioning into reduced
hierarchies. (b) A comparison of the hybrid HEOM/QME method with the exact HEOM result for the dimer model A with βhγD = 0.25, βΔϵ = 1, βV = 0.1, βλCT = 5, κ = 1,
and βΔECT = −6 (left three columns) and for the dimer model B with βhγD = 1.75, βΔϵ = 1, βV = 0.5, βλCT = 5, κ = 1, and βΔECT = −2 (right three columns), with a
range of values of λLE and J. The first and fourth columns show the total LE population dynamics, the second and fifth columns show the LE population difference relative
to the total LE population, and the third and sixth columns show the real part of the LE coherence relative to the total LE population. The rows correspond to models
with βJ = 1, βλLE = 0.1 (top), βJ = 1, βλLE = 1 (middle), and βJ = 0.1, βλLE = 1 (bottom). (c) Convergence of the hybrid HEOM/QME results with respect to Γc,ET with
parameters described in the text. The panels correspond to κ = 0 (left) and κ = 1 (right).

the LE dynamics, and the ET rate from the LE manifold to the CT
state is closer to the frequencies of exciton dynamics. However, in
Fig. 3(a), we see that the hybrid method still performs well in all
regimes of exciton dynamics, with only small errors in the decay of
the total LE population. The errors in the population dynamics can

likely be attributed to the increased importance of CT-LE coherence
in this example, which is treated with a perturbative-Markovian
approximation with the hybrid method. Within high temperature
perturbation theory, the steady state average CT-LE coherence scales
roughly as V/λCT = 0.1, which is five times larger in this set of
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models compared to the previous ones with V/λCT = 0.02, so it is
not unexpected that the rate of ET is not captured quite as well in
these more challenging models.

As a final example, we examine the convergence of the LE pop-
ulation dynamics with respect to the cutoff parameter Γc,ET, for κ = 0
and κ = 1. When κ = 1, there is no contribution from the bLE2 bath
to the free energy change or reorganization energy of the charge
transfer process; however, when κ = 0, the bLE2 bath reorganizes
in the LE2 → CT transfer, which means that when κ = 0, this bath
has a significant contribution to the free energy change and reor-
ganization energy of the LE2 → CT process. In these simulations,
we set Γc = 7γD and examine the population dynamics for βλLE = 1,
βJ = 1 with model parameters the same as in dimer model A [as in
Fig. 3(b)]. In Fig. 3(c), we show the population dynamics for various
Γc,ET values for κ = 0 and κ = 1. We see that convergence is much
faster in the κ = 1 case, where the LE bath does not contribute to
the reorganization energy or free energy change of the LE → CT
process, so only the LE system energies need to be accounted for in
the kernel to obtain accurate results. Conversely, when κ = 0, there
is a significant contribution to the reorganization energy and free
energy change from the LE bath (roughly 20%); therefore, the LE
bath response has to be accounted for in more detail in the ET kernel
to obtain accurate results.

V. LHCII
Having established the accuracy of the hybrid HEOM/QME

method on a range of dimer models, we turn to a more complex
problem, charge transfer energy quenching in LHCII. LHCII is an
important light harvesting complex in plants, which absorbs light
energy and transports it to reaction centers.1 It is also known to
play a role in non-photochemical quenching in plants, and one
mechanism for excitation energy quenching in the complex is elec-
tron transfer from the carotenoid lutein to excited chlorophyll-a
molecules.6,8,67,79 The resulting Chla●−Lut●+ pairs recombine to the
ground state of the system, thereby quenching excitation energy
as heat. In Ref. 67, Cupellini et al. parameterized the free energy
change, reorganization energy, and diabatic coupling for charge
transfer from Lut1 to a612∗ and Lut2 to a603∗; from this, they used
Marcus theory and a simple kinetic model to estimate the excita-
tion lifetime of chlorophyll in LHCII. This model treated the coupled
Chla∗ and Chlb∗ dynamics with a simple kinetic model, where EET
between the a612∗ and a603∗ states and the pool of Chla∗ states is
modeled as a simple first order rate process. This treatment ignores
many of the details of EET in LHCII, such as the strong coupling
between the a612∗ and a611∗ states, and the a603∗ and a602∗ states,
which leads to exciton formation.

A. Model details
In order to go beyond a simple kinetic treatment of excita-

tion energy transfer and CT quenching in LHCII, we have modeled
the coupled exciton and charge transfer dynamics of an LHCII
monomer with the hybrid HEOM/QME method. This allows us
to fully explore the effects of coupled exciton and charge transfer
dynamics on the Chl∗ lifetime. The LHCII monomer contains eight
Chla and six Chlb molecules, excitations on which are all coupled,
together with two lutein molecules (Lut1 and Lut2), as shown in

FIG. 4. (a) Structure of the LHCII monomer (PDB 1RWT chain C68) showing
the chlorophyll A (green), chlorophyll B (light blue), and lutein (pink) molecules.
(b) A scheme of the electronic states and couplings used in this model.
Couplings between states are represented by double-headed arrows, the single-
headed arrow represents the radiative and non-radiative transfer processes, and
the dashed lines represent the blocks of states treated with their own explicit
hierarchies of ADOs ∣σA(t)⟩⟩.

Fig. 4(a). We partition the system into an LE space, two CT states,
and the GS as outlined in Fig. 4(b). We explore this system using
two different LE Hamiltonians for LHCII, which have been para-
meterized using various spectroscopic data: the model of Müh et al.
from Ref. 66 (henceforth referred to as model 1) and the model
of Novoderezhkin et al. from Ref. 46 (henceforth referred to as
model 2). These models differ subtly in their Chla∗ and Chlb∗ site
energies and couplings, which is shown below to have a significant
effect on the quenching dynamics. The LE–environment coupling
is treated with the HEOM approach, with a single Debye bath for
each site, with a reorganization energy of 220 cm−1 and character-
istic frequency, γD, Chl∗ , of 353.7 cm−1, as taken from the study of
Kreisbeck et al. in Ref. 21. This model for the LE–environment cou-
pling misses some small vibrational resonance effects in the Chlb∗

to Chla∗ energy transfer dynamics and it cannot reproduce struc-
tured vibrational features in the monomer absorption spectrum, but
it does accurately capture the important features of the excitation
energy dynamics when compared with more complex structured
environment models.21 Because we are primarily interested in time
scales of excitation energy redistribution and quenching in this
system, and because we wish to use as simple a spectral density
as possible to reduce the number of baths needed in the HEOM
calculations, we choose to use this spectral density for the Chl∗

excitations.
In order to describe the charge transfer process, we use the

reorganization energies, charge transfer free energy changes, and
diabatic couplings calculated by Cupellini et al. from QM/MM
(quantum mechanics/molecular mechanics) simulations. The reor-
ganization energy for the bCT bath for each charge recombination
process to the GS is assumed to be the same as for the corre-
sponding charge separation, which is a reasonable assumption if
polarization of the environment and lutein reorganization are the
dominant contributions to the total reorganization energy, and the
free energy of the GS relative to the excited states is taken from
the LE model Hamiltonians. Using these parameters, we assume
the bCT bath can be treated as harmonic, with a Debye spectral
density of γD = 30 cm−1, which is representative of the response of
the polarizable environment.80 We have also explored how adding
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structure to this spectral density affects the quenching dynamics as
will be explained below. For the Lut1 → a612∗ charge transfer and
Lut2 → a603∗ charge transfer, we used the same diabatic coupling
matrix elements as calculated by Cupellini et al.,67 denoted as VCT1
and VCT2, respectively. We use the same diabatic couplings for
the recombination processes a612− → Lut1+ and a603− → Lut2+,
given that the donor–acceptor separation is the same for the charge
separation and charge recombination steps, although a different
Chla orbital is involved in the recombination process, so the
couplings will be different in reality. The full set of parameters and
the LE state Hamiltonians are given in Appendix D.

The transition dipole moment operators for the LE system
are calculated using the atomic positions from PDB 1RWT68 for
the Chla and Chlb molecules and assuming the transition dipole
moment for each LE state, μn, points in the direction from NB to
ND.81 The magnitude of the transition dipole moment operator is
taken to be 4.0 D for Chla and 3.4 D for Chlb.23 In modeling exci-
tation relaxation in the LHCII monomer, it is also necessary to
incorporate direct internal conversion of the Chla∗ and Chlb∗ states.
This was done by adding the following non-radiative transition
operators to the HEOM/QME:

RNR
LE,LE σ̂LE,n(t) = −

NLE

∑
n=1

k NR,n

2
{∣LEn⟩⟨LEn∣, σ̂LE,n(t)}, (65)

RNR
GS,LE σ̂LE,n(t) =

NLE

∑
n=1

k NR,n∣GS⟩⟨LEn∣ σ̂LE,n(t)∣LEn⟩⟨GS∣, (66)

and we set kNR,n = 0.25 ns−1, in line with the kinetic model of
Cupellini et al.67 A similar model has been used previously in
quantum master equation-based studies of the bacterial LHI/LHII
system,81 and a justification of this form of the non-radiative tran-
sition operator from the Nakajima–Zwanzig equation is given in
Appendix C.

In all simulations with the hybrid HEOM/QME method, we
use an adaptive short iterative Arnoldi integrator (as described in
Ref. 78) with an error tolerance parameter of 10−8 and Krylov
subspace dimension of 16. The Nakajima–Zwanzig low tempera-
ture and termination corrections described in Ref. 78 were also
used in these simulations, and using this scheme, the populations
of Chla∗, Chlb∗ and CT states were found to be converged with
an HEOM frequency cutoff parameter of Γc = 3γD,Chl∗ using the
Matsubara decomposition scheme for the correlation functions. The
cutoff parameter for the ET kernels was set to Γc,ET = 2γD,Chl∗ for the
charge separation steps and Γc,ET = 0 for the charge recombination
steps. All simulations were run at a temperature of 300 K. These
methods are all implemented in the freely available HEOM-lab
code,82 which was used to perform all simulations presented in this
paper.

B. Population dynamics
As a first application of the hybrid HEOM/QME method to

LHCII charge transfer quenching, we have simulated the popula-
tion dynamics for the Chla∗, Chlb∗, and CT states for Model 1,
with the initial condition set as an excitation completely localized
on a612. The population dynamics are shown in Fig. 5. For this
initial condition, there is an early rapid transfer of population to
the strongly coupled a611∗ state, as an exciton is formed where the

FIG. 5. Populations of the LE states and the a612−Lut1+ state calculated with
the hybrid HEOM/QME method for an initial excitation localized on a612 using the
Model 1 LE Hamiltonian.

excitation is delocalized between the two Chla sites. This exciton
formation is followed by slower excitation energy transfer to the
other Chla∗ and Chlb∗ states as well as the a612−Lut1+ state.
Importantly, formation of the a612−Lut1+ state from the exciton
state happens on a comparable time scale, roughly 10 ps, to energy
redistribution between the Chla∗ and Chlb∗ states, highlighting the
need to treat both the CT and exciton dynamics simultaneously.
We found that at least Γc = 3γD,Chl∗ was needed to converge the
population dynamics, with hierarchy termination corrections from
Ref. 78, corresponding to treating the exciton system–environment
coupling up to sixth order in non-Markovian perturbation the-
ory, with partial Markovian eighth-order corrections. As has been
demonstrated previously by Kreisbeck et al.21 for LHCII in the
absence of CT quenching, simple mixed Redfield–Förster theories
cannot describe the population dynamics of this system without a
posteriori tuning of domain definitions. In contrast, the population
dynamics from the HEOM/QME do not require such a posteriori
fine-tuning and instead can be systematically converged by increas-
ing the size of the hierarchy. Direct HEOM calculations on this
system would, however, not be feasible. A rough estimate of the
depth of hierarchy needed for a system treating bCT with the HEOM
explicitly can be obtained by requiring that the termination correc-
tion term proposed in Ref. 78 is small compared to the γn in the
terminating ADO. From this, we find that the hierarchy depth, L,
would need to satisfy L > 2λCT/(βγ2

D,CT) ≈ 2500. As a result, this
calculation would be intractable with standard HEOM methods due
to the very large reorganization energy associated with the charge
transfer processes; but, with the hybrid HEOM/QME method, this
calculation runs in a few minutes on a single central processing unit
(CPU).

In order to compare the kinetic model used by Cupellini et al.
to our model including the full exciton dynamics, we have also sim-
ulated the population dynamics where population is evenly divided
between the Chla∗ states, with no initial coherences between sites.
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FIG. 6. Excited state population dynamics for LHCII with an initial excitation parti-
tioned equally between all eight Chla∗ states with no coherences between these
states, calculated with the hybrid HEOM/QME method. Results in the top panel
use the Model 1 LE Hamiltonian and results in the bottom panel use the Model 2
LE Hamiltonian.

The total populations of the Chl∗, Chla∗, Chlb∗, and CT states and
GS are shown for both models in Fig. 6. In both models, there is
rapid equilibration between the Chla∗ and Chlb∗ states, occurring
on a time scale of a few picoseconds, followed by population trans-
fer to the CT states within ten picoseconds. The a612−Lut1+ state is
populated to a much greater extent than the a603−Lut2+ state
because the latter lies nearly 1000 cm−1 above the Chla∗ states,
whereas the former is nearly degenerate with the Chla∗ states. In
Model 1, we observe a greater extent of population transfer to
the Chlb∗ states and a lesser extent of population transfer of the
a612−Lut1+ state compared to that of Model 2.

Interestingly, the overall decay of the Chl∗ population is notice-
ably faster in Model 2 compared to Model 1. In order to quantify
the excitation lifetime, we fit these population decay curves to a
sum of three exponentials [constrained such that p Chl∗(t = 0) = 1],
and use this to calculate the integrated lifetime τ eff = ∫

∞

0 p Chl∗(t) dt.
For Model 1 we obtain τeff = 0.83 ns and Model 2 we find
τeff = 0.50 ns.

Both these lifetime estimates are closer to the experimental
value for the excitation lifetime, 2 ns for LHCII in a membrane, than
that of the kinetic model of Cupellini et al., which predicted a 0.3 ns
integrated lifetime. This suggests the importance of treating the

exciton dynamics explicitly in modeling charge transfer quenching
in light harvesting complexes. We suspect that a significant source of
error in our model, compared to experiment, is the estimate for the
diabatic coupling for the charge recombination steps, which affects
the lifetime of the CT states and, therefore, also strongly influences
the CT quenching rate.

Part of the difference between the kinetic model of Cupellini
et al. and our model is that we correctly account for exciton for-
mation in the excited state dynamics, which changes the rate of
population transfer from the LE manifold to the CT states. This is
because exciton formation modifies the effective coupling matrix
element by ∼1/

√
2 for the charge transfer rate since charge trans-

fer occurs from the excitonic state ∣ψ⟩ ≈ (1/
√

2)(∣a611∗⟩ − ∣a612∗⟩)
(although this picture is complicated by the LE bath reorganiza-
tion, which reduces the relative coherence between the a611∗ and
a612∗ states to ∼0.16 for Model 1 and ∼0.20 for Model 2, an effect
that mixed Redfield–Förster theories would struggle to capture).
Furthermore, exciton formation lowers the free energy of the ini-
tial excitonic state by ∼100 cm−1 for both models. This means the
effective free energy change for the formation of the a612−Lut1+ is
∼0 cm−1, which is reflected in Fig. 5, where the a611∗, a612∗, and
a612−Lut1+ states have approximately equal population by t = 50
ps. This means the excitonic state is stabilized relative to the CT state
and this decreases the steady state CT population, decreasing the rate
of charge separation.

The faster quenching in Model 2 is primarily due to the larger
steady state population of the a612−Lut1+ state, which provides
the main channel for charge transfer quenching of the Chl∗ exci-
tations. The larger steady state population of the a612−Lut1+ state
can be explained by the differences between the excitonic struc-
ture of the two LHCII models. In Model 1, the a611-a612 excitonic
state is the third lowest energy state, lying more than kBT above
the lowest lying excitonic state, whereas in Model 2, the a611-a612
excitonic state is the lowest energy state, with the next nearest
excitonic state lying about 0.5kBT above this. This means that in
Model 2, more of the Chla∗ excitations are funneled into the exci-
tonic state coupling to the quenching state, which leads to a greater
extent of CT state formation and faster Chl∗ population decay. This
illustrates the importance of the excitonic energy funnel in deter-
mining the quenching efficiency. This observation was not found
to depend on the choice of spectral density for the LE coupling
baths.

C. Role of the excitation energy funnel
In order to further explore the effects of the excitonic energy

funnel on excitation quenching in LHCII, we have performed sim-
ulations on modified versions of the Model 1 and Model 2 Chl∗

Hamiltonians. For both models, we introduced a shift to the site
energies of all states in the LE manifold except the a611 and a612
states, such that the site energies are changed from En to En + δE.
The energy of the a603−Lut2+ charge transfer is shifted by the same
amount. This effectively preserves the a611-a612 exciton state in
the LE manifold but just shifts its energy relative to the remaining
excitonic states. Varying the shift from −500 to +500 cm−1, we have
calculated the total Chl∗ population decay and the integrated life-
time from the population dynamics to quantify the changes to the
Chl∗ excitation lifetime as shown in Fig. 7.
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FIG. 7. τeff and τmax for models 1 and 2 as a function of the local excitation energy
shift as described in the text.

We see that for modified versions of both Model 1 and Model
2, shifts in the Chl∗ site energies can have a very large effect on
the population dynamics and excitation lifetime. In particular, for
Model 1, a change in shift from −200 to +200 cm−1 can change
the excitation lifetime by more than a factor of 2. These significant
changes in excitation lifetime for modest shifts in the excitation
energies suggest a potential mechanism for the activation of non-
photochemical quenching by changes in the energy funnel in
light harvesting complexes directing excitations toward quenching
sites.

D. Role of the charge transfer spectral density
We have examined the potential role of nuclear quantum effects

in determining the charge transfer quenching lifetime. We mod-
ify the spectral density for the charge transfer processes to include
an underdamped Brownian oscillator contribution,11 where the new
spectral density is

JCT(ω) = (1 − α)JD(ω) + αJBO(ω), (67)

JBO(ω) =
λ
2

γΩ2ω
(ω2 −Ω2)2 + γ2ω2 , (68)

where the first portion is a Debye spectral density with
ωD = 30 cm−1, which represents the low frequency environ-
ment contribution, and J BO(ω) models the high frequency
contribution from C=C stretches in the lutein molecules.83 In
what follows, we have set Ω = 1500 cm−1 and γ = 50 cm−1, and
we keep the total reorganization energy for each charge transfer
process fixed at the values determined by Cupellini et al. We have
varied the α parameter, which controls the spectral distribution
of the reorganization energy, between 0 and 0.5 for the Model 1
exciton Hamiltonian, and for each value of α, we have simulated the
population dynamics and calculated τeff and τmax, again from an
initial condition, where all Chla∗ states are equally populated with
no coherences.

FIG. 8. Top left: Chl∗ population dynamics varying α from 0 (yellow) to 0.5 (purple).
Top right: a612−Lut1+ population dynamics varying α (same color scheme as top
left). Bottom: excitation lifetime as a function of α. All calculations use the Model
1 LE Hamiltonian with equally populated Chla∗ states with no coherences as the
initial condition.

The calculated total Chl∗ and a612−Lut1+ population dynam-
ics are shown in the top panels of Fig. 8. We see that increasing the
contribution to the charge transfer spectral density from the under-
damped, high frequency Brownian oscillator decreases the lifetime
of the Chl∗ excitations. The increased Brownian oscillator contri-
bution increases the extent of nuclear quantum tunneling, which
increases both the rate of charge separation and charge recom-
bination. The effect of increasing the rates of both processes can
be seen more clearly in the a612−Lut1+ population dynamics. At
short times, as α increases, the rate of population transfer from
the Chl∗ manifold to the a612−Lut1+ state increases due to an
increasing charge separation rate, which transiently increases the
quenching rate. At longer times, when the Chl∗ states and CT states
have reached a steady state, increasing α increases the rate of decay
of the a612−Lut1+ state, which arises due to an increased charge
recombination rate with increasing α.

VI. DISCUSSION
Using the hybrid HEOM/QME method developed in this

paper, we have been able to explore the charge transfer quenching
dynamics in a LHCII monomer. Using previously parameterized
models of excitation energy transfer and electron transfer in the
LHCII pigment–protein complex, together with some physically
motivated assumptions, we can obtain estimates of the excitation
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lifetime closer to experimental values than those obtained using
simple kinetic models.67 The lifetime estimate, however, depends
strongly on the model of local excitation energies and couplings
used to describe the excitation energy transfer preceding charge
transfer quenching. This may have interesting implications for
the understanding of non-photochemical quenching processes
in light harvesting complexes. It is generally assumed that
non-photochemical quenching is activated by conformational
changes, induced by pH changes or chemical modifications of
the protein or bound carotenoids, in protein–pigment complexes
moving quenchers into positions where they can efficiently cou-
ple to chromophores,6,7,79,84–87 thereby increasing the rate of charge
transfer quenching and/or excitation energy transfer quenching.
The work here highlights the potential role of the excitation energy
funnel in CT quenching, and we suggest that non-photochemical
quenching could also be activated by changes in the site energies
and couplings within the chromophore excited state manifold that
funnel excitations toward quenching sites. These energy and cou-
pling shifts could also be induced by conformational changes in
the protein–pigment complex and could occur simultaneously with
the conformational changes that move quenchers closer to chro-
mophores. In this way, the energy funneling mechanism could work
cooperatively with quenching activation by movement of quenchers.
Interestingly, it has recently been found in one computational study
that pH changes, which are believed to play a role in activating
non-photochemical quenching, can create modest shifts in the Chl
excitation energies in LHCII.88

Our exploration of the charge transfer spectral density has also
highlighted the importance of understanding all details of charge
transfer processes in light harvesting complexes, including the
details of recombination processes and nuclear quantum effects. One
particularly important factor for predicting charge transfer quench-
ing rates is the rate of charge recombination from the CT state
back to the electronic ground state of the system, which is strongly
dependent on nuclear quantum effects as well as the energetics of
charge recombination and the diabatic coupling strength. This is
because the reverse electron transfer is often deep in the Marcus
inverted regime; for example, in LHCII, the Lut-Chla recombina-
tion processes have a free energy change of −ΔG ≈ 3λ, where nuclear
tunneling effects play a decisive role in determining electron transfer
rates.89 Although in our study of LHCII, we have assumed that the
electron transfers can be treated with a spin-boson mapping,27 the
theory developed here does not rely on this assumption. The corre-
lation functions needed to evaluate the ET kernels, GC

AB(t), can be
evaluated using various approximations including anharmonicity in
the potential energy surfaces.55,90–94 For example, GC

AB(t) could be
evaluated classically55 or using analytic continuation together with
path integral methods to incorporate anharmonic nuclear quantum
effects.93

In this work, we have assumed that we can treat the weakly
and strongly coupled environments (corresponding to the EM field
and bCT degrees of freedom, respectively) as Markovian, but it may
be possible to extend this treatment to non-Markovian cases by
incorporating memory effects via the generalized quantum master
equation63–65 or via a time-convolutionless approach.95 We also
note that the framework of Zwanzig projection could be used to
perturbatively treat effects of environment degrees of freedom
other than bCT and EM field degrees of freedom while retaining

an exact hierarchical treatment of important non-Markovian bath
modes.

VII. CONCLUDING REMARKS
In this paper, we have outlined how to rigorously com-

bine the hierarchical equations of motion method with quantum
master equations in both the strong system–bath coupling and
weak system–bath coupling limits to model simultaneous excitation
energy transfer and charge transfer in protein–pigment complexes.
The hybrid HEOM/QME approach is based on the application of
Zwanzig projection to derive a system of equation for a hierarchy
of auxiliary density operators for the various electronic state mani-
folds. This method has been tested against numerically exact results
for an excitonic dimer coupled to a charge transfer state, where it
was found to yield accurate population and coherence dynamics
across a range of excitation energy transfer regimes. We then applied
the method to study charge transfer quenching in LHCII—a pro-
cess suspected to play an important role in photoprotection in
plants.

Using the hybrid HEOM/QME approach, we have been able to
study the interplay of excitation energy transfer and charge transfer
quenching in a realistic model of LHCII. Our results highlight the
importance of the excitation energy funnel in determining quench-
ing efficiency in protein–pigment complexes as well as the role of the
CT state recombination rate when back electron transfer to reform
LE states from CT states occurs at an appreciable rate as is the case
in LHCII. We expect that the energy funnel mechanism could play
a role in the activation of non-photochemical quenching in many
systems and that it could occur cooperatively with other non-
photochemical quenching (NPQ) activation mechanisms.

All the parameters needed in the hybrid HEOM/QME model
can be obtained using well-established methods: For example, exci-
ton Hamiltonians can be fit based on spectroscopic data46,66 or
using QM/MM simulations of protein–pigment complexes.96 Like-
wise, electron transfer model parameters can be obtained using
molecular dynamics simulations.27,92 By combining existing com-
putational tools with the hybrid HEOM/QME method, currently
implemented in the freely available Matlab code HEOM-lab,82 it
may be possible to shed light on the precise mechanisms that pro-
duce non-photochemical quenching in photosynthetic organisms,6
for example, how chemical modifications of carotenoids in the
xanthophyll cycle activate NPQ in LHCII and related proteins like
LHCX1.7,84 For this reason, we anticipate the method to become a
useful tool in studying non-photochemical quenching and reaction
center processes in photosynthetic systems.
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APPENDIX A: THE RADIATIVE DECAY TERM

We evaluate the radiative coupling term in the hybrid
HEOM/QME in much the same way as the ET coupling term. Here,
we assume that only the LE states and the GS are connected by
the dipole moment operator, which means we only have to evalu-
ate RR

GS,LE and RR
LE,LE. Starting with RR

GS,LE, we can insert the dipole
coupling term into the second order kernel and directly evaluate the
radiative coupling term as

RR
GS,LE =

1
2h̵V0 ε0

∑
k,p
∫

∞

0
dtωk

× (L L
kpeL 0,stL R

kp ⟨akp(0)a
†
kp(t)⟩bEM

+ L R
kpeL 0,stL L

kp ⟨akp(0)a
†
kp(t)⟩

∗

bEM
), (A1)

where we have assumed that we can approximate L0 + V ≈ L0,s in
evaluating this term. The operators L L/R

kp are given by

L L
kpσ̂ = iΠ̂GS(μ̂ ⋅ ekp)Π̂LEσ̂, (A2)

L R
kpσ̂ = −iσ̂Π̂LE(μ̂ ⋅ ekp)

†Π̂GS, (A3)

and the EM field operator correlation function can be evaluated as

⟨akp(0)a
†
kp(t)⟩bEM

= TrbEM[âkp(0)â
†
kp(t)ρ̂bEM] = eiωkt. (A4)

In the limit of a large cavity volume for the EM field V0, we can
replace the sum over cavity modes k with an integral as

1
V0
∑

k
→

1
(2π)3 ∫ dk. (A5)

After evaluating the angular part of the integral, we arrive at

RR
GS,LE =

1
6h̵ε0π2 ∑

α=x,y,z
∫

∞

0
dk∫

∞

0
dt c0k3

× (L L
α eL

LE,GS
0,s tL R

α eic0kt
+L R

α eL
GS,LE
0,s tL L

α e−ic0kt
). (A6)

Then, we insert the spectral resolution of L0,s acting on
the GS-LE coherences (∣GS⟩⟨LEn∣) and note that all the

eigenvalues of this operator are purely imaginary, so we can
write these as L GS,LE

0,s = S 0,s
GS,LE(iΩGS,LE)(S 0,s

GS,LE)
−1 and L LE,GS

0,s

= S 0,s
LE,GS(−iΩLE,GS)(S 0,s

LE,GS)
−1, where ΩGS,LE and ΩLE,GS are diag-

onal matrices with real positive-valued entries. We then evaluate
the time integral, noting the imaginary part vanishes, and change
variables in the k integral to ω = c0k to give

RR
GS,LE =

1
6h̵ε0c3

0π
∑

α=x,y,z
∫

∞

0
dωω3

× (L L
α S 0,s

LE,GSδ(ΩLE,GS − ω)(S 0,s
LE,GS)

−1L R
α

+ L R
α S 0,s

GS,LEδ(ΩGS,LE − ω)(S 0,s
GS,LE)

−1L L
α ). (A7)

Integrating over ω then yields the expressions given in Eq. (61).
These steps can be repeated for RR

LE,LE to obtain Eq. (62), where
additionally we discard imaginary terms (which correspond to Lamb
shifts).

APPENDIX B: SIMPLIFICATION OF THE DIMER
MODEL BATHS

In this appendix, we describe how the three-bath model for the
dimer–CT model can be reduced to a two-bath model to speed up
exact HEOM calculations. Suppose we have a system coupled to
a set of baths, j = 1, . . . , N, with identical frequency distributions
but different reorganization energies, i.e., J j(ω) = ηj J0(ω) with
ηj = λj/λ0 as in the dimer–CT model considered here. We can write
the coupling term for bath modes with frequency ωjα = ω0α as

Ĥsb,α = cα q̂α ⋅ η1/2V̂ , (B1)

where cα = c0α, [q̂α]j = q̂jα, [V̂]j = V̂ j, and η is a diagonal matrix of
the values of ηj. We can insert an orthogonal matrix S, to rewrite
this as

Ĥsb,α = cαq̂T
α STSη1/2V̂ = cα ˆ̃q ⋅ ˆ̃V. (B2)

We can then rewrite the Hamiltonian in terms of a new set of uncor-
related baths with mode displacements ˆ̃qjα, and coupling operators
ˆ̃V j. If we choose S such that one of the new system–bath coupling
operators is just proportional to the identity operator ˆ̃V1 ∝ 1̂, then
we eliminate coupling between one of the baths and the system and
therefore reduce the complexity of the problem. For κ = 1, we can
find such a transformation as follows. First, we write η1/2V̂ as

η1/2V̂ =

⎛
⎜
⎜
⎜
⎜
⎝

∣LE1⟩⟨LE1∣

∣LE2⟩⟨LE2∣ + κ∣CT⟩⟨CT∣
√
η∣CT⟩⟨CT∣

⎞
⎟
⎟
⎟
⎟
⎠

, (B3)

where λ0 = λLE and η =
√
λCT/λLE. We then set S as
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S =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
√

2
1
√

2
0

1
√

2
−

1
√

2
0

0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (B4)

which gives ˆ̃V as

ˆ̃V =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
√

2
1̂

1
√

2
(∣LE1⟩⟨LE1∣ − ∣LE2⟩⟨LE2∣ − ∣CT⟩⟨CT∣)

√
η∣CT⟩⟨CT∣

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (B5)

We see that the system coupling operator for the new bath 1 is pro-
portional to an identity operator, so coupling to this bath does not
affect the system dynamics and it can eliminated.

For the κ = 0 case, we set

S =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
√

2 + η−1

1
√

2 + η−1
1

√
η(2 + η−1)

1
√

2
−

1
√

2
0

−
1

√
2 + 4η

−
1

√
2 + 4η

2√η
√

2 + 4η

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (B6)

which gives ˆ̃V as

ˆ̃V =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
√

2 + η−1
1̂

1
√

2
(∣LE1⟩⟨LE1∣ − ∣LE2⟩⟨LE2∣)

1
√

2 + 4η
(2η∣CT⟩⟨CT∣ − ∣LE1⟩⟨LE1∣ − ∣LE2⟩⟨LE2∣)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (B7)

Again, bath 1 can be eliminated because its coupling operator is pro-
portional to an identity operator. We note that only the top row
of S is uniquely defined for any κ, by requiring that ˆ̃V1 ∝ 1̂, and
the choice for the other rows, and other coupling operators, is not
unique.

Finally, we note that we can scale the reorganization energy of
a given bath by α if we also scale the corresponding coupling oper-
ator by 1/

√
α because the coupling coefficients are proportional to

√
λj, cjα ∝

√
λj without changing the Hamiltonian. The choice does

not affect the exact dynamics, but it does affect how the hierarchy
is truncated with our reorganization energy weighted cutoff scheme.
For the calculations, we set λ2 = λLE and λ3 = λCT, which means the
coupling operator ˆ̃V3 given above scaled down by 1/√η.

APPENDIX C: THE INTERNAL CONVERSION TERM

In this appendix, we present a brief justification of the Lind-
blad form for the internal conversion term used to model direct
non-radiative transitions from the Chl∗ states to the ground state
in LHCII. The argument is essentially the same as that used to derive

the radiative and ET coupling Hamiltonians. We start by assuming
that the internal conversion coupling is described by a Hamiltonian
of the form

ĤLE,GS =
NLE

∑
n=1
(X̂n∣GS⟩⟨LEn∣ + X̂†

n∣LEn⟩⟨GS∣), (C1)

where we assume the X̂n operator acts on degrees of freedom other
than the bLE degrees of freedom and we also assume that these oper-
ators commute at all times. We also assume that the thermal average
of X̂n is zero. The nonadiabatic coupling between the LE states and
the ground state depends primarily on local vibrational modes of
the chromophore, so it is reasonable to assume that these operators
commute.

We can now evaluate the second order Markovian
Nakajima–Zwanzig relaxation operator for internal conver-
sion with the projection operator given in the main text.
We will further approximate the reference Liouvillian as
L0 + V ≈ − i

h̵ [Π̂LE ĒLE, ⋅ ]⊗ Iado, where ĒLE is the average LE
state energy, an approximation that is justified because the mean
energy difference between the LE states and the ground state is much
larger than the energy differences within the LE manifold. From
this, it is straightforward to obtain the relaxation superoperator as

RNR
LE,LEσ̂ =

NLE

∑
n=1
∫

∞

0
dt(⟨X†

n(t)Xn(0)⟩
b′

eiĒ LEt/h̵
∣LEn⟩⟨LEn∣σ̂

+ ⟨X†
n(t)Xn(0)⟩

∗

b′
e−iĒ LEt/h̵σ̂∣LEn⟩⟨LEn∣). (C2)

Ignoring Lamb shift terms that originate from the imaginary parts of
the ⟨X†

n(t)Xn(0)⟩b′ correlation functions, this reduces to

RNR
LE,LEσ̂ = −

NLE

∑
n=1

k NR,n

2
{∣LEn⟩⟨LEn∣, σ̂}, (C3)

where kNR,n is the non-radiative decay rate for internal conversion
of state LEn. The corresponding term in the equation of motion for
σ̂GS,n(t) is

RNR
GS,LEσ̂ =

NLE

∑
n=1

k NR,n∣GS⟩⟨LEn∣σ̂∣LEn⟩⟨GS∣. (C4)

The reverse internal conversion rate is related to the forward rate by
k back

NR,n = e−βĒ LE k NR,n; however, because βĒLE is typically very large, we
can safely ignore the back reaction terms.

APPENDIX D: ADDITIONAL DETAILS
OF THE LHCII MODELS

In this appendix, we list the model parameters used in our sim-
ulations of the LHCII monomer. First, the LE system Hamiltonians
for the two LHCII models are
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HLE,s = (E LE + λChl∗)1 +

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

635 36 −5 −3 1 −2 −3 3 4 −5 20 2 −8 2

36 70 15 6 0 5 6 −6 −24 −5 1 8 −2 0

−5 15 80 −1 0 −4 6 4 72 7 −1 1 1 −5

−3 6 −1 140 4 71 24 −4 −2 0 −3 3 2 −3

1 0 0 4 775 9 −4 −4 0 1 1 −2 −1 0

−2 5 −4 71 9 615 16 −5 2 0 −2 2 2 −2

−3 6 6 24 −4 16 525 −4 −5 1 −2 3 3 −3

3 −6 4 −4 −4 −5 −4 395 24 43 5 −1 −2 1

4 −24 72 −2 0 2 −5 24 855 −2 4 −1 −2 2

−5 −5 7 0 1 0 1 43 −2 0 −26 13 6 −1

20 1 −1 −3 1 −2 −2 5 4 −26 150 99 −3 1

2 8 1 3 −2 2 3 −1 −1 13 99 180 0 0

−8 −2 1 2 −1 2 3 −2 −2 6 −3 0 90 −36

2 0 −5 −3 0 −2 −3 1 2 −1 1 0 −36 200

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

cm−1 (D1)

for Model 1 and

HLE,s = (E LE + λD,Chl∗)1

+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

816.00 49.64 −5.89 −2.51 0.77 −1.87 −2.49 2.78 3.79 −5.95 24.89 9.13 −10.79 3.59

49.64 84.00 38.11 6.42 −0.71 5.60 7.13 −5.84 −19.25 −11.39 9.69 15.83 −4.96 0.69

−5.89 38.11 214.00 −3.28 1.13 −8.89 1.23 6.72 96.66 12.97 −2.70 −0.76 2.68 −6.70

−2.51 6.42 −3.28 387.00 3.35 104.56 35.93 −2.76 −7.28 −4.18 −3.80 4.67 2.12 −3.42

0.77 −0.71 1.13 3.35 606.00 29.71 −4.47 −5.13 −0.77 1.61 1.33 −2.85 −1.40 0.37

−1.87 5.60 −8.89 104.56 29.71 777.00 59.38 −4.99 −0.16 −3.28 −2.52 3.10 1.47 −2.16

−2.49 7.13 1.23 35.93 −4.47 59.38 641.00 −4.43 −11.99 −0.14 −2.78 3.07 2.20 −3.25

2.78 −5.84 6.72 −2.76 −5.13 −4.99 −4.43 688.00 36.07 61.97 4.35 −1.08 −2.01 1.30

3.79 −19.25 96.66 −7.28 −0.77 −0.16 −11.99 36.07 648.00 3.86 4.30 −2.57 −2.92 2.33

−5.95 −11.39 12.97 −4.18 1.61 −3.28 −0.14 61.97 3.86 0.00 −24.96 23.10 7.21 −1.55

24.89 9.69 −2.70 −3.80 1.33 −2.52 −2.78 4.35 4.30 −24.96 39.00 126.92 −6.15 4.55

9.13 15.83 −0.76 4.67 −2.85 3.10 3.07 −1.08 −2.57 23.10 126.92 21.00 −0.47 −0.18

−10.79 −4.96 2.68 2.12 −1.40 1.47 2.20 −2.01 −2.92 7.21 −6.15 −0.47 101.00 −50.22

3.59 0.69 −6.70 −3.42 0.37 −2.16 −3.25 1.30 2.33 −1.55 4.55 −0.18 −50.22 187.00

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

cm−1

(D2)

for Model 2. The columns/rows correspond to the states in the fol-
lowing order: b601∗, a602∗, a603∗, a604∗, b605∗, b606∗, b607∗,
b608∗, b609∗, a610∗, a611∗, a612∗, a613∗, and a614∗. We incorpo-
rate the reorganization energy contribution of the LE baths into the
system Hamiltonian matrices, HLE,s, and as such diagonal elements
correspond to vertical excitation energies in the absence of LE cou-
pling, and the diagonal element minus λD,Chl∗ is the free energy of
that LE state in the absence of inter-LE state coupling. The CT state
system Hamiltonians are given by

ĤCT1 ,s = (Ea612∗ + ΔGCT1)∣CT1⟩⟨CT1∣, (D3)

ĤCT2 ,s = (Ea603∗ + ΔGCT2)∣CT2⟩⟨CT2∣, (D4)

where Ea612∗ and Ea603∗ are the diagonal elements of HLE,s corre-
sponding the states a612∗ and a603∗, respectively. Here, CT1 is the
a612−Lut1+ state and CT2 is the a603−Lut2+ state. Finally, ĤGS,s = 0
by definition. The remaining model parameters are listed in Table I.
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TABLE I. Parameters used for the LHCII monomer CT quenching models.

Value
Parameter (cm−1 unless specified otherwise)

ΔGCT1 −82
λCT1 5 405
VCT1 240
ΔGCT2 951
λCT2 5 052
VCT2 279
ωD,CT 30
Ω 1 500
γ 50
ELE (Model 1) 14 780
ELE (Model 2) 15 073
λD,Chl∗ 220
ωD,Chl∗ 353.6777
μChla (D) 4.0
μChlb (D) 3.4
kNR (ns−1) 0.25

The GB
AB(t) and GB

BA(t) functions were evaluated using56,58

GB
AB(t) = GB

BA(t)
∗
= exp(ζAB(t) + iΔϵABt/h̵), (D5)

ζAB(t) = − ∫
∞

0
dω

JAB(ω)
ω2

× [coth(
βh̵ω

2
)(1 − cos(ωt)) + i sin(ωt)], (D6)

where JAB(ω) is the bCT spectral density associated with the A→ B
charge transfer and ΔϵAB is the free energy change excluding bLE
contributions (i.e., the free energy change with B̂n,r = 0). In order
to evaluate the integrals over these functions, each component of
the spectral density (the Debye and Brownian Oscillator compo-
nents) was discretized into 512 frequencies using a Gauss–Legendre
quadrature for the function (1/(4πλ))J D/BO(ω)/ω,94 and using
this, the ζAB(t) function was evaluated and the required numerical
integrals were evaluated using the trapezium rule. The integrals were
evaluated up to tmax = 23.5 fs, discretized into 1000 time points for
the CT-LE correlation functions and 14 104 time points for the much
more oscillatory CT-GS correlation functions. The same expressions
and methodology were used to evaluate the ET kernel for the dimer
model in Sec. IV.
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