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Abstract

Although pointing is sparse, overloaded, and indirect, it allows
humans to effectively decode shared information, (ex)change
their minds, and plan accordingly. Pointing is an invitation to
jointly attend to an object, which triggers the mutual inference
between agents of each other’s mind. Relevance is a fundamen-
tal assumption underlying all human communication, includ-
ing pointing. We define relevance as how much a signaler’s
belief can make a positive difference to its receiver’s well be-
ing. We build a Theory of Mind (ToM) model to test our def-
inition of relevance and use pointing as a case study. In two
experiments, we test our relevance model in a classic artifi-
cial intelligence (AI) task, the Wumpus world, with the key
difference that there is a guide that points to help a hunter.
Agents with our relevance model gain significantly higher re-
wards than agents who ignore signals from the guide. Agents
with our model also achieve better performance than agents
who receive an additional observation of the environment. The
results show that the power of pointing comes from the ToM
inference of relevance, rather than providing more precise in-
dividual perception.
Keywords: pointing; relevance; joint attention; theory of mind

Introduction
Pointing: condensed but powerful communication
Imagine two hunters hunting in a forest. The young hunter
sees a broken branch on the ground. Assuming that the branch
was broken by the wind, he gets ready to continue his search.
At this moment, his partner, the experienced hunter points the
broken branch to him. The young hunter suddenly realizes
that the branch was broken by their prey. He holds his breath
and prepares to hunt.

In this pointing example, one’s attention to an observation
is not a spotlight to enhance individual sensory accuracy and
more than an action label commonly adopted in the computer
vision community. Instead, it involves rich cognitive infer-
ence and demonstrates properties of human unique commu-
nication. First, pointing is sparse; the semantics of such a
succinct act has complex meanings, much beyond the ges-
ture itself: “Take a look at this broken branch caused by a
prey.” Such rich information is condensed spatially and tem-
porally into one extension of the index finger, which lasts no
more than a few seconds. Second, pointing is overloaded.
As Wittgenstein and Anscombe (1953/2001) stated: “Point
to a piece of paper. Now to its color, to its shape.” Multi-
ple features may coexist in the location where a pointing sig-
nal directs, and each of these features may be the referent
of the pointing. Third, pointing is indirect. The meaning of
the pointing can go far beyond the referent visual feature. In
the hunting example, the experienced hunter simply points to

the broken branch, but she does not mean the brokenness of
the branch. Instead, she means they should get ready to hunt.
Throughout the paper, we use female pronouns to represent
the signaler and male pronouns to represent the receiver.

Fortunately, humans can interpret gestures (Kendon, 2004;
Lascarides & Stone, 2009) such as pointing with decent accu-
racy despite their key properties of being sparse, overloaded,
and indirect. As a rich form of communication, pointing is
effective in changing its receiver’s mind and actions.

Relevance: key assumption of communication
We use pointing as an example to highlight the jointness of
communication. Pointing leads to a joint attention, qualita-
tively different from attending to an object individually. When
an agent attends to his surroundings individually, he owns his
observations; it is his own job to evaluate the relevance of per-
ceived objects and filter out irrelevant information (Wilson &
Sperber, 2002). In contrast, when a signaler points an object
to a receiver, she invites the receiver to become a “guest” to
the observation. The receiver can safely assume that the in-
formation given by the “host” must be relevant to the shared
task. In the hunting example, no matter how clearly the young
hunter sees the broken branch individually, he is not likely to
change his explanation of the shape of the branch. However,
from a point, he can make much richer inferences and revise
his plans more drastically. Both the signaler and the receiver
of the pointing are aware of the effect of this joint attention,
so they reserve it to convey relevant information.

Pointing is built on the mutually acknowledged assump-
tion that human communication must be relevant (Sperber &
Wilson, 1986). Infants as young as 12 months prefer to share
information only when it matches their partner’s current goal:
when infants watch an adult misplace an object and search for
it, they point to the exact object more often than to other ob-
jects not needed by the adult (Liszkowski, Carpenter, Striano,
& Tomasello, 2006). Meanwhile, the receiver has to also res-
onate with the relevance of what is being pointed to. Infants
point significantly more to responsive adults than to ignorant
ones; when the adult expresses disinterest, children no longer
repeat the gesture (Carpenter & Liebal, 2011).

Relevance allows for an agent to decide which meaning (m)
among many compatible meanings is the most likely. Mathe-
matically, this can be formulated by evaluating the relevance
of each possible meaning m P M, and the most relevant mean-
ing is the signaler’s intended meaning m˚,

m˚ “ argmax
mPM

Relevancepmq. (1)
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In the hunting example, the young hunter can list many mean-
ings: the prey broke the branch, the wind broke the branch, a
storm broke the branch, and so on. He must choose the mean-
ing that is most relevant to the hunt, which is the prey.

Now that the importance of relevance has been acknowl-
edged, the real challenge is how to define it. Classic infor-
mation theory ignores relevance in its models of communi-
cation. They focus on retrieving the accurate signal from a
noisy channel and then interpret it with a codebook (MacKay,
2003). In the field of machine learning, one mainstream ap-
proach is to define relevance as the associations between vari-
ables. It is usually trained in a data-driven fashion from a large
dataset. As an exemplar of this model family, deep-learning
based models in natural language processing and computer
vision analyze the mapping from syntax or visual stimuli to
meaning (Collobert et al., 2011; Vaswani et al., 2017; Kenton
& Toutanova, 2019; Dosovitskiy et al., 2020). Like models in
information theory, these models do not consider overloaded
signals. They rely on one-to-one mappings between signal
and meaning, which is not how people understand pointing.

These association models of relevance also fail to capture
that human communication is causally transparent (Pearl &
Mackenzie, 2018). When interpreting pointing, the receiver
should not rely on a massive training on interpretation, but
an understanding of the underlying model of how pointing is
generated. To understand the pointing act, the young hunter
must ask the key questions: “Why was the pointing signal
sent? What would I have done if I did not receive the point?”
To address these questions, we devise a causal model based
on agency and utility calculus. More specifically, the causal
process of signal generation and interpretation is modeled by
how the agents’ actions, both instrumental and communica-
tive, are generated and driven by their mental states.

Our model of relevance can be considered as the utility
function in a special type of rational speech act (RSA) (Frank
& Goodman, 2012). However, this utility definition is not triv-
ial. In fact, the majority of this paper is focused on deriving
a definition of relevance based on utility theory and coordi-
nation of minds. The reason this is challenging is because we
must go beyond a language game. We must have a full model
of an agent that can change the physical world. This leads to
a different focus in the context of pragmatics. In a language
game, the focus is on the vocabulary: an agent can think what
else the speaker could have said. Here, our context is focused
on action: an agent thinks what else it could do.

We start from the causal interpretation of relevance by
defining relevance as to what degree a receiver’s well being
can be improved by a signaler sharing her belief. In communi-
cation, signalers tend to be altruistic (Tomasello, 2010). There
is no point in a signaler telling a receiver information that
does not make a difference to the receiver’s well being. Rel-
evance must serve as an intervention to change the receiver’s
well being.

Under this assumption, the causal model of agency and
utility theory are important for defining relevance. A signaler

must know their receiver’s mental state and predict their ac-
tions and the consequences of those actions, as these are key
to evaluating a receiver’s well being.

Our definition of relevance is not limited to pointing, but
can be extended to other forms of communication. We use
pointing as a case study to describe relevance because point-
ing can be mapped to any meaning. Pointing serves an ex-
treme test of overloaded signals for agents to interpret by as-
suming relevance.

Theory of mind: stage for relevance
The capacity to infer others’ mental states and predict their
future actions relies on Theory of Mind (ToM) abilities. ToM
allows agents to infer others’ beliefs as the informative state,
desires as the motivational state, and intentions as the de-
liberative states of the mind (Bratman, 1987). Communica-
tion is used as an effort for agents to increase their mu-
tual benefits through synchronizing their minds. With be-
liefs and desires as components of the mind, agents are capa-
ble of decision-making, perspective-taking (Barnes-Holmes,
McHugh, & Barnes-Holmes, 2004), inferring other agents’
minds based on their actions, changing beliefs according to
their sensory input, and revising their plans.

Work in developmental psychology has shown that ToM is
a social commonsense that develops in early infancy (Gergely
& Csibra, 2003; Woodward, 1998; Wellman, 2014). ToM
has also been successfully formulated as Bayesian infer-
ence and inverse planning that explains both infant (Jara-
Ettinger, Gweon, Schulz, & Tenenbaum, 2016; Liu, Ullman,
Tenenbaum, & Spelke, 2017) and adult (C. L. Baker, Jara-
Ettinger, Saxe, & Tenenbaum, 2017) cognition. Bayesian
ToM is successful in modeling physical and social goal in-
ference (C. Baker, Saxe, & Tenenbaum, 2011; Ullman et al.,
2009). Subjects in these models observe the environment or
the social interaction from the outside, not as a part of the
social interaction. While these ToM models have succeeded
in modeling individual behavior, the full potential in model-
ing transparent communication through the coordination of
minds has not been fully developed. Our goal here is to intro-
duce a causal model of relevance based on how agents syn-
chronize their minds using ToM inferences.

Preliminaries: modeling Theory of Mind
With ToM, an agent can make sense of other agents’ actions
a from their belief b and desire d. We leave out intention
in our planning model because there are no competing de-
sires in communication. Using Bayesian ToM, we can infer
an agent’s belief b and desire d from its action a,

Ppb,d|aq9Ppb,dqPpa|b,dq. (2)

The planning model Ppa|b,dq in Eq. (2) describes how an
agent plans its actions based on its belief and desire. In util-
ity theory, desire can be modeled as a utility function. Here
we use the belief-action value function Qpb,aq to represent
an agent’s evaluation of the desirability of an action a based
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on its belief b. A rational agent chooses the actions that they
believe to be the most desirable,

a˚ “ argmax
a

Qpb,aq. (3)

To capture a certain degree of stochasticity and irrationality
in human nature, a softmax function can be used to calculate
the probability

Ppa|bq9eαQpb,aq, (4)

where α is a parameter of the agent’s rationality. Desire is not
a part of the inference because a fixed desire of accomplish-
ing the task is known by the agents in communication. It is
represented as the Q function in Eq. (4).

One way of evaluating Qpb,aq is to model the environment
as an Markov decision process (MDP) (Sutton & Barto, 2018)
or a partially observable Markov decision process (POMDP)
(Kaelbling, Littman, & Cassandra, 1998). In these models,
the environment has certain states s. An agent’s belief is rep-
resented as a probabilistic distribution over all possible states,

bpsq “ Pps|bq. (5)

In our study, beliefs are defined over states in the physical
world, not including other agents’ minds. When an agent
takes an action a in a state s, it gains a reward rps,aq. The
agent’s desire can be represented as the state-action value
function Qps,aq. It represents the optimal discounted cumu-
lative reward that an agent can receive by taking the action a
starting from the state s. When the agent maintains a belief,
it can evaluate each action a with its belief-action function
Qpb,aq. This process can be simply calculated by taking the
expectation of the state-action value function over the belief,

Qpb,aq “EbpQps,aqq “
ÿ

s
Pps|bqQps,aq, (6)

where Qpb,aq can be obtained by using algorithms called
solvers in POMDP.

Our model must utilize the ToM framework and treat com-
munication as a rational action. The generative process of
these actions requires both agents to coordinate their two
minds, one from the self, the other from the partner. This is
more complicated than the equations in this section and is the
key problem in building a computational model that formally
captures the essence of pointing. In addition, communicative
actions do not change the physical world, but only change
one’s mind. The utility function of the communicative actions
should be defined by the agents’ minds, which was discussed
by Frank and Goodman (2012).

A ToM Model of Relevance
A utility-based definition of relevance
Based on the mental states outlined by ToM, we start to define
relevance of the signaler’s belief in communication.

Relevance is evaluated in multiple steps. First, the signaler
predicts the receiver’s actions based on the receiver’s belief.

In the hunting example, the young hunter believes that the
wind broke the branch. Knowing this, the experienced hunter
predicts that he will walk away. We can write down this action
prediction as

aRec “ argmax
a

QpbRec,aq, (7)

where the subscript Rec represents the receiver.
Next, the signaler evaluates the predicted action with her

own belief. The experienced hunter knows that the prey is
around, so she knows that the hunt will be ruined if the young
hunter walks away. In this case, the signaler’s evaluation of
the receiver’s action QpbSig,aRecq is low, where bSig is the sig-
naler’s belief. Here, we can see the discrepancy of the evalu-
ation of the same action based on different beliefs; aRec is the
best choice of actions to the receiver, while it may be unde-
sirable to the signaler.

But that is not the end. If the receiver knows what the sig-
naler knows, his utility and action can be improved based
on the signaler’s evaluation. Receiving the signaler’s mind,
the rational receiver will take the action that maximizes
QpbSig,aq, which will improve his well being as evaluated
by the signaler. In the hunting example, if the young hunter
knows that the prey is around, he will stay silent and prepare
to hunt. To the experienced hunter, this action is much better
than the young hunter’s original plan. In this case, the sig-
naler’s belief is relevant.

With the evaluation of the receiver’s plans before and af-
ter receiving the pointing, we can calculate the utility of the
pointing. Formally, we define the relevance of the signaler’s
mind as the gap between the best thing a receiver can do with
the signaler’s belief and the outcome that the receiver is actu-
ally going to get evaluated by the signaler.

RelevancepbSig,bRecq “ max
a

QpbSig,aq´QpbSig,aRecq. (8)

Sharing information must make a difference. For example,
imagine an adult points a plane to a child. One possible inter-
pretation of this pointing is that the child should fly. However,
this interpretation is not relevant. It makes no difference to the
child’s well being because flying is not possible for the child.
On the other hand, if the receiver of this pointing is a pilot,
the “you should fly” interpretation may be relevant, as flying
may increase the pilot’s well being.

The evaluation of beliefs seems simple, but it is a more
advanced type of ToM than a false belief task (Wimmer &
Perner, 1983). In a false belief task, people only need to take
others’ perspective and predict their actions with ToM. How-
ever, in communication, when evaluating the receiver’s util-
ity, the signaler a) uses the receiver’s belief to predict his ac-
tion and b) uses her own belief to evaluate the receiver’s ac-
tion. This type of crossing of minds has not been looked at
in communication, but has been shown in altruistic behav-
ior (Tomasello, 2010). The closest concept in developmental
psychology to this is paternalistic helping. A child can offer
help in a way that she believes to be helpful to others, not
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what they believe to be helpful to themselves (Martin, Lin,
& Olson, 2016). The signaler’s evaluation of the receiver’s
mind is also often taken by parents. Parents improve a child’s
well being not based on what the child wants, but on what
is best for them from the parents’ perspective. Therefore, we
call this paternalistic evaluation of beliefs. Our definition of
relevance between two beliefs is shown in Fig. 1.

We propose that this crossing of minds goes beyond the
classic AI definition of the value of evidence. The value of a
piece of evidence is defined to be “the difference in expected
value between best actions before and after information is
obtained ” (Russell, Norvig, & Davis, 2010). If we use Q
function to represent the value, then V peq “ maxa Qpb,a|eq´

maxa Qpb,aq. If the value of evidence is adopted as the defi-
nition of relevance, this will lead to a bad news paradox. Un-
der this assumption, if the goal of the communication is to
improve the listeners expected utility, then bad news should
never be told. Providing bad news as a piece of evidence
will drop the receiver’s expected utility. This is because value
of evidence only uses the receiver’s perspective without any
crossing of minds. The bad news paradox can be illustrated in
the context of a hunting example: if a young hunter believes
a prey is in front of him, he would have a high expected util-
ity in shooting. However, based on an experienced hunter’s
knowledge this is a bad action because she knows the prey
is not nearby. Using value of evidence as a relevance defini-
tion, she should not tell this piece of evidence at all because it
would decrease the young hunter’s expected utility. He would
no longer expect to kill the prey. But if she uses our paternal-
istic evaluation of beliefs, this evidence carries positive value
because from the experienced hunter’s perspective it prevents
the young hunter from shooting and wasting an arrow.

In practice, due to the limitation of communication, the re-
ceiver may not recover the signaler’s exact belief. Instead, he
may interpret the signaler’s belief as b1. Formally, we define
the utility of pointing as the utility change before and after
communication, evaluated based on the signaler’s belief. For
a pointing signal u, the utility is

Upuq “ QpbSig,a1
Recq´QpbSig,aRecq, (9)

b1
Rec “ Pps|bRec,uq, (10)

a1
Rec “ argmax

a
Qpb1

Rec,aq. (11)

Relevance in Eq. (8) can be used as the entry-level utility.
With the utility of pointing clearly defined, we can model it
as a rational action. Relevance is directly connected to the
instrumental utility change caused by the signal. Therefore, it
can be used as the utility in Eq. (4). Then the probability that
the signaler takes the action of pointing u is

PSigpu|bSigq9eαUpuq. (12)

The receiver’s interpretation of the pointing signal can be
modeled with Eq. (2),

PRecpbSig|uq9PRecpbSigqPSigpu|bSigq. (13)

Figure 1: Relevance calculation. Top: Relevance is evalu-
ated by coordinating the signaler’s belief (red) and the re-
ceiver’s belief (blue). Purple represents the crossing of be-
liefs. Middle: In the hunting example, the belief prey broke
the branch is relevant as it increases the signaler’s evaluation
of the receiver’s utility. Bottom: the belief wind broke the
branch is irrelevant.

When the signaler has full knowledge of the world, bSig is the
same as a single state s, which is the case in our experiments.

Experiments
We test the relevance model of pointing with an augmented
version of the classic AI task, the Wumpus world (Russell
et al., 2010), which is partially observable. In the Wumpus
world, a hunter tries to kill a monster called Wumpus. How-
ever, he cannot see the location of the Wumpus and can
only infer its location by his observation of the stench it
emits. To simulate communication, we add another agent, the
guide, who observes everything about the environment and
the hunter. However, the only way she can communicate to
the hunter is to point to an observation the hunter has already
observed. The hunter needs to infer the meaning of the point-
ing and act accordingly. We call this game the guided Wum-
pus hunting. It is inspired by the hunting example, with highly
sparse, overloaded, and indirect communication.

Figure 2: Environment for Experiment 1.
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We conduct two simulation experiments with the guided
Wumpus hunting. We start by testing our model of relevance
with one observation. Of note, there is no uncertainty about
which observation the point is referring to. The second ex-
periment raises this challenge by adding another observation,
incorporating overloadedness into the experiment. In both ex-
periments, we compare the performance of agents with our
relevance model and agents who use a single agent model as
the baseline. In both models, the belief-action value function
Qpb,aq is calculated by a POMDP solver, the PERSEUS al-
gorithm (Spaan & Vlassis, 2005). In addition, to distinguish
the relevance model from enhancing individual perception,
we add a control condition called “double observation.” In
this condition, the agent uses the single agent model, but he
receives a second observation from the environment as if he
observed the world twice.

Experiment 1
Task The environment of the experiment is shown in Fig. 2.
The Wumpus is located in one of the six tiles with a warning
sign. It does not move.

The hunter starts from the bottom-left corner tile. He can
move or shoot in four directions: up, down, left, and right. A
moving action will move the hunter one tile in the selected di-
rection. If the action moves the hunter outside of the map, the
hunter will not move. A shooting action will shoot an arrow
to the adjacent tile in the selected direction.

The hunter can move unlimited steps in the map, but mov-
ing each step has an action cost of 5. The game ends when the
hunter shoots or enters the tile of the Wumpus. If the hunter
moves to the tile of the Wumpus, he gains -100. If he shoots
and hits the Wumpus, he will gain a reward of 100. However,
if he misses the shot, he will get -100.

The hunter cannot see the Wumpus, but he can infer the lo-
cation of the Wumpus by observing its stench. There are two
possible observations in the environment, stench or nothing.
If the hunter is in a tile next to the Wumpus, he will have a
high probability p ą 0.5 of observing the stench. If the hunter
is not next to the Wumpus, he will have a low probability
1´ p of observing the stench. The observation accuracy p is
manipulated as an experiment condition. In the classic Wum-
pus world, p “ 1. We add more stochasticity to increase the

Figure 3: Overloadedness of the pointing act in Experi-
ment 1. The pointing to the stench can mean an accurate ob-
servation or a false alarm, each leading to multiple possible
world states.

task difficulty and the need for pointing. Although we only
have one possible referent to point to, which is the stench, the
pointing is still overloaded. It can mean that the Wumpus is in
one of all possible tiles (see Fig. 3) or that the hunter should
take one of all possible actions.

Conditions The experiment is a 3ˆ7 design; there are
three models and seven observation accuracies.

The baseline model is the single agent model. With this
model, the hunter uses a POMDP model to hunt the Wumpus.
He ignores all the pointing signals from the guide, so that
he engages in a single agent task. The second model is the
relevance model of pointing. In this condition, the guide and
the hunter use the relevance model to generate and interpret
pointing signals. The third model is the double observation
model. We test all three models with seven different levels of
observation accuracies, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and 1.

We run 100 game simulations for each condition and
record the reward gained by the hunter. We predict that a)
the hunters who use the relevance model will gain more re-
wards than the hunters who use the other two models, and
b) as the observation accuracy decreases, the performance of
the relevance model does not decrease because the power of
our relevance model comes from ToM inference instead of
observation accuracy.

Results The average reward across trials for each model un-
der various observation accuracies is depicted in Fig. 4. Over-
all, agents who use the proposed relevance model achieve a
higher average reward than agents who use the single agent
POMDP model or the double observation model. The main
effect of model type is significant (Fp2,2079q “ 141.926,
p ă 0.001), and the main effect of observation accuracy is
also significant (Fp6,2079q “ 58.370, p ă 0.001). The inter-
action between models and observation accuracy is signifi-
cant (Fp12,2079q “ 16.303, p ă 0.001). A post-hoc test with
Bonferroni correction shows that agents who use the rele-
vance model of pointing gain a higher reward than agents who
use the double observation model (Fp1,1398q “ 109.882,
p ă 0.001). Our results show the power of relevance-based
pointing, especially when the observation accuracy is low. It
is more effective in helping its receiver than providing more
accurate observations to his individual attention.

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Observation Accuracy

40

20

0

20

40

60

80

Av
er

ag
e 

Re
wa

rd

Model
Relevance
Single Agent
Double observation

Figure 4: Results of Experiment 1. Shaded areas represent
95% bootstrap confidence interval.
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Experiment 2

In Experiment 1, we have only one type of feature in the
observation: the stench. Although the pointing signal may
still have multiple interpretations as shown in Fig. 3, it has
only one referent. This lacks the overloadedness discussed
by Wittgenstein and Anscombe (1953/2001). To capture this
overloadedness, we added another observation of glitter to the
environment. Here, the glitter and stench coexist in the same
grid. This setting offers a more complete evaluation of the
Wumpus world.

Task The setup of Experiment 2 is identical to Experiment
1 except for a few aspects. We reduced the size of the en-
vironment because including an additional observation expo-
nentially decreased the speed of our POMDP solver. The en-
vironment of Experiment 2 is shown in Fig. 5. A gold bar is
added to the game as a source of the glitter. Picking up the
gold bar gives the hunter a reward. The Wumpus and the gold
bar are located in two different tiles of the three tiles with
a warning sign. They do not move. They are invisible to the
hunter but visible to the guide.

The hunter starts from the bottom-left corner tile. His mov-
ing and shooting actions have the same effect as in Experi-
ment 1. In addition, the hunter has another action of picking
up the gold bar. This action removes the gold bar if the hunter
is in the same tile with the gold bar. Otherwise, it does not
change the environment. The action of picking up the gold
bar has a cost of 5 if he misses the gold bar. The hunter will
gain a reward of 100 if he successfully picks up the gold bar.

The gold bar spreads glitter to its nearby tiles. The obser-
vations of glitter and stench of the Wumpus have the same
probability model as the stench in Experiment 1. The obser-
vations of the stench and the glitter are independent, resulting
in four possible observations in the environment. For exam-
ple, if the hunter is in a tile that is adjacent to the Wumpus
but not the gold, he may observe a) both glitter and stench
with probability pp1´ pq, b) single glitter with probability
p1´ pq2, c) single stench with probability p2, or d) nothing
with probability pp1´ pq.

Conditions The design and conditions are the same as Ex-
periment 1. We predict that there will be an advantage in re-
wards with the relevance model compared to a single agent

Figure 5: Environment for experiment 2.

model and double observation model.
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Figure 6: Results for Experiment 2. Shaded areas represent
95% bootstrap confidence interval.

Results The average reward across trials for each model
under various observation accuracies is depicted in Fig. 6.
Similar to Experiment 1, agents who use the relevance model
achieve a higher reward on average than agents who use the
single agent POMDP model or the double observation model.
The main effect of model type is significant (Fp2,2079q “

41.732, p ă 0.001), and the main effect of observation ac-
curacy is also significant (Fp6,2079q “ 20.049, p ă 0.001).
The interaction between models and observation accuracy is
significant (Fp12,2079q “ 9.130, p ă 0.001). A post-hoc test
with Bonferroni correction shows that agents who use the
relevance model of pointing gain higher reward than agents
who use the double observation model (Fp1,1398q “ 21.163,
p ă 0.001). Our results are consistent with the results in Ex-
periment 1. The relevance model of pointing still achieves
high performance in highly overloaded communication.

Discussion
Our relevance model was successful in capturing the essence
of transparent communication. In both Experiment 1 and Ex-
periment 2, the agents who used the relevance model for
communication achieved better performance than agents who
ignored the communication. In addition, agents who used
the relevance model achieved better performance than agents
with more precise individual perception by having two sam-
ples from the environment. The high performance of the rel-
evance model was robust over all observation accuracies.

Our results showed that by leveraging ToM and utility the-
ory, agents can achieve overloaded communication without a
predefined codebook. In the experiments, the guide and the
hunter do not have a codebook that regulates the relevance
between signals and meanings. Crucially, they never learned
the relevance through massive training. They promptly cal-
culate the relevance based on their context of the coopera-
tive task. Our results also showed that the power of pointing
comes from the ToM inference which supports the relevance
calculation. The power of pointing does not come from en-
hancing individual perception, which is supported by the ro-
bust performance of the relevance model across all observa-
tion accuracies.
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