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Orthogonal Cone Structure of Dimensionality Reduction Embeddings

Abstract

We analyze geometric aspects of clustering procedures based on low-dimensional embeddings. In

particular, we are interested in understanding the occurrence of the so-called orthogonal cone

structure (OCS) that can be observed empirically in various low-dimensional embeddings, including

kernel PCA, spectral clustering, Isomap, and clustering based on the Hodge Laplacian. Inspired

by recent work on the OCS based on graph Laplacians, we study OCS in the context of weighted

Laplacian and kernel PCA. This involves the development of a notion of a well-separated mixture

model and other characteristics of the methodology. These characteristics are then used to quantify

the OCS. We illustrate this for weighted Laplacian and kernel PCA in both the population setting

and the sample setting.
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CHAPTER 1

Introduction and motivation

In this thesis, we explore geometric aspects of low-dimensional embeddings and their impact on

clustering procedures. In particular, we study kernel PCA and weighted Laplacian embeddings

where the latter can be considered as a generalization of spectral graph clustering. Our analyses

are based on studying the so-called “orthogonal cone structure” (OCS). This describes a striking

geometric feature that can be observed in low-dimensional embeddings (see Figure 1.1, Figure 1.2

and Figure 1.3). Many existing popular clustering algorithms use dimension reduction techniques as

preprocessing step, which motivates the exploration of the conditions giving rise to such geometric

structures to appear and the exploration of the information contained in this structures. We will

see that if data are sampled from a well separated mixture model, i.e. different components have

no or little overlap (a more formal definition will be given below), then the embedded data is more

probable to exhibit an OCS, meaning that, with high probability, a large proportion of embedded

data from different components will fall into different orthogonal cones. Again, this heuristic

statement will be made precise below. Several parameters describing properties of the underlying

mixture model will be defined that then also describe and quantify the existence of an OCS, and

this quantification will prove that a strong OCS guarantees a successful clustering performance of

the k-means algorithm with uniformly orthonormal vectors as random initialization. An inverse

problem also occurs: When observing the OCS from one embedded dataset, can one conclude that

the data is sampled from a well-separated mixture model? This problem is investigated through

simulations studies, which indicate that a strong OCS is an indication of a well-separated mixture

model.

The OCS can be observed in many clustering algorithms. Figure 1.1, Figure 1.2 and Figure 1.3

show some OCS examples for different kernel embeddings, including graph Laplacian, kernel PCA,

and Isomap. The only difference among the three data sets, all simulated from a mixture of 3-

dimensional normals with covariance σ2 times the identity matrix, is the standard deviation σ.
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Figure 1.1. Examples of Orthogonal Cone Structure for different embeddings, where the standard
deviation of each cluster is 1.

We plot the eigenvectors corresponding to the first three smallest eigenvalues of graph Laplacian

embedding, and the eigenvectors corresponding to the first three largest eigenvalues corresponding

to Kernel PCA and Isomap, respectively, for all the three data sets. The kernels and tuning

parameters are kept the same in the three examples. Details can be found in the captions of

those figures. It is important to understand whether this geometric structure is induced by the

method itself artificially or by the underlying structure of the model. This may have effects on the

performance of clustering and the interpretation of the embeddings. Thus, insights into the OCS

can be helpful for improving the data analysis.

In order to heuristically explain the OCS phenomenon, consider a graph Laplacian L of an undi-

rected, unweighted graph. L has the form L = D−A withD the degree matrix and A the binary (0-1
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(d) Isomap embedding (5 nearest neighbors)

Figure 1.2. Examples of Orthogonal Cone Structure for different embeddings, where the standard
deviation of each cluster is 2.

valued) adjacency matrix. The graph Laplacian embedding is then defined by F : Rd → RN (N ≤ d)

F : xi 7−→


u1i
...

uNi

 for i = 1, · · · , n,

where d is the dimension of the original data, u1, . . . , uN are the N eigenvectors corresponding to

the N smallest eigenvalues of L and uki denotes the ith element of vector uk.

Now consider a simple scenario where the m-dimensional manifold M embedded in Rd has N

connected components. Suppose that n data points x1, x2, · · · , xn ∈ Rd are uniformly distributed

on M, then one can construct the proximity graph consisting of N connected components. The N

eigenvectors corresponding to the first smallest N eigenvalues of the corresponding graph Laplacian

(considered as functions on the n data points) coincide with rescaled versions of the indicator
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Figure 1.3. Examples of Orthogonal Cone Structure for different embeddings, where the standard
deviation of each cluster is 3.

functions of the N connected components of M, so that the resulting graph Laplacian embedding

map sends the original data set into a set of N orthogonal vectors on RN . This is an extreme case

of an OCS: The embedding consists of N orthogonal cones with common cone tips at the origin

and with opening angle 0. The question then is, how exactly can the embedding be described when

the underlying data are drawn from a mixture distribution which are not entirely separated. This

is where the OCS with non-degenerate cones comes into play. A rigorous definition of an OCS is

as follows.

Definition 1. (Orthogonal Cone Structure) Let σ1, σ2, · · · , σN ∈ (0, π/4), δ ∈ [0, 1), and r > 0. A

probability measure µ ∈ P
(
RN
)
has an orthogonal cone structure with parameters (σ1, σ2, · · · , σN , δ, r)
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if there exists an orthonormal basis for RN , e1, . . . , eN , such that

µ

 N⋃
j=1

C (ej , σj , r)

 ≥ 1− δ,

where C (ej , σj , r) is the set

C (ej , σj , r) :=

{
z ∈ Rk :

z · ej
|z|

> cos(σj), |z| > r

}
.

Notice that each set C is a spherical cone with cone tip in the origin, intersected with the com-

plement of a ball of radius r. The OCS has first been defined in Schiebinger et al. ( [75]) in the

context of the simple graph Laplacian and it was further studied in Garcia-Trillos et al. ( [89]).

An OCS is not a rare structure but appears in any probability measure: One can always choose

σj ’s large enough for the union of the cones to cover the entire RN , resulting in a trivial OCS with

δ = 0. More generally, an OCS with σj ’s close to π/4 and δ close to 1, is a weak OCS and a

clustering algorithm applied to the embeddings will in general not perform well. The goal of this

thesis is to explore in the setting of a finite mixture model, how the separateness of the individual

model components effects the geometric parameters of the OCS. One can conclude that given a

well-separated mixture model (formally defined later), one only needs small angles to achieve a large

coverage by the cones. Informally but intuitively, an OCS with small angles and large coverage is

called a ‘good’ or a ‘strong’ OCS. The sequence of Figure 1.1, Figure 1.2 and Figure 1.3 show a

change from ‘good’ OCS to ‘bad’ OCS when the clusters move closer to each other, i.e. when they

become less separated.

Remark 1. The above definition of an OCS guarantees coverage proportions of the union of the

orthogonal cones, but the cones are not required to cover one specific component. A modified (strong)

version of OCS for mixture models addresses this. Let ν =
∑N

j=1wjνj be a mixture measure with

positive weights wj, j = 1, 2, · · · , N , and let F♯ denote the push-forward operator through some

given embedding F . Then we say that a mixture measure µ := F♯ν ∈ P
(
RN
)
(µ =

∑N
j=1wjµj,

where µj = F♯νj) has a strong orthogonal cone structure with parameters (σ1, σ2, · · · , σN , δ, r) if
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there exists an orthonormal basis e1, e2, · · · , eN of RN , such that

N∑
j=1

wjµj (C (ej , σj , r)) ≥ 1− δ,

where C (ej , σj , r) is the same set defined above.

Here we study the OCS for weighted graph Laplacians and Kernel PCA. This choice constitutes

two basic by different types of examples, where the weighted Laplacian operator corresponds to a

differential operator while the Kernel PCA operator corresponds to an integral operator.

Related Work. To the best of our knowledge, the first work analyzing the OCS is Schiebinger,

Wainwright and Yu (2015)( [75]), where kernelized spectral clustering is discussed. Inspired by this

work, Garcia Trillos, Hoffman and Hosseini (2019)( [89]) also study the OCS for kernelized spectral

clustering, but they are using a slightly different and more general approach than in Schiebinger et

al., also allowing for data sampled from a manifold.

Spectral properties of Graph Laplacians play crucial roles in unsupervised and semi-supervised

learning algorithms. Hoffmann et al. (2022)( [47]) studied the large data limit of scaled graph

Laplacians, which approach limiting continuum operators. Garćıa Trillos et al. (2020)( [37])

showed convergence of eigenvalues and eigenvectors of graph Laplacian to the eigenvalues and

eigenfunctions of the weighted Laplace-Beltrami operator. Hein et al. (2007)( [45]) determined

the pointwise limit of graph Laplacians as the sample size increases and the neighborhood size

approaches zero. Burago et al. (2015)( [21]) also showed such convergence in a different scenario

where a proximity graph on an epsilon-net is considered. Giné et al. (2006)( [40]) proved a.s.

and distributional convergence of graph Laplacians to Laplace-Beltrami operator. Koltchinskii et

al. (2000)( [57]) gave a general result of random matrix approximation for spectra of integral

operators. Bühler et al. (2009)( [20]) used graph p-Laplacian, a nonlinear generalization of the

standard graph Laplacian to generalize the standard spectral clustering.

Principal component analysis (PCA) (Jolliffe, 1986)( [54]) is a well-used dimensionality reduction

method with the idea of linearly projecting high-dimensional data to a lower dimensional subspace

by retaining variability in the data. Schölkopf et al. (1998)( [77]) used kernel trick to extend the

idea of PCA to reproducing kernel Hilbert spaces (RKHS) (Aronszajn, 1950)( [5]) resulting in a

6



nonlinear dimension reduction method, which is kernel PCA. Kernel PCA is widely used in many

applications. Sriperumbudur and Sterge (2018)( [83]) approximate kernel PCA by using random

features and consider the computational and statistical trade-off. Blanchard, Bousquet and Zwald

(2007)( [18]) considered the statistical properties of kernel PCA and prove concentration bounds

for the reconstruction error, and also obtained convergence bounds for the partial sums of the

biggest or smallest eigenvalues of the kernel Gram matrix towards eigenvalues of the corresponding

kernel operator. Reiss and Wahl (2019)( [96]) analyzed the reconstruction error of PCA, and Cai

and Zhang (2020)( [23]) gave different optimal rates for singular spaces under perturbation, which

are applicable to a wide range of dimension reduction methods. Koltchinskii et al. (2020)( [58])

established the asymptotic normality and asymptotic properties for the risk of the estimators of

linear functionals for eigenvectors of the covariance operator, and also proved matching minimax

lower bounds of the estimators. Koltchinskii and Lounici (2016, 2017)( [59], [60], [61]) derived sharp

concentration bounds for bilinear forms of empirical spectral projection in terms of sample size and

effective dimension, and they also derived concentration inequalities and expectation bounds for

the operator norm of the difference between covariance operator and its empirical version. Bengio

et al. (2004)( [13]) showed relation between spectral embedding methods and kernel PCA and

gave the level of error to the effect of small perturbations of the training set on the embedding.

Albeverio et al. (2008)( [2]) considered all types of self-adjoint perturbations of a semi-bounded

operator under the framework of additive perturbation theory (Kato, 2013)( [56]). Jirak and Wahl

(2018, 2020)( [52], [53]) gave perturbation bounds for eigenspace of covariance operators and their

empirical version under a relative gap condition. Wahl (2019)( [96]) also proves the analogue of

standard perturbation result under a weighted condition, which leads to significant improvements

in random perturbations. Fukumizu et al. (2007)( [36])proved statistical convergence of kernel

CCA, which can be seen as an bivariate generalization of kernel PCA.

Identifiability of finite mixtures in a mixture model is essential for the exploration of OCS, which will

be quantified by one important parameter called indivisibility parameter (formally defined later)

related to OCS. Teicher (1963)( [86]) gave some results on identifiability of finite mixtures of some

well-used distributions. Aragam et al. (2020)( [4]) also introduced a novel framework involving

clustering overfitted parametric mixture models to establish general conditions of identifiability of

nonparametric mixture models.

7



Non-linear dimension reduction methods are also closely related to manifold learning problems

( [51]), since these methodologies involve capturing the local and global structure of the underlying

manifold in order to be able to obtain useful estimates of geodesic distances, which subsequently

result in good clustering performance.

We also noticed that the top eigenvectors of operator don’t always show good clustering result.

Shi, Belkin and Yu (2009)( [81]) devised a clustering algorithm that selects only those eigenvectors

which have clustering information not represented by the other eigenvectors already selected when

the top eigenvectors is inadequate and redundant at the same time, which could appear when the

clusters are not balanced and/or have different shapes.

We study the OCS in both the population setting and sample setting for kernel PCA case and

weighted Laplacian case. The structures of the proofs is motivated by the proofs in Garcia Trillos,

Hoffmann and Hosseini (2019)( [89]). Our main contribution includes the following:

• Prove the OCS in both the population setting and the sample setting of kernel PCA case

and weighted Laplacian case under similar assumptions by using ideas laid out by Garcia

Trillos, Hoffmann and Hosseini (2019)( [89]).

• Generalize the definition of OCS to allow different angle for different cone.

• Explore the role of bandwidth of the kernel function and the power parameter of weighted

Laplacian in the context of the OCS.

• Derive the sufficient condition that k-means algorithm with uniformly orthonormal vectors

as random initialization clusters most proportion of the data points correctly under the

context of OCS.

• Conduct numerical explorations of the inverse problem: Can we infer any properties of

the mixture model if the OCS of embedded data is observed?

Following ideas laid out in Garcia Trillos et al.( [89]), our basic approach is as follows:

(i) First, we show the OCS for the limit operator (i.e. the population case).

(ii) Then, we analyze the limit behavior of the corresponding top (or bottom) empirical eigenvec-

tors of the matrix that is used in low-dimensional embeddings. This involves to determine the

8



corresponding limit operator, and to show that the eigenvectors converge in an appropriate sense

to the eigenfunction of the limit operator.

(iii) The convergence of the eigenvectors (to the true eigenfunctions) will imply the OCS for the

eigenvectors of our empirical matrices, which leads to the OCS of these low-dimensional embeddings

(i.e. the sample case).

In the weighted Laplacian setting, we use a variant of the graph discretization method (Burago,

Ivanov, and Kurylev, 2015)( [21]) to connect the weighted Laplacian operator and its empirical

version. Discretization of eigenfunctions and interpolation of eigenvectors are used here to define

the convergence of eigenvectors to eigenfunctions and they are inverse operators of each other.

The error estimates method of spectral convergence (Garćıa Trillos, Gerlach, Hein and Slepčev,

2020)( [37]) is also modified to be applied on our weighted Laplacian setting.

In the Kernel PCA setting, Davis-Kahan theorem (Davis and Kahan, 1970)( [31]) and its variant

(Yu, Wang and Samworth, 2015)( [101]) are used to bound the distance between subspaces spanned

by population eigenfunctions and their empirical versions, which require eigenvalue separation

condition of the corresponding operators. In order to prove OCS in the sample setting, the behavior

of eigenfunctions of kernel PCA embedding operator and its empirical version also plays essential

role, and also a Davis-Kahan type theorem is needed in the proofs.

The basic ideas underlying the derivation of the OCS in these two cases are similar, but details are

quite different. In the former case, we use a q-th power of the mixture density scaled to integrate

to one as an auxiliary step. We start from showing OCS of such rescaled measure and bound the

distance of it and our desired measure to prove the population setting. Some useful error bounds can

be established and leads to OCS of original measure under suitable conditions for the sample setting.

For the latter case, in the population setting, similar steps apply but density assumption is no longer

necessary and we may use kernelized density as the auxiliary step. Also, error bounds in Kernel

PCA case are also constructed by using different ideas where we directly consider the closeness of

spectrum between the covariance operator and its empirical version. The work just mentioned deals

with spectral convergence, i.e. the convergence of eigenvalues and eigenfunctions (in a sense to be

specified,) of matrices to limit objects that consist of eigenvalues and eigenfunction of operators.

9



This involves devising a methodology that allows to formulate convergence of eigenvectors to a

limit function. This also plays an integral role in the proofs of the main results of this thesis.

In a word, the overarching goal of this thesis is to understand commonalities and differences be-

tween low-dimensional embeddings used by clustering procedures through the lens of the limiting

operators and the OCS, and we consider Kernel PCA and weighted Laplacian as specific instances.

Both population setting and sample setting are considered and the OCS under these settings are

completely proved under some suitable conditions, which will be given before we introduce the

main theorems. Notice that weighted Laplacian operator is one of the differential operator while

kernel PCA operator is one of the integral operator. One of our future work is to further explore

the commonality and difference between these two cases and to generalize our results in order to

also cover other dimension reduction embeddings.

10



CHAPTER 2

Setup and Main Results

In this section, we introduce the precise settings for both the weighted Laplacian and the Kernel

PCA cases in both the population and the sample settings. In the Kernel PCA case, the existence of

densities is not assumed. Our interest is to quantify the OCS in terms of well-separation properties

of the assumed underlying mixture distribution. These separation properties are described by

various parameters. In the weighted Laplacian case, we use parameters named weighted overlapping

parameter, coupling parameter and indivisibility parameter, while in the Kernel PCA case, two

different overlapping parameters are being used, and we also need to control the eigen-decay of

the covariance operator. Precise definitions will be given below, where we also discuss all these

parameters along with their interpretation in detail. Our main results then specify how the OCS

can be quantitatively described by these parameters. If the model is well separated, then the OCS

will be strong, and what we precisely mean by that will be made clear below. Intuitively, an

OCS consists of the existence of spherically symmetric orthogonal cones in the embedding space

that carry a high mass concentration. In the sample setting a strong OCS means that with high

probability these orthogonal cones cover a high proportion of embeddings, and different cones will

cover embeddings corresponding to different clusters. A precise definition of the OCS property will

be given below.

2.1. Basic setting

2.1.1. Weighted Laplacian and related differential operator. We first introduce the

definition of weighted Laplacian operator and weighted graph Laplacian, where the weighted Lapla-

cian operator arises as a limit (in an appropriate sense) of the weighted graph Laplacian. These

convergences play an integral role in the proofs of the main theorems.

11



Let Z ⊂ Rd be bounded, we consider differential operators of the form

(2.1)


Lu := − 1

ρp div (ρ
q∇ (u)) , in Z

ρq ∂u∂n = 0, on ∂Z,

for parameters p, q ∈ R fixed, where ∇ denotes gradient, div denotes divergence, and ∂ denotes

partial differential, and we assume here that all these quantities are well defined.

The previous differential operators arise as large data limits of graph Laplacian operators of the

form

(2.2) ∆n :=


D

1−p
q−1
n (Dn −Wn) , if q ̸= 1

Dn −Wn, if q = 1,

where Wn = Wn(q) is a symmetric weighted adjacency matrix and it is defined by a pre-specified

kernel which contains the information of similarities between empirical data points, andDn = Dn(q)

is a weighted degree matrix computed based on Wn. The formal definitions will be given below

before presenting the main results for the OCS of these graph Laplacians. We say that L is a large

data limit of ∆n in the sense that the eigenvalues and eigenvectors of ∆n converge to the eigenvalues

and eigenfunctions of L as the sample size tends to infinity, in a sense that will be described below

in Lemma 7 and Lemma 4, which indicate that the difference of the discretization of eigenfunctions

and eigenvectors, as well as the difference of the interpolation of eigenvectors and eigenfunctions

are bounded, respectively. Also, these bounds can be arbitrarily small as long as the sample size n

is large enough. Rigorous proofs and related details are given after Lemma 4.

Remark 2. Hoffmann et al.( [47]) considered spectral analysis of a more general three parameter

class of differential operators of the form

(2.3)


Lu := − 1

ρp div
(
ρq∇

(
u
ρs

))
, in Z

ρq ∂
∂n

(
u
ρs

)
= 0, on ∂Z,

12



p q s Lu ∆n Unnormalized or Normalized

1 2 0 −1
ρ div

(
ρ2∇(u)

)
Dn −Wn Unnormalized graph Laplacian

3/2 2 1/2 − 1
ρ3/2

div
(
ρ2∇(uρ−1/2)

)
D

−1/2
n (Dn −Wn)D

−1/2
n Normalized graph Laplacian

2 2 0 − 1
ρ2

div
(
ρ2∇(u)

)
D−1
n (Dn −Wn) Normalized graph Laplacian

Table 2.1. Examples of different choices of (p, q, s) and corresponding differential operators and
graph Laplacians.

for parameters p, q, s ∈ R fixed, which also arise as large data limits of graph Laplacian operators

of the form

(2.4) ∆n :=


D

1−p
q−1
n (Dn −Wn)D

− s
q−1

n , if q ̸= 1

Dn −Wn, if q = 1.

The three-parameter family of differential operators and the corresponding three-parameter family

of graph Laplacians are introduced here to unify various expressions of different normalizations

of the graph Laplacian. Some special cases and related convergence properties are popular and

well-studied. Several examples are listed in Table 2.1. Below we will consider the case where Z is

a manifold embedded in Rd.

The above definition of the graph Laplacian assume a given graph. In the literature, various

constructions of such graphs are being considered. Two popular choices are the ε-graph and the

k-NN graph (see below for details). Under appropriate assumptions, eigenvalues and eigenvectors

of the corresponding graph Laplacians converge (in a sense to be specified) to the corresponding

eigenvalues and eigenvectors of a continuous limit operator which belong to the class of operators

introduced above ( [24]).

More precisely, assume we have an i.i.d. sample X = {x1, · · · , xn} ∈ Rd. Given a measure µ,

denote its associated empirical measure by µn. In the following part, we will use the notation

L2(µ) to denote the space of L2-functions with respect to the measure µ, and by L2(µn) the space

of functions u : X → R.

Given an ε > 0, the weighted ε-graph Gε = (X,wε) is constructed by the following steps: An edge

is first put between xi and xj if |xi − xj | ≤ ε, where |xi − xj | is the Euclidean distance between

points xi and xj . A non-increasing Lipschitz continuous function η : [0,∞) → [0,∞) is introduced
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to endow weights to edges and η is supported on [0, 1], i.e. η(x) = 0 for x > 1. The weight is then

defined by wεxy = η
(
|x−y|
ε

)
. Note that if the points xi, xj are not connected then the weight is 0.

Then the associated graph Laplacian is given by

Lεu(x) = 1

nεm+2

n∑
j=1

wεxjx (u(x)− u (xj)) ,

where u(·) is a function in L2 (µn).

The corresponding limit differential operator ∆ρ for a smooth function f turns out to be

∆ρf := − 1

2ρ
div
(
ρ2∇f

)
.

A different graph construction on X proceeds not by fixing a length-scale ε but rather by specifying

for each point in X a set of nearest neighbors, which is called k-NN graph. The (undirected) k-NN

graph is constructed by connecting a pair of points if one is in the k nearest neighbors of another

one. More precisely, we first let Nε(x) =
∑n

j=1 10<|xj−x|≤ε be the number of random samples in a

Euclidean ε-neighborhood of x. Given 1 ≤ k ≤ n − 1, define εk(x) := min {ε > 0 : Nε(x) ≥ k},

which is the Euclidean distance from x to the k-th nearest neighbor of x from the samples

x1, x2, · · · , xn. Finally, we define rk(x, y) := max {εk(x), εk(y)}. Then xi and xj are connected

if and only if |xi − xj | ≤ rk(xi, xj). (The mutual k-NN graph can be constructed by setting

rk(x, y) = min {εk(x), εk(y)}.) Then the undirected k-NN graph Laplacian of u ∈ L2 (µn) is de-

fined as

Lku(x) = 1

n

(nαm
k

)1+2/m
n∑
j=1

w
rk(xj ,x)
xjx (u(x)− u (xj)) ,

where αm is the volume of the m-dimensional Euclidean unit ball, and the weights have the same

form as above.

The corresponding limit differential operator ∆NN
ρ for a smooth function f turns out to be

∆NN
ρ f := − 1

2ρ
div
(
ρ1−2/m∇f

)
.

Given a weight matrixW and degree matrix D, the unnormalized graph Laplacian is simply defined

( [94]) as

L = D −W,
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and there are two matrices, called normalized graph Laplacians, are defined as

Lsym := D−1/2LD−1/2 = I −D−1/2WD−1/2,

and

Lrw := D−1L = I −D−1W.

The normalization here is based on the degree matrix which itself depends on the weight matrix

W . However, also the normalization of weights are being considered. This then gives rise to two

normalizations at different levels: First the weights are normalized and then the Laplacian might be

normalized by using the degree matrix based on the normalized weights. One thus has to carefully

distinguish between normalized weights and normalized Laplacians.

The corresponding limit differential operator of these three matrices turn out to be ( [92]):

L : u 7→ −1

ρ
div
(
ρ2∇u

)
,

Lsym : u 7→ − 1

ρ3/2
div

(
ρ2∇

(
u
√
ρ

))
,

and

Lrw(u) = − 1

ρ2
div
(
ρ2∇u

)
.

They are just special cases of our weighted Laplacian for the parameters (p, q, s) = (1, 2, 0),

(p, q, s) = (32 , 2,
1
2), and (p, q, s) = (2, 2, 0), respectively. The limit behaviors and convergence

properties are explored based on spectral convergence ( [88]), which will also be applied in the

major proof part of our main theorems.

There is yet another notion of a Laplacian operator used in the literature, which is called the

p-Laplacian. Recall that the standard graph Laplacian ∆2 can be defined as the operator which

induces the quadratic form for a smooth function f as

⟨f,∆2f⟩ =
1

2

n∑
i,j=1

wxixj (f(xi)− f(xj))
2 .
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The p-Laplacian is defined similarly as the operator which induces the quadratic form for a smooth

function f as

⟨f,∆pf⟩ =
1

2

n∑
i,j=1

wxixj |f(xi)− f(xj)|p .

The p-Laplacian regularization can be added in a family of regression problems in a semi-supervised

setting ( [82]). By using the same notations as above, in the constrained model in this problem,

the estimator is constructed by minimizing

E(p)
n (f) =

1

εpn

1

n2

n∑
i,j=1

Wij |f (xi)− f (xj)|p

among {f : Ωn → R} which satisfy the constraint f (xi) = yi for all i = 1, · · · , N , where | · | denotes

the Euclidean distance in the ambient space Rd. Then for q > 0, the penalization term is defined

by

R(q)(f) =
N∑
i=1

|yi − f (xi)|q .

Then the penalized estimator is constructed by minimizing

S(p)
n (f) = E(p)

n (f) + λR(q)(f)

over all functions f : Ωn → R, where λ > 0 is a tuning parameter. The limit behaviors of objective

function E(p)
n (f) and the penalized estimator S(p)

n (f) are explored in this problem when n → ∞.

The following continuum functionals describe the limiting problems as n→ ∞:

E(p)
∞ (f) =


ση
∫
Ω |∇f(x)|pρ2(x)dx if f ∈W 1,p(Ω)

∞ else,

where W 1,p(Ω) denotes a Sobolev space. Also, to describe the limit of the penalized model in the

large data limit, the functional

S(p)
∞ (f) = E(p)

∞ (f) + λR(q)(f)

is introduced and is well defined whenever p > d.

In this thesis, we just consider the special case of s = 0 in the differential operators (2.3), which is

exactly the differential operators (2.1). This special version of weighted Laplacian will be explored
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and main theorems are based on this special case. More assumptions and techniques are needed to

construct similar results for the generalized version where s is not necessarily zero.

As already given above, the relevant differential operator for the case s = 0 is differential operator

∆ρ(u) for smooth functions u defined by

∆ρ(u) = − 1

ρp
div(ρq∇u) = −ρq−p∆u− qρq−p−1∇ρ∇u.

Given a density ρ on M we define the weighted function spaces

L2(M, ρq) := {u : M 7→ R | ⟨u, u⟩ρq < +∞} ,

equipped with the inner product

⟨u, v⟩ρq :=

∫
M
u(x)v(x)ρq(x)dx.

We also use L2(ρq) instead of L2(M, ρq) when the domain of the function space is clear with

no ambiguity. With dν(x) = ρq(x)dx∫
ρq(t)dt

we write L2(ν) and ⟨·, ·⟩L2(ν) to denote L2(M, ρq) and the

corresponding dot product ⟨·, ·⟩ρq .

We will investigate the dependence of the OCS on the parameters p and q, which are two non-

negative real values . The number of components N in the mixture model is also fixed throughout

this dissertation.

The Algorithm of weighted Laplacian clustering has the same structure with Graph Laplacian clus-

tering. In this algorithm, we first construct the weighted similarity matrix and its corresponding

degree matrix and then compute the weighted Laplacian matrix. By doing clustering on the em-

bedded data constructed by elements in the eigenvectors corresponding to the first several smallest

eigenvalues, we get the cluster label of the original data. Detailed steps are listed in the following

algorithm:
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Algorithm 1: weighted Laplacian clustering

Input: (n× d) data matrix X = [x1, x2, · · · , xn]T (n observations of d dimensional data),

number N of clusters to construct, a non-increasing Lipschitz function η, a bandwidth ε;

Compute the weighted similarity matrix W̃n with entries
(
W̃n

)
ij
:= ηε (|xi − xj |)1(i ̸= j) and

its re-weighted version Wn with entries (Wn)ij =
(W̃n)ij

d̃
1−q/2
i d̃

1−q/2
j

;

Compute the corresponding degree matrix Dn = diag (di) with di :=
∑N

j=1Wij ;

Compute the weighted Laplacian ∆n as defined above;

Compute the N eigenvectors u1, · · · , uN corresponding to the smallest N eigenvalues of ∆n;

Let U ∈ Rn×d be the matrix containing the vectors u1, · · · , uN as columns;

For i = 1, 2, · · · , n, let yi ∈ Rd be the vector corresponding to the i-th row of U ;

Cluster the points (yi)i=1,2,...,n in RN with the k-means algorithm into clusters C1, C2, · · · , CN ;

Output: Clusters A1, A2 · · · , AN with Ai = {j|yj ∈ Ci}.

2.1.2. Reproducing kernel Hilbert space and kernel PCA embedding. We study the

geometry of a continuum analogue Kernel PCA embedding. Kernel PCA just extends the idea of

classical PCA in a Reproducing Kernel Hilbert Space (RKHS). The definition of a RKHS is as

follows: Let k be a symmetric positive definite kernel function

k : Ω× Ω −→ R

(s, t) 7−→ k(s, t)

defined on Ω × Ω (Ω is a non empty abstract set). We call k a reproducing kernel of the Hilbert

space H if and only if

• ∀t ∈ Ω, k(·, t) ∈ H,

• ∀t ∈ Ω, ∀φ ∈ H ⟨φ, k(., t)⟩ = φ(t) (“the reproducing property”).

A Hilbert space H possessing a reproducing kernel is called an RKHS (e.g., see [17] and [68]).

From the previous two properties, we can derive that

∀(s, t) ∈ Ω× Ω k(s, t) = ⟨k(·, t), k(·, s)⟩.
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In the following part, let ν denote a measure on Ω. Define the kernelized density of ν as the function

q ∈ H ⊂ L2(Ω, ν) given by

(2.5) q(x) =

∫
Ω
k(x, y)ν(dy),

where k(x, y) is a reproducing kernel satisfying |k(x, y)| ≤ M for some M > 0. Notice that

q(·) =
∫
Ω k(·, x)ν(dx) = Eνk(·, X), where X is a random variable with measure µ. So this kernelized

density is the unique mean element of the measure ν.

Similarly, we denote the kernelized density of νk by qk, i.e.

(2.6) qk(x) =

∫
Ω
k(x, y)νk(dy).

We use the standard notation L2(Ω, ν) to denote the class of real-valued functions on Ω with finite

L2-norm with respect to ν, i.e.

L2(Ω, ν) := {u : Ω 7→ R | ⟨u, u⟩ν < +∞} ,

where

⟨u, v⟩ν :=

∫
Ω
u(x)v(x)ν(dx).

Define the centered kernel

(2.7)

k̄(x, y) = k(x, y)− Eνk(x, Y )− Eνk(X, y) + Eν⊗νk(X,Y )

= k(x, y)− q(x)− q(y) +

∫
Ω

∫
Ω
k(x, y)ν(dx)ν(dy)

= k(x, y)− q(x)− q(y) + Eνq(X),

and the centered covariance operator

(2.8) Σνf(·) =
∫
Ω
k̄(·, y)f(y)ν(dy), f ∈ H(k).

For x, y ∈ H, denote x ⊗H y as an element of the tensor product space H ⊗H which can also be

seen as an operator from H to H as (x⊗H y)z = x⟨y, z⟩H for any z ∈ H.

It is obvious that Σν is self-adjoint and under the assumption that the kernel is bounded, Σν is also

a trace-class operator and therefore Hilbert-Schmidt and compact. So by the spectral theorem, Σν
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can be written as

Σν =
∑
i∈I

λiui ⊗H ui,

where λ1 ≥ λ2 ≥ · · · denote the eigenvalues of Σν in non-increasing order, and the associated

orthonormal eigenfunctions are denoted as u1(·), u2(·), · · · .

Then we may compute the kernelized desity q(x) again by using the centered kernel. For conve-

nience, we continue using the notation of k(x, y) and q(x) to denote these quantities. Then, qk has

the representation

qk =
∞∑
l=1

alkul

with coefficients alk, l = 1, 2, · · · .

The Algorithm of Kernel PCA clustering is well-used in many applications. In this algorithm, we

first choose a suitable kernel and compute the inner-product (Gram) matrix based on the data, and

then get the double-centered version of this Gram matrix. By using the eigenvectors corresponding

to the first several leading eigenvalues, we obtain the embeddings that then are being clustered.

Detailed steps are listed in the following algorithm:

Algorithm 2: Kernel PCA clustering

Input: (n× d) data matrix X = [x1, x2, · · · , xn]T (n observations of d dimensional data),

number N of clusters to construct, kernel K (xi, xj);

Compute the inner-product (Gram) matrix G(n∗n) of the data set V , where Gij = K (xi, xj);

Compute the double-centered version of the Gram matrix K = (I− 1
n11

T )G(I− 1
n11

T );

Compute the N eigenvectors u1, · · · , uN corresponding to the largest N eigenvalues of K;

for i = 1 : n do

Let yi = (y1i, · · · , yNi) with yti =
∑n

j=1 utjK(xi, xj) for t = 1, · · · , N .

end

Cluster the points (yi)i=1,2,...,n in RN with the k-means algorithm into clusters C1, C2, · · · , CN ;

Output: Clusters A1, A2 · · · , AN with Ai = {j|yj ∈ Ci}.
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2.2. OCS and parameters for OCS control

We are now defining the various parameters describing the separateness of the mixture components.

As indicated above, they are somewhat different in the two cases considered here, namely spectral

clustering using the weighted Laplacian and kernel PCA.

2.2.1. Weighted Laplacian case. Consider a smooth (infinitely differentiable), connected,

orientable, m-dimensional compact Riemannian manifold M in Rd. For a fixed positive integer N ,

let ρ1, ρ2, · · · , ρN denote probability density function on M with respect to the volume form on

M. Furthermore, let w1, w2, · · · , wN be strictly positive weights which satisfy that
∑N

k=1wk = 1.

Then the corresponding mixture density is given by

ρ(x) :=
N∑
k=1

wkρk(x), x ∈ M.

Assume that ρq is integrable on M. Let ν be the probability measure on M with density ρ̃(x) :=

ρq(x)∫
ρq(t)dt

. Note that ρ̃ depends on the parameter q. We also write

dν(x) =
ρq(x)dx∫
ρq(t)dt

,

where dx denotes integration with respect to M’s volume form and dν(x) is a complete Borel

probability measures on M.

The following assumption guarantees that the parameters related to OCS defined in this subsection

are well-defined.

Assumption 1. Assume that ρ1, ρ2, · · · , ρN ∈ C1(M) with
∫
M ρk(x)dx = 1 for all k are such that

the operators ∆ρk and ∆ρ have discrete point spectrums with an associated orthonormal basis of

eigenfunctions for L2(ρqk) and L
2(ρq), respectively.

For k = 1, · · · , N , define the functions

qk :=

(√
wkρk
ρ

)q
,
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and with Ij =
∫
ρqj(x)dx and I =

∫
ρq(x)dx let

Imin := min
i=1,2,··· ,N

Ii and Imax := max
i=1,2,··· ,N

Ii.

Moreover, for i, j = 1, 2, · · · , N , let

Sij =

〈(
qi√
(wi)q

)2

,

(
qj√
(wj)q

)2〉
ρq

=

〈(
ρi
ρ

)q
,

(
ρj
ρ

)q〉
ρq

=

∫
M

(
ρi(x)ρj(x)

ρ(x)

)q
dx,

and define

Sb := max
i,j=1,2,··· ,N,i̸=j

Sij and Sw := max
i=1,2,··· ,N

Sii,

and

Sadj := max
j=1,2,··· ,N

max(N q−1, 1)Sb

∑
k ̸=j

wqk +
(
max(N q−1, 1)− 1

)
wqjSw

 ,

where the subscript ‘b’ means ‘between’, ‘w’ means ‘within’, and ‘adj’ means ‘adjust’.

With this notation we now define the following parameters:

Overlapping parameter (similarity parameter)

Si :=
∑

j=1,··· ,N,j ̸=i
wqjSij .

Coupling parameter

C := max
k=1,··· ,N

Ck,

where

Ck :=
q2

4

∫ ∣∣∣∣∇ρkρk − ∇ρ
ρ

∣∣∣∣2 ρqkdx, k = 1, · · · , N.

Indivisibility parameter

Θ := min
k=1,··· ,N

Θk,

where

Θk := inf
u⊥1

∫
|∇u|2ρqkdx
⟨u, u⟩ρqk

,

where 1 denotes constant function and ⊥ denotes orthogonality with respect to the inner product

⟨·, ·⟩ρqk , and the infimum is taken over C1(M). Thus Θk is indeed the first non-trivial eigenvalue
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of operator ∆ρqk
, which can be proved easily by using the min-max theorem of operators and

proposition 2.

2.2.2. Kernel PCA case. Let ν1, ν2, · · · , νN be probability distributions on Ω (e.g. Rk).

Similar to the above, we consider a mixture model of the form

ν :=
N∑
k=1

wkνk,

where w1, w2, · · · , wN be strictly positive weights which satisfy that
∑N

k=1wk = 1.

Recall the definition of q and qk as kernelized densities given in equation (2.5) and equation(2.6)

above. For i, j = 1, 2, · · · , N , let

Sij =
〈(

qi
q

)
,

(
qj
q

)〉
ν

=

∫
Ω

qi(x)

q(x)

qj(x)

q(x)
ν(dx),

and

S∗
ij = ⟨qi, qj⟩ν =

∫
Ω
qi(x)qj(x)ν(dx).

Notice that if we replace qi and q by ρi and ρ, respectively, and if measure ν is a probability

measure with density ρ, then Sij in the kernel PCA case has exactly the same form as the Sij in

the weighted Laplacian case with power q = 1. These two cases have many commonalities and are

also different in some important details illustrated later.

Then similar with weighted Laplacian case, we also define three sets of parameters to quantify the

extent of separateness.

Overlapping parameters (similarity parameters) of qi(x)

S∗
w := min

i=1,··· ,N
⟨qi, qi⟩ν = min

i=1,··· ,N

∫
Ω
qi(x)qi(x)ν(dx) := min

i=1,··· ,N
S∗
ii,

S∗
w,up := max

i=1,··· ,N
⟨qi, qi⟩ν = max

i=1,··· ,N

∫
Ω
qi(x)qi(x)ν(dx) := max

i=1,··· ,N
S∗
ii,

S∗
b := max

i=1,··· ,N,i̸=j
⟨qi, qj⟩ν = max

i=1,··· ,N,i̸=j

∫
Ω
qi(x)qj(x)ν(dx) := max

i=1,··· ,N,i̸=j
S∗
ij ,

where S∗
ij :=

∫
Ω qi(x)qj(x)ν(dx).
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Overlapping parameter (similarity parameter) of qi(x)q(x)

Si :=
∑

j=1,··· ,N,j ̸=i
wjSij .

Recall that λ1 ≥ λ2 ≥ · · · denote the sorted eigenvalues of the centered covariance operator defined

in (2.8) above. The Eigen-tail parameter is defined as

Λ :=
∞∑

l=N+1

λ2l .

2.2.3. Well-separated mixture model. Based on the parameters defined in previous part,

we have an informal definition of a well-separated mixture model. We say that a mixture model ρ =∑N
k=1wkρk in the weighted Laplacian case tends to be well-separated if the overlapping parameter

S∗
between is small enough, and the ratio of the coupling parameter C is small enough in comparison

to the indivisibility parameter Θ. Similarly, we say a mixture model ν =
∑N

k=1wkνk in the kernel

PCA case tends to be well-separated if the ratio of two overlapping parameters
S∗
between
S∗
within

is small

enough, and the eigen-tail parameter Λ is small enough in comparison to the similarity parameter

S∗
within. These quantities play important role in the parameters in our main theorem, and specific

examples will be discussed in the following sections.

Our main theorems in both the population setting and the sample setting are based on a mixture

model, where the number of components N is fixed for all future analysis. Among those theorems,

we may see that there is a trade-off between the size of the angles σi and the coverage proportion

δ, where smaller angles naturally tend to lead to smaller coverage, i.e. to larger value of δ. So the

choice of σk, k = 1, 2, · · · , N is arbitrary, and we may choose them according to our purpose. For

example, we can keep δ = 0.05 and choose appropriate σk’s to get 95% coverage proportion.

2.3. Main results

2.3.1. OCS of spectral embedding: The population setting. Let u1, · · · , uN be the

N orthonormal (with respect to ⟨·, ·⟩L2(ν)) eigenfunctions of ∆ρ corresponding to its N smallest
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eigenvalues. Define the population version of the weighted spectral embedding as

F : x ∈ M 7−→


u1(x)

...

uN (x)

 ∈ RN .

Further let µ := F♯ν be the push-forward of ν by F . Note that µ is a measure on RN . This measure

is used to describe the distribution of points originally in M after transformation by the weighted

Laplacian map F .

In order to prove that the measure F♯ν has an OCS under the assumption of a well-separated

mixture model, the related measure FQ♯ ν is first explored to obtain our result, where FQ is the

map

FQ : x ∈ M 7−→


q1√
I1w

q
1

...

qN√
INw

q
1

 ∈ RN .

We will first show that FQ♯ ν has an OCS under the assumption of a well-separated mixture model,

which requires that the overlapping parameter and coupling parameter are small enough and the

indivisibility parameter is large enough.

Assumption 2. Assume that M is a smooth, connected, orientable, m-dimensional compact Rie-

mannian manifold in Rd. Let ρ be the mixture density ρ(x) =
∑N

i=1wiρi(x) on M. Then the

assumption is that there exists a constant α ≥ 1 such that

1

α
≤ ρ(x) ≤ α for all x ∈ M,

and that ρ is Cρ-Lipschitz.

Theorem 1. Given a mixture model with density ρ(x) =
∑N

i=1wiρi(x) satisfying Assumption 1

and Assumption 2, and let ν denote the probability measure with density ρ̃(x) := ρq(x)∫
ρq(t)dt

depending

on the parameter q. For σ1, σ2, · · · , σN ∈ (0, π/4), define

δ∗ :=
NImax

IImin

(
wmax

wmin

)q N∑
k=1

wqk
cos2(σk)

1− cos2(σk)
Sk,
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where wmax := maxi=1,...,N wi, wmin := mini=1,...,N wi. Suppose that

Sadj < 1,

and

(2.9) Sb < Imin −max(N q, N)
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
.

Further suppose that
N∑
k=1

wqk
cos2(σk)

1− cos2(σk)
Sk ≤

IImin

NImax

(
wmin

wmax

)q
.

Also define

τ :=
4α

|q−p|
2

√
Imin


√√√√Θ(1− Sadj)

α|p−q|C

(
1

max(N q, N)
−
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
Imin − Sb

)

−
√
N

Imin − Sb

(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

))−1

+

√
ISb

Imin
.

Then suppose that τ −
√
ISb
Imin

> 0, τN < 1 and s, t > 0 satisfy

(2.10)
t2 sin2(s)

N qwqmax
≥ N

τ − √
ISb
Imin

2

2

+ 4N3/2

(
1√

1−Nτ
− 1

)
, σi + s <

π

4
, i = 1, · · · , N.

Then, the probability measure µ = F♯ν has an orthogonal cone structure with parameters(
σ1 + s, σ2 + s, · · · , σN + s, δ + t2, 1−sin(s)√

max(Nq−1,1)wq
maxImax

)
for any δ ∈ [δ∗, 1).

Remark 3. Note that if 0 < q ≤ 1, the expressions in Theorem 1 simplify significantly, making

them easier to interpret. For instance, we have

Sadj = Sb max
j=1,2,··· ,N

∑
k ̸=j

wqk

 ,

and thus we have Sadj ≤ (N − 1)Sb. So if the individual mixture components are close to being

orthogonal (so that Sij ≈ 0 for i ̸= j), then Sb is close to zero, and so is Sadj. As a result, the

condition Sadj < 1 and condition (2.13) will hold in this case, because (for 0 < q ≤ 1) the latter
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one simplifies to

(2.11) Sb <
Imin

1 +N
.

If we formally set Sb to zero, then it is straightforward to see that τ becomes small if the ratio C
Θ

is small. And a small τ , in turn, means that s and t can be small as well. So, for 0 < q ≤ 1,

the OCS is “strong” if Sb is small and C
Θ is small. This is consistent with Garcia-Trillos et al.

(2019)( [89]).

2.3.2. OCS of spectral embedding: The sample setting. Suppose we have i.i.d. samples

Mn := {x1, · · · ,xn} from the density ρ that is supported on a manifold M embedded in some

Euclidean space Rd, then the empirical measure associated to the samples is denoted as

νn :=
1

n

n∑
i=1

δxi ,

where δxi denotes Dirac measure in the points xi.

We denote by L2(νn) the space of functions u : Mn → R and identify u ∈ L2(νn) with a column

vector (u(x1), · · · , u(xn))T in Rn.

Let η : [0,∞) → [0,∞) be a non-increasing Lipschitz function with support [0, 1] such that∫
Rm

η(|x|)dx = 1.

For a given bandwidth ε > 0, let

ηε(r) :=
1

εm
η
(r
ε

)
,

d̂ε(y) :=

n∑
j=1

ηε (|y − xj |) y ∈ M,

and let W̃n denote the similarity matrix with entries (W̃n)ij := ηε(|xi − xj |)1(i ̸= j). Denote

d̃i :=
∑n

j=1(W̃n)ij , then re-weighted similarity matrix Wn is defined as

(Wn)ij =
(W̃n)ij

d̃
1−q/2
i d̃

1−q/2
j

,

and the corresponding degree matrix is Dn = diag(di) with di :=
∑n

j=1Wij .
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We identify the Laplacian matrix with the following empirical weighted Laplacian operator ∆n :

L2(νn) → L2(νn), which is defined through the following matrix for (p, q) ∈ R2:

∆n :=


D

1−p
q−1

N (Dn −Wn) , if q ̸= 1,

Dn −Wn, if q = 1.

The spectrum of ∆n induces a weighted spectral embedding

Fn : xi ∈ Ω 7−→


un,1(xi)

...

un,N (xi)

 ∈ RN ,

where un,1, · · · , un,N are the eigenvectors of ∆n associated to the N smallest eigenvalues.

Assumption 3. Assume that n is large enough and ε is small enough such that

ε
(
1 +

√
λN

)
+

log(n)pm

n1/mε
≤ min

{
C,

1

2
(λN+1 − λN )

}
,

where pm = 3
4 if m = 2 and pm = 1

m if m ≥ 3, C > 0 is a finite constant that depends on M.

Theorem 2. Let N ≥ 2 and β > 1. Suppose that M and ρ satisfy Assumptions 1,2 and 3 for

some ε > 0. Let x1, . . . ,xn be i.i.d. samples from the measure ν with associated empirical measure

νn, and let Fn be the Laplacian embedding defined as

Fn : xi 7−→


un,1 (xi)

...

un,N (xi)

 .

Then there exists a constant Cβ > 0 depending only on β such that with probability at least 1 −

Cβn
−β, the probability measure µn := Fn♯νn has an orthogonal cone structure with parameters(

σ1 + s, σ2 + s, · · · , σN + s, δ + t2,
1− sin(s)√

max(N q−1, 1)wqmaxImax

)

for any δ ∈ [δ∗, 1) (where δ∗ is defined in Theorem 1) and s, t > 0 satisfying

σi + s <
π

4
, i = 1, · · · , N,
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and

(2.12)
t sin(s)√
N qwqmax

≥

√√√√√N

τ − √
ISb
Imin

2

2

+ 4N3/2

(
1√

1−Nτ
− 1

)
+
√
Nϕ,

where

ϕ = ϕ(Sb, C,Θ, Imin, I∗, N, ε, n,m) := cM

((
NC

Imin −NS1/2
b I∗1/2

)(
ε+

log(n)pm

εn1/m

)
ψ−1

+

(
NC

Imin −NS1/2
b I∗1/2

)
εm+2

(
ε+ ε2 +

log(n)pm

εn1/m
+

log(n)pm

n1/m

))
,

and

ψ = ψ(Sb,Sadj, C,Θ, Imin, I∗, N, ε, n,m) :=


√√√√Θ(1− Sadj)

α|p−q|

(
1

max(Nq, N)
−
(
max(Nq−1, 1)

√
Sb + (max(Nq−1, 1)− 1)

√
Sw

)2
Imin − Sb

)

−
√
NC

Imin − Sb

(
max(Nq−1, 1)

√
Sb + (max(Nq−1, 1)− 1)

√
Sw

))2

− NC
Imin −NS1/2

b I∗1/2
,

and cM is a constant depending on N , β, manifold M, density bound α (defined in Assumption

2), Lipschitz function η and Lipschitz constant Cρ. Here we require Sb and C
Θ small enough such

that all the terms above are well-defined.

Remark 4. Similar with Theorem 1, when 0 < q ≤ 1, we have a simplified version of parameter ψ

as

ψ = ψ(Sb,Sadj, C,Θ, Imin, I∗, N, ε, n,m) :=

(√
Θ(1− Sadj)

α|p−q|

(
1

N
− Sb

Imin − Sb

)

−
√
NCSb

Imin − Sb

)2

− NC
Imin −NS1/2

b I∗1/2
.

Remark 5. If we further assume that the manifold M satisfies a specific property, then the constant

cM in Theorem 2 can be written in a more detailed form, which will be discussed in the proof part.

Notice that the parameters ϕ and ψ rely on many parameters. Among these parameters, Sb, C and

Θ are most useful ones that can quantify how well a mixture model is separated, given N and q

fixed. If Sb is small enough, then ϕ is also small, which leads to smaller value on the right hand

side of the inequality (2.15). Then the choice of t and s can also be as small as possible, which leads

to more concentrated OCS. Similarly, smaller ratio C
Θ can also leads to more concentrated OCS.

More properties of these parameters are discussed in the next chapter. Notice that in contrast to

29



the population case, not only the ratio C
Θ matters in the sample case, but the sample size n also

needs to be large enough to guarantee a small ϕ.

2.3.3. OCS of kernel PCA embedding: The population setting. Let u1, · · · , uN be

orthonormal (with respect to ⟨·, ·⟩ν) eigenfunctions of Σν corresponding to its N largest eigenvalues.

Define the Kernel PCA embedding

F : x ∈ Ω 7−→


u1(x)

...

uN (x)

 ∈ RN .

Further let µ := F♯ν be the push-forward of the measure ν by F . In this thesis, we show the

orthogonal cone structure of a well-seperated mixture model. The concept of OCS appears from

point clouds and is generalized to arbitrary probability distributions. Another related measure

FQ♯ ν is first explored to obtain our result, where FQ is the map

FQ : x ∈ Ω 7−→


q1

∥q1∥ν
...

qN
∥qN∥ν

 ∈ RN .

Theorem 3. Let ν be a mixture model ν(x) =
∑N

i=1wiνi(x). For σ1, σ2, · · · , σN ∈ (0, π/4), define

δ∗ :=
Nwmax

wmin

S∗
w,up

S∗
w

N∑
k=1

wk
cos(σk)√

1− cos2(σk)
Sk,

where wmax := maxi=1,...,N wi, wmin := mini=1,...,N wi.

Suppose that
N∑
k=1

wk
cos(σk)√

1− cos2(σk)
Sk ≤

wmin

Nwmax
.

Also define

τ := 4

√
Λ

S∗
wwmin

+
S∗
b

S∗
w

.
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Then suppose that τ − S∗
b

S∗
w
> 0, τN < 1 and s, t > 0 satisfy

t2 sin2(s)

N2w2
max

≥ N

τ − S∗
b

S∗
w

2

2

+ 4N3/2

(
1√

1−Nτ
− 1

)
, s+ σi <

π

4
, i = 1, · · · , N.

Then, the probability measure µ = F♯ν has an orthogonal cone structure with parameters

(
σ1 + s, σ2 + s, · · · , σN + s, δ + t2, 1−sin(s)√

Nwmax

)
for any δ ∈ [δ∗, 1).

2.3.4. OCS of kernel PCA embedding: The sample setting. Let X := {x1, · · · , xn} be

i.i.d. samples from the probability measure ν, and as above let νn denote the empirical measure

based on X.

Recall that k̄ denotes the centered kernel introduced above (see (2.7)). With this, we define the

empirical covariance operator as

Σνnf(·) =
∫
Ω
k̄(·, y)f(y)νn(dy) =

1

n

n∑
i=1

k̄(·, xi)f(xi), f ∈ H(k̄).

This operator is closely related to the n× n kernel matrix Kn, where

(Kn)ij =
k̄(xi, xj)

n
.

Also define the empirical Kernel PCA embedding as

Fn : xi 7−→


un,1(xi)

...

un,N (xi)

 ∈ RN ,

where un,1, · · · , un,N are the eigenvectors of Kn associated to the N largest eigenvalues, and the

adjusted Kernel PCA embedding

F̃n : xi 7−→


sign(⟨u1, un,1⟩H)un,1(xi)

...

sign(⟨uN , un,N ⟩H)un,N (xi)

 ∈ RN ,
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where sign(x) = 1(x≥0) − 1(x<0). Notice that Fn = ÕF̃n, where Õ defines an orthogonal transfor-

mation as

Õ = diag(sign(⟨u1, un,1⟩H), sign(⟨u2, un,2⟩H), · · · , sign(⟨uN , un,N ⟩H)).

Our next theorem is about the OCS in the sample setting of kernel PCA embedding, which needs

the assumptions of sub-Gaussian and pre-Gaussian. The definitions of these two conceptes are

given below.

Definition 2. A centered random element Φ(x) := k(·, x), with x ∼ ν, in H is called sub-Gaussian

if for all f ∈ H,

∥⟨Φ(x), f⟩H∥ψ2 ≲ ∥⟨Φ(x), f⟩H∥ν ,

where

∥η∥ψ2 := inf

{
C > 0 : Eψ2

(
|η|
C

)
≤ 1

}
with ψ2(x) := eu

2 − 1, u ≥ 0.

Definition 3. A weakly square integrable centered random element Φ(x) := k(·, x), with x ∼ ν, in

H with covariance operator Σν is called pre-Gaussian if there exists a centered Gaussian random

element in H with the same covariance operator Σν .

Theorem 4. Assume that all assumptions in Theorem 3 hold, and that the random element

Φ(x) := k(·, x), with x ∼ ν is sub-Gaussian and pre-Gaussian. Let x1, · · · , xn be i.i.d. sam-

ples from the measure ν with associated empirical measure νn, and let Fn be the empirical Kernel

PCA embedding. Then, there exists a numerical constant C such that with probability at least

1 − e−β, the probability measure µn := Fn♯νn has an orthogonal cone structure with parameters(
σ1 + s, σ2 + s, · · · , σN + s, δ + t2, 1−sin(s)√

Nwmax

)
, for any δ ∈ [δ∗, 1) (where δ∗ is defined in Theorem

3) and s, t > 0 satisfying

t sin(s)

Nwmax
≥

√√√√128C2N∥Σν∥2∞ (r∗(Σν))
2

(ḡmin)2
+ 8M2

N∑
j=1

1

(λj − Cr∗(Σν))
2

+

√√√√√N

τ − S∗
b

S∗
w

2

2

+ 4N
3
2

(
1√

1−Nτ
− 1

)
, s+ σi <

π

4
, i = 1, · · · , N,
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where ∥·∥∞ is the operator norm, r∗(Σν) :=

(√
r(Σν)
n ∨ r(Σν)

n ∨
√

β
n ∨ β

n

)
, ḡmin = min

i=1,...,N
(λi−λi+1)

is the minimum spectral gap, and r(Σν) :=
tr(Σν)
∥Σν∥∞ is the effective rank of the covariance operator

Σν . Here we require that n is large enough such that Cr∗(Σν) < λj and thus all the inner terms

are positive.

Remark 6. All the four main theorems can be generalized to the strong version of OCS, i.e. each

cone covers one specific component as stated in Remark 1. The stronger version of the four main

theorems are given below. Detailed proofs are not given since they only require a small modification

in proposition 6 and proposition 11 and their proofs, where we need to bound the measure of each

cone respectively rather than only consider their union. This will lead to a loss of the tightness for

the bound of the coverage ratio, thus both two cases have their advantages and disadvantages.

Theorem 5. Given a mixture model with density ρ(x) =
∑N

i=1wiρi(x) satisfying Assumption 1

and Assumption 2, and let ν denote the probability measure with density ρ̃(x) := ρq(x)∫
ρq(t)dt

depending

on the parameter q. For σ1, σ2, · · · , σN ∈ (0, π/4), define

δ∗ =
cos2(σk)

1− cos2(σk)

ImaxN
2q+1

Imin

(
wmax

wmin

)q N∑
l=1

wql Sl,

where wmax := maxi=1,...,N wi, wmin := mini=1,...,N wi. Suppose that

Sadj < 1,

and

(2.13) Sb < Imin −max(N q, N)
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
.

Further suppose that
N∑
k=1

wqk
cos2(σk)

1− cos2(σk)
Sk ≤

IImin

NImax

(
wmin

wmax

)q
.
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Also define

τ :=
4α

|q−p|
2

√
Imin


√√√√Θ(1− Sadj)

α|p−q|C

(
1

max(N q, N)
−
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
Imin − Sb

)

−
√
N

Imin − Sb

(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

))−1

+

√
ISb

Imin
.

Then suppose that τ −
√
ISb
Imin

> 0, τN < 1 and s, t > 0 satisfy

(2.14)
t2 sin2(s)

N qwqmax
≥ N

τ − √
ISb
Imin

2

2

+ 4N3/2

(
1√

1−Nτ
− 1

)
, σi + s <

π

4
, i = 1, · · · , N.

Then, the probability measure µ = F♯ν has a strong orthogonal cone structure with parameters

(
σ1 + s, σ2 + s, · · · , σN + s, δ + t2, 1−sin(s)√

max(Nq−1,1)wq
maxImax

)
for any δ ∈ [δ∗, 1).

Theorem 6. Let N ≥ 2 and β > 1. Suppose that M and ρ satisfy the Assumption 2 and As-

sumption 3 for some ε > 0, and all assumptions in Theorem 5 are also satisfied. Let x1, . . . ,xn be

i.i.d. samples from the measure ν with associated empirical measure νn, and let Fn be the Laplacian

embedding defined as

Fn : xi 7−→


un,1 (xi)

...

un,N (xi)

 .

Then there exists a constant Cβ > 0 depending only on β such that with probability at least 1 −

Cβn
−β, the probability measure µn := Fn♯νn has a strong orthogonal cone structure with parameters(

σ1 + s, σ2 + s, · · · , σN + s, δ + t2,
1− sin(s)√

max(N q−1, 1)wqmaxImax

)

for any δ ∈ [δ∗, 1) (where δ∗ is defined in Theorem 5) and s, t > 0 satisfying

σi + s <
π

4
, i = 1, · · · , N,
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and

(2.15)
t sin(s)√
N qwqmax

≥

√√√√√N

τ − √
ISb
Imin

2

2

+ 4N3/2

(
1√

1−Nτ
− 1

)
+
√
Nϕ,

where

ϕ = ϕ(Sb, C,Θ, Imin, I∗, N, ε, n,m) := cM

((
NC

Imin −NS1/2
b I∗1/2

)(
ε+

log(n)pm

εn1/m

)
ψ−1

+

(
NC

Imin −NS1/2
b I∗1/2

)
εm+2

(
ε+ ε2 +

log(n)pm

εn1/m
+

log(n)pm

n1/m

))
,

and

ψ = ψ(Sb,Sadj, C,Θ, Imin, I∗, N, ε, n,m) :=


√√√√Θ(1− Sadj)

α|p−q|

(
1

max(Nq, N)
−
(
max(Nq−1, 1)

√
Sb + (max(Nq−1, 1)− 1)

√
Sw

)2
Imin − Sb

)

−
√
NC

Imin − Sb

(
max(Nq−1, 1)

√
Sb + (max(Nq−1, 1)− 1)

√
Sw

))2

− NC
Imin −NS1/2

b I∗1/2
,

and cM is a constant depending on M, α, Cρ, η, β and N . Here we require Sb and C
Θ small enough

such that all the terms above are well-defined.

Theorem 7. Let ν be a mixture model ν(x) =
∑N

i=1wiνi(x). For σ1, σ2, · · · , σN ∈ (0, π/4), define

δ∗ :=
cos(σk)√

1− cos2(σk)

N3wmax

wmin

S∗
w,up

S∗
w

∑
l

wlSl,

where wmax := maxi=1,...,N wi, wmin := mini=1,...,N wi.

Suppose that
N∑
k=1

wk
cos(σk)√

1− cos2(σk)
Sk ≤

wmin

Nwmax
.

Also define

τ := 4

√
Λ

S∗
wwmin

+
S∗
b

S∗
w

.

Then suppose that τ − S∗
b

S∗
w
> 0, τN < 1 and s, t > 0 satisfy

t2 sin2(s)

N2w2
max

≥ N

τ − S∗
b

S∗
w

2

2

+ 4N3/2

(
1√

1−Nτ
− 1

)
, s+ σi <

π

4
, i = 1, · · · , N.
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Then, the probability measure µ = F♯ν has a strong orthogonal cone structure with parameters(
σ1 + s, σ2 + s, · · · , σN + s, δ + t2, 1−sin(s)√

Nwmax

)
for any δ ∈ [δ∗, 1).

Theorem 8. Assume that all the assumptions in Theorem 3 hold, and that the random element

Φ(x) := k(·, x) with x ∼ ν, and all the random elements Φ(xi) := k(·, xi), with xi ∼ νi are sub-

Gaussian and pre-Gaussian for all i = 1, . . . , N . Let x1, · · · , xn be i.i.d. samples from ν with associ-

ated empirical measure νn, and let Fn be the empirical Kernel PCA embedding. Then, there exists a

numerical constant C such that with probability at least 1−e−β, the probability measure µn := Fn♯νn

has a strong orthogonal cone structure with parameters
(
σ1 + s, σ2 + s, · · · , σN + s, δ + t2, 1−sin(s)√

Nwmax

)
,

for any δ ∈ [δ∗, 1) (where δ∗ is defined in Theorem 7) and s, t > 0 satisfying

t sin(s)

Nwmax
≥

√√√√128C2N∥Σν∥2∞ (r∗(Σν))
2

(ḡmin)2
+ 8M2

N∑
j=1

1

(λj − Cr∗(Σν))
2

+

√√√√√N

τ − S∗
b

S∗
w

2

2

+ 4N
3
2

(
1√

1−Nτ
− 1

)
, s+ σi <

π

4
, i = 1, · · · , N,

where ∥·∥∞ is the operator norm, r∗(Σν) :=

(√
r(Σν)
n ∨ r(Σν)

n ∨
√

β
n ∨ β

n

)
, ḡmin = min

i=1,...,N
(λi−λi+1),

and r(Σν) :=
tr(Σν)
∥Σν∥∞ is the effective rank of the covariance operator Σν . Here we require that n is

large enough such that Cr∗(Σν) < λj and thus all the inner terms are positive.
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CHAPTER 3

Discussion

Comparing the obtained bounds for the OCS of spectral embeddings in the sample settings and

the population settings, one of the main differences is the additive term
√
Nϕ in Theorem 2 (see

inequality (2.15)), which quantifies the closeness of the true measure and the empirical measure.

When the sample size increases, this term tends to be small. (Notice that this is not a rigorous

monotonic relationship and is just a general trend.) For a suitably chosen bandwidth ε, when n

tends to infinity, this term also tends to zero and the theorem in the sample setting degenerates

to the one in the population setting. This is consistent with large sample behavior as the samples

with infinite sample size should approximate the population well enough.

When p = q = 1, our results degenerate to the case that are mentioned in [89]. For general choice

of p and q, the properties of the mixture model encoded in the parameters and the properties of

corresponding OCS are explained in detail below.

3.1. Weighted overlapping, coupling and indivisibility parameters

When the component ρi and ρj have well-separated mass, Sij should be small. Intuitively, for most

points x ∈ M, the two components ρi(x) and ρj(x) cannot be large simultaneously. Thus if the

weighted overlapping parameter (similarity parameter) of
(
ρi(x)
ρ(x)

)q
is small, all the pairwise

similarities Sij are small for those components j having non-negligible weights. In this sense, at

x ∈ M, at most one non-negligible component ρk(x) dominates the density.

The coupling parameter C is required to be small since we need this metastability condition on

the relative entropy of measures ρqkdx with respect to the measure ρqdx. To understand this, we

first define the relative entropy of a probability measure ϱqdx with respect to ρqdx by

H(ϱq | ρq) :=
∫
M

(
ϱq

ρq

)
log

(
ϱq

ρq

)
ρqdx = q

∫
M
ϱq(log ϱ− log ρ)dx.
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Given one probability density ρ, define ϱ(t, x) as a function of t and x that satisfies the following

evolution equation

∂tϱ
q = qϱq−1∆ϱ− q div(ϱq∇ log ρ) = q div(ϱq∇(log ϱ− log ρ))

with initial condition ϱ(0, x) = ρk(x) for a fixed k ∈ {1, · · · , N}. By using Boltzmann’s H-theorem

( [19]), the relative Fisher Information I(ϱq | ρq) is defined as the entropy dissipation along the

solutions of above equation as follows

d

dt
H(ϱq(t) | ρq) =

∫
M
∂tϱ

q(log ϱ− log ρ)dx = −q
∫
M
ϱq|∇(log ϱ− log ρ)|2dx =: −I(ϱq(t) | ρq).

Thus we can rewrite the coupling parameter as

Ck =
q2

4
I(ϱq(0) | ρq) = q2

4

∫
M

∣∣∣∣∇ρkρk − ∇ρ
ρ

∣∣∣∣2 ρqkdx
with the approximated entropy for small initial time t > 0,

H(ϱq(t) | ρq) = H (ρk | ρ)−
4Ck
q2

t+O
(
t2
)
.

From the above equation, we can see that when the coupling parameter Ck is small, H(ϱq(t) | ρq)

varies slowly in the neighborhood of t = 0 and thus H(ϱq(t) | ρq) is in a metastable state. Suppose

we have a well-separated mixture model, then the weighted overlapping parameter Si(i = 1, · · · , N)

is small and the initial entropy cannot to be quite small, and we also require C to be small such that

the Fisher Information is small initially when starting the evolution process at each component ρk.

The indivisibility parameter Θ is used to quantify whether the mixture model gives rise to

‘reasonable’ clusters or not. If Θ is small, at least one component Θk is small and the corresponding

ρk is self-separable in the sense that it can be decomposed into at least two components that have

small overlap. This is indicated by the Courant-Fisher max-min theorem. So we require Θ to be

large enough such that the second eigenvalue is bounded away from zero, and thus the Fiedler

vector contains useful information about two-way clustering.

In conclusion, for a well-separated model, we require the weighted overlapping parameter Si(i =

1, · · · , N) and the coupling parameter C to be small enough and the indivisibility parameter Θ to
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be large enough. Roughly speaking, the stronger the above statements hold, the easier to observe

the Orthogonal Cone Structure.

3.2. Overlapping parameters and eigen-tail paramater

Noticed that if the kernel is well-chosen, the kernelized density q(·) has a support similar to the

original measure ν(·). The overlapping parameters Si of qi(x)q(x) are small if the components νi(dx)

are well-separated. More specifically, a small overlapping parameter means that for most points

x ∈ Ω, at most one of the components νi has large value νi(dx) and other components have small

values. Thus ν(dx) ≈ wiνi(dx) and q(x) ≈ wiqi(x). This also means that S∗
pair tends to be smaller

while S∗
self tends to be larger since the former considers integrals over the product of two well

separated parts and the latter considers integrals over the square of a single component.

The eigen-tail parameter Λ is also of vital importance. If we assume the eigenvalues to have

exponential decay rate, i.e. λl ≤ λ1e
−r(l−1) for some r > 0, then

Λ =
∞∑

l=N+1

λ2l ≤
e−2rN

1− e−2r
λ21.

If we assume the eigenvalues to have polynomial decay rate, i.e. λl ≤ λ1l
−r for some r > 0, then

Λ =

∞∑
l=N+1

λ2l ≤ λ21

∞∑
l=N+1

l−r.

So a fast decay of eigenvalues, implies a small value of Λ, and τ in the major theorem then also

tends to be small. Thus we may have a ‘better’ OCS in the sense that the cones could have smaller

angle and more coverage proportion.

3.3. Angles, coverage and radius

There are several important parameters in the definition of the orthogonal cone structure including

δ, r, and σj ’s for j = 1, 2, · · · , N . The parameters σ1, σ2, · · · , σN denotes the opening angles of

every spherically symmetric cone with direction determined by the orthogonal basis e1, e2, · · · , eN .

The proportion not covered by these cones is δ, and r denotes the radius of the hyper-ball centered

at the origin that need to be removed in our geometric structure.

39



Based on our main theorems, we can choose any set of angles σ1, σ2, · · · , σN and obtain the cor-

responding coverage proportions δ of these cones. Larger angles tends to have larger coverage

proportions, meaning that they result in a smaller value of δ. For a fixed measure µ, our definition

of OCS works for many pairs of angles and proportions as long as their relationships satisfy the

condition (2.14) given in the theorem. We say that a pair (t, s) is a ‘good’ choice if the equal sign

in (2.14) is achieved.

There is also a trade-off between t and s in the major theorem. In the proof section, we first

construct an ancillary measure that has an OCS with parameters (σ1, σ2, · · · , σN , δ, r) for some

σ1, σ2, · · · , σN ∈ (0, π4 ), δ
∗ ≤ δ < 1 and r = 1√

max(Nq−1,1)wq
max

. We then use the fact that if the

Wasserstein distance between our target measure and the ancillary measure can be controlled, then

this together with the OCS of the ancillary measure allows the quantification of the OCS of the

target measure. The OCS of the target measure will be weaker, and how much weaker it is will

depend in the distance between the two measures. Indeed, there is a trade-off between the angles

and the coverage proportion. Moreover, for a perfectly separated mixture model, the similarity

parameters and coupling parameters in our model are zero and thus the values of t and s (that

are being used to modify the OCS parameters of the target measures as compared to the ancillary

measure) can just be zero. In such case, the parameters of our desired probability measure got their

optimal value in the sense that these cones have smallest angles and largest coverage proportion.

These N angles are not required to be the same, but of course they could be chosen as such. When

we use the same value for all the cones and consider the case p = q = 1, our theorem degenerates

to the results in [89]. Allowing those angles to take different values are useful especially when we

consider some manifolds with measures that have anisotropy, which means some directions may

weight more than others.

The hyper-ball with radius r centered at origin is removed to construct our geometric structure.

Consider the case if one underestimate the true number of clusters, e.g. only choose the first M

dimensions while the true number of cluster is N (M < N), then only a M -dimensional subspace

of the embedded data is considered and the missing N −M dimensions are projected onto this

subspace. If the OCS in the theoretical N -dimensional case is ‘good’ enough in the sense that the

cones are concentrated with large coverage, and N clusters are mostly lying around the N axes,
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respectively, then most of the points from the last N −M clusters are concentrated around the

origin in the M -dimensional subspace. After removing the hyper-ball, one can still observe ‘good’

OCS even when the number of clusters are mis-specified.

3.4. Performance of k-means clustering under OCS

The K-means algorithm is one of the most popular clustering algorithms. Here, we consider the

K-means algorithm applied to unit vectors obtained by normalizing the embeddings. In practice,

if an embedded data set has a good OCS in the sense that the corresponding angle parameters

are small enough with large coverage proportion, then k-means algorithm with uniformly random

orthonormal vectors as random initialization works well for clustering. In order to describe the

performance quantitatively, we need to first say what we understand by the OCS in the sample

setting. This is nothing but the OCS based on the empirical measure. More specifically:

Definition 4. (Orthogonal Cone Structure of a finite set) Given an data set x1, x2, · · · , xn ∈ RN ,

and parameters σ1, σ2, · · · , σN ∈ (0, π/4), δ ∈ [0, 1), and r > 0. The data set has an orthogonal

cone structure with parameters (σ1, σ2, · · · , σN , δ, r) if there is an orthogonal basis {e1, · · · , eN} of

RN such that ∣∣∣∣ ⋃
j=1,2,··· ,N

{
i ∈ [n]

∣∣∣∣xi · ej|xi|
> cos(σj), |xi| > r

} ∣∣∣∣ ≥ (1− δ)n.

Here, |A| denotes the cardinality of the set A ⊂ Rd.

In words, this definition states that the union of the N spherically symmetric cones with axis of

symmetries given by the ej , j = 1, · · · , N (minus a ball at the origin of radius r) covers at least a

portion of (1− δ)× 100% of the data.

The following is a stronger notion of OCS of an embedding, which has subsequent classification in

mind:

Remark 7. Suppose that the data x1, x2, · · · , xn have latent lables z1, z2, · · · , zn attached to them.

We say the embedded (latently labeled) data set {x1, z1}, {x2, z2}, · · · , {xn, zn} has an orthogonal

cone structure with parameters (σ1, σ2, · · · , σN , δ, r) if there is an orthogonal basis {e1, · · · , eN} of
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RN such that

N∑
j=1

∣∣∣∣ {i ∈ [n]

∣∣∣∣xi · ej|xi|
> cos(σj), |xi| > r, zi = j

} ∣∣∣∣ ≥ (1− δ)n

holds for all j = 1, 2, · · · , N .

The following proposition gives a relation between the OCS of an embedding x1, · · · , xn and the

performance of a subsequently k-means algorithm applied on a sphere based on the unit vectors

xi
|xi| , i = 1, 2, · · · , n. This algorithm is only applied on selected embedded points that falls outside

the ball centered at origin with radius r. To make notations simpler, we still use n to denote the

total number of embedded points that satisfying this condition in the following proposition.

Proposition 1. Suppose that the embedded data x1, x2, · · · , xn with latent labels z1, z2, · · · , zn has

an orthogonal cone structure with parameters (σ1, σ2, · · · , σN , δ, r). Then if σ1, σ2, · · · , σN and δ

are small enough such that

(1− δ)| {i ∈ [n]|zi = j} | cosσj − δn

| {i ∈ [n]|zi = j} |+ δn
≥ 1

2

and
δn+ (1− δ)| {i ∈ [n]|zi = j} | sinσj

(1− δ)| {i ∈ [n]|zi = j} |
≤ sin

π

8

hold for all j = 1, 2, · · · , N , then there exists a constant cN such that with probability at least

1 − 2cN (
∑N

i=1 σi)
π over the random initialization a1,a2, · · · ,aN , where aj’s are uniformly random

orthonormal vectors for j = 1, 2, · · · , N , the k-means algorithm on a sphere based on the unit

vectors xi
|xi| , i = 1, 2, · · · , n clusters at least (1 − δ) proportion of the data points correctly. For

example, cN = 1 for N = 2.

Proof of Proposition 1. First consider the case with N = 2. From the definition, we know that

there exists orthonormal vectors e1, e2 such that a fraction 1 − δ of the embedded labeled sample

lie within an angle σi of ei for i = 1 or 2. In the k-means algorithm, we have the initialization

of the mean vector a1 and a2, and they are updated after each step of clustering. We consider a

non-symmetric cone centered at the origin and the angular bisector of e1 and e2, with an angle

σ1 + σ2, among which σ1 angle is close to e1 and σ2 angle is close to e2. A random initialization

falls in this angle with probability 2(σ1+σ2)
π .
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If the initialization is good enough in the sense that the mean vectors do not fall in the angles defined

above, then all points in the σ1-cone concentrated around e1 are closer to one of the initialized mean

vector than another. Without loss of generality we denote the closer mean vector as a1 and another

mean vector as a2.

Now by the definition of OCS of a finite sample and the update rule for k-means algorithm, the

updated a1 has e1 coordinate at least

(1− δ)| {i ∈ [n]|zi = 1} | cosσ1 − δn

| {i ∈ [n]|zi = 1} |+ δn

and e2 coordinate at most
δn+ (1− δ)| {i ∈ [n]|zi = 1} | sinσ1

(1− δ)| {i ∈ [n]|zi = 1} |
.

Based on the assumptions stated in the proposition, we know all points in the σ1-cone concentrated

around e1 are closer to the updated a1 vector than the updated a2 vector. The same analysis also

applies to the σ2-cone concentrated around e2. Thus the update rule of k-means algorithm always

keeps at least a 1 − δ fraction of the sample correctly labeled. By induction, this holds for finite

steps of updates and the proposition holds for N = 2.

When N > 2, we can generalize the proof by similar procedures since the probability of the event

that the initialized mean vector lies in the non-symmetric cone centered at the origin and the

angular bisector of ei and ej , with an angle σi + σj , is proportional to σi + σj with a constant c′N

depends only on N . Combine this for all angular bisectors of ei and ej for i, j = 1, 2, · · · , N, i ̸= j,

the proof is completed. ■

Combining the major theorems and the Proposition 1, we get useful practical applications. Heuris-

tically, if the original data set is sampled from a well-separated mixture model (with latent labels),

the modified major theorems guarantee a high probability that the embedded data has an orthog-

onal cone structure (with labels of components considered). Proposition 1 guarantees that with

high probability (taken over the random initializations), the k-means algorithm applied to the

normalized embeddings has its classification error bounded by δ (up to relabelling).
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3.5. Examples

In order to gain a better understanding of the meaning of the parameters describing the OCS, we

now discuss several examples. Our first example is mixture of two Gaussians, and we consider both

weighted Laplacian and kernel PCA embeddings. The mixture of normals allows for some more

explicit computations, which helps to provide some insights. As another example, we use a mixture

of uniform distributions, even though they violate Assumptions 1 due to the discontinuities of the

densities on the boundaries. Nevertheless, this example still provides useful insights.

3.5.1. Weighted Laplacian case. Mixture of two Gaussians. Consider a mixture of

two standard Gaussian densities on R obtained by shifting the two densities. More precisely, let

ρ = 1
2ρ1 +

1
2ρ2, where, for some γ ∈ R,

ρ1(x) :=
1√
2π

exp

{
−1

2
x2
}
, ρ2(x) :=

1√
2π

exp

{
−1

2
(x− γ)2

}
.

In this example, we illustrate the importance of both weighted overlapping parameter and coupling

parameter. In order to compute the latter one, notice that

ρ′1(x)

ρ1(x)
= −x, ρ′2(x)

ρ2(x)
= −(x− γ),

and
ρ′(x)

ρ(x)
= −x+

γ

2

ρ2(x)

ρ(x)
= −(x− γ)− γ

2

ρ1(x)

ρ(x)
.

So by the definition of coupling parameter, we have the following relationship that

C ≤ C1 + C2 =
γ2q2

16

∫
R

ρ21ρ
q
2 + ρq1ρ

2
2

ρ2
dx ≤ γ2q2

16
23−qS12 ∝ γ2S12.

Also, it is worth computing the weighted overlapping parameter itself as

S12 =

∫ (
ρ1(x)ρ2(x)

ρ(x)

)q
dx

=

∫ ∞

−∞

 1√
2π

exp
{
−1

2x
2
}

1√
2π

exp
{
−1

2(x− γ)2
}

1
2

(
1√
2π

exp
{
−1

2x
2
}
+ 1√

2π
exp
{
−1

2(x− γ)2
})
q

dx

=

(
2

π

) q
2
∫ ∞

−∞

(
exp
{
−1

2x
2 − 1

2(x− γ)2
}

exp
{
−1

2x
2
}
+ exp

{
−1

2(x− γ)2
})q dx.
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Heuristically, larger γ corresponds to stronger separation. The above computations are consistent

with this intuition. When γ is large, S12 decays exponentially fast and the coupling parameter

C decays as well, and thus intuitively the mixture model is well-separated. Also, when γ is close

to zero, S12 is close to I =
∫
ρq(x)dx but C is small of order γ2. This example shows that both

weighted overlapping parameter and coupling parameter are essential to evaluate whether a model

is well-separated or not. In the following example, the importance of indivisibility parameter Θ is

also illustrated.

Mixture of two Uniforms. Consider a mixture of two uniform densities on Rk (k ∈ Z) obtained

by shifting the two densities. More precisely, let ρ = 1
2ρ1 +

1
2ρ2, where

ρ1(x) := 1[0,1]k(x), ρ2(x) :=
1

(b− a)k
1[a,b]k(x), for x ∈ Rk.

We assume 0 < a < 1 < b since it is the best order to depict the separateness, and under this

assumption, the two components have overlapping parts and neither one covers another one. After

tedious but straightforward computations, we get

I1 = 1, I2 = (b− a)k−kq, Imin = min{1, (b− a)k−kq}, Imax = min{1, (b− a)k−kq},

I =
1

2q

[
1− (1− a)k + (b− a)k−kq − (1− a)k(b− a)−kq + (1− a)k(1 + (b− a)−k)q

]
,

S12 = 2q(1− a)k(1 + (b− a)k)−q, S1 = S2 = (1− a)k(1 + (b− a)k)−q.

But C and Θ are not well-defined since assumption 1 is not satisfied. We can just infer the extent

of well-separation based on S1. There are three parameters in S1. For fixed a and b, S1 decreases

as q increases. For fixed q and a, S1 decreases as b increases. For fixed difference b−a, S1 decreases

as a increases (and, simultaneously, b increases). We can understand these behaviors heuristically.

For fixed a and b, an increase of q leads to bigger change of the second density, which can be an

increase of the value of ρq2 on its support when b − a < 1 or a decrease of the value of ρq2 on its

support when b−a > 1. For both the sharp case (b−a < 1) and the flat case (b−a > 1), the power

q also affects the denominator in the original formula of weighted overlapping parameter and leads

to consistent decreasing result. For fixed difference b− a, when a increase to 1, the supports of two

components have less overlapping and thus S1 is smaller. For fixed q and a, when b increase, the

second component is more concentrated, resulting in a higher value for S1.
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More generally, the relative concentration of every component, the closeness of all pairs of compo-

nents and power parameter q affect the value of three key parameters of mixture model. We will

also explore this numerically in the simulation section. In order to see the importance of indivisibil-

ity parameter Θ for the definition of well-separated mixture models, we consider the simple special

case of a mixture of two uniforms where a = 1, b = 2 and dimension k = 1, i.e.

ρ1(x) := 1[0,1](x), ρ2(x) := 1[1,2](x), for x ∈ R.

Heuristically, two components are right next to each other and they have no overlap. It is not

surprising that data generated from these two components are indivisible when a clustering algo-

rithm is applied. However, straightforward computation shows that S1 = S2 = 0, seems indicating

a well-separated model. But undefined C and Θ led by lack of Assumption 1 forbid the inference of

well-separateness based on our theorems. Small modification can be applied to rectify this example:

Assume the modified densities (for a given small value ε > 0) are defined as

ρ1(x) =



0 if x < −ε,

(x+ε)2

2ε2
if − ε ≤ x < 0,

− (x−ε)2
2ε2

+ 1 if 0 ≤ x < ε,

1 if ε ≤ x < 1− ε,

− (x−(1−ε))2
2ε2

+ 1 if 1− ε ≤ x < 1,

(x−(1+ε))2

2ε2
if 1 ≤ x < 1 + ε,

0 if x ≥ ε,

ρ2(x) =



0 if x < 1− ε,

(x−(1−ε))2
2ε2

if 1− ε ≤ x < 1,

− (x−(1+ε))2

2ε2
+ 1 if 1 ≤ x < 1 + ε,

1 if 1 + ε ≤ x < 2− ε,

− (x−(2−ε))2
2ε2

+ 1 if 2− ε ≤ x < 2,

(x−(2+ε))2

2ε2
if 2 ≤ x < 2 + ε,

0 if x ≥ ε.

When ε → 0, these two new densities converge almost surely to the two uniform distributions,

respectively, and they are just two smoothed versions of uniform distributions. Fortunately, As-

sumption 1 is satisfied and the parameters can be computed. Also, when ε increase from 0 to

0.5, the behaviors of ρ1 and ρ2 are more similar with normal distributions and the corresponding

parameters also behave similar with the normal case. Thus our theorems support our intuition that

these two components are not well-separated if ε is too small, and the separateness increases as ε

increases.
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3.5.2. Kernel PCA case. Mixture of two Gaussians. Consider the same mixture of two

standard Gaussian densities as in previous case. To be consistent with our theorem, we use the

notation about corresponding probability measure and let ν = 1
2ν1 +

1
2ν2, where

ν1(dx) = ρ1(x) :=
1√
2π

exp

{
−1

2
x2
}
, ν2(dx) = ρ2(x) :=

1√
2π

exp

{
−1

2
(x− γ)2

}
.

The Gaussian kernel k(x, y) = 1√
πh

exp
{
− (x−y)2

h

}
is chosen to illustate this example. We can see

how the parameters defined in previous part behave with the off-set γ and the bandwidth h. (We

assume γ ≥ 0 without loss of generality.)

Firstly, we can compute the kernelized densities as

q1(x) =

∫
Ω

k(x, y)ν1(dy) =

∫ ∞

−∞

1√
πh

exp

{
− (x− y)2

h

}
1√
2π

exp

{
−1

2
y2
}
dy =

√
1

π(h+ 2)
exp

{
− 1

h+ 2
x2
}
,

q2(x) =

∫
Ω

k(x, y)ν2(dy) =

∫ ∞

−∞

1√
πh

exp

{
− (x− y)2

h

}
1√
2π

exp

{
−1

2
(y − γ)2

}
dy =

√
1

π(h+ 2)
exp

{
− 1

h+ 2
(x− γ)2

}
,

q(x) =
1

2

√
1

π(h+ 2)

(
exp

{
− 1

h+ 2
x2
}
+ exp

{
− 1

h+ 2
(x− γ)2

})
,

and

Eνq(X) =

∫
Ω
q(x)ν(dx) = exp

{
− γ2

(h+ 4)
√
π(h+ 4)

}
.

Since we only have two components, the overlapping parameter of qi(x)q(x) can be computed as follows:

S12 =

∫
q1(x)q2(x)

q2(x)
ν(dx)

= 4

∫ ∞

−∞

1
π(h+2) exp

{
− 1
h+2x

2
}
exp
{
− 1
h+2(x− γ)2

}
1

π(h+2)

(
exp
{
− 1
h+2x

2
}
+ exp

{
− 1
h+2(x− γ)2

})2 1

2
√
2π

(
exp

{
−1

2
x2
}
+ exp

{
−(x− γ)2

2

})
dx

=

√
2

π

∫ ∞

−∞

exp
{
− 1
h+2x

2 − 1
h+2(x− γ)2

}(
exp
{
−1

2x
2
}
+ exp

{
− (x−γ)2

2

})
(
exp
{
− 1
h+2x

2
}
+ exp

{
− 1
h+2(x− γ)2

})2 dx,

and

S1 = S2 =
1

2
S12.

The behavior of S12 can be analyzed based on γ and h, respectively. For fixed h, S12 decreases as γ

increases. When γ = 0, S12=1; when γ tends to infinity, S12 tends to 0. For fixed γ, S12 increases
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as h increases. When h tends to zero, S12 tends to a fixed value between 0 and 1; when h tends to

infinity, S12 tends to 1.

The overlapping parameter of qi(x) can also be computed similarly. We have that

S∗
11 =

∫
Ω
q21(x)ν(dx)

=

∫ ∞

−∞

1

π(h+ 2)
exp

{
− 2

h+ 2
x2
}

1

2
√
2π

(
exp

{
−1

2
x2
}
+ exp

{
−(x− γ)2

2

})
dx

=
1

2π
√

(h+ 2)(h+ 6)

(
1 + exp

{
− 2

h+ 6
γ2
})

,

S∗
22 =

∫
Ω
q22(x)ν(dx)

=

∫ ∞

−∞

1

π(h+ 2)
exp

{
− 2

h+ 2
(x− γ)2

}
1

2
√
2π

(
exp

{
−1

2
x2
}
+ exp

{
−(x− γ)2

2

})
dx

=
1

2π
√
(h+ 2)(h+ 6)

(
1 + exp

{
− 2

h+ 6
γ2
})

,

S∗
12 =

∫
Ω
q1(x)q2(x)ν(dx)

=

∫ ∞

−∞

1

π(h+ 2)
exp

{
− 1

h+ 2
x2
}
exp

{
− 1

h+ 2
(x− γ)2

}
1

2
√
2π

(
exp

{
−1

2
x2
}
+ exp

{
−(x− γ)2

2

})
dx

=
1

2π
√
(h+ 2)(h+ 6)

exp

{
− h+ 4

(h+ 2)(h+ 6)
γ2
}
.

So we have

S∗
within = min{S∗

11, S
∗
22} =

1

2π
√

(h+ 2)(h+ 6)

(
1 + exp

{
− 2

h+ 6
γ2
})

,

and

S∗
between = S∗

12 =
1

2π
√
(h+ 2)(h+ 6)

exp

{
− h+ 4

(h+ 2)(h+ 6)
γ2
}
.

Thus
S∗
between
S∗
within

=
exp

{
− h+4

(h+2)(h+6)
γ2
}

1+exp{− 2
h+6

γ2} . For a fixed γ, as h decreases, this ratio also decreases to zero,

which gives a good example of well-separation.

Mixture of two Uniforms. We use the same uniform densities as above. However, there is no

closed form of the three important parameters since the computation requires convolutions between

Gaussian densities and uniform densities with finite support. The good point is that we can still

analyze the behaviors of these parameters with respect to the bandwidth and boundary values of
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the uniform distribution (a and b). Their behaviors are quite similar with previous example. More

specifically, the behavior of S12 can be analyzed based on a, b and h, respectively. For fixed a and

b, S12 increases as h increases. For fixed h and a, S12 decreases as b increases. For fixed difference

b− a, S12 decreases as a increases (and, simultaneously, b increases).

The choice of kernel and its bandwidth plays essential role in the well-separation behavior. This

will also be explored in the simulation section.
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CHAPTER 4

Proof of main results

In order to show the existence of OCS based on Weighted Laplacian embedding, we could first show

OCS in the scenarios of some simple embedding in the sense that the OCS under these scenarios

are easier to be proved. Then intuitively the Weighted Laplacian embedding that is close to the

embedding that has an OCS tends to be more probable to have an OCS. Wasserstein distance is used

to indicate this closeness and we would show that an embedding tends to be more probable to have

an OCS if another close embedding has one, here the closeness is quantified by Wasserstein distance.

Specifically, we first show the closeness of functions qk and their projections onto the eigenspace

spanned by the N eigenfunctions corresponding to the smallest N eigenvalues of ∆ρ. Some lower

bound and upper bound of related norm of qk functions and eigenvalues are used to bound the

differences among different measures. The OCS is first constructed for the ancillary measures

geometrically, then necessary orthogonal transformations are applied without loss of generality. For

discrete case, similar steps are applied to construct the relationship between desired measures and

the ancillary measures. The closeness of empirical measure and the population level measure is also

needed. To achieve this, we need to construct discretization mapping and interpolation mapping

to connect them. Then the approximation errors are controlled by considering the convergence of

eigenvalues, eigenvectors and corresponding eigenspaces. The convergence rate highly depends on

sample size, the properties of the manifold and the densities.

These general ideas have been layed out in Garcia-Trillos et al.( [89]) for the unweighted Laplacian

case, and they also apply the ideas to both settings considered here. However, the specifics are

different for different cases. For example, the convergence of empirical covariance operator towards

the (population) covariance operator is studied in different techniques. Similar steps can be easily

applied on kernel CCA embedding case, and can also be generalized to other embeddings with some

modifications in detailed steps.
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4.1. OCS of spectral embedding: The population setting

We first introduce a basic formula for equivalence from direct computation, which is useful to

transfer two inner products with respect to ρp and ρq.

Proposition 2.

⟨∆ρu, v⟩ρp = ⟨∇u,∇v⟩ρq := ⟨∇u,∇v⟩L2(ν).

Proof.

⟨∆ρu, v⟩ρp = −
∫
ρq−p∆uvρpdx− q

∫
ρq−p−1∇ρ∇uvρpdx

= −
∫
ρq−pvρpd(∇u)− q

∫
ρq−1∇ρ∇uvdx

=

∫
∇u(ρqdv + qvρq−1dρ)− q

∫
ρq−1∇ρ∇uvdx

=

∫
∇u∇vρqdx

= ⟨∇u,∇v⟩ρq

:= ⟨∇u,∇v⟩L2(ν).

□

Definition 5. (Wasserstein distance) Let µ1, µ2 be two probability measures on Rk with finite

second moments. We define their Wasserstein distance by

(W2 (µ1, µ2))
2 := min

π∈Γ(µ1,µ2)

∫
Rk×Rk

|x− y|2dπ(x, y),

where Γ (µ1, µ2) stands for the set of transportation plans between µ1 and µ2, that is, the set

of probability measures defined on Rk × Rk with first and second marginals equal to µ1 and µ2

respectively.

The following proposition shows that two embeddings that are close in the Wasserstein distance

have close orthogonal cone structures in the sense that the difference of the parameters for the two

structures are close.

Proposition 3. Let µ1, µ2 be two probability measures on Rk with finite second moments and

suppose that µ1 has an orthogonal cone structure with parameters (σ1, σ2, · · · , σN , δ, r), where σk <
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π/4 for k = 1, 2, · · · , N . Let s, t > 0 be such that

rt sin(s)√
k

≥W2 (µ1, µ2) ,

and such that σk + s < π/4 for k = 1, 2, · · · , N . Then, µ2 has an orthogonal cone structure with

parameters (σ1 + s, σ2 + s, · · · , σN + s, δ + t2, r(1− sin(s))).

Proof. This proposition is proved by Garcia Trillos, Hoffman and Hosseini (2019)( [89]),

where the mixture model that consists of C1(M) probability density functions are covered. But

the proof of this proposition only needs the setting with probability measures, which is satisfied by

our model. □

Based on previous proposition, the idea of our proof is to show the OCS of FQ♯ ν and the closeness of

FQ♯ ν and F♯ν. To quantify the closeness of FQ♯ ν and F♯ν, we start from considering the projection

of qk to the subspace of eigenspace of ∆ρ. Intuitively, this closeness can be implied if the projection

of qk is close to qk itself, which can be derived from the next proposition.

Proposition 4. For every k = 1, · · · , N , let qk := (wkρk
ρ )

q
2 and Ck = q2

4

∫ ∣∣∣∇ρkρk
− ∇ρ

ρ

∣∣∣2 ρqkdx. Then

1

wqk
∥qk − πN (qk)∥2ρp ≤ α|q−p|C

λN+1
,

where ΠN stands for the projection onto U , the span of the N eigenfunctions corresponding to the

smallest N eigenvalues of ∆ρ.

Proof.

⟨∆ρqk, qk⟩ρp =

∫
|∇qk|2ρqdx

=

∫ ∣∣∣∣∣q2
(
wkρk
ρ

) q
2
−1

wk
ρ∇ρk − ρk∇ρ

ρ2

∣∣∣∣∣
2

ρqdx

=
q2

4
wqk

∫ ∣∣∣∣∇ρkρk − ∇ρ
ρ

∣∣∣∣2 ρqkdx
= wqkCk.
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Also, we can write qk in the orthonormal basis of eigenfunctions {u1, u2, . . .} of ∆ρ as

qk =

∞∑
l=1

alkul

for some coefficients {alk}l∈N. Thus we have

⟨∆ρqk, qk⟩ρq =
N∑
l=1

a2lkλl +
∞∑

l=N+1

a2lkλl.

Notice that ⟨u, v⟩ρq ≤ α|q−p|⟨u, v⟩ρp , where α is the assumed upper bound for ρ (see Assumption

2), and recall that the eigenvalues have increasing order, so we have

α|q−p|wqkC ≥ α|q−p|wqkCk ≥ λN+1

∞∑
l=N+1

a2lk = λN+1∥qk − πN (qk)∥2ρq ,

i.e.
1

wqk
∥qk − πN (qk)∥2ρq ≤ α|q−p|C

λN+1
.

□

Proposition 4 will be used to derive a lower bound for λN+1 (see Proposition 5). For this aim, we

will need the following two lemmas.

Lemma 1. For every j ∈ {1, · · · , N},∣∣∣⟨qj , qj⟩ρqj − Ij

∣∣∣ ≤ max(N q−1, 1)Sb

∑
k ̸=j

wqk +
(
max(N q−1, 1)− 1

)
wqjSw.

Proof.

⟨qj , qj⟩ρqj =

∫
(
wjρj
ρ

)qρqjdx

=

∫
((
wjρj
ρ

)q − 1)ρqjdx+ Ij ,
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where∣∣∣∣∫ ((wjρjρ
)q

− 1

)
ρqjdx

∣∣∣∣ ≤ ∫ ∣∣∣(wjρj)q − ρq
∣∣∣ρqj
ρq
dx

≤ max(N q−1, 1)
∑
k ̸=j

wqk

∫ (
ρkρj
ρ

)q
dx+

(
max(N q−1, 1)− 1

)
wqj

∫ (
ρ2j
ρ

)q
dx

= max(N q−1, 1)Sb

∑
k ̸=j

wqk +
(
max(N q−1, 1)− 1

)
wqjSw.

Thus ∣∣∣⟨qj , qj⟩ρqj − Ij

∣∣∣ ≤ max(N q−1, 1)Sb

∑
k ̸=j

wqk +
(
max(N q−1, 1)− 1

)
wqjSw.

□

Remark 8. Notice that the bound on the right hand side can be simplified in the case of 0 < q ≤ 1

and q > 1, respectively. When 0 < q ≤ 1, we have∣∣∣⟨qj , qj⟩ρqj − Ij

∣∣∣ ≤ Sb

∑
k ̸=j

wqk.

And when q > 1, we have∣∣∣⟨qj , qj⟩ρqj − Ij

∣∣∣ ≤ N q−1Sb

∑
k ̸=j

wqk +
(
N q−1 − 1

)
wqjSw.

The former case is more useful in the sense that Sb

The case of 0 < q ≤ 1 is worth exploring as the bound can be arbitrarily small if the model are well-

separated enough. In the extreme case that the supports of the mixture components have disjoint

support, Sb = 0 and ⟨qj , qj⟩ρqj = Ij . If the mixture components only have very small overlap and Sb

is quite small, then
∣∣∣⟨qj , qj⟩ρqj − Ij

∣∣∣ is also small, which is useful to get better parameters of OCS

in our main theorems. Similarly, some of the following results can also be simplified in the case of

0 < q ≤ 1 ans the simplified version is more useful in practice.

Lemma 2. For every j ∈ {1, . . . , N},

inf
⟨v,qj⟩ρpj

=0

∫
M |∇v|2ρpjdx
⟨v, v⟩ρqj

≥ Θ

α|p−q|

1−

max(N q−1, 1)Sb

∑
k ̸=j

wqk +
(
max(N q−1, 1)− 1

)
wqjSw

 .

54



Proof. For fixed j ∈ {1, · · · , N}, we pick a vector v ∈ H1
q

(
M, ρqj

)
such that ⟨v, qj⟩ρqj = 0 and

⟨v, v⟩ρqj = 1, where

H1
q

(
M, ρqj

)
:=

{
u ∈ L2

(
M, ρqj

) ∣∣∣∣∣
∫
M

(
|∇u|2 + |u|2

)
ρqjdx < +∞

}
.

Notice that ∫
|∇v|2ρqjdx = ⟨∆ρv, v⟩ρp ≥ 1

α|p−q| ⟨∆ρv, v⟩ρq =
1

α|p−q|

∞∑
k=1

⟨v, ej,k⟩2ρqjλj,k,

where {λj,k, ej,k} are the orthonormal (w.r.t. ⟨·, ·⟩ρqj ) eigenpairs of ∆ρj with λj,1 = 0, ej,1 = 1.

So ∫
|∇v|2ρqjdx ≥ λj,2

α|p−q|

∞∑
k=2

⟨v, ej,k⟩2ρqj

=
λj,2

α|p−q|

(
⟨v, v⟩2ρqj − ⟨v, ej,1⟩2ρqj

)
=

Θj

α|p−q|

(
1− ⟨v, ej,1⟩2ρqj

)
.

Then, to find an upper bound of ⟨v, ej,1⟩2ρqj for the vector v chosen above:

⟨v, ej,1⟩ρqj =

∫
vρqjdx =

∫
v(1− qj)ρ

q
jdx.

Using this formula and Cauchy-Schwarz inequality, we have that

⟨v, ej,1⟩2ρpj ≤ ∥v∥2ρqj

∫
(1− qj)

2ρqjdx

=

∫
(1− qj)

2ρqjdx

= Ij +

∫
(q2j − 2qj)ρ

q
jdx

= Ij −
∫
q2j ρ

q
jdx

= Ij − ⟨qj , qj⟩ρqj

≤ max(N q−1, 1)Sb

∑
k ̸=j

wqk +
(
max(N q−1, 1)− 1

)
wqjSw,
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where we have been using Lemma 1. Thus, we obtain

∫
|∇v|2ρqjdx ≥ Θ

α|p−q|

1−

max(N q−1, 1)Sb

∑
k ̸=j

wqk +
(
max(N q−1, 1)− 1

)
wqjSw

 ,

which finishes the proof since the denominator is chosen to be one. □

Remark 9. In the case of 0 < q ≤ 1, simplified version of previous lemma is

inf
⟨v,qj⟩ρpj

=0

∫
M |∇v|2ρpjdx
⟨v, v⟩ρqj

≥ Θ

α|p−q|

1− Sb

∑
k ̸=j

wqk

 .

Proposition 5. (Lower bound for λN+1):

λN+1 ≥


√√√√Θ(1− Sadj)

α|p−q|

(
1

N q
−
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
Imin − Sb

)

−
√
NC

Imin − Sb

(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

))2

.

Proof. For fixed j ∈ {1, · · · , N}, we pick a vector u such that ⟨u, qj⟩L2(ν) = 0 and ⟨u, u⟩L2(ν) =

1. Then, by again using Lemma 1, we have

⟨u, qj⟩ρqj =

∫
uqjρ

q
jdx

=
1

wqj

∫
uqj(wjρj)

qdx

=
1

wqj

∫
uqj [(wjρj)

q − ρq] dx

= − 1

wqj

∫
uqj [ρ

q − (wjρj)
q] dx.
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So

∣∣∣⟨u, qj⟩ρqj ∣∣∣ ≤ 1

wqj

∫
|u|qj

max(N q−1, 1)
∑
k ̸=j

(wkρk)
q + (max(N q−1, 1)− 1)(wjρj)

q

 dx
=

max(N q−1, 1)

wqj

∑
k ̸=j

wqk

∫
|u|qjρqkdx+

(max(N q−1, 1)− 1)

wqj
wqj

∫
|u|qjρqjdx

≤ max(N q−1, 1)

wqj

∑
k ̸=j

wqk

(∫
u2ρqkdx

) 1
2
(∫

q2j ρ
q
kdx

) 1
2

+ (max(N q−1, 1)− 1)

(∫
u2ρqjdx

) 1
2
(∫

q2j ρ
q
jdx

) 1
2

≤ max(N q−1, 1)√
wqj

∑
k ̸=j

wqk

(∫
u2ρqkdx

) 1
2 √

Sb + (max(N q−1, 1)− 1)
√
wqj
√
Sw

≤ max(N q−1, 1)

√
Sb
∑

k ̸=j w
q
k

wqj
+ (max(N q−1, 1)− 1)

√
wqjSw

:= INj .

Define vj = u−
( ⟨u,qj⟩ρqj

⟨qj ,qj⟩ρqj

)
qj , then vj is orthogonal to qj w.r.t. ⟨·, ·⟩ρqj . Thus

∫
|∇vj |2ρqjdx =

∫
|∇u|2ρqjdx− 2

⟨u, qj⟩ρqj
⟨qj , qj⟩ρqj

∫
∇qj∇uρqjdx+

(
⟨u, qj⟩ρqj
⟨qj , qj⟩ρqj

)2 ∫
|∇qj |2ρqjdx.

Also, ∫
|∇qj |2ρqjdx =

q2

4
wqj

∫ ∣∣∣∣∇ρjρj − ∇ρ
ρ

∣∣∣∣2 ρqjdx = wqjCj ≤ Cj .

Thus
∫
|∇vj |2ρqjdx can be bounded by three parts:

∫
|∇vj |2ρqjdx ≤

∫
|∇u|2ρqjdx+ 2

(
INj

ILj

)
√
C
(∫

|∇u|2ρqjdx
) 1

2

+

(
INj

ILj

)2

C,

where

ILj = Ij −

max(N q−1, 1)Sb

∑
k ̸=j

wqk +
(
max(N q−1, 1)− 1

)
wqjSw

 ,

IUj = Ij +

max(N q−1, 1)Sb

∑
k ̸=j

wqk +
(
max(N q−1, 1)− 1

)
wqjSw

 ,

57



INj = max(N q−1, 1)

√
Sb
∑

k ̸=j w
q
k

wqj
+ (max(N q−1, 1)− 1)

√
wqjSw.

By Lemma 2,
∫
|∇vj |2ρqjdx is lower bounded by

Θ

α|p−q|

1−

max(N q−1, 1)Sb

∑
k ̸=j

wqk +
(
max(N q−1, 1)− 1

)
wqjSw

 ⟨vj , vj⟩ρqj .

Also, we have

⟨vj , vj⟩ρqj = ⟨u, u⟩ρqj −
⟨u, qj⟩2ρqj
⟨qj , qj⟩ρqj

≥ ⟨u, u⟩ρqj −
(INj )2

ILj
.

Thus

(1− Sadj)

1−

max(N q−1, 1)Sb

∑
k ̸=j

wqk +
(
max(N q−1, 1)− 1

)
wqjSw

(⟨u, u⟩ρqj − (INj )2

ILj

)

≤
∫

|∇vj |2ρqjdx ≤
∫

|∇u|2ρqjdx+ 2

(
INj

ILj

)
√
C
(∫

|∇u|2ρqjdx
) 1

2

+

(
INj

ILj

)2

C.

Denote Sadj := maxj=1,2,··· ,N

(
max(N q−1, 1)Sb

∑
k ̸=j w

q
k +

(
max(N q−1, 1)− 1

)
wqjSw

)
. Then mul-

tiplying both sides of the above inequality by wqj and adding over j.

Notice that

N∑
j=1

wqjI
N
j =

N∑
j=1

wqj

(
max(N q−1, 1)

√
Sb
∑

k ̸=j w
q
k

wqj
+ (max(N q−1, 1)− 1)

√
wqjSw

)

=
N∑
j=1

max(N q−1, 1)

√
wqjSb

∑
k ̸=j

wqk + (max(N q−1, 1)− 1)
√
w3q
j Sw


≤ N

(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)
,

and
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N∑
j=1

wqj (I
N
j )2 =

N∑
j=1

wqj

(
max(N q−1, 1)

√
Sb
∑

k ̸=j w
q
k

wqj
+ (max(N q−1, 1)− 1)

√
wqjSw

)2

=

N∑
j=1

max(N q−1, 1)

√
Sb

∑
k ̸=j

wqk + (max(N q−1, 1)− 1)wqj
√
Sw

2

≤
N∑
j=1

(
N2q−2Sb + w2q

j (max(N q−1, 1)− 1)2Sw + wqj max(N q−1, 1)(max(N q−1, 1)− 1)
√

SbSw

)
≤ N

(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
.

So the left hand side is lower bounded by

N∑
j=1

wqjΘ(1− Sadj)

α|p−q|

(
⟨u, u⟩ρqj −

(INj )2

ILj

)
≥

Θ(1− Sadj)

α|p−q|

 1

max(N q−1, 1)
⟨u, u⟩L2(ν) −

N∑
j=1

wqj (I
N
j )2

ILj


≥

Θ(1− Sadj)

α|p−q|

(
1

max(N q−1, 1)
−
N
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
Imin − Sb

)
.

For the right hand side,

N∑
j=1

wqj

∫
|∇u|2ρqjdx ≤

∫
|∇u|2

N∑
j=1

(wjρj)
qdx =

∫
|∇u|2ρqdx,

N∑
j=1

wqj

(
INj

ILj

)2

C ≤ C
(Imin − Sb)2

N∑
j=1

wqj (I
N
j )2 ≤ C

(Imin − Sb)2
N
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
,

and
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N∑
j=1

2wqj

(
INj

ILj

)
√
C
(∫

|∇u|2ρqjdx
) 1

2

≤ 2

√
C

Imin − Sb

N∑
j=1

wqjI
N
j

(∫
|∇u|2ρqjdx

) 1
2

≤ 2

√
C

Imin − Sb

N∑
i=1

(
wqj (I

N
j )2

) 1
2

N∑
i=1

(
wqj

∫
|∇u|2ρqdx

) 1
2

≤ 2
N
√
C

Imin − Sb

(
N∑
i=1

wqj (I
N
j )2

) 1
2
(

N∑
i=1

wqj

∫
|∇u|2ρqdx

) 1
2

≤ 2
N
√
C

Imin − Sb

(
N
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2) 1
2
(∫

|∇u|2ρqdx
) 1

2

.

So the right hand side is upper bounded by

∫
|∇u|2ρqdx+ 2

N
√
C

Imin − Sb

(
N
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2) 1
2
(∫

|∇u|2ρqdx
) 1

2

+
C

(Imin − Sb)2
N
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
≤ N

((∫
|∇u|2ρqdx

) 1
2

+

√
NC

Imin − Sb

(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

))2

.

Combine them together:

Θ(1− Sadj)

α|p−q|

(
1

max(N q−1, 1)
−
N
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
Imin − Sb

)

≤ N

((∫
|∇u|2ρqdx

) 1
2

+

√
NC

Imin − Sb

(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

))2

= N

(
∥∇u∥L2(ν) +

√
NC

Imin − Sb

(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

))2

.
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Thus √√√√Θ(1− Sadj)

α|p−q|

(
1

max(N q, N)
−
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
Imin − Sb

)

−
√
NC

Imin − Sb

(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)
≤ ∥∇u∥L2(ν).

Since the above inequality holds for all vector u such that ⟨u, qj⟩L2(ν) = 0 and ⟨u, u⟩L2(ν) = 1, we

have

λN+1 ≥ min
u∈Q⊥

∫
|∇u|2ρqkdx∫
u2ρqdx

≥


√√√√Θ(1− Sadj)

α|p−q|

(
1

max(N q, N)
−
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
Imin − Sb

)

−
√
NC

Imin − Sb

(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

))2

.

□

Remark 10. In the case of 0 < q ≤ 1, simplified version of previous proposition is

λN+1 ≥

(√
Θ(1− Sadj)

α|p−q|

(
1

N q
− Sb

Imin − Sb

)
−

√
NCSb

Imin − Sb

)2

.

Combining proposition 4 and proposition 5, we get the following corollary:

Corollary 1. For every k = 1, · · · , N , we have

1

wq
k

∥qk − πN (qk)∥2ρq ≤ α|q−p|


√√√√Θ(1− Sadj)

α|p−q|C

(
1

max(Nq, N)
−
(
max(Nq−1, 1)

√
Sb + (max(Nq−1, 1)− 1)

√
Sw

)2
Imin − Sb

)

−
√
N

Imin − Sb

(
max(Nq−1, 1)

√
Sb + (max(Nq−1, 1)− 1)

√
Sw

))−2

.

When 0 < q ≤ 1,

1

wqk
∥qk − πN (qk)∥2ρq ≤ α|q−p|

(√
Θ(1− Sadj)

α|p−q|C

(
1

N
− Sb

Imin − Sb

)
−

√
NSb

Imin − Sb

)−2

.
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Corollary 1 quantifies the distance of the mixture components and their projections on the space

spanned by the N eigenfunctions corresponding to the smallest N eigenvalues. In particular, if the

term on the right-hand side (which essentially means, if the bound from Lemma 1) tends to 0, then

so does the distance on the left-hand side.

Proposition 6. The probability measure µQ = FQ♯ ν has an orthogonal cone structure with param-

eters (σ1, σ2, · · · , σN , δ, r) for any σ1, σ2, · · · , σN ∈ (0, π4 ), δ
∗ ≤ δ < 1 and r = 1√

max(Nq−1,1)wq
max

where

δ∗ =
NImax

IImin

(
wmax

wmin

)q N∑
k=1

wqk
cos2(σk)

1− cos2(σk)
Sk.

Proof. For each k = 1, . . . , N, let

Ck :=

{
z ∈ RN :

zk
|z|

> cos(σk), |z| ≥ r

}
with r = 1√

max(Nq−1,1)wq
maxImax

and fixed σk ∈ (0, π/4) (k = 1, 2, · · · , N).

Also denote Ak as the preimage of Ck through FQ, i.e.

Ak :=
(
FQ
)−1

(Ck) =

x ∈ M :
qk(x)√
Ikw

q
k

> cos(σk)

 N∑
j=1

 qj(x)√
Ijw

q
j

21/2

,

 N∑
j=1

 qj(x)√
Ijw

q
j

21/2

> r

 .

Then we have

µQ (Ck) = FQ♯ ν (Ck) = ν (Ak) ,

and the condition

(∑N
j=1

(
qj(x)√
Ijw

q
j

)2
)1/2

> r is redundant because of the definition of r. Thus Ak

can be re-written as

Ak =

x ∈ M :

√
ρqk(x)

Ikρq(x)
> cos(σk)

 N∑
j=1

√ ρqj(x)

Ijρq(x)

21/2
 .

For an arbitrary x0 ∈ Ack ⊆ Ω (k = 1, 2, · · · , N) we have

ρqk(x0)

Ikρq(x0)
≤ cos2(σk)

N∑
j=1

ρqj(x0)

Ijρq(x0)
,
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i.e., (
1− cos2(σk)

) ρqk(x0)

Ikρq(x0)
≤ cos2(σk)

∑
j ̸=k

ρqj(x0)

Ijρq(x0)
.

So
ρqk(x0)

Ikρq(x0)
≤ cos2(σk)

1− cos2(σk)

∑
j ̸=k

ρqj(x0)

Ijρq(x0)
.

Thus

w2q
k

ρqk(x0)

ρq(x0)

ρqk(x0)

ρq(x0)
≤ w2q

k

cos2(σk)

1− cos2(σk)

∑
j ̸=k

Ik
Ij

ρqj(x0)

ρq(x0)

ρqk(x0)

ρq(x0)
.

Take the integral over Ack on both sides:∫
Ac

k

w2q
k

ρqk(x)

ρq(x)

ρqk(x)

ρq(x)
ρq(x)dx ≤

∫
Ac

k

w2q
k

cos2(σk)

1− cos2(σk)

∑
j ̸=k

Ik
Ij

ρqj(x)

ρq(x)

ρqk(x)

ρq(x)
ρq(x)dx, ∀k = 1, . . . , N.

Take the sum over k:

N∑
k=1

∫
Ac

k

w2q
k

ρqk(x)

ρq(x)

ρqk(x)

ρq(x)
ρq(x)dx ≤

N∑
k=1

∫
Ac

k

w2q
k

cos2(σk)

1− cos2(σk)

∑
j ̸=k

Ik
Ij

ρqj(x)

ρq(x)

ρqk(x)

ρq(x)
ρq(x)dx,

where

LHS =

N∑
k=1

∫
Ac

k

w2q
k

ρ2qk (x)

ρ2q(x)
ρq(x)dx

≥
∫
Ac

k

N∑
k=1

(
wkρk
ρ

)2q

ρqdx

=

∫
M

N∑
k=1

(
wkρk1Ac

k
(x)

ρ

)2q

ρqdx

=
1

N

∫
M

N∑
k=1

(
wkρk1Ac

k
(x)

ρ

)2q N∑
k=1

1ρqdx

≥ 1

N

∫
M

(
N∑
k=1

wkρk1Ac
k
(x)

ρ

)2q

ρqdx

≥ 1

N

∫
M

1⋂N
l=1 A

c
l
(x)

(
N∑
k=1

wkρk
ρ

)2q

ρqdx

=
1

N

∫
⋂N

l=1 A
c
l

(
N∑
k=1

wkρk
ρ

)2q

ρqdx

=
I

N
ν

(
N⋂
l=1

Acl

)
.
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RHS =
N∑
k=1

∫
Ac

k

w2q
k

cos2(σk)

1− cos2(σk)

∑
j ̸=k

Ik
Ij

ρqj(x)

ρq(x)

ρqk(x)

ρq(x)
ρq(x)dx

=

N∑
k=1

∫
M
w2q
k

cos2(σk)

1− cos2(σk)

∑
j ̸=k

Ik
Ij

ρqj(x)

ρq(x)

ρqk(x)

ρq(x)
1Ac

k
(x)ρq(x)dx

≤
∫
M

N∑
k=1

w2q
k

cos2(σk)

1− cos2(σk)

∑
j ̸=k

Ik
Ij

ρqj(x)

ρq(x)

ρqk(x)

ρq(x)
ρq(x)dx

≤
(
wmax

wmin

)q ∫
M

N∑
k=1

wqk
cos2(σk)

1− cos2(σk)

ρqk(x)

ρq(x)

∑
j ̸=k

Ik
Ij
wqj
ρqj(x)

ρq(x)
ρq(x)dx

≤
(
wmax

wmin

)q N∑
k=1

wqk
cos2(σk)

1− cos2(σk)

∑
j ̸=k

wqj
Ik
Ij
Sjk

≤ Imax

Imin

(
wmax

wmin

)q N∑
k=1

wqk
cos2(σk)

1− cos2(σk)

∑
j ̸=k

wqjSjk

=
Imax

Imin

(
wmax

wmin

)q N∑
k=1

wqk
cos2(σk)

1− cos2(σk)
Sk.

Thus we have

ν

(
N⋂
l=1

Acl

)
≤ NImax

IImin

(
wmax

wmin

)q N∑
k=1

wqk
cos2(σk)

1− cos2(σk)
Sk,

and this implies

µQ

(
N⋃
k=1

Ck

)
≥ 1− NImax

IImin

(
wmax

wmin

)q N∑
k=1

wqk
cos2(σk)

1− cos2(σk)
Sk,

which completes the proof. □

The next auxiliary lemma will be used in the proof of Theorem 1 below:

Lemma 3. Let V be a vector space of dimension N and let ⟨·, ·⟩ be an inner product on V with

associated norm ∥ · ∥. Suppose that v1, v2, · · · , vN are linearly independent unit vectors in V such

that

|⟨vj , vl⟩| ≤ δ, ∀j ̸= l,

for δ > 0 satisfying

Nδ < 1.
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Then, there exists an orthonormal basis for V , {ṽ1, . . . ṽN}, such that for every j = 1, · · · , N

∥vj − ṽj∥ ≤ ϕ̃(N, δ),

where

ϕ̃(N, δ) :=
√
N

[
1√

1−Nδ
− 1

]
.

Proof. This lemma is proved by Garcia Trillos, Hoffman and Hosseini (2019)( [89]) in the

appendix. □

Now we can prove the original theorem under population setting as follows:

Proof of Theorem 1. The measure µ = F♯ν has the same orthogonal cone structure as the

measure (OF )♯ν, where the map (OF )♯ν is defined by x ∈ Ω 7→ OF (x) ∈ RN with O being an

N ×N orthogonal matrix. So we will consider the measure (OF )♯ν where we construct the matrix

O such that (OF )♯ν and FQ♯ ν are close to each other in the 2-Wasserstein distance. Then combining

with previous propositions, we can get the orthogonal cone structure for (OF )♯ν. Firstly, define

the normalized projection of qi’s as follows:

vi :=
ΠN (qi)

∥ΠN (qi)∥L2(ν)

, i = 1, . . . , N,

where ΠN : L2(dν) → U is the orthogonal projection onto U , the span of the N eigenfunctions

corresponding to the N smallest eigenvalues of ∆ρ.

We first consider the degenarate case where p = q, now we have the following equivalence:

∥·∥ρp = ∥·∥ρq = ∥·∥L2(ν) .

65



Then based on the previous proposition, we have∥∥∥∥∥ qi√
wqi Ii

− vi

∥∥∥∥∥
L2(ν)

=

∥∥∥∥∥ qi√
wqi Ii

− ΠN (qi)

∥ΠN (qi)∥L2(ν)

∥∥∥∥∥
L2(ν)

≤

∥∥∥∥∥ qi√
wqi Ii

− ΠN (qi)√
wqi Ii

∥∥∥∥∥
L2(ν)

+

∥∥∥∥∥ΠN (qi)√
wqi Ii

− ΠN (qi)

∥ΠN (qi)∥L2(ν)

∥∥∥∥∥
L2(ν)

=

∥∥∥∥∥ qi√
wqi Ii

− ΠN (qi)√
wqi Ii

∥∥∥∥∥
L2(ν)

+
1√
wqi Ii

∣∣∣∣∥ΠN (qi)∥L2(ν) −
√
wqi Ii

∣∣∣∣
≤ 2

∥∥∥∥∥ qi√
wqi Ii

− ΠN (qi)√
wqi Ii

∥∥∥∥∥
L2(ν)

≤ 2α
|q−p|

2

√
Ii


√√√√Θ(1− Sadj)

α|p−q|C

(
1

max(N q, N)
−
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
Imin − Sb

)

−
√
N

Imin − Sb

(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

))−1

≤ 2α
|q−p|

2

√
Imin


√√√√Θ(1− Sadj)

α|p−q|C

(
1

max(N q, N)
−
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
Imin − Sb

)

−
√
N

Imin − Sb

(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

))−1

.

For a given pair (i, j) with i ̸= j, we have

∣∣∣⟨vi, vj⟩L2(ν)

∣∣∣ =
∣∣∣∣∣∣∣
〈
vi −

qi√
wqi Ii

, vj

〉
L2(ν)

+

〈
qi√
wqi Ii

, vj −
qj√
wqjIj

〉
L2(ν)

+

〈
qi√
wqi Ii

,
qj√
wqjIj

〉
L2(ν)

∣∣∣∣∣∣∣
≤

∥∥∥∥∥ qi√
wqi Ii

− vi

∥∥∥∥∥
L2(ν)

+

∥∥∥∥∥∥ qj√
wqjIj

− vj

∥∥∥∥∥∥
L2(ν)

+

√
I

IiIj
S

1
2
b

≤ 4α
|q−p|

2

√
Imin


√√√√Θ(1− Sadj)

α|p−q|C

(
1

max(N q, N)
−
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
Imin − Sb

)

−
√
N

Imin − Sb

(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

))−1

+

√
ISb

Imin

:= τ.
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Thus we can conclude by an application of Lemma 3, that there exists an orthonormal basis

ṽ1, . . . , ṽN for
(
U, ⟨·, ·⟩L2(ν)

)
such that

∥vi − ṽi∥2L2(ν) ≤ N

(
1√

1−Nτ
− 1

)2

, i = 1, . . . , N.

Thus for any i = 1, · · · , N ,∥∥∥∥∥ qi√
wqi Ii

− ṽi

∥∥∥∥∥
2

L2(ν)

=

∥∥∥∥∥ qi√
wqi Ii

− vi

∥∥∥∥∥
2

L2(ν)

+ 2

〈
vi − ṽi,

qi√
wqi Ii

〉
L2(ν)

− ⟨vi + ṽi, vi − ṽi⟩L2(ν)

≤

∥∥∥∥∥ qi√
wqi Ii

− vi

∥∥∥∥∥
2

L2(ν)

+ 4 ∥vi − ṽi∥L2(ν)

≤ 4α|q−p|

Imin


√√√√Θ(1− Sadj)

α|p−q|C

(
1

max(N q, N)
−
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
Imin − Sb

)

−
√
N

Imin − Sb

(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

))−2

+ 4
√
N

(
1√

1−Nτ
− 1

)

=

τ − √
ISb
Imin

2

2

+ 4
√
N

(
1√

1−Nτ
− 1

)
.

Now define F̃ : Ω 7→ RN as the map F̃ (x) =
∑N

j=1 ṽj(x)ej . Since both {ṽ1, . . . , ṽN} and {u1, . . . , uN}

are orthonormal bases for
(
U, ⟨·, ·⟩L2(ν)

)
, there exists an orthogonal matrix O ∈ RN ×RN such that

OF = F̃ .

Let π :=
(
FQ × F̃

)
♯
ν, then it is a coupling between FQ♯ ν and F̃♯ν. Thus we have

W 2
2

(
FQ♯ ν, F̃♯ν

)
≤
∫
RN

∫
RN

|z − z̃|2dπ(z, z̃)

=

∫
Ω

∣∣∣FQ(x)− F̃ (x)
∣∣∣2 dν(x)

=
N∑
i=1

∥∥∥∥∥ qi√
wqi Ii

− ṽi

∥∥∥∥∥
2

L2(ν)

= N

τ − √
ISb
Imin

2

2

+ 4N
3
2

(
1√

1−Nτ
− 1

)
.

67



Also, it’s easy to check the finite second moments condition of the probability measures FQ♯ ν and

F̃♯ν as follows: ∫
Ω

∣∣FQ(x)∣∣2 dν(x) = N∑
i=1

∥∥∥∥∥ qi√
wqi Ii

∥∥∥∥∥
2

L2(ν)

= N,

∫
Ω

∣∣∣F̃ (x)∣∣∣2 dν(x) = N∑
i=1

∥ṽi∥2L2(ν) = N.

By using the proposition 3 , we know that µ has an orthogonal cone structure with parameters(
σ1 + s, σ2 + s, · · · , σN + s, δ + t2, 1−sin(s)√

Nwmax

)
for any δ ∈ [δ∗, 1) and s, t > 0 satisfying

t2 sin2(s)

N qwqmax
≥ N

τ − √
ISb
Imin

2

2

+ 4N
3
2

(
1√

1−Nτ
− 1

)
, s+ σi <

π

4
, i = 1, · · · , N.

■

4.2. OCS of spectral embedding: The sample setting

We first introduce some basic assumptions and auxiliary results that are useful to prove major

theorems and various lemmas.

Definition 6. (injectivity radius)

• The injectivity radius at a point x of a manifold M is the largest radius for which the

exponential map at x is a diffeomorphism, where the exponential map ( [80]) is a map

from a subset of a tangent space TxM of a manifold M to M itself.

• The injectivity radius of a manifold M is the infimum of the injectivity radii at all points.

Assumption 4. Assume that

ε < min{1, i0
10
,

1√
mK

,
R√
27m

} and (m+ 5)δn < ε,

where i0 is the injectivity radius of the manifold M, K is a global upper bound on the absolute value

of sectional curvatures of M, m is the dimension of M, and R is the reach of M.
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Proposition 7. Let R be the reach of the manifold M ⊆ Rd, which is assumed to be strictly

postive. Let x, y ∈ M and suppose that |x− y| ≤ R
2 . Then,

|x− y| ≤ dM(x, y) ≤ |x− y|+ 8

R2
|x− y|3.

Theorem 9. Assume M, ρ, ε and n satisfy the Assumption 2 and Assumption 3. For every β > 1

there exists a constant Cβ > 0 such that with probability at least 1 − Cβn
−β, there exists a map

Tn : M → {x1, · · · , xn} satisfying

ν
(
T−1
n ({xi})

)
=

1

n
, ∀i = 1, . . . , n,

and

∥gj − un,j ◦ Tn∥2L2(ν) ≤ cM

((
λN

λN+1 − λN

)(
ε+

log(n)pm

εn1/m

)
+ λNε

m+2

(
ε+ ε2 +

log(n)pm

εn1/m
+

log(n)pm

n1/m

))
,

for some orthonormal functions g1, · · · , gN ∈ L2(ν) belonging to U , the span of the N eigenfunctions

corresponding to the smallest N eigenvalues of ∆ρ with respect to ⟨·, ·⟩L2(ν), and a constant cM > 0

depending only on M, N, α,Cρ and η.

Firstly, we define the Dirichlet forms associated to ∆n and ∆ρ, respectively, as

bn (un) :=
1

2n

∑
i,j

(Wn)ij |un (xi)− un (xj)|2 , un ∈ L2 (νn) ,

D(u) :=
1

2

∫
M

|∇u|2ρq(x)dx, u ∈ H1
q (M, ρ).

Proposition 8. Denote the geodesic distance in M as dM, and let

pm =


3

4
for m = 2,

1

m
for m ≥ 3.

Then for a given β > 1, there exists a constant Cβ > 0 depending only on β so that with probability

at least 1− Cβn
−β there exists a map Tn : M → {x1, · · · ,xn} such that:

• ν(T−1
n (xi)) =

1
n for all i = 1, · · · , n,

• δn := esssupx∈MdM(Tn(x), x) ≤ C log(n)pm

n1/m ,
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where C = C(M, α, β) > 0 and dM represents the geodesic distance in M.

Proof. This proposition is proved by Garcia Trillos, et al. (2020) ( [88]). □

In order to know more about this constant C, we introduce the following definition.

Definition 7. (WP property) We say that a manifold M satisfies the WP property with k polytopes

if there exists a finite family of closed convex polytopes {Ai}ki=1 covering M and they satisfy that

for all i, j = 1, · · · , k:

• int (Ai) ∩M ≠ ∅,

• if i ̸= j then int (Ai) ∩ int (Aj) = ∅,

• Ai ∩M is bi-Lipschitz homeomorphic to a closed cube,

where int(·) denotes the interior of the inside set.

Remark 11. Assume that the manifold M satisfies the WP property, then by the Theorem 1.2 in

[91], there exists a bi-Lipschitz differentiable homeomorphism ψ : M → [0, 1]m between M and the

unit cube. Thus the constant C in Proposition 8 satisfies C ∝ Lip(ψ−1)α
√
m∥ψ∥op det

(
Jψ−1(y)

)
,

where Jψ−1 denotes the Jacobian matrix of ψ−1.

Given the map Tn, we define the discretization map

P : L2(ν) → L2(νn)

as the transformation

Pf (xi) := n

∫
T−1
n ({xi})

f(x)ρq(x)dx, i = 1, . . . , n.

We are going to define the interpolation map I. Note that the notation I is also being used to denote

scaling constants in our mixture model, but it should be clear from the context which object is

being considered. Since there is no ambiguity between them and the notation is consistently used

in related literature, we just keep both two notations in this thesis. To state it more clearly, I

denotes the interpolation map (operator) when it is applied to a function un ∈ L2(νn). Besides
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this case, I and its variants form (Imin) with or without superscript and subscript always denote

scaling constants for our mixture model.

In order to define the interpolation map I, we start from P ∗, the adjoint of P with respect to

⟨·, ·⟩L2(νn), i.e. the map that satisfies

⟨Pg, fn⟩L2(νn)
= ⟨g, P ∗fn⟩L2(ν) , ∀g ∈ L2(ν), ∀fn ∈ L2 (νn) ,

which gives the following relationship

P ∗fn(x) = fn ◦ Tn(x), x ∈ M.

Given the radial kernel η, let

ψ(t) :=

∫ ∞

t
η(s)ds,

and define a smoothing operator

Λε,n,0f(x) :=

∫
M

1

(ε− 2δn)
mψ

(
dM(x, y)

ε− 2δn

)
f(y)dy, x ∈ M, f ∈ L2(ν),

and its normalized version

Λε,n,f :=
Λε,n,0
Λε,n,01

f, f ∈ L2(ν).

With this, we define I by the composition of P ∗ with Λε,n as

Iun := Λε,n ◦ P ∗un, un ∈ L2(νn).

We can first define an intermediate, non-local continuum Dirichlet energy

Er(f) :=

∫
M

∫
M
η

(
dM(x, y)

r

)
|f(x)− f(y)|2ρq(y)ρq(x)dxdy, f ∈ L2(M),

where r > 0 is a length scale to be chosen later on.

Given that the kernel η is assumed to be normalized, we can treat d̂ε(xi)n as a kernel density estimator

of the density ρ. Formally, we have that

max
i=1,··· ,n

∣∣∣∣ 1nd̂ε(xi)− ρ(xi)

∣∣∣∣ ≤ C

(
ε+

δn
ε

)
,
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where δn is the ∞-optimal transportation (OT) distance between measures νn and ν.

Combining this with Proposition 8, we have that for a given β > 1, there exists a constant Cβ > 0

depending only on β so that with probability at least 1− Cβn
−β, the following bound holds

max
i=1,··· ,n

∣∣∣∣ 1nd̂ε(xi)− ρ(xi)

∣∣∣∣ ≤ C

(
ε+

log(n)pm

εn1/m

)
.

This is not the optimal estimate on the error of approximation of a kernel density estimator, but

has the advantage of only depending on the ∞-OT distance between empirical and ground-truth

measures.

The next two lemmas (Lemma 4 and Lemma 5) play the key roles in the ‘closeness’ of the population

embedding case and the sample embedding case. These two lemmas are useful to show that the

empirical eigenvalues and eigenvectors of weighted Laplacian matrix converge to the eigenvalues

and eigenfunctions of weighted Laplacian operator, respectively, under some suitable conditions.

The proofs of these two lemmas are shown later after more auxiliary results are shown.

Lemma 4. (Discretization and interpolation errors). Under Assumption 2 and Assumption 3, the

following four results hold.

1. For every f ∈ H1
q (M, ρ),∣∣∣∥Pf∥2L2(νn)

− ∥f∥2L2(ν)

∣∣∣ ≤ αq
(
∥mq − ρq∥∞ + δnqα

q−1Lρ
)
(1 + 2qαqLρδn) ∥f∥2L2(ν)+C̃

′δn∥f∥L2(ν)D(f)
1
2 ,

where C̃ ′ has the form

C̃ ′ =
Cα (1 + qαqLρ) (1 +mqαqLρ)m2m/2σ

1/2
η√

η(1/2)ωm

for some universal constant C > 0.

2. For every f ∈ H1
q (M, ρ),

bn(Pf) ≤
(
1 + C ′

1ε+ C ′
2

δn
ε

+ C ′
3ε

2

)
D(f),
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where the constants C ′
1, C

′
2, C

′
3 can be written as

C ′
1 = CqαqLρ, C ′

2 = C

(
m+

2m+1Lη (1 + qαqLρ)

η(1/2)

)
, C ′

3 = Cm

(
K +

1

R2

)
,

where C is a universal constant.

3. For every u ∈ L2(νn),∣∣∣∥Iu∥2L2(ν) − ∥u∥2L2(νn)

∣∣∣ ≤ C̃ ′′ε∥u∥L2(νn)bn(u)
1
2+2α

(
1 + qα2q−1Lρδn

)
·
(
∥mq − ρq∥∞ + δnqα

q−1Lρ
)
∥u∥2L2(νn)

,

where C̃ ′′ = Cα (1 + qαqLρ) · (1 + qαqLρ) · (1 + c′′) , c′′ =
Lη8m(1+qαqLρ)

2

η(1/2) .

4. For every u ∈ L2(νn),

D(Iu) ≤ (1 + C ′′
1 ε+ C ′′

2

δn
ε

+ C ′′
3 ε

2)bn(u),

where

C ′′
1 = qαqLρ, C ′′

2 = C · 4m
(
m+ C ′

2

)
, C ′′

3 = C (1 + 1/ση)mK.

Lemma 4 provides the error bounds of discretization and interpolation. Furthermore, notice that

the quantity δn (defined in Proposition 8) can be arbitrarily small as long as the sample size n

is large enough, and thus by the following Lemma 6, ∥mq − ρq∥∞ can also be arbitrarily small.

As a result, Lemma 4 indicates that the discretization and interpolation errors can be arbitrarily

small, which indicates the convergence for eigenvectors of the weighted Laplacian matrix towards

the eigenfunctions of the weighted Laplacian operator. Similar analysis on the following Lemma 7

illustrates the convergence for eigenvalues of the weighted Laplacian matrix towards the eigenvalues

of the weighted Laplacian operator.

Lemma 5. For i ∈ N, recall that λn,i is the i-th eigenvalue of the empirical weighted Laplacian ∆n

and λi is the i-th eigenvalue of the differential operator ∆ρ. Recall that δn is the ∞−OT distance

between measures νn and ν and assume that h > 0 satisfies Assumption 4. Then

1. (Upper bound) If δn and ∥mq − ρq∥∞ satisfy

√
λiδn + ∥mq − ρq∥∞ < c
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for a positive constant c that depends only on m,α,Lρ, and η, then

λn,i − λi
λi

≤ C̃

(
Lρε+

δn
ε

+
√
λiδn +Kε2 +

ε2

R2
+ ∥mq − ρq∥∞

)
,

where C̃ only depends on m,α,Lρ, and η.

2. (Lower bound) If ε and ∥mq − ρq∥∞ satisfy

√
λiε+ ∥mq − ρq∥∞ < c

for a positive constant c that depends only on m,α,Lρ and η, then

λn,i − λi
λi

≥ −C̃
(
Lρε+

δn
ε

+
√
λiδn +Kε2 +

ε2

R2
+ ∥mq − ρq∥∞

)
,

where C̃ only depends on m, q, α, Lρ, and η.

To make notation convenience, we denote T−1
n ({xi}) by Ui, and obviously ν(Ui) = 1

n for all

i = 1, · · · , n.

Lemma 6. Consider η : R → R, nonincreasing, supported on [0, 1], and normalized:
∫
Rm η(|x|)dx =

1. Consider ε > 0 satisfying Assumption 4. Then there exists a universal constant C > 0 such that

∥mq − ρq∥∞ := max
i=1,...,n

|mq
i − ρ (xi)

q| ≤ CαqLqρε
q + Cαqη(0)qmqωqm

δqn
εq

+ Cαqmq

(
K +

1

R2

)q
ε2q,

where the weights mi =
1

nεm
∑n

j=1 η
(
|xi−xj |

ε

)
, i = 1, . . . , n.

Proof. For every i, j, if |xi − xj | ≤ ε, then |xi − xj | ≤ R
2 , thus we have

d (xi, xj) ≤ |xi − xj |+
8

R2
|xi − xj |3 ≤

(
1 +

8ε2

R2

)
|xi − xj | .

Thus for every i, j and every y ∈ Uj ,

η

(
|xi − xj |

ε

)
≤ η

(
d (xi, xj)

ε̂

)
≤ η

(
(d (xi, y)− δn)+

ε̂

)
,

where ε̂ := ε+ 27ε3

R2 .
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Then we can bound mi as

mi =
1

nεm

n∑
j=1

η

(
|xi − xj |

ε

)
≤ 1

εm

∫
M
η

(
(d(xi, y)− δn)+

ε̂

)
p(y)dV ol(y) ≤ (p(xi)+10Lρε)

1

εm

∫
M
η

(
(d(xi, y)− δn)+

ε̂

)
dV ol(y).

Also, we have

1

εm

∫
M
η

(
(d(xi, y)− δn)+

ε̂

)
dV ol(y) =

1

εm

∫
B(ε̂+δn)

η

(
(|z| − δn)+

ε̂

)
Jxi(z)dz ≤ (1+CmKε2)

1

εm

∫
B(ε̂+δn)

η

(
(|z| − δn)+

ε̂

)
dz,

where the last integral can be estimated as

1

εm

∫
B(ε̂+δn)

η

(
(|z| − δn)+

ε̂

)
dz =η(0)ωm

δmn
εm

+
1

εm

∫
bn(ε̂+δn)\B(δn)

η

(
|z| − δn

ε̂

)
dz

= η(0)ωm
δmn
εm

+
ε̂m

εm

∫ 1

0

mωm

(
r +

δn
ε̂

)m−1

η(r)dr

≤ η(0)ωm
δmn
εm

+

(
1 +

16mε2

R2

)∫ 1

0

mωm

(
r +

δn
ε

)m−1

η(r)dr.

Also, by using the binomial theorem, we have

mωm

∫ 1

0

(
r +

δn
ε

)m−1

η(r)dr ≤ mωm

∫ 1

0

rm−1η(r)dr +mωmη(0)

m−1∑
k=1

(
m− 1

k

)(
δn
ε

)k
1

m− k

= 1 + ωmη(0)

m−1∑
k=1

(
m

k

)(
δn
ε

)k

= 1 + ωmη(0)

((
1 +

δn
ε

)m

− 1− δmn
εm

)
≤ 1 + 2mη(0)ωm

δn
ε

− η(0)ωm
δmn
εm

.

Combining all above equations, we have

mi ≤ (ρ(xi) + 10Lρε)(1 + CmKε
2)

(
η(0)ωm

δmn
εm

+

(
1 +

16mε2

R2

))(
1 + 2mη(0)ωm

δn
ε

− η(0)ωm
δmn
εm

)
.

Thus we also have

mq
i ≤ ρ(xi)

q

(
1 +

10Lρε

p(xi)

)q

(1 + CmKε
2)q
(
η(0)ωm

δmn
εm

+

(
1 +

16mε2

R2

))q (
1 + 2mη(0)ωm

δn
ε

− η(0)ωm
δmn
εm

)q

and

mq
i − ρ(xi)

q ≤ CαqLq
ρε

q + Cαqη(0)qmqωq
m
δqn
εq

+ Cαqmq

(
K +

1

R2

)q

ε2q

for an absolute constant C > 0.

By similar steps, we can also find an upper bound for ρ(xi)
q −mq

i . Combining them together, we have

max
i=1,...,n

|mq
i − ρ (xi)

q| ≤ CαqLq
ρε

q + Cαqη(0)qmqωq
m
δqn
εq

+ Cαqmq

(
K +

1

R2

)q

ε2q.

□
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Lemma 7. (Convergence rate for eigenvalues). Suppose ε satisfies Assumption 4. Let λi be the i-th

eigenvalue of ∆ρ and let λn,i be the i-th eigenvalue of ∆n. Let β > 1, then there exist constants

C,Cβ > 0 such that for sufficiently large n, with probability at least 1− Cβn
−β, we have

|λn,i − λi| ≤ C

(
Lρε+

δn
ε

+
√
λiδn +Kε2 +

ε2

R2
+ ∥mq − ρq∥∞

)
λi,

where C only depends on M, β,m, α, Lρ, Lρ, and η.

Proof. By Proposition 8, for a given β > 1, there exists a constant Cβ > 0 depending only on

β so that with probability at least 1− Cβn
−β, δn ≤ C log(n)pm

n1/m . By this result and Lemma 18, the

condition of Lemma 5 holds and the conclusion is attained by just multiple λi on both two sides of

the inequalities. □

Some useful lemmas are introduced in the following parts, and the proofs of these lemmas (Lemma

8, Lemma 9, Lemma 10, Lemma 11, Lemma 12, Lemma 13, and Lemma 14) can be found in [88].

Lemma 8. Suppose ε satisfies Assumption 4. Then there exists a universal constant C > 0 such

that for every 0 < r < 2ε and every f ∈ L2(ν)

Er(f) ≤ C2m(1 + qαqLρ)Er/2(f).

Lemma 9. Suppose ε satisfies Assumption 4. Then there exists a universal constant C > 0 such

that

Er(f) ≤ (1 + Lρqα
qr)(1 + CmKr2)σηr

m+2D(f),

for every f ∈ H1
q (M, ρ) and 0 < r < 2ε.

Lemma 10. Suppose ε satisfies Assumption 4. Let δn < r < 2ε, f ∈ L2(ν) and V ⊆ M a Borel set

such that ν(V ) > 0 and diam(V ) ≤ 2δn. Then we have∫
V

∣∣∣∣f(x)− 1

ν(V )

∫
V
fdν

∣∣∣∣2 dν(x) ≤ 2
(
1 + CmKr2

)
η(1/2)ωm(r − δn)m

E2r(f, V ).

For every r > 0, define the operator Λ0
r by

(Λ0
rf)(x) :=

∫
M
f(y)kr(x, y)dV ol(y),

76



where

kr(x, y) :=
1

rm
ψ(
dM(x, y)

r
).

Also define the smoothing operator Λr as

Λrf(x) := (θ(x))−1Λ0
rf(x),

where θ := Λ0
r1.

Lemma 11. There exists an absolute constant C > 0 such that

(1 + CmKr2)−1 ≤ θ(x) ≤ 1 + CmKr2.

Lemma 12. Suppose that h satisfies Assumption 4. Then there exists a universal constant C > 0

such that

∥Λrf∥2L2(ν) ≤ (1 + qαqLρr) (1 + qαqLρr)
(
1 + CmKr2

)
∥f∥2L2(ν)

and

∥Λrf − f∥2L2(ν) ≤
Cα2

σηrm
Er(f)

for all f ∈ L2(ν) and all r < 2ε.

Lemma 13. Suppose that ε satisfies Assumption 4. Then there exists a universal constant C > 0

such that

D (Λrf) ≤ (1 + qαqLρr) ·
(
1 + C (1 + 1/ση)mKr

2
) 1

σηrm+2
Er(f)

for all f ∈ L2(ν) and all r < 2ε.

Lemma 14. Assume the support of η is contained in [0, 1] and η is Lipschitz in [0, 1]. Then for all

r, s > 0 and t ≥ 0 we have

• η( t
r+s) ≤ η( (t−s)+r ) ≤ η( t

r+s) + Lη
s
r1{t≥r+s},

• η( t+sr ) ≥ η( t
r−s)− Lη

s
r1{t≥r−s} provided that s < r,

where Lη > 0 denotes the Lipschitz constant of η restricted to [0, 1].
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Lemma 15. For all u ∈ L2(νn) and f ∈ L2(ν), we have∣∣∣⟨P ∗u, f⟩L2(ν) − ⟨u, Pf⟩L2(νn)

∣∣∣ ≤ αq
(
∥mq − ρq∥∞ + δnqα

q−1Lρ
)
⟨P ∗|u|, |f |⟩L2(ν)

and ∣∣∣∥P ∗u∥2L2(ν) − ∥u∥2L2(νn)

∣∣∣ ≤ αq
(
∥mq − ρq∥∞ + δnqα

q−1Lρ
)
∥P ∗u∥2L2(ν) .

In addition, if αq∥mq − ρq∥∞ ≤ 1
2 , then ∀u ∈ L2(νn),

∥P ∗u∥2L2(ν) ≤ 2
(
1 + qα2q−1Lρδn

)
∥u∥2L2(νn)

for some universal constant C > 0.

Proof. By the definition of P and P ∗, we have that

∣∣∣⟨u, Pf⟩L2(νn) − ⟨P ∗u, f⟩L2(ν)

∣∣∣ = ∣∣∣∣∣
n∑
i=1

mq
i

n
u(xi) · n

∫
Ui

fdx−
∫
M

n∑
i=1

u(xi)1Uifρ
qdx

∣∣∣∣∣
≤
∫
M

n∑
i=1

|u(xi)|1Ui |f(x)| · |m
q
i − ρq(xi) + ρq(xi)− ρq(x)| dx

≤ αq
(
∥mq − ρq∥∞ + δnqα

q−1Lρ
)
⟨P ∗|u|, |f |⟩L2(ν) .

Also, ∣∣∣∥P ∗u∥2L2(ν) − ∥u∥2L2(νn)

∣∣∣ = ∣∣∣∣∣
n∑
i=1

(∫
Ui

u2(xi)ρ
qdx−

∫
Ui

mq
i

n
u2(xi)dx

)∣∣∣∣∣
≤ αq

(
∥mq − ρq∥∞ + δnqα

q−1Lρ
)
∥P ∗u∥2L2(ν) .

The last part of this lemma is obtained by following that

∥P ∗u∥2L2(ν) =

n∑
i=1

u (xi)
2
∫
Ui

ρq(y)dy ≤
2
(
1 + qα2q−1Lρδn

)
n

n∑
i=1

u (xi)
2mq

i = 2
(
1 + qα2q−1Lρδn

)
∥u∥2L2(νn)

.

□

Lemma 16. For every f ∈ L2(ν), we have

∥P ∗Pf∥2L2(ν) ≤ (1 + 2qαqLρδn) ∥f∥2L2(ν).
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And there exists a universal constant C > 0 such that

∥f − P ∗Pf∥L2(ν) ≤
C (1 +mqαqLρδn)m2m/2σ

1/2
η√

η(1/2)ωm
δnD(f)

1
2

for all f ∈ H1
q (M, ρ).

Proof. By Jensen’s inequality, we have∫
M

(P ∗Pf(x))2
ρq(x)

I
dx ≤

n∑
i=1

∫
Ui

∫
Ui

nf(y)2
ρq(x)

I
dydx

≤ (1 + 2qαqLρδn)

n∑
i=1

∫
Ui

∫
Ui

nf(y)2
ρq(y)

I
dydx

= (1 + 2qαqLρδn)

∫
M
f(y)2

ρq(y)

I
dy.

Also,

∥f − P ∗Pf∥2L2(ν) ≤
2
(
1 + CmKr2

)
η(1/2)ωm(r − δn)m

E2r(f) ≤
C (1 + 2qαqLρr) 2

mση
η(1/2)ωm

rm

(r − δn)m
r2D(f)

for any r ∈ (δn, 2ε). By choosing r = (m+1)δn,
rm

(r−δn)m is bounded by a constant and the assertion

thus follows. □

Combining the previous auxiliary results, we first prove parts 1 and 2 of Lemma 4 and use it to

prove the part 1 of Lemma 5, then prove the parts 3 and 4 of Lemma 4 and use it to prove the

part 2 of Lemma 5.

Proof. Proofs of Lemma 4, parts 1 and 2

1. From Lemma 15, we know P ∗ is almost an isometry. Thus∣∣∣∥Pf∥2L2(νn)
− ∥f∥2L2(ν)

∣∣∣ ≤ ∣∣∣∥Pf∥2L2(νn)
− ∥P ∗Pf∥2L2(ν)

∣∣∣+ ∣∣∣∥P ∗Pf∥2L2(ν) − ∥f∥2L2(ν)

∣∣∣
≤ αq

(
∥mq − ρq∥∞ + δnqα

q−1Lρ
)
∥P ∗Pf∥2L2(ν)

+
(
∥P ∗Pf∥L2(ν) + ∥f∥L2(ν)

)
∥P ∗Pf − f∥L2(ν)

≤ αq
(
∥mq − ρq∥∞ + δnqα

q−1Lρ
)
(1 + 2qαqLρδn) ∥f∥2L2(ν)

+
Cα (2 + qαqLρδn) (1 +mqαqLρδn)m2m/2σ

1/2
η√

η(1/2)ωm
δn∥f∥L2(ν)D(f)

1
2 .

79



2. Notice that

|Pf (xj)− Pf (xi)|2 ≤
n2

I

∫
Ui

∫
Uj

|f(y)− f(x)|2ρq(x)ρq(y)dydx.

Let ε̂ := (1 + 27
R2 ε

2)ε, then we have

bn(Pf) ≤
1

σηεm+2

∑
i

∑
j

∫
Ui

∫
Uj

η

(
|xi − xj |

ε

)
|f(y)− f(x)|2ρq(y)dyρq(x)dx

≤ 1

σηεm+2

∑
i

∑
j

∫
Ui

∫
Uj

η

(
d (xi, xj)

ε̂

)
|f(y)− f(x)|2ρq(y)dyρq(x)dx

≤ 1

σηεm+2

∫
M

∫
M
η

(
(dM(x, y)− 2δn)+

ε̂

)
|f(y)− f(x)|2ρq(y)dyρq(x)dx

≤ 1

σηεm+2

∫
M

∫
M

(
η

(
dM(x, y)

ε̂+ 2δn

)
+ 2Lη

δn
ε̂
1BM(x,ε̂+2δn)(y)

)
|f(y)− f(x)|2ρq(y)dyρq(x)dx

=
1

σηεm+2

(
Eε̂+2δn(f) +

2Lη
η(1/2)

δn
ε
E2(ε̂+2δn)(f)

)
.

In addition,

1

σηεm+2
Eε̂+2δn(f) ≤ (1 + CqαqLρε)

(
1 + CmKε2

)(
1 +

27ε2

R2
+ 2

δn
ε

)m+2

D(f)

≤ (1 + CqαqLρε)
(
1 + CmKε2

)(
1 + Cm

ε2

R2
+ Cm

δn
ε

)
D(f),

and

1

σηεm+2

2Lη
η(1/2)

δn
ε
E2(ε̂+2δn)(f) ≤

2m+1Lη
η(1/2)

(1 + CqαqLρε)
(
1 + CmKε2

)(
1 + Cm

ε2

R2
+ Cm

δn
ε

)
δn
ε
D(f).

□

Proof. Proof of Lemma 5, part 1 For a fixed non-negative integer i. By the minimax

principle, we have

λn,i ≤ sup
u∈L\{0}

bn(u)

∥u∥2
L2(νn)

holds for every i-dimensional subspace L ⊆ L2(νn). We denote by W the span of the first i

orthonormal eigenfunctions of ∆ρ. Set L := P (W ), then for every f ∈W , by the Courant minimax

principle, we have

D(f) ≤ λN∥f∥2ρq .
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Combining this with the part 1 of Lemma 4, we have

∥Pf∥2L2(νn)
≥
(
1− αq

(
∥mq − ρq∥∞ + δnqα

q−1Lρ
)
(1 + 2qαqLρδn)− C̃ ′

√
λiδn

)
∥f∥2L2(ν).

So if the condition αq
(
∥mq − ρq∥∞ + δnqα

q−1Lρ
)
(1 + 2qαqLρδn) + C̃ ′√λiδn ≤ 1

2 holds, then P is

injective on W . Thus dim(L) = i and by applying part 2 of Lemma 4 to u = Pf ∈ L, we have

bn(u)

∥u∥2
L2(νn)

≤
(
1 + C ′

1ε+ C ′
2
δn
ε + C ′

3ε
2
)

1− αq (∥mq − ρq∥∞ + δnqαq−1Lρ) (1 + 2qαqLρδn)− C̃ ′√λiδn
λi

≤
(
1 + C ′

1ε+ C ′
2

δn
ε

+ C ′
3ε

2 +
αC

I

(
∥mq − ρq∥∞ + δnqα

q−1Lρ
)
(1 + 2qαqLρδn) + C̃ ′

√
λiδn

)
λi.

The above inequality holds for all u = Pf for f ∈W , so

λn,i − λi
λi

≤ C̃

(
Lρε+

δn
ε

+
√
λiδn +Kε2 +

ε2

R2
+ ∥mq − ρq∥∞

)
.

□

Proof. Proofs of Lemma 4, parts 3 and 4∣∣∣∥Iu∥2L2(ν) − ∥u∥2L2(νn)

∣∣∣
≤
∣∣∣∥Iu∥2L2(ν) − ∥P ∗u∥2L2(ν)

∣∣∣+ ∣∣∣∥P ∗u∥2L2(ν) − ∥u∥2L2(νn)

∣∣∣
≤
(
∥Iu∥L2(ν) + ∥P ∗u∥L2(ν)

)
∥Iu− P ∗u∥L2(ν) + αq

(
∥mq − ρq∥∞ + δnqα

q−1Lρ
)
∥P ∗u∥2L2(ν) .

By using Lemma 12, we have

∥Iu− P ∗u∥2L2(ν) = ∥Λε−2δnP
∗u− P ∗u∥2 ≤ Cα2

σηεm
Eε−2δn (P

∗u)

for some universal constant C > 0.

Pick a kernel η̃ = 1[0,1] and let b̃ and Ẽ denote the discrete Dirichlet form and the energy E when

using the kernel η̃ and bε denote the forms b with bandwidth ε. (Except that bn denotes Dirichlet

form associated to ∆n.) Then
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b̃ε(u) =
1

ση̃εm+2

1

n2

∑
i

∑
j

η̃

(
|xi − xj |

ε

)
|u (xi)− u (xj)|2

=
1

I2ση̃εm+2

∑
i,j

∫
Ui

∫
Uj

η̃

(
|T (x)− T (y)|

ε

)
|(P ∗u) (x)− (P ∗u) (y)|2 ρq(y)dyρq(x)dx

≥ 1

I2ση̃εm+2

∫
M

∫
M
η̃

(
d(T (x), T (y))

ε

)
|(P ∗u) (x)− (P ∗u) (y)|2 ρq(y)dyρq(x)dx

≥ 1

I2ση̃εm+2

∫
M

∫
M
η̃

(
dM(x, y)

ε− 2δn

)
|(P ∗u) (x)− (P ∗u) (y)|2 ρq(y)dyρq(x)dx

=
1

I2ση̃εm+2
Ẽε−2δn (P

∗u)

=
m+ 2

I2wmεm+2
Ẽε−2δn (P

∗u) .

Recall that η is decreasing and thus η(t) ≥ η(12) > 0 for all t ∈ [0, 12), so

b̃ε/2(u) ≤
ση(m+ 2)2m+2

η(1/2)ωm
bε(u).

On the other hand, we have

bε(u) ≥
1

I2σηεm+2

∫
M

∫
M
η

(
d(T (x), T (y))

ε

)
|(P ∗u) (x)− (P ∗u) (y)|2 ρq(y)dyρq(x)dx

≥ 1

I2σηεm+2

∫
M

∫
M
η

(
dM(x, y) + 2δn

ε

)
|(P ∗u) (x)− (P ∗u) (y)|2 ρq(y)dyρq(x)dx

≥ 1

I2σηεm+2

∫
M

∫
M
η

(
dM(x, y)

ε− 2δn

)
|(P ∗u) (x)− (P ∗u) (y)|2 ρq(y)dyρq(x)dx

− Lη
I2ση

δn
ε

1

εm+2

∫
M

∫
M

1{dM(x,y)≤ε−2δn} |(P
∗u) (x)− (P ∗u) (y)|2 ρq(y)dyρq(x)dx

=
1

I2σηεm+2
Eε−2δn (P

∗u)− Lη
I2ση

δn
ε

1

εm+2
Ẽε−2δn (P

∗u)

≥ 1

I2σηεm+2
Eε−2δn (P

∗u)− CLη4
m (1 + qαqLρ)

2

I2ση

δn
ε

1

εm+2
Ẽ ε

2
−2δn (P

∗u)

≥ 1

I2σηεm+2
Eε−2δn (P

∗u)− CLη4
mωm (1 + qαqLρ)

2

I2(m+ 2)ση

δn
ε
b̃ ε
2
(u).

Combining the above inequalities together, we have(
1 +

CLη8
m (1 + qαqLρ)

2

I2η(1/2)

δn
ε

)
bε(u) ≥

1

I2σηεm+2
Eε−2δn (P

∗u) ,
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equivalantly,

Eε−2δn (P
∗u) ≤

(
1 +

CLη8
mω2

m (1 + qαqLρ)
2

I2η(1/2)(m+ 2)2
δn
ε

)
I2σηε

m+2bn(u),

and thus

∥Iu− P ∗u∥2 ≤ Cα2

σηεm
Eε−2δn (P

∗u) ≤ Cα2

(
1 +

Lη8
m (1 + qαqLρ)

2

η(1/2)

δn
ε

)
ε2bn(u).

Recall that from Lemma 15, we have

∥P ∗u∥2L2(ν) ≤ 2
(
1 + qα2q−1Lρδn

)
∥u∥2L2(νn)

.

ALso, by Lemma 8,

∥Iu∥L2(ν) = ∥Λε−2δnP
∗u∥L2(ν)

≤ C (1 + qαqLρε)
1/2 · (1 + qαqLρε)

1/2 ∥P ∗u∥L2(ν)

≤ C (1 + qαqLρε) · (1 + qαqLρε) ∥u∥L2(νn).

Combining all these inequalities to the first one, we get the desired bound for assertion 1.

For assertion 2, by using Lemma 13, we have

D(Iu) ≤ (1 + qαqLρε) ·
(
1 + C

(
1 +

1

ση

)
mKε2

)
1

I2ση(ε− 2δn)m+2
Eε−2δn (P

∗u)

≤ (1 + qαqLρε) ·
(
1 + C

(
1 +

1

ση

)
mKε2

)(
1 + Cm

δn
ε

)
1

I2σηεm+2
Eε−2δn (P

∗u)

≤
(
1 + qαqLρε+ C

(
1 +

1

ση

)
mKε2 + Cm

δn
ε

)
1

I2σηεm+2
Eε−2δn (P

∗u)

≤
(
1 + qαqLρε+ C

(
1 +

1

ση

)
mKε2 + Cm

δn
ε

)(
1 +

CLη8
mω2

m (1 + qαqLρ)
2

I2η(1/2)(m+ 2)2
δn
ε

)
bn(u).

□

Proof. Proof of Lemma 5, part 2 For a fixed non-negative integer i. By the minimax

principle, we have

λi ≤ sup
f∈L\{0}

D(f)

∥f∥2
L2(ν)
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holds for every i-dimensional subspace L ⊆ Hq (M). Denote by W as the span of the first i

orthonormal eigenfunctions of ∆n. Set L := I(W ), then for every u ∈W , by the Courant minimax

principle, we have

bn(u) ≤ λn,i∥u∥2L2(νn)
.

Combining this with the part 3 of Lemma 4, we have

∥Iu∥2L2(ν) ≥
(
1− 2α

(
1 + qα2q−1Lρδn

)
·
(
∥mq − ρq∥∞ + δnqα

q−1Lρ
)
− C̃ ′′√λn,iε) ∥u∥2L2(νn)

.

So if the condition 2α
(
1 + qα2q−1Lρδn

)
·
(
∥mq − ρq∥∞ + δnqα

q−1Lρ
)
+ C̃ ′′√λn,iε ≤ 1

2 holds, then

I is injective on W . Thus dim(L) = i and by applying part 4 of Lemma 4 to u = Pf ∈ L, we have

D(f)

∥f∥2
L2(ν)

≤
(
1 + C ′′

1 ε+ C ′′
2
δn
ε + C ′′

3 ε
2
)

1− 2α
I · (∥mq − ρq∥∞ + δnqαq−1Lρ) (1 + qα2q−1Lρδn)− C̃ ′′

√
λn,iε

λn,i

≤
(
1 + C ′′

1 ε+ C ′′
2

δn
ε

+ C ′′
3 ε

2 +
αC

I

(
∥mq − ρq∥∞ + δnqα

q−1Lρ
) (

1 + qα2q−1Lρδn
)
+ C̃ ′′√λn,iε)λn,i.

The above inequality holds for all f = Iu for u ∈ Un, so

λn,i − λi
λi

≥ −C̃
(
Lρε+

δn
ε

+
√
λiδn +Kε2 +

ε2

R2
+ ∥mq − ρq∥∞

)
.

□

Proof of Theorem 9.

Recall that un,1, un,2, · · · , un,N are the unit eigenvectors corresponding to theN smallest eigenvalues

of ∆n. They form an orthonormal basis with respect to ⟨·, ·⟩L2(ν).

From Lemma 4, Lemma 7 in previous parts and Lemma 7.3 of [21], we have

∥Iun,j −ΠN (Iun,j)∥2L2(ν) ≤
CM,NλN
λN+1 − λN

(
ε+

δn
ε

)
=: γ20 ,

where ΠN denotes the projection onto U and CM,N > 0 is a constant depending on M and N only.

Then we have

∥Iun,j∥L2(ν) − γ0 ≤ ∥ΠN (Iun,j)∥L2(ν) ≤ ∥Iun,j∥L2(ν) + γ0.
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In order to bound ∥Iun,j∥L2(ν) by using Lemma 4, we first bound bn(un,j) by using the convergence

of eigenvalues as follows:

bn (un,j) = ⟨un,j ,∆nun,j⟩L2(νn)
= λn,j

≤ C

(
1 + Lρε+

δn
ε

+
√
λiδn +Kε2 +

ε2

R2
+ ∥mq − ρq∥∞

)
λN .

Thus by using Lemma 4 and the fact that un,j are normalized, we have

∣∣∣∥Iun,j∥2L2(ν) − 1
∣∣∣ ≤ C

(
h

√(
1 + Lρε+

δn
ε

+
√
λiδn +Kε2 +

ε2

R2
+ ∥mq − ρq∥∞

)
λN

+2α
(
1 + qα2q−1Lρε

)
·
(
∥mq − ρq∥∞ + εqαq−1Lρ

))
:= γ1.

Combining previous estimate together, we have

1− γ2 ≤ ∥ΠN (Iun,j)∥L2(ν) ≤ 1 + γ2 ∀j = 1, . . . , N,

where

γ2 :=
√
γ1 + γ0.

Notice that the following two equation hold for all i ̸= j:

⟨Iun,j , Iun,i⟩L2(ν) =
1

2

(
∥Iun,j∥2L2(ν) + ∥Iun,i∥2L2(ν) − ∥Iun,j − Iun,i∥2L2(ν)

)
,

and

0 = ⟨un,j , un,i⟩L2(νn)
=

1

2

(
∥un,j∥2L2(νn)

+ ∥un,i∥2L2(νn)
− ∥un,j − un,i∥2L2(νn)

)
.

Then take the difference of these two equations on both side, and use Lemma 4.15 again to obtain

the following bound: ∣∣∣⟨Iun,j , Iun,i⟩L2(ν)

∣∣∣ ≤ γ1.

Thus by combining the previous inequalities and Cauchy-Schwarz inequalities, we get∣∣∣⟨ΠNIun,i,ΠNIun,j⟩L2(ν)

∣∣∣
≤
∣∣∣⟨Iun,i, Iun,j⟩L2(ν)

∣∣∣+ ∣∣∣⟨Iun,j , Iun,i −ΠNIun,i⟩L2(ν)

∣∣∣+ ∣∣∣⟨ΠNIun,iIun,j −ΠNIun,j⟩L2(ν)

∣∣∣
≤ γ1 + 2(1 + γ1) · γ0 =: γ3, ∀i ̸= j.
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Then by Lemma A.1, there exists an orthonormal system g1, · · · , gN for U satisfying:

∥ΠNIun,j − gj∥L2(ν) ≤
√
N

(
1√

1−Nγ3
− 1

)
,∀j = 1, . . . , N.

Combining with the first bound in this proof, we have

∥Iun,j − gj∥2L2(ν) ≤
(
∥Iun,j −ΠNIun,j∥L2(ν) + ∥ΠNIun,j − gj∥L2(ν)

)2
≤
(
γ0 +

√
N

(
1√

1−Nγ3
− 1

))2

≤ C

(
γ0 +

N3/2

2
γ3 +

3N5/2

8
γ23

)2

=: γ4, ∀j = 1, . . . , N.

Then

∥Iun,j − un,j ◦ Tn∥2L2(ν) = ∥Λε−2δnP
∗un,j − P ∗un,j∥2L2(ν)

≤ Cα2

(ε− 2δn)
m+2Eε−2δn (P

∗un,j)

≤ Cα2

(ε− 2δn)
m+2

(
1 +

CLη8
m (1 + qαqLρ)

2

I2η(1/2)

ε

δn

)
I2σηε

m+2bn(un,j)

≤ Cα2

(ε− 2δn)
m+2

(
1 +

CLη8
m (1 + qαqLρ)

2

I2η(1/2)

ε

δn

)
I2σηε

m+2

·
(
1 + Lρε+

δn
ε

+
√
λNδn +Kε2 +

ε2

R2
+ ∥mq − ρq∥∞

)
λN := γ5.

Combining previous two estimates and triangle inequality, we have

∥un,j ◦ Tn − gj∥2L2(ν) ≤ 2 (γ4 + γ5)

≤ C
(
1 +N3/2 +N5/2

)
CM,N

(
λN

λN+1 − λN

)
(ε+ δn/ε)

+ Cεm+2(ε+
δn
ε

+ δn + ε2)λN

≤ cM

((
λN

λN+1 − λN

)(
ε+

log(n)pm

εn1/m

)
+ λNε

m+2

(
ε+ ε2 +

log(n)pm

εn1/m
+

log(n)pm

n1/m

))
.

Proposition 9. (Upper bound for λN):

λN ≤ NC
Imin −NS1/2

b I∗1/2
.
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Proof. Denote Q := span{q1, · · · , qN} as N -dimensional subspace, then by the minimax the-

orem, we obtain that

λN ≤ max
u∈Q

⟨∆ρu, u⟩L2(ν)

⟨u, u⟩L2(ν)
.

Take u ∈ Q that satisfies ⟨u, u⟩L2(ν) = 1. Then there exists ak’s that satisfies

1 =

N∑
k=1

a2k ∥qk∥
2
L2(ν) +

N∑
k=1

∑
j ̸=k

akaj ⟨qk, qj⟩L2(ν) =

N∑
k=1

a2kw
q
kIk +

N∑
k=1

∑
j ̸=k

akaj ⟨qk, qj⟩L2(ν) ,

such that

u =
N∑
i=1

akqk.

For the last term, the norm can be bounded as∣∣∣∣∣∣
N∑
k=1

∑
j ̸=k

akaj ⟨qk, qj⟩L2(ν)

∣∣∣∣∣∣ ≤
N∑
k=1

∑
j ̸=k

|ak∥aj |
√
wqk

√
wqjS

1/2
b I∗1/2 ≤ NS1/2

b I∗1/2
N∑
k=1

a2kw
q
k.

Then
N∑
k=1

a2kw
q
k ≤

1

Imin −NS1/2
b I∗1/2

.

Also,

⟨∆ρu, u⟩L2(ν) =

N∑
k=1

N∑
j=1

akaj

∫
M

∇qk · ∇qjρqdx.

Recall that ∥∇qk∥2L2(ν) = wqkCk, so we have

⟨∆ρu, u⟩L2(ν) ≤
N∑
k=1

N∑
j=1

|akaj |
(∫

M
|∇qk|2 ρqdx

)1/2(∫
M

|∇qj |2 ρqdx
)1/2

≤ CN
N∑
k=1

a2kw
q
k

≤ NC
Imin −NS1/2

b I∗1/2
,

and thus we have

λN ≤ NC
Imin −NS1/2

b I∗1/2
.

□
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Combining the lower bound of λN+1 and the upper bound of λN , we get

λN+1 − λN ≥


√√√√Θ(1− Sadj)

α|p−q|

(
1

N q
−
(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

)2
Imin − Sb

)

−
√
NC

Imin − Sb

(
max(N q−1, 1)

√
Sb + (max(N q−1, 1)− 1)

√
Sw

))2

− NC
Imin −NS1/2

b I∗1/2
.

Then we have the following corollary:

Corollary 2. The inequality in Theorem 9 can be replaced by∫
M

|gj(x)− un,j ◦ Tn(x)|2 dν(x) = ∥gj − un,j ◦ Tn∥2L2(ν) ≤ ϕ

for all j = 1, · · · , N , where

ϕ = ϕ(Sb, C,Θ, Imin, I∗, N, ε, n,m) = cM

((
NC

Imin −NS1/2
b I∗1/2

)(
ε+

log(n)pm

εn1/m

)
ψ−1

+

(
NC

Imin −NS1/2
b I∗1/2

)
εm+2

(
ε+ ε2 +

log(n)pm

εn1/m
+

log(n)pm

n1/m

))
,

and

ψ = ψ(Sb,Sadj, C,Θ, Imin, I∗, N, ε, n,m) :=


√√√√Θ(1− Sadj)

α|p−q|

(
1

max(Nq, N)
−
(
max(Nq−1, 1)

√
Sb + (max(Nq−1, 1)− 1)

√
Sw

)2
Imin − Sb

)

−
√
NC

Imin − Sb

(
max(Nq−1, 1)

√
Sb + (max(Nq−1, 1)− 1)

√
Sw

))2

− NC
Imin −NS1/2

b I∗1/2
.

Proof. Proof of Theorem 2 By Theorem 9 and previous corollary, we have that for a

given β > 1, then with probability larger than 1 − Cβn
−β, there exists a transportation map

Tn : M → {x1, . . . ,xn} that pushes forward ν into νn and an orthonormal set of functions g1, · · · , gn

in U satisfying

• supx∈M dM (x, Tn(x)) ≤ cM
log(n)pm

n1/m ,

•
∫
M |gi(x)− ui,n (Tn(x))|2 dν(x) ≤ ϕ.

For x ∈ M, denote G(x) := (g1(x), · · · , gN (x)), then we have

∫
M

|Fn ◦ Tn(x)−G(x)|2 dν(x) =
N∑
i=1

∫
M

|gi(x)− un,i (Tn(x))|2 dν(x) ≤ Nϕ.
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Let π̃n := (Id× Tn)♯ ν ∈ P(M × M) and G × Fn : (x, y) 7−→ (G(x), Fn(y)). Denote πn :=

(G× Fn)♯ π̃n, the push-forward of π̃n by the map G × Fn. Then πn is a transportation plan

between G♯ν and Fn♯νn. Also,∫
RN×RN

|x− y|2dπn(x, y) =
∫
RN×RN

|x− y|2d (G× Fn)♯ π̃n(x, y)

=

∫
M×M

|G(x)− Fn(y)|2 dπ̃n(x, y)

=

∫
M×M

|G(x)− Fn(y)|2 d (Id× Tn)♯ ν(x, y)

=

∫
M

|G(x)− Fn ◦ Tn(x)|2 dν(x).

Thus

(W2 (G♯ν, Fn♯νn))
2 ≤

∫
M

|Fn ◦ Tn(x)−G(x)|2 dν(x) ≤ Nϕ.

As g1, · · · , gN is an orthonormal basis for U , there exists an orthogonal matrix R such that for

every x ∈ M, G(x) = RF (x).

Now we can choose an orthogonal transformation O such that OF (x) = F̃ (x) =
∑N

j=1 ṽj(x)ej .

Thus G = RO−1F̃ , and we have

W2

(
OR−1Fn♯νn, F

Q
♯ ν
)
≤W2

(
OR−1Fn♯νn, F̃♯ν

)
+W2

(
F̃♯ν, F

Q
♯ ν
)

=W2

(
Fn♯νn, RO

−1F̃♯ν
)
+W2

(
F̃♯ν, F

Q
♯ ν
)

=W2 (Fn♯νn, G♯ν) +W2

(
F̃♯ν, F

Q
♯ ν
)

≤
√
Nϕ+

√√√√√N

τ − √
ISb
Imin

2

2

+ 4N
3
2

(
1√

1−Nτ
− 1

)
.

So the measures OR−1Fn♯νn and FQ♯ ν are close to each other with respect to the 2-Wasserstein

distance. Similar to the population setting, the closeness of these two measures and the orthogonal

cone structure of FQ♯ ν lead to the conclusion for the orthogonal cone structure of OR−1Fn♯νn, and

thus for the orthogonal cone structure of Fn♯νn. The parameters in this theorem can be derived

directly from Proposition 3. □
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4.3. OCS of kernel PCA embedding: The population setting

The basic idea underlying the proof of OCS quantification for Kernel PCA is similar to the one used

above for spectral embeddings. However, the details are quite different. The following auxiliary

propositions use notations introduced in Chapter 2.

Proposition 10. For every k = 1, · · · , N we have

∥qk −ΠN (qk)∥2ν ≤ Λ

wmin
,

where ΠN stands for the projection onto U , the span of the N eigenfunctions corresponding to the

largest N eigenvalues of Σν .

Proof. For every k = 1, · · · , N , qk can be written in the orthonormal basis of eigenfunctions

{u1, u2, · · · } of Σν as

qk =
∞∑
l=1

alkul

with coefficients alk, l = 1, 2, · · · .

Also we have

ΠN (qk) =
N∑
l=1

alkul,

and

qk −ΠN (qk) =

∞∑
l=N+1

alkul.

So

∥qk −ΠN (qk)∥2ν =
∞∑

l=N+1

a2lk,

90



where

alk = ⟨qk, ul⟩ν

=

∫
Ω
qk(x)ul(x)ν(dx)

=

∫
Ω

∫
Ω
k(x, y)νk(dy)ul(x)ν(dx)

=

∫
Ω

(∫
Ω
k(x, y)ul(x)ν(dx)

)
νk(dy)

=

∫
Ω
(λlul(y)) νk(dy)

= λl

∫
Ω
ul(y)νk(dy)

≤ λl

√∫
Ω
u2l (y)νk(dy)

∫
Ω
νk(dy)

= λl

√∫
Ω
u2l (y)νk(dy).

The above inequality comes from Cauchy-Schwarz inequality. Recall the constraint
∫
Ω u

2
l (y)ν(dy) =

1, we have that

1 =

∫
Ω
u2l (y)ν(dy)

=
N∑
i=1

wi

∫
Ω
u2l (y)νi(dy)

≥ wmin

N∑
i=1

∫
Ω
u2l (y)νi(dy)

≥ wmin

∫
Ω
u2l (y)νk(dy).

So

alk = λl

√∫
Ω
u2l (y)νk(dy) ≤

λl√
wmin

,

then

∥qk −ΠN (qk)∥2ν =

∞∑
l=N+1

a2lk ≤
∞∑

l=N+1

(
λl√
wmin

)2

=
Λ

wmin
.

□

Recall the definition of FQ♯ ν given in section 2.3.3. The next result presents an OCS for this

measure.
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Proposition 11. The probability measure µQ = FQ♯ ν with FQ defined above has an orthogonal cone

structure with parameters (σ1, σ2, · · · , σN , δ, r) for any σ ∈ (0, π/4), δ∗ ≤ δ < 1 and r = 1√
Nwmax

where

δ∗ :=
Nwmax

wmin

S∗
w,up

S∗
w

N∑
k=1

wk
cos(σk)√

1− cos2(σk)
Sk.

Proof. For each k = 1, . . . , N, let

Ck :=

{
z ∈ RN :

zk
|z|

> cos(σk), |z| ≥ r

}
with r = 1√

Nwmax
and fixed σk ∈ (0, π/4) (k = 1, 2, · · · , N).

Also denote Ak as the preimage of Ck through FQ, i.e.

Ak :=
(
FQ
)−1

(Ck) =

x ∈ Ω :
qk(x)

∥qk∥ν
> cos(σk)

 N∑
j=1

(
qj(x)

∥qj∥ν

)2
1/2

,

 N∑
j=1

(
qj(x)

∥qj∥ν

)2
1/2

> r

 .

Then we have

µQ (Ck) = FQ♯ ν (Ck) = ν (Ak) ,

and Ak can be re-written as

Ak =

x ∈ Ω :
qk(x)

∥qk∥ν q(x)
> cos(σk)

 N∑
j=1

(
qj(x)

∥qj∥ν q(x)

)2
1/2

,

 N∑
j=1

(
qj(x)

∥qj∥ν

)2
1/2

> r

 .

For an arbitrary x0 ∈ Ack ⊆ Ω (k = 1, 2, · · · , N) we have

(
qk(x0)

∥qk∥ν q(x0)

)2

≤ cos2(σk)

N∑
j=1

(
qj(x0)

∥qj∥ν q(x0)

)2

,

i.e., (
1− cos2(σk)

)( qk(x0)

∥qk∥ν q(x0)

)2

≤ cos2(σk)
∑
j ̸=k

(
qj(x0)

∥qj∥ν q(x0)

)2

.

So

√
1− cos2(σk)

qk(x0)

∥qk∥ν q(x0)
≤ cos(σk)

√√√√∑
j ̸=k

(
qj(x0)

∥qj∥ν q(x0)

)2

≤ cos(σk)
∑
j ̸=k

qj(x0)

∥qj∥ν q(x0)
.
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Thus

w2
k

(
qk(x0)

q(x0)

)2

≤ w2
k

cos(σk)√
1− cos2(σk)

∑
j ̸=k

∥qk∥ν
∥qj∥ν

qj(x0)

q(x0)

qk(x0)

q(x0)
.

Take the integral over Ack on both sides:∫
Ac

k

w2
k

(
qk(x)

q(x)

)2

ν(dx) ≤
∫
Ac

k

w2
k

cos(σk)√
1− cos2(σk)

∑
j ̸=k

∥qk∥ν
∥qj∥ν

qj(x)

q(x)

qk(x)

q(x)
ν(dx), ∀k = 1, . . . , N.

Take the sum over k:

N∑
k=1

∫
Ac

k

w2
k

(
qk(x)

q(x)

)2

ν(dx) ≤
N∑
k=1

∫
Ac

k

w2
k

cos(σk)√
1− cos2(σk)

∑
j ̸=k

∥qk∥ν
∥qj∥ν

qj(x)

q(x)

qk(x)

q(x)
ν(dx),

where

LHS =
N∑
k=1

∫
Ac

k

w2
k

(
qk(x)

q(x)

)2

ν(dx)

=
N∑
k=1

∫
Ω
w2
k

(
qk(x)1Ac

k
(x)

q(x)

)2

ν(dx)

=

∫
Ω

N∑
k=1

w2
k

(
qk(x)1Ac

k
(x)

q(x)

)2

ν(dx)

=
1

N

∫
Ω

N∑
k=1

w2
k

(
qk(x)1Ac

k
(x)

q(x)

)2 N∑
k=1

1ν(dx)

≥ 1

N

∫
Ω

(
N∑
k=1

wk

(
qk(x)1Ac

k
(x)

q(x)

))2

ν(dx)

≥ 1

N

∫
Ω
1⋂N

l=1 A
c
l
(x)

(
N∑
k=1

wk

(
qk(x)

q(x)

))2

ν(dx)

=
1

N

∫
⋂N

l=1 A
c
l

(
N∑
k=1

wk

(
qk(x)

q(x)

))2

ν(dx)

=
1

N
ν

(
N⋂
l=1

Acl

)
.
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RHS =
N∑
k=1

∫
Ac

k

w2
k

cos(σk)√
1− cos2(σk)

∑
j ̸=k

∥qk∥ν
∥qj∥ν

qj(x)

q(x)

qk(x)

q(x)
ν(dx)

=

N∑
k=1

∫
Ω
w2
k

cos(σk)√
1− cos2(σk)

∑
j ̸=k

∥qk∥ν
∥qj∥ν

qj(x)

q(x)

qk(x)

q(x)
1Ac

k
(x)ν(dx)

≤
∫
Ω

N∑
k=1

w2
k

cos(σk)√
1− cos2(σk)

∑
j ̸=k

∥qk∥ν
∥qj∥ν

qj(x)

q(x)

qk(x)

q(x)
ν(dx)

≤ wmax

wmin

∫
Ω

N∑
k=1

cos(σk)√
1− cos2(σk)

wk
qk(x)

q(x)

∑
j ̸=k

wj
∥qk∥ν
∥qj∥ν

qj(x)

q(x)
ν(dx)

=
wmax

wmin

N∑
k=1

wk
cos(σk)√

1− cos2(σk)

∑
j ̸=k

wj
∥qk∥ν
∥qj∥ν

Sjk

≤ wmax

wmin

S∗
w,up

S∗
w

N∑
k=1

wk
cos(σk)√

1− cos2(σk)

∑
j ̸=k

wjSjk

=
wmax

wmin

S∗
w,up

S∗
w

N∑
k=1

wk
cos(σk)√

1− cos2(σk)
Sk.

Thus we have

ν

(
N⋂
l=1

Acl

)
≤ Nwmax

wmin

S∗
w,up

S∗
w

N∑
k=1

wk
cos(σk)√

1− cos2(σk)
Sk,

and this implies

µQ

(
N⋃
k=1

Ck

)
≥ 1− Nwmax

wmin

S∗
w,up

S∗
w

N∑
k=1

wk
cos(σk)√

1− cos2(σk)
Sk,

which completes the proof. □

Now we turn to the proof of Theorem 3. The basic ideas are similar to the proof of Theorem 1.

Proof of Theorem 3. The measure µ = F♯ν has the same orthogonal cone structure as the

measure (OF )♯ν, where the map (OF )♯ν is defined by x ∈ Ω 7→ OF (x) ∈ RN with O being an

N ×N orthogonal matrix. So we will consider the measure (OF )♯ν where we construct the matrix

O such that (OF )♯ν and FQ♯ ν are close to each other in the 2-Wasserstein distance. Then combining

with previous propositions, we can get the orthogonal cone structure for (OF )♯ν. Firstly, define
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the normalized projection of qi’s as follows:

vi :=
ΠN (qi)

∥ΠN (qi)∥ν
, i = 1, . . . , N,

where ΠN : L2(dν) → U is the orthogonal projection onto U , the span of the N eigenfunctions

corresponding to the N largest eigenvalues of Σν . Then based on the previous proposition, we have∥∥∥∥ qi
∥qi∥ν

− vi

∥∥∥∥
ν

=

∥∥∥∥ qi
∥qi∥ν

− ΠN (qi)

∥ΠN (qi)∥ν

∥∥∥∥
ν

≤
∥∥∥∥ qi
∥qi∥ν

− ΠN (qi)

∥qi∥ν

∥∥∥∥
ν

+

∥∥∥∥ΠN (qi)

∥qi∥ν
− ΠN (qi)

∥ΠN (qi)∥ν

∥∥∥∥
ν

=

∥∥∥∥ qi
∥qi∥ν

− ΠN (qi)

∥qi∥ν

∥∥∥∥
ν

+
1

∥qi∥ν
| ∥ΠN (qi)∥ν − ∥qi∥ν |

≤ 2

∥∥∥∥ qi
∥qi∥ν

− ΠN (qi)

∥qi∥ν

∥∥∥∥
ν

≤ 2

∥qi∥ν

√
Λ

wmin

=
2√
S∗
ii

√
Λ

wmin

≤ 2√
S∗
w

√
Λ

wmin

= 2

√
Λ

S∗
wwmin

.

For a given pair (i, j) with i ̸= j, we have

∣∣⟨vi, vj⟩ν∣∣ = ∣∣∣∣〈vi − qi
∥qi∥ν

, vj

〉
ν

+

〈
qi

∥qi∥ν
, vj −

qj
∥qj∥ν

〉
ν

+

〈
qi

∥qi∥ν
,
qj

∥qj∥ν

〉
ν

∣∣∣∣
≤
∥∥∥∥ qi
∥qi∥ν

− vi

∥∥∥∥
ν

+

∥∥∥∥ qj
∥qj∥ν

− vj

∥∥∥∥
ν

+
S∗
ij√

S∗
iiS∗

jj

≤ 4

√
Λ

S∗
wwmin

+
S∗
b

S∗
w

:= τ.

Thus we can conclude that there exists an orthonormal basis ṽ1, . . . , ṽN for (U, ⟨·, ·⟩ν) such that

∥vi − ṽi∥2ν ≤ N

(
1√

1−Nτ
− 1

)2

, i = 1, . . . , N.
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Thus for any i = 1, · · · , N ,∥∥∥∥ qi
∥qi∥ν

− ṽi

∥∥∥∥2
ν

=

∥∥∥∥ qi
∥qi∥ν

− vi

∥∥∥∥2
ν

+ 2

〈
vi − ṽi,

qi
∥qi∥ν

〉
ν

− ⟨vi + ṽi, vi − ṽi⟩ν

≤
∥∥∥∥ qi
∥qi∥ν

− vi

∥∥∥∥2
ν

+ 4 ∥vi − ṽi∥ν

≤ 4Λ

S∗
wwmin

+ 4
√
N

(
1√

1−Nτ
− 1

)

=

τ − S∗
b

S∗
w

2

2

+ 4
√
N

(
1√

1−Nτ
− 1

)
.

Now define F̃ : Ω 7→ RN as the map F̃ (x) =
∑N

j=1 ṽj(x)ej . Since both {ṽ1, . . . , ṽN} and {u1, . . . , uN}

are orthonormal bases for (U, ⟨·, ·⟩ν), there exists an orthogonal matrix O ∈ RN × RN such that

OF = F̃ .

Let π :=
(
FQ × F̃

)
♯
ν, then it is a coupling between FQ♯ ν and F̃♯ν. Thus we have

W 2
2

(
FQ♯ ν, F̃♯ν

)
≤
∫
RN

∫
RN

|z − z̃|2dπ(z, z̃)

=

∫
Ω

∣∣∣FQ(x)− F̃ (x)
∣∣∣2 dν(x)

=

N∑
i=1

∥∥∥∥ qi
∥qi∥ν

− ṽi

∥∥∥∥2
ν

= N

τ − S∗
b

S∗
w

2

2

+ 4N
3
2

(
1√

1−Nτ
− 1

)
.

Also, it’s easy to check the finite second moments condition of the probability measures FQ♯ ν and

F̃♯ν as follows: ∫
Ω

∣∣FQ(x)∣∣2 dν(x) = N∑
i=1

∥∥∥∥ qi
∥qi∥ν

∥∥∥∥2
ν

= N,

∫
Ω

∣∣∣F̃ (x)∣∣∣2 dν(x) = N∑
i=1

∥ṽi∥2ν = N.

By using the previous propositions about wasserstein distance, we can derive that µ has an orthog-

onal cone structure with parameters
(
σ1 + s, σ2 + s, · · · , σN + s, δ + t2, 1−sin(s)√

Nwmax

)
for any δ ∈ [δ∗, 1)
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and s, t > 0 satisfying

t2 sin2(s)

N2w2
max

≥ N

τ − S∗
b

S∗
w

2

2

+ 4N
3
2

(
1√

1−Nτ
− 1

)
, s+ σi <

π

4
, i = 1, · · · , N.

■

4.4. OCS of kernel PCA embedding: The sample setting

Then we will prove Theorem 4 under the sample setting. Firstly, we need some auxiliary results

to show closeness of spectrum between the covariance operator and its empirical version, including

Lemma 17, Lemma 18 and Lemma 19. Lemma 17 is given in equation (2.5) in [58]. Lemma 18 is

Theorem 9 of [60]. Lemma 19 is proved by Lemma 1 in [59].

Lemma 17. When Σνn is close to Σν in the operator norm, the spectrum σ(Σνn) of Σνn is a small

perturbation of the spectrum σ(Σν) of Σν . This can be expressed by the following inequality:

sup
j≥1

|λn,j − λj | ≤ ∥Σνn − Σν∥∞.

In the following, let r(Σν) :=
tr(Σν)
∥Σν∥∞ .

Lemma 18. If Φ(x) = k(·, x) with x ∼ ν is sub-Gaussian and pre-Gaussian, then

∥Σνn − Σν∥∞ ≤ C∥Σν∥∞

(√
r(Σν)

n
∨ r(Σν)

n
∨
√
β

n
∨ β

n

)

for some numerical constant C > 0 with probability at least 1− e−β, β > 0.

Recall that Σν =
∑∞

i=1 λiui ⊗ ui and Σνn =
∑∞

i=1 λiun,i ⊗ un,i. Define

gi := gi(Σν) := λi − λi+1 > 0, i ≥ 1,

and define the i-th spectral gap ḡi := ḡi(Σν) := min (gi−1, gi) for i ≥ 2 and ḡ1 := g1. Then we have

the following bound:

Lemma 19.

∥un,i ⊗ un,i − ui ⊗ ui∥∞ ≤ 4∥Σνn − Σν∥∞
ḡi

.
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The following lemma shows that the closeness of the spectra of the covariance operator and its

empirical version implies the closeness of their eigenfunctions.

Lemma 20. If Φ(x) = k(·, x) with x ∼ ν is sub-Gaussian and pre-Gaussian, then

∥ui − sign(⟨ui, un,i⟩H)un,i∥H ≤
8C∥Σν∥∞

(√
r(Σν)
n ∨ r(Σν)

n ∨
√

β
n ∨ β

n

)
ḡi

with probability at least 1− e−β.

Proof. For any f, g, h ∈ H with ∥f∥H = ∥g∥H = ∥h∥H = 1 and ⟨f, g⟩H ≥ 0, we have

(f ⊗ f − g ⊗ g)h = f⟨f, h⟩ − g⟨g, h⟩.

So

∥f⟨f, h⟩H − g⟨g, h⟩H∥H = ∥(f ⊗ f − g ⊗ g)h∥H ≤ ∥f ⊗ f − g ⊗ g∥∞∥h∥H.

Let h = f and h = g, respectively, we get

∥f − g⟨g, f⟩H∥H = ∥(f ⊗ f − g ⊗ g)h∥H ≤ ∥f ⊗ f − g ⊗ g∥∞∥f∥H,

and

∥f⟨f, g⟩H − g∥H = ∥(f ⊗ f − g ⊗ g)h∥H ≤ ∥f ⊗ f − g ⊗ g∥∞∥g∥H.

Add them together, then

∥f − g⟨g, f⟩H∥H + ∥f⟨f, g⟩H − g∥H ≤ ∥f ⊗ f − g ⊗ g∥∞(∥f∥H + ∥g∥H) = 2∥f ⊗ f − g ⊗ g∥∞.

Also,

∥f − g⟨g, f⟩H∥H + ∥f⟨f, g⟩H − g∥H ≥ ∥f − g⟨g, f⟩H + f⟨f, g⟩H − g∥H

= ∥(1 + ⟨f, g⟩H)(f − g)∥H

= (1 + ⟨f, g⟩H)∥(f − g)∥H

≥ ∥f − g∥H.

So

∥f − g∥H ≤ 2∥f ⊗ f − g ⊗ g∥∞.
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Now let f = ui and g = sign(⟨ui, un,i⟩H)un,i, then by using Lemmas 19 and 20, we have

∥ui − sign(⟨ui, un,i⟩H)un,i∥H ≤ 2∥ui ⊗ ui − un,i ⊗ un,i∥∞

≤ 8∥Σνn − Σν∥∞
ḡi

≤
8C∥Σν∥∞

(√
r(Σν)
n ∨ r(Σν)

n ∨
√

β
n ∨ β

n

)
ḡi

holds with probability at least 1− e−β. □

Proof of Theorem 4. Lemmas 17, 18, 19 and 20 describe how eigenvalues and eigenvectors of

the empirical covariance operator approximate eigenvalues and eigenfunctions of the population

covariance operator. These properties will now be used in this proof.

Then we are able to bound the Wasserstein distance between Fn♯νn and F♯ν by the following steps.

Firstly, define function Tn as

Tn(x) =
n∑
i=1

xi1{x∈Vi}, x ∈ Ω,

where Vi, i = 1, · · · , n are Voronoi cells

Vi :=

{
x ∈ Ω : |x− xi| = min

j=1,··· ,n
|x− xj |

}
.

Then, let π̃n ∈ P(Ω× Ω) be given by

π̃n := (Id× Tn)♯ ν,

and let F × F̃n : Ω× Ω → RN × RN be given by

F × F̃n : (x, y) 7−→
(
F (x), F̃n(y)

)
.
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Let πn :=
(
F × F̃n

)
♯
π̃n (i.e. the push-forward of π̃n by the map F × F̃n). Thus πn is a transporta-

tion plan between F♯ν and F̃n♯νn. Then

W 2
2

(
F♯ν, F̃n♯νn

)
≤
∫
RN

∫
RN

|x− y|2dπn(x, y)

=

∫
RN×RN

|x− y|2d
(
F × F̃n

)
♯
π̃n(x, y)

=

∫
Ω×Ω

∣∣∣F (x)− F̃n(y)
∣∣∣2 dπ̃n(x, y)

=

∫
Ω×Ω

∣∣∣F (x)− F̃n(y)
∣∣∣2 d (Id× Tn)♯ ν(x, y)

=

∫
Ω

∣∣∣F (x)− F̃n ◦ Tn(x)
∣∣∣2 dν(x)

=
N∑
i=1

∫
Ω
|ui(x)− sign(⟨ui, un,i⟩H)un,i(Tn(x))|2dν(x)

=
N∑
i=1

∫
Ω
|ui(x)− sign(⟨ui, un,i⟩H)un,i(x) + sign(⟨ui, un,i⟩H)un,i(x)− sign(⟨ui, un,i⟩H)un,i(Tn(x))|2dν(x)

≤ 2
N∑
i=1

∫
Ω

(
|ui(x)− sign(⟨ui, un,i⟩H)un,i(x)|2 + |un,i(x)− un,i(Tn(x))|2

)
dν(x)

= 2

N∑
i=1

∥ui − sign(⟨ui, un,i⟩H)un,i∥2ν + 2

N∑
i=1

∫
Ω
|un,i(x)− un,i(Tn(x))|2dν(x)

≤ 2

N∑
i=1

∥ui − sign(⟨ui, un,i⟩H)un,i∥2H + 2

N∑
i=1

∫
Ω
|un,i(x)− un,i(Tn(x))|2dν(x)

≤
128C2N∥Σν∥2∞

(√
r(Σν)
n ∨ r(Σν)

n ∨
√

β
n ∨ β

n

)2

(mini=1,2,··· ,n ḡi)2
+ 2

N∑
i=1

∫
Ω
|un,i(x)− un,i(Tn(x))|2dν(x)

holds with probability at least 1− e−β, where

un,i(x)− un,i(Tn(x)) =
1√
nλn,i

n∑
j=1

vji
(
k̄(x, xj)− k̄(Tn(x), xj)

)
≤ 2M

λn,i
,

and the last inequaility comes from Lemma 20.
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Denote ḡmin = mini=1,2,··· ,n ḡi, and recall that (from Lemma 17)

sup
j≥1

|λn,j − λj | ≤ ∥Σνn − Σν∥∞.

We have

W 2
2

(
F♯ν, F̃n♯νn

)

≤
128C2N∥Σν∥2∞

(√
r(Σν)
n ∨ r(Σν)

n ∨
√

β
n ∨ β

n

)2

(ḡmin)2
+ 8M2

N∑
i=1

1

λ2n,i

≤
128C2N∥Σν∥2∞

(√
r(Σν)
n ∨ r(Σν)

n ∨
√

β
n ∨ β

n

)2

(ḡmin)2
+ 8M2

N∑
i=1

1(
λi − C

(√
r(Σν)
n ∨ r(Σν)

n ∨
√

β
n ∨ β

n

))2

holds with probability at least 1− 2e−β, where the sencond inequality comes from Lemma 18 and

we assume that n is large enough such that C

(√
r(Σν)
n ∨ r(Σν)

n ∨
√

β
n ∨ β

n

)
< λi, as required at the

end of Theorem 4.

Then we have

W2

(
OF̃n♯νn, F

Q
♯ ν
)

≤W2

(
F̃♯ν,OF̃n♯νn

)
+W2

(
F̃♯ν, F

Q
♯ ν
)

=W2

(
O−1F̃♯ν, F̃n♯νn

)
+W2

(
F̃♯ν, F

Q
♯ ν
)

=W2

(
F♯ν, F̃n♯νn

)
+W2

(
F̃♯ν, F

Q
♯ ν
)

≤

√√√√√√√√
128C2N∥Σν∥2∞

(√
r(Σν)
n ∨ r(Σν)

n ∨
√

β
n ∨ β

n

)2

(ḡmin)2
+ 8M2

N∑
i=1

1(
λi − C

(√
r(Σν)
n ∨ r(Σν)

n ∨
√

β
n ∨ β

n

))2

+

√√√√√N

τ − S∗
b

S∗
w

2

2

+ 4N
3
2

(
1√

1−Nτ
− 1

)

holds with probability at least 1− 2e−β.
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Also, it’s easy to check the finite second moments condition of the probability measures OF̃n♯νn as

follows: ∫
Ω

∣∣∣OF̃n(x)∣∣∣2 dνn(x) = ∫
Ω

∣∣∣F̃n(x)∣∣∣2 dνn(x) = N∑
i=1

∥un,i∥2νn =

N∑
i=1

n∑
j=1

u2n,i(xj) = N.

By using Proposition 3 about Wasserstein distance again, we can derive that with probability

at least 1 − 2e−β, the probability measure F̃n♯νn (equivalently, µn = Fn♯νn) has an orthogonal

cone structure with parameters
(
σ1 + s, σ2 + s, · · · , σN + s, δ + t2, 1−sin(s)√

Nwmax

)
for any δ ∈ [δ∗, 1) and

s, t > 0 satisfying

t sin(s)

Nwmax
≥

√√√√√√√√
128C2N∥Σν∥2∞

(√
r(Σν)
n ∨ r(Σν)

n ∨
√

t
n ∨ t

n

)2

(ḡmin)2
+ 8M2

N∑
j=1

1(
λi − C

(√
r(Σν)
n ∨ r(Σν)

n ∨
√

t
n ∨ t

n

))2

+

√√√√√N

τ − S∗
b

S∗
w

2

2

+ 4N
3
2

(
1√

1−Nτ
− 1

)
, s+ σi <

π

4
, i = 1, · · · , N.

■

4.5. Strong Version of OCS

As stated in Remark 1, all the four major theorems proved above can be generalized to the strong

version of OCS, i.e. each cone covers one specific component, which requires only a small mod-

ification in Proposition 6 and Proposition 11. We obtained an upper bound of ν
(⋂N

l=1A
c
l

)
and

thus get an lower bound of µQk

(⋃N
k=1Ck

)
. Instead of considering all cones together, we can obtain

upper bounds of νk (A
c
k) for k = 1, 2, · · · , N respectively, and thus get lower bounds of µQ (Ck) for

k = 1, 2, · · · , N respectively. In order to distinguish it from the original definition, we call it as

strong OCS. In Proposition 1, we have already used the concept of strong OCS since we assumed

that the embedded points have latent labels.

The following Proposition 12 and Proposition 13 gives similar results to Proposition 6 and Propo-

sition 11. We can find the difference of the δ∗’s defined in these four Propositions. Proposition 12

defines a significantly larger δ∗ than Proposition 6 showing in the coefficient N2q and Proposition
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13 also defines a significantly larger δ∗ than Proposition 11 showing in the coefficient N2. This is

consistent with our intuition that strong versions of the OCS may have smaller coverage than the

original version.

Proposition 12. (modified from proposition 6) The probability measure µQ = FQ♯ ν has a strong

orthogonal cone structure with parameters (σ1, σ2, · · · , σN , δ, r) for any σ1, σ2, · · · , σN ∈ (0, π4 ),

δ∗ ≤ δ < 1 and r = 1√
max(Nq−1,1)wq

max

where

δ∗ =
cos2(σk)

1− cos2(σk)

ImaxN
2q+1

Imin

(
wmax

wmin

)q N∑
l=1

wql Sl.

Proof. For each k = 1, . . . , N, let

Ck :=

{
z ∈ RN :

zk
|z|

> cos(σk), |z| ≥ r

}
with r = 1√

max(Nq−1,1)wq
maxImax

and fixed σk ∈ (0, π/4) (k = 1, 2, · · · , N).

Also denote Ak as the preimage of Ck through FQ, i.e.

Ak :=
(
FQ
)−1

(Ck) =

x ∈ M :
qk(x)√
Ikw

q
k

> cos(σk)

 N∑
j=1

 qj(x)√
Ijw

q
j

21/2

,

 N∑
j=1

 qj(x)√
Ijw

q
j

21/2

> r

 .

Then we have

µQ (Ck) = FQ♯ ν (Ck) = ν (Ak) ,

and the condition

(∑N
j=1

(
qj(x)√
Ijw

q
j

)2
)1/2

> r is redundant because of the definition of r. Thus Ak

can be re-written as

Ak =

x ∈ M :

√
ρqk(x)

Ikρq(x)
> cos(σk)

 N∑
j=1

√ ρqj(x)

Ijρq(x)

21/2
 .

For an arbitrary x0 ∈ Ack ⊆ Ω (k = 1, 2, · · · , N) we have

ρqk(x0)

Ikρq(x0)
≤ cos2(σk)

N∑
j=1

ρqj(x0)

Ijρq(x0)
,
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i.e., (
1− cos2(σk)

) ρqk(x0)
Ik

≤ cos2(σk)
∑
j ̸=k

ρqj(x0)

Ij
.

Since
∑N

k=1
wkρk(x0)
ρ(x0)

= 1, we know that there exists a k̂ ∈ {1, 2, · · · , N} for which

wk̂ρk̂ (x0)

ρ (x0)
≥ 1

N
.

Thus we have

1− cos2(σk)

N2q
≤ (1− cos2(σk))

(
wk̂ρk̂ (x0)

ρ (x0)

)2q

≤ cos2(σk)
Ik

ρqk(x0)

∑
j ̸=k̂

ρqj(x0)

Ij

(
wk̂ρk̂ (x0)

ρ (x0)

)2q

= cos2(σk)Ik
∑
j ̸=k̂

1

Ij

ρqj(x0)

ρq
k̂
(x0)

(
wk̂ρk̂ (x0)

ρ (x0)

)2q

= cos2(σk)Ik

(
wmax

wmin

)q∑
j ̸=k̂

1

Ij

(
wjρj(x0)

ρ(x0)

wk̂ρk̂(x0)

ρ(x0)

)q

≤ cos2(σk)Ik

(
wmax

wmin

)q∑
k

∑
j ̸=k

1

Ij

(
wjρj(x0)

ρ(x0)

wk̂ρk̂(x0)

ρ(x0)

)q
.

This is true for every x0 ∈ Ack, so

1− cos2(σk)

N2q
ν(Ack) ≤ cos2(σk)Ik

(
wmax

wmin

)q∑
l

∑
j ̸=l

wqlw
q
j

Ij

∫
M

(
ρlρj
ρ2

)q
ρqdx

≤ cos2(σk)
Imax

Imin

(
wmax

wmin

)q N∑
l=1

wql Sl,

and thus

ν(Ack) ≤
cos2(σk)

1− cos2(σk)

ImaxN
2q

Imin

(
wmax

wmin

)q N∑
l=1

wql Sl.

Recall that νk(A
c
k) ≤

ν(Ac
k)

wk
, we have

N∑
k=1

wkνk(A
c
k) ≤

cos2(σk)

1− cos2(σk)

ImaxN
2q+1

Imin

(
wmax

wmin

)q N∑
l=1

wql Sl,

104



and this implies

N∑
k=1

wkµ
Q
k (Ck) ≥ 1− cos2(σk)

1− cos2(σk)

ImaxN
2q+1

Imin

(
wmax

wmin

)q N∑
l=1

wql Sl,

which completes the proof. □

Proposition 13. (modified from proposition 11) The probability measure µQ = FQ♯ ν with FQ

defined above has a strong orthogonal cone structure with parameters (σ1, σ2, · · · , σN , δ, r) for any

σ ∈ (0, π/4), δ∗ ≤ δ < 1 and r = 1√
Nwmax

where

δ∗ :=
cos(σk)√

1− cos2(σk)

N3wmax

wmin

S∗
w,up

S∗
w

∑
l

wlSl.

Proof. For each k = 1, . . . , N, let

Ck :=

{
z ∈ RN :

zk
|z|

> cos(σk), |z| ≥ r

}
with r = 1√

Nwmax
and fixed σk ∈ (0, π/4) (k = 1, 2, · · · , N).

Also denote Ak as the preimage of Ck through FQ, i.e.

Ak :=
(
FQ
)−1

(Ck) =

x ∈ Ω :
qk(x)

∥qk∥ν
> cos(σk)

 N∑
j=1

(
qj(x)

∥qj∥ν

)2
1/2

,

 N∑
j=1

(
qj(x)

∥qj∥ν

)2
1/2

> r

 .

Then we have

µQ (Ck) = FQ♯ ν (Ck) = ν (Ak) ,

and Ak can be re-written as

Ak =

x ∈ Ω :
qk(x)

∥qk∥ν q(x)
> cos(σk)

 N∑
j=1

(
qj(x)

∥qj∥ν q(x)

)2
1/2

,

 N∑
j=1

(
qj(x)

∥qj∥ν

)2
1/2

> r

 .

For an arbitrary x0 ∈ Ack ⊆ Ω (k = 1, 2, · · · , N) we have

(
qk(x0)

∥qk∥ν q(x0)

)2

≤ cos2(σk)

N∑
j=1

(
qj(x0)

∥qj∥ν q(x0)

)2

,
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i.e., (
1− cos2(σk)

)( qk(x0)

∥qk∥ν q(x0)

)2

≤ cos2(σk)
∑
j ̸=k

(
qj(x0)

∥qj∥ν q(x0)

)2

.

By the fact that
∑N

k=1
wkρk(x0)
ρ(x0)

= 1 and the definition of q(·) and qk(·), we know that
∑N

k=1
wkqk(x0)
q(x0)

=

1, and thus there exists a k̂ ∈ {1, 2, · · · , N} for which

wk̂qk̂ (x0)

q (x0)
≥ 1

N
.

Thus we have√
1− cos2(σk)

N2
≤
√

1− cos2(σk)

(
wk̂qk̂(x0)

q(x0)

)2

≤ cos(σk)
∥qk∥ν q(x0)
qk(x0)

√√√√∑
j ̸=k̂

(
qj(x0)

∥qj∥ν q(x0)

)2(wk̂qk̂(x0)
q(x0)

)2

≤ cos(σk)
∥qk∥ν q(x0)
qk(x0)

∑
j ̸=k̂

(
qj(x0)

∥qj∥ν q(x0)

)(
wk̂qk̂(x0)

q(x0)

)2

≤ cos(σk) ∥qk∥ν
wmax

wmin

∑
k

∑
j ̸=k

wkwj
∥qj∥ν

qk(x0)qj(x0)

q2(x0)
.

This is true for every x0 ∈ Ack, so√
1− cos2(σk)

N2
ν(Ack) ≤ cos(σk)

wmax

wmin

S∗
w,up

S∗
w

∑
l

∑
j ̸=l

wlwj

∫
M

qkqj
q2

ν(dx)

= cos(σk)
wmax

wmin

S∗
w,up

S∗
w

∑
l

wlSl,

and thus

ν(Ack) ≤
cos(σk)√

1− cos2(σk)

N2wmax

wmin

S∗
w,up

S∗
w

∑
l

wlSl.

Recall that νk(A
c
k) ≤

ν(Ac
k)

wk
, we have

N∑
k=1

wkνk(A
c
k) ≤

cos(σk)√
1− cos2(σk)

N3wmax

wmin

S∗
w,up

S∗
w

∑
l

wlSl,
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and this implies

N∑
k=1

wkµ
Q
k (Ck) ≥ 1− cos(σk)√

1− cos2(σk)

N3wmax

wmin

S∗
w,up

S∗
w

∑
l

wlSl,

which competes the proof. □
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CHAPTER 5

Simulations

This chapter consists of two parts. The first part presents numerical experiments illustrating the

above theoretical contributions. In the second part, we present some explorations of the relation-

ships between well-separateness of the mixture model and the OCS. In particular, we address the

question whether it is possible to draw conclusions about the number of clusters (mixture com-

ponents) by using OCS features of the embeddings. Note that this is the inverse of the problem

studied theoretically above.

5.1. Numerical experiments illustrating the theoretical results

The theoretical results about the OCS presented above depend on various parameters, and it is

not straightforward to immediately see how the statements vary in these parameters. Therefore,

we explore this dependence numerically in this section. First, as a sanity check, we numerically

compute δ∗ from Theorem 2 and Theorem 4 in different situations in order to verify that the

dependence of δ∗ on these parameters is as expected, or that the values of δ∗ are ’reasonable’.

Overall, the behavior of δ∗ as a function of the various parameters is as expected. However, as

it turns out, for some combinations of parameters, the value of δ∗ is larger than 1, rendering the

presented inequality trivial. All the numerical examples considered here are in dimension 2.

5.1.1. Weighted Laplacian case.

Equal mixture of two Gaussians. We consider a simple 2-dimensional Gaussian mixture model

consisting of an equal mixture of a standard normal and a shifted standard normal with mean

(γ, γ)T and try different values of γ and different values of the parameter q. The considered values

for γ are 2, 3, and 4, and the values for q are 0.5, 1, and 2.

Indeed, the numerical experiments verify the expected behavior: Fixing the remaining parameters,

• δ∗ is decreasing in γ,
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• δ∗ is decreasing in q,

• δ∗ is decreasing in σ.

As can be seen in Table A.1, the value of δ∗ sometimes is larger than 1, so that in these cases the

obtained bound is trivial. A plot of log(δ∗) and σ and of log(δ∗) and q, respectively, appears to be

approximately linear, again confirming the intuition (see figure 5.1).

Equal mixture of two Gaussians with different variances. We consider two Gaussians with

different variances, i.e., one Gaussian is more concentrate than another one. Here the behavior is

qualitatively similar to the previous case of equal variances if the difference of two variances are

not too large compared to the difference of two means. See Table A.2.

Equal Mixture of two Uniforms. Here we consider the equal mixture of two uniform distri-

butions on squares, one of them is uniform on [0, 1]2 and the other is uniform on [a, b]2, where we

consider different values of a and b (see Table A.3). Assume 0 < a < 1 < b, then in this case, we

observe that: Fixing the remaining parameters,

• δ∗ is decreasing in a,

• δ∗ is decreasing in b,

• δ∗ is decreasing in q,

• δ∗ is decreasing in σ.

The first and the second bullet points simply say that a a higher overlap has a negative effect.

Equal mixture of a Gaussian and a Uniform. Next, we consider the equal mixture of a

2-dimensional standard normal with a uniform on [a, b]2, where we consider different choices of a

and b, and again different powers q. When b− a is fixed, and [a, b]2 moves away from the center of

the Gaussian, then the OCS gets stronger. Since we keep the angle σ fixed, we observe that δ∗ is

decreasing, as expected. Again, δ∗ is decreasing in q, except in the case [a, b]2 = [0, 1]2, where the

behavior of δ∗ is not monotonically decreasing in q. See Table A.4.

Equal mixture of three Gaussians. Then we consider three Gaussian components with different

variance (1, 3, and 2, respectively). The distance between the center of component 1 and 2, 2 and

3 are denoted as γ1 and γ2. The behavior of incorrect coverage ratio δ∗ with respect to them
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and power parameter q are explored. Most behaviors are similar with two Gaussian case and are

omitted here. An additional interesting finding comes from the case where γ1 = 2, γ2 = 3 and the

case where γ1 = 3, γ2 = 2. Their behaviors are slightly different because of the different variance

of components 1 and 3. If their positions are fixed, then when component 2 is closer to more

concentrate component (with smaller variance) is more probable to be well-separated (see Table

A.5). All these results are based on reasonable choices of the variances such that the pairwise

differences of the three variances are not too large compared to the pairwise differences of the three

means.

Equal mixture of an annulus and a ball inside the annulus. This example has two connected

components. The first connected component consists of points lying in a ball centered at the origin

with unit radius, and the second connected component consists of points lying in an annulus (also

centered at the origin) with radius r and ‘thickness’ η. The boundary of this annulus is a small

circle with radius r − η and a large circle with radius r + η. We generate the samples with noise,

and more specifically, the first group of points is drawn from a two-dimensional standard normal

distribution, and the second group of points is drawn from uniformly distributed points on the

boundary of a circle with radius r and then added by two-dimensional Gaussian noise with common

standard deviations of η on both two dimensions. Note that the annulus is a non-convex connected

component, and the two connected components only have a small overlap caused by the random

noise. This is a standard example for non-linear clustering, because linear methods are unable to

separate the clusters, and so one is interested to explore in how far the non-linear methods can.

Here we consider δ∗ as a function of r and η. The behavior is as expected (see Table A.6) and can

be summarized as follows: Fixing the remaining parameters,

• δ∗ is decreasing in r,

• δ∗ is increasing in η,

• δ∗ is decreasing in q.

Mixture of two ellipses and the figure shaped as ‘∞’. The last example is a generalized

version of previous case, and there are three connected components. The first connected component

is an ellipse centered at the origin with long axis lying on the angle bisector of x-axis and y-axis

with length η and eccentricity ρ. The second connected component is an ellipse centered at (12, 0)T
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with long axis lying on the angle bisector of x-axis and the straight line of x = 12 (parallel with

y-axis) with length η and eccentricity ρ. The third connected component is an area combined by

two annuli and shaped as ∞, where the two annuli touch each other just one point. These two

annulus have the same centers with the first two components, respectively, and their radii and

thickness are kept as 5.5 and 1. We generate the samples with mixture weights 1
4 ,

1
4 and 1

2 , where

∞ has weight 1
2 , and noises are also added in this example. More specifically, the first group of

points is drawn from a bivariate normal distribution with common standard deviation of η on both

two dimensions and correlation ρ of the two dimensions, and the second group of points is drawn

from the same distribution with a location shift of length 12. The third group of points is drawn

from uniformly distributed points on the boundary of two circles with radius 5.5 and then added

by Gaussian noise with a standard deviation of 1, which have the same centers with the first two

components, respectively. Here we consider δ∗ as a function of η and ρ. The variance parameter

η can represent the magnitude of the two middle components while the correlation parameter ρ

quantifies the shape. Note that the extreme cases ρ = 0 and ρ = 1 correspond to a ball and a line

segment. The behavior is as expected (see Table A.6) and can be summarized as follows: Fixing

the remaining parameters,

• δ∗ is increasing in η,

• δ∗ is first decreasing then increasing in ρ, and this behavior depends on the value of η and

the increasing part may degenerate (δ∗ is decreasing in ρ in that case),

• δ∗ is decreasing in q.

Here, the behaviors are more complicated then in the previous examples. A small decrease of η

(from 1.1 to 1) leads to strong decrease of δ∗. On the other hand, a significant increase of ρ (0

to 0.5) leads to relatively small decrease of δ∗. The small change in η hardly detectable visually,

while changes of ρ are more obvious. Thus the variance parameter η plays more important role

than correlation parameter ρ in this setting.

For fixed η, when ρ increases from 0 to 1, the circles are squeezed to be ellipses and finally segments.

During this process, the overlapping parameter of rings and ellipse decreases on the direction of

major axis of the ellipse and increases on the direction of minor axis. Such trade-off between two

directions explains the unimodal change of δ∗ with respect to ρ.
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5.1.2. Kernel PCA case. Equal Mixture of two Gaussians. In this part, we use the

same mixture models as in weighted Laplacian case with two Gaussians with covariance matrices

the identity, centered at (0, 0) and (γ, γ)T , respectively, and use the following kernel

k(x, y) =
1√
πh

exp

{
−(x− y)2

h

}
.

We consider all the combinations of γ = 1, 2, 3, 5 and h = 2, 5, 10. Again, suppose the other

parameters are fixed, we can find the following relationships (see Table A.8):

• δ∗ is decreasing in γ,

• δ∗ is increasing in h,

• δ∗ is decreasing in σ.

All similar examples discussed above in the context of the weighted Laplacian give a similar behavior

of δ∗. Note also that the bandwidth parameter h in the Kernel PCA case plays a similar role as

the reciprocal of the power parameter q in the weighted Laplacian case.

5.1.3. Summary. In previous examples, the relationship between the upper bound of coverage

ratio δ∗ and the location and the shape of the underlying mixtures can be derived in a straightfor-

ward manner, and all the simulation results are as expected. However, it is worth thinking about

the influence of the power q (in case of the Laplacian) and the bandwidth h (in case of kernel

PCA). Simple monotonic relationships have been observed in the examples discussed above, but

these might not always hold. In order to explore the relationships further, we can simply consider

the two components case and check the behavior of the (weighted) overlapping parameter, which

is highly positive correlated with the coverage ratio δ∗.

In the weighted Laplacian case, our results show that larger q often leads to a larger coverage,

i.e. better OCS. However, this only holds when the two components are not too concentrated, i.e.

the variance of each component is not too small. We used standard Gaussian distributions with

variances equal to 1, so that the maximum value of each component equals 1√
2π
. In such case,

a large value of q makes the rescaled density flatter and overlapping of each pair of components

reduces. This monotone relationship still holds for variances larger than 1, but it might no longer
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hold for smaller variances. Suppose the components of previous example has variance σ, then

S12 =

∫ (
ρ1(x)ρ2(x)

ρ(x)

)q
dx

=

(
2

π

) q
2 1

σq

∫ ∞

−∞

(
exp
{
− 1

2σ2x
2 − 1

2σ2 (x− γ)2
}

exp
{
− 1

2σ2x2
}
+ exp

{
− 1

2σ2 (x− γ)2
})q dx

=

(
2

π

) q
2

σ1−q
∫ ∞

−∞

(
exp
{
−1

2x
2 − 1

2(x− γ
σ )

2
}

exp
{
−1

2x
2
}
+ exp

{
−1

2(x− γ
σ )

2
})q dx,

which depends on the variance even just for gaussian example. Theoretical analysis and simulation

results show that S12|σ=1 is decreasing w.r.t q, so S12 is decreasing w.r.t q when σ > 1 but may

increase when σ ≪ 1. More generally (not restricted to the Gaussian case), this phenomenon also

appears when more concentrated components (peak values of densities are much larger than 1)

are included in mixture models. Practically, kernel density estimations of standardized data are

usually not too concentrated, (otherwise the choice of parameter is not a necessary agenda since

concentrated components are easily clustered with good performance), and in such cases, we tend

to choose larger power q to obtain better coverage ratio δ∗.

5.2. The inverse problem: Does the OCS contain information about the separateness

of the mixture model?

So far, we have explored the OCS of different spectral and kernel embeddings based on mixture

models, both theoretically and numerically. One might also ask the question: Can we say something

about the separateness of mixture components based on the observed embedding. For instance,

if the embedding displays a strong OCS (well separated clusters along orthogonal axis), can we

conclude that the mixture components are well separated? Again the explorations are conducted

numerically.

Given an embedding, we attempt to numerically estimate the OCS. We do this by first fixing a

coverage proportion and then finding orthogonal cones achieving this coverage with opening angles

as small as possible. To simplify the computations somewhat the approach taken here is as follows:
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Given embedded data y1, y2, · · · , yn ∈ RN (N ≥ 2), we first find an “optimal” orthogonal basis

e∗1, e
∗
2, · · · , e∗N (or an optimal rotation) by minimizing the criterion

N∑
i=1

(
min

j=1,2,··· ,N

⟨yi, ej⟩
∥yi∥∥ej∥

)
over all possible orthogonal basis. Then, given e∗1, e

∗
2, · · · , e∗N , and given a desired coverage propor-

tion 1− δ∗, we find the smallest angle σ∗ such that at least (1− δ)× 100% of the data are covered

by the orthogonal cones with exes e∗1, e
∗
2, · · · , e∗N and opening angle σ∗. Here, for computational

reasons, we fix the angle to be the same for all cones. The angle σ∗ then serves as an observed

measure of the quality of the OCS. We found this to be a good compromise between computational

complexity and measuring the OCS.

We then applied this approach to the examples discussed above. It turns out that our measure of

quality of the OCS shows some relation to the choice of the number of clusters. Indeed, the angle

σ∗ always was clearly the smallest when the number of clusters was chosen correctly. (It should

perhaps be noted in this context that in our theoretical results, the OCS always was based on the

correct number N of mixture components.)

In order to illustrate the useful contribution based on OCS, let’s think of a traditional clustering

problem: Given data x1, x2, · · · , xn ∈ Rd and assume that the true number of clusters is N . In

practice, one needs to choose the embedding dimension (k) and the number of clusters (M). We

expect to choose the correct number of clusters (M = N) and hope that the choice of k is good

enough to get reasonable clustering result. Now if original data is generated from a well-separated

mixture model, previous idea of how to choose the correct number of clusters can be further

explained as follows:

• If we choose correct number of clusters (i.e., M = N), then the major theorems can be

applied and the M concentrated cones give good clustering result.

• If we overestimate the number of clusters (i.e., M > N), then we can also apply the major

theorems in an N -dimensional subspace and get N orthogonal concentrated cones in that

subspace.
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• If we underestimate the number of clusters (i.e.,M < N), then there exists a set of rotation

angles β1, β2, · · · , β(M2 ) such that under the rotated space, there areM cones concentrated

around new M axes which cover most parts of original M clusters. Most parts of all the

embeddings based on the other N −M clusters are concentrated around the origin. (They

can be seen as projection from higher dimensional embedding space.)

The first two cases are straightforward and the third one can be proved by the similar ideas of

the major theorems and can be explained heuristically that M -dimensional embedding can be also

treated as a further projection of N -dimensional embedding. Since the OCS of the latter case was

proved, as long as we projectN -dimensional embedding based on the direction generated by the axes

that cones are concentrated around, then M clusters (out of N) are still concentrated around given

axes and other N −M clusters are concentrated around the origin. This set of conclusions informs

a practical way to choose the number of clusters: Find embeddings in dimensions k = 1, . . . , N1

for some upper bound N1 (to be specified). For each k, consider two criteria: The concentration of

embeddings around the origin, and the performance measure σ∗ from above. The goal is to find a k

for which simultaneously, σ∗ is small, and also the concentration of embeddings around the origin

is neither high nor small. We have not yet developed an explicit practical criterion based on these

ideas. This will be addressed in future work.
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(a) δ ∼ σ (b) log(δ) ∼ σ

(c) δ ∼ q (d) log(δ) ∼ q

(e) δ ∼ γ (f) log(δ) ∼ γ

Figure 5.1. Behavior of δ with respect to parameters σ, q and γ in the Equal mixture of Two
Gaussians case.
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CHAPTER 6

Conclusions and future work

We proved orthogonal cone structure (OCS) in two low-dimensional embeddings including weighted

Laplacian embedding and Kernel PCA embedding, in both population case and sample case. More-

over, precise definition of mixture model and the well-separation property with similarity parameter,

coupling parameter, indivisibility parameter and eigen-tail parameter are given. Angles, coverage

and radius of OCS were also explored based on theoretical analysis and simulation study. Our

results about OCS are useful in clustering algorithm and especially guarantee the correct ratio of

clustering result based on k-means algorithm. Some theoretical examples about mixture of Gaus-

sians or Uniforms are checked in both weighted Laplacian case and Kernel PCA case and the

behavior of OCS w.r.t the change of corresponding tunning parameters (e.g. power parameter q in

weighted Laplacian case and bandwidth parameter h in Kernel PCA case) are also illustrated. De-

tailed proof of all four cases are given, where rescaled densities and corresponding induced measure

play essential role in the population setting and spectral convergence is the key part in the sample

setting. Meanwhile, Control of interpolation errors and discretization errors are important under

weighted Laplacian case while basic concepts of RKHS and related norm bounds are frequently used

under Kernel PCA case. All theoretical statements are checked based on simulation study and the

effects of parameters are explored in the same part. Finally, reverse problem about the inference of

original model or data based on embedded data is explored. By choosing optimal rotation matrix

in the embedded space, people can find the best axes that most embedded data are concentrated

around, and thus it is helpful about the choice of correct number of clusters.

As stated at the beginning, OCS is observed in many different dimensional reduction embeddings,

and there also exist some different geometric structures that can be considered. Better geometric

summarization with less parameters is one possible direction. There are also many possible sub-

problems based on the inverse problem stated in the last part. Besides the choice of the number

of clusters, can we infer more properties (e.g. well-separation, geometric relative position) of the
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original model (data)? Also, the choice of optimal rotation matrix is stable only when original

clusters are well-separated, it is worth exploring the case when original clusters are somehow mixed.

We also hope to extend our results to more general groups of operators. Graph Laplacian operator,

weighted Laplacian operator and p-Laplacian operator are differential operators while Kernel PCA

operator and Kernel CCA operator are integral operators. The proof techniques and ideas are

different in these two groups but are similar within each group. A latent set of conditions of these

operators (respectively in both two groups) could be summarized and generalized to most kinds of

operators. Angle parameter and coverage ratio parameter can also be considered as new criteria

to evaluate the performance of clustering and classification, which requires the prerequisite step of

density estimation and need to be improved in both aspects of methodology and computational

efficiency. The last but not the least, real data application of OCS should also be considered,

including improving the clustering results, choosing best tuning parameters, quantifying the true

cluster numbers, and, most importantly, explaining the real data in an appropriate manner.
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APPENDIX A

Behaviors of incorrect coverage ratio with respect to some

selected parameters

In this appendix, we put all examples about the behaviors of incorrect coverage ratio δ∗ and other

parameters. The first example about mixture of two gaussians in the weighted Laplacian setting is

used to plot the Figure 5.1. Other tables show similar information for some different parameters

in other cases.

γ q σ = π
12 σ = π

9 σ = π
8 σ = π

6 σ = 7π
36 σ = 2π

9 σ = π
4

2 0.5 7.3879 4.0040 3.0915 1.5913 1.0819 0.7533 0.5304
2 1 3.0384 1.6467 1.2715 0.6544 0.4449 0.3098 0.2181
2 2 0.5304 0.2875 0.2220 0.1142 0.0777 0.0541 0.0381
3 0.5 1.9666 1.0658 0.8229 0.4236 0.2880 0.2005 0.1412
3 1 0.5117 0.2773 0.2141 0.1102 0.0749 0.0522 0.0367
3 2 0.0405 0.0219 0.0169 0.0087 0.0059 0.0041 0.0029
4 0.5 0.1535 0.0832 0.0642 0.0331 0.0225 0.0157 0.0110
4 1 0.0112 0.0061 0.0047 0.0024 0.0016 0.0011 0.0008
4 2 0.0001 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Table A.1. Behavior of incorrect coverage ratio δ∗ for equal mixture of two Gaussians in the
weighted Laplacian case. γ: off-set parameter, q: power parameter, σ: angle parameter. The last
column is the average δ∗ for each row, the same for the following tables.

γ q σ = π
12 σ = π

9 σ = π
8 σ = π

6 σ = 7π
36 σ = 2π

9 σ = π
4

2 0.5 16.2891 8.8282 6.8164 3.5085 2.3853 1.6610 1.1695
2 1 4.6312 2.5100 1.9380 0.9975 0.6782 0.4723 0.3325
2 2 2.6981 1.4623 1.1290 0.5811 0.3951 0.2751 0.1937
3 0.5 8.9057 4.8266 3.7267 1.9182 1.3041 0.9081 0.6394
3 1 2.0203 1.0949 0.8454 0.4352 0.2958 0.2060 0.1450
3 2 0.7833 0.4245 0.3278 0.1687 0.1147 0.0799 0.0562
4 0.5 3.5421 1.9197 1.4823 0.7629 0.5187 0.3612 0.2543
4 1 0.6532 0.3540 0.2733 0.1407 0.0956 0.0666 0.0469
4 2 0.1908 0.1034 0.0798 0.0411 0.0279 0.0195 0.0137

Table A.2. Behavior of incorrect coverage ratio δ∗ for equal mixture of two Gaussians with different
variances. γ: off-set parameter, q: power parameter, σ: angle parameter.
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a b q σ = π
12 σ = π

9 σ = π
8 σ = π

6 σ = 7π
36 σ = 2π

9 σ = π
4

0.5 1.5 0.5 12.6117 6.8351 5.2775 2.7164 1.8468 1.2860 0.9055
0.5 1.5 1 6.0459 3.2767 2.5300 1.3022 0.8853 0.6165 0.4341
0.5 1.5 2 1.7028 0.9228 0.7125 0.3668 0.2493 0.1736 0.1223
0.5 1.2 0.5 19.7555 10.7069 8.2669 4.2552 2.8929 2.0145 1.4184
0.5 1.2 1 8.2104 4.4498 3.4357 1.7684 1.2023 0.8372 0.5895
0.5 1.2 2 3.4436 1.8663 1.4410 0.7417 0.5043 0.3511 0.2472
0.8 1.5 0.5 8.7774 4.7571 3.6730 1.8906 1.2853 0.8950 0.6302
0.8 1.5 1 2.8662 1.5534 1.1994 0.6173 0.4197 0.2923 0.2058
0.8 1.5 2 0.8954 0.4853 0.3747 0.1929 0.1311 0.0913 0.0643
0.8 1.2 0.5 14.4122 7.8110 6.0310 3.1043 2.1105 1.4696 1.0348
0.8 1.2 1 4.3795 2.3735 1.8326 0.9433 0.6413 0.4466 0.3144
0.8 1.2 2 2.1962 1.1903 0.9190 0.4730 0.3216 0.2240 0.1577

Table A.3. Behavior of incorrect coverage ratio δ∗ for equal mixture of two Uniforms. a&b:
support parameters (left endpoint and right endpoint), q: power parameter, σ: angle parameter.

a b q σ = π
12 σ = π

9 σ = π
8 σ = π

6 σ = 7π
36 σ = 2π

9 σ = π
4

0 1 0.5 23.8397 12.9203 9.9760 5.1348 3.4910 2.4310 1.7116
0 1 1 5.4092 2.9316 2.2636 1.1651 0.7921 0.5516 0.3883
0 1 2 6.5453 3.5473 2.7390 1.4098 0.9585 0.6674 0.4699
1 2 0.5 10.2587 5.5599 4.2929 2.2096 1.5023 1.0461 0.7365
1 2 1 1.3345 0.7232 0.5584 0.2874 0.1954 0.1361 0.0958
1 2 2 0.6536 0.3542 0.2735 0.1408 0.0957 0.0666 0.0469
2 3 0.5 0.6977 0.3781 0.2920 0.1503 0.1022 0.0711 0.0501
2 3 1 0.0181 0.0098 0.0076 0.0039 0.0027 0.0018 0.0013
2 3 2 0.0005 0.0003 0.0002 0.0001 <0.0001 <0.0001 <0.0001

Table A.4. Behavior of incorrect coverage ratio δ∗ for equal mixture of a Gaussian and a Uni-
form. a&b: support parameters (left endpoint and right endpoint), q: power parameter, σ: angle
parameter.

γ1 γ2 q σ = π
12 σ = π

9 σ = π
8 σ = π

6 σ = 7π
36 σ = 2π

9 σ = π
4

2 2 0.5 24.6104 13.3380 10.2985 5.3008 3.6039 2.5096 1.7669
2 2 1 6.7474 3.6569 2.8235 1.4533 0.9881 0.6880 0.4844
2 2 2 2.9252 1.5854 1.2241 0.6301 0.4284 0.2983 0.2100
2 3 0.5 17.6214 9.5502 7.3739 3.7955 2.5804 1.7969 1.2652
2 3 1 4.8336 2.6197 2.0227 1.0411 0.7078 0.4929 0.3470
2 3 2 2.1205 1.1492 0.8874 0.4567 0.3105 0.2162 0.1522
3 2 0.5 18.5026 10.0278 7.7426 3.9853 2.7095 1.8867 1.3284
3 2 1 4.9073 2.6596 2.0535 1.0570 0.7186 0.5004 0.3523
3 2 2 2.0014 1.0847 0.8375 0.4311 0.2931 0.2041 0.1437
3 3 0.5 12.4455 6.7450 5.2080 2.6806 1.8225 1.2691 0.8935
3 3 1 2.9966 1.6241 1.2540 0.6454 0.4388 0.3056 0.2151
3 3 2 0.9642 0.5225 0.4035 0.2077 0.1412 0.0983 0.0692

Table A.5. Behavior of incorrect coverage ratio δ∗ for equal mixture of three Gaussians. γ1: off-
set parameter between component 1 and 2, γ2: off-set parameter between component 2 and 3, q:
power parameter, σ: angle parameter.
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r η q σ = π
12 σ = π

9 σ = π
8 σ = π

6 σ = 7π
36 σ = 2π

9 σ = π
4

5.5 1 0.5 1.0348 0.5608 0.4330 0.2229 0.1515 0.1055 0.0743
5.5 1 1 0.0654 0.0354 0.0274 0.0141 0.0096 0.0067 0.0047
5.5 1 2 0.0095 0.0051 0.0040 0.0020 0.0014 0.0010 0.0007
4.5 1 0.5 5.5329 2.9987 2.3153 1.1917 0.8102 0.5642 0.3972
4.5 1 1 0.7821 0.4239 0.3273 0.1685 0.1145 0.0798 0.0562
4.5 1 2 0.3225 0.1748 0.1350 0.0695 0.0472 0.0329 0.0232
5.5 2 0.5 8.2842 4.4898 3.4666 1.7843 1.2131 0.8448 0.5948
5.5 2 1 1.2891 0.6986 0.5394 0.2777 0.1888 0.1314 0.0926
5.5 2 2 1.1531 0.6249 0.4825 0.2484 0.1689 0.1176 0.0828
4.5 2 0.5 13.5518 7.3446 5.6709 2.9189 1.9845 1.3819 0.9730
4.5 2 1 2.5205 1.3660 1.0547 0.5429 0.3691 0.2570 0.1810
4.5 2 2 2.5701 1.3929 1.0755 0.5536 0.3764 0.2621 0.1845

Table A.6. Behavior of incorrect coverage ratio δ∗ for equal mixture of an annulus and a ball
inside the annulus. r: radius parameter, η: thickness parameter, q: power parameter, σ: angle
parameter.

η ρ q σ = π
12 σ = π

9 σ = π
8 σ = π

6 σ = 7π
36 σ = 2π

9 σ = π
4

1 0 0.5 2.4691 1.3382 1.0332 0.5318 0.3616 0.2518 0.1773
1 0 1 0.3423 0.1855 0.1432 0.0737 0.0501 0.0349 0.0246
1 0 2 0.1236 0.0670 0.0517 0.0266 0.0181 0.0126 0.0089
1 0.5 0.5 2.0050 1.0866 0.8390 0.4319 0.2936 0.2044 0.1440
1 0.5 1 0.2778 0.1505 0.1162 0.0598 0.0407 0.0283 0.0199
1 0.5 2 0.1159 0.0628 0.0485 0.0250 0.0170 0.0118 0.0083
1.1 0 0.5 3.8606 2.0923 1.6155 0.8315 0.5653 0.3937 0.2772
1.1 0 1 0.8175 0.4431 0.3421 0.1761 0.1197 0.0834 0.0587
1.1 0 2 0.5019 0.2720 0.2100 0.1081 0.0735 0.0512 0.0360
1.1 0.5 0.5 3.1077 1.6843 1.3005 0.6694 0.4551 0.3169 0.2231
1.1 0.5 1 0.6123 0.3318 0.2562 0.1319 0.0897 0.0624 0.0440
1.1 0.5 2 0.4156 0.2252 0.1739 0.0895 0.0609 0.0424 0.0298

Table A.7. Behavior of incorrect coverage ratio δ∗ for mixture of two ellipses and the figure shaped
as ‘∞’. η: variance parameter, ρ: correlation parameter, q: power parameter, σ: angle parameter.
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γ h σ = π
12 σ = π

9 σ = π
8 σ = π

6 σ = 7π
36 σ = 2π

9 σ = π
4

1 2 3.3694 2.4805 2.1796 1.5637 1.2894 1.0759 0.9028
1 5 3.6354 2.6763 2.3517 1.6872 1.3912 1.1609 0.9741
1 10 3.7253 2.7425 2.4099 1.7289 1.4256 1.1896 0.9982
2 2 1.8813 1.3850 1.2170 0.8731 0.7199 0.6008 0.5041
2 5 2.7412 2.0180 1.7732 1.2722 1.0490 0.8753 0.7345
2 10 3.3239 2.4470 2.1502 1.5426 1.2720 1.0614 0.8906
3 2 0.6008 0.4423 0.3887 0.2789 0.2299 0.1919 0.1610
3 5 1.3502 0.9940 0.8734 0.6266 0.5167 0.4312 0.3618
3 10 2.3288 1.7144 1.5065 1.0808 0.8912 0.7436 0.6240
5 2 0.0083 0.0061 0.0054 0.0039 0.0032 0.0027 0.0022
5 5 0.0717 0.0528 0.0464 0.0333 0.0274 0.0229 0.0192
5 10 0.4013 0.2954 0.2596 0.1862 0.1536 0.1281 0.1075

Table A.8. Behavior of incorrect coverage ratio δ∗ for equal mixture of two Gaussians in the kernel
PCA case. γ: off-set parameter, h: bandwidth parameter, σ: angle parameter.
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[57] V. Koltchinskii and E. Giné, Random matrix approximation of spectra of integral operators, Bernoulli,

(2000), pp. 113–167.
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