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Abstract

The inflammasome is a complex of proteins that plays a critical role in mounting an inflammatory 

response in reply to a harmful stimulus that compromises the homeostatic state of the tissue. The 

NLRP3 inflammasome, which is found in a wound-like environment, is comprised of three 

components: the NLRP3, the adaptor protein ASC and caspase-1. Interestingly, while ASC levels 

do not fluctuate, caspase-1 levels are elevated in both physiological and pathological conditions. 

Despite the observation that merely raising caspase-1 levels is sufficient to induce inflammation, 

the crucial question regarding the mechanism governing its expression is unexplored. We find that 

in an inflammatory microenvironment, caspase-1 is regulated by NFκB. Consistent with this 

association, the inhibition of caspase-1 activity parallels the effects on wound-healing caused by 

the abrogation of NFκB activation. Surprisingly, not only does inhibition of the NFκB/caspase-1 

axis disrupt the inflammatory phase of the wound-healing program, it also impairs the stimulation 

of cutaneous epithelial stem cells of the proliferative phase. These data provide a mechanistic 

basis for the complex interplay between different phases of the wound-healing response in which 

the downstream signaling activity of immune cells can kindle the amplification of local stem cells 

to advance tissue repair.

Introduction

The major function of the skin is to provide a physical barrier between the body and the 

external environment. Consequently, it is frequently damaged and mounts a complex 
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wound-healing program to restore tissue homeostasis. This wound-healing response is 

organized into three interdependent phases: an inflammatory phase leading to the 

recruitment and activation of immune cells; a proliferative phase comprising the expansion 

of the progenitor cell pool, angiogenesis and re-epithelialization (migration of keratinocytes 

to close the wound); and the remodeling phase wherein alterations in tissue architecture and 

the extracellular matrix is carried out (Gurtner et al., 2008). Hindering the mechanistic 

understanding of this process is the fact that signaling by cells in one phase of the wound-

healing program impact the behavior of cells associated with another phase.

In response to many different external stimuli, inflammation can be mediated by a 

multiprotein complex known as an inflammasome, which promotes the maturation and 

secretion of proinflammatory cytokines. The inflammasome can be comprised of an NLR 

(nucleotide-binding domain and leucine-rich repeat containing) protein, an adaptor protein 

ASC (apoptosis-associated speck-like protein) and pro-caspase-1. The NLR proteins are a 

family of intracellular sensors that can detect the presence of pathogens and also recognize 

danger or stress signals (Schroder and Tschopp, 2010). Whereas the levels of the adaptor 

protein Asc remains unchanged, we found that the stress kinase p38 MAPK is responsible 

for the upregulation of NLRP3 in a wound-like environment (Lee et al., 2009), but the 

regulation of caspase-1 expression remains poorly understood.

Caspase-1 is a cysteine protease that is synthesized as a zymogen. The assembly of NRLP3 

inflammasome induces the cleavage and activation of procaspase-1 which can then process 

interleukin-1 (IL-1) family members such as IL-1α (Keller et al., 2008), IL-1β and IL-18 

into their mature forms (Yu and Finlay, 2008). In the context of wounding (Lee et al., 2009) 

as well as diseases with chronic inflammation such as psoriasis (Johansen et al., 2007) heart 

disease (Merkle et al., 2007), gout and arthritis (Church et al., 2008), there is an 

upregulation of procaspase-1 expression. Despite these observations, both the mechanism 

and the functional relevance of increasing the expression of procaspase-1 has failed to 

garner much attention. A clue to the importance of the upregulation of procaspase-1 was the 

development of cutaneous inflammation simply by overexpressing pro-caspase-1 in 

epidermal keratinocytes (Yamanaka et al., 2000).

A prime candidate for the transcriptional regulator of caspase-1 is the transcription factor 

nuclear factor-kappa B (NFκB), a well-known mediator of the inflammatory response 

(Karin, 2009). This dimeric complex is sequestered in the cytosol via its association with 

IκB. Activation of NFκB is accomplished through the IκB kinase (IKK), which can 

phosphorylate IκB and lead to its dissociation from NFκB. Upon activation, NFκB dimers 

are translocated into the nucleus where they modulate the expression of numerous genes 

involved in the immune response. To investigate the potential link between NFκB and 

caspase-1 in restoring tissue homeostasis, we exploited the conditional deletion of epidermal 

caspase-8 (C8cKO) as a model of wound-healing and in which caspase-1 levels are elevated 

throughout the epidermis (Lee et al., 2009).
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Results

The expression of caspase-1 is regulated by NFκB

To test the hypothesis that NFκB regulates procaspase-1 expression, epidermal explants 

from wild-type and caspase-8 conditional knockout (C8KO) mice were treated with DMSO 

(vehicle control) or a pharmacological inhibitor of NFκB activation. Inhibition of NFκB 

activation was accomplished with a chemical inhibitor of the upstream activator of NFκB 

(IKK inhibitor [IKK-I]). In the C8KO epidermis, the increased procaspase-1 is diminished 

to near wild type levels with the treatment with IKK-I at both the RNA (Figure 1A) and 

protein level. This effect is both dose-dependent (Supplementary Figure 1) and reversible 

(Figure 1A). Interestingly, IKK-I did not affect the expression of NLRP3 despite 

suggestions to the contrary (Bauernfeind et al., 2009) (Figure 1B). On the other hand, p38 

MAPK regulates NLRP3 in the wound-like epidermis (Figure 1B), but did not affect the 

increase in procaspase-1 (Figure 1A). The third component of many NLRP3-containing 

inflammasomes is Asc, whose levels were constant in wild type and C8KO epidermis 

(Figure 1C). Altogether, these inhibitor studies suggest that expression of the components of 

the NLRP3 inflammasome is under the regulation of at least two convergent signaling 

pathways – p38 MAPK regulates NLRP3 expression, while NFκB controls the expression of 

procaspase-1.

In order to examine whether NFκB activity is sufficient to induce procaspase-1, we utilized 

newborn epidermal explants lacking Iκbα, a negative regulator of NFκB. The basal level of 

NFκB activity in wild-type and Iκbα knockout mice are the same, but there is a prolonged 

activation of NFκB signaling with a pulse of a stimulus such as IL-1 or TNF in iκbα null 

cells (Klement et al., 1996). A ∼13-fold increase in the level of a bona fide NFκB target 

gene, RANTES, verified that the loss of Iκbα induces an extended activation of NFκB 

signaling in epidermal explants (Supplementary Figure 2). Under these conditions, 

procaspase-1 expression remains ∼70 fold higher in the Iκbα knockout epidermis relative to 

the wild type control (Figure 1D) but there is no appreciable effect on NLRP3 or Asc (data 

not shown). Interestingly, despite the ∼70 fold increase in caspase-1 RNA levels in the iκbα 

KO relative to the wild type control, the increase of caspase-8 protein level, though 

significant, was only ∼4 fold. Secreted IL-1α is not only the product of caspase-1 activity 

but is also involved in a positive feedback loop to activate NFκB in an autocrine or 

paracrine fashion (Vallabhapurapu and Karin, 2009). In order to determine how much of the 

increase in caspase-1 expression is due to this positive feedback loop we tested the effect of 

blocking the signaling of IL-1α with a neutralizing antibody. Neutralizing extracellular 

IL-1α dramatically reduces the induction of procaspase-1 expression in the iκbα null 

background (Figure 1D). The remaining ∼15 fold increase in caspase-1 levels in the iκbα 

knockout epidermis may reflect the direct intracellular signaling events linking NFκB to 

caspase-1. This theory was substantiated by the effect of the caspase-1 inhibitor, which 

would effectively short circuit the positive feedback loop resulting from the caspase-1 

dependent secretion of IL-1α. The treatment of iκbα null epidermis with the caspase-1 

inhibitor likewise results in a ∼15-fold difference in caspase-1 RNA levels compared to the 

wild type explants (Figure 1D). The decrease in caspase-1 expression by the IL-1α inhibitor 
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antibody or the caspase-1 inhibitor in the iκbα KO skin is also reflected at the protein level 

(Figure 1D).

Reconstitution of caspase-1 regulatory control in vitro

In contrast to the heterogeneous population of cells that comprise the epidermis used above, 

we investigated whether the NFκB-caspase-1 relationship is valid within wounded 

epidermal keratinocytes in vitro. 16 hours after applying a scratch wound on a confluent 

sheet of keratinocytes, a decrease in caspase-8 protein levels was only observed in cells 

migrating from the wound edge (Figure 2A). This occurred in tandem with the activation of 

NFκB (Figure 2B and Supplementary Figure 3A). Consistent with our proposed pathway, 

the decrease in caspase-8 in epidermal keratinocytes leading to the activation of NFκB 

resulted in an increase in caspase-1 expression (Figure 2C and Supplementary Figure 3B). 

Interestingly, the increased in caspase-1 protein levels was observed in both the cytosol and 

nucleus of the migrating cells (Supplementary Figure 3C and D). This nuclear translocation 

of caspase-1 has previously been described upon exposure of cells to TNF(Mao et al., 1998) 

though the function remains unknown. We then examined whether activation of NFκB is 

sufficient to induce caspase-1 expression in vitro by transfecting primary keratinocytes with 

a constitutively active mutant of IKK2 (IKK2-CA). Twelve hours after transfection, about 

10% of the cultured cells expressed the IKK2-CA construct leading to the activation of 

NFκB (Figure 2D and Supplementary Figure 3E) and a ∼2.5 fold increase in caspase-1 

RNA (Figure 2E) and protein (Supplementary Figure 3F) expression. Moreover, activation 

of NFκB with IL-1α can elevate the amount of procaspase-1 protein, and this effect can be 

blocked by inhibiting NFκB activation with the IKK inhibitor or with glyburide, which 

blocks inflammasome function (Figure 2F, Supplementary Figure 3G).

These results provide evidence that NFκB is involved in the regulation of caspase-1 

expression, but it is unclear whether NFκB is the direct upstream transcriptional activator. 

To address this question, we cloned a 1kb fragment of the proximal promoter of caspase-1, 

which contains a conserved NFκB binding motif (Supplementary Figure 4A), and found that 

mutating this consensus sequence significantly reduced the ability of active NFκB to induce 

caspase-1 transcription (Supplementary Figure 4B). Moreover, we tested whether this 

likewise occurs on the conserved motif on the endogenous caspase-1 promoter in primary 

keratinocytes via chromatin immunoprecipitation. After a 4-hour stimulation with IL-1α 

(Supplementary Figure 4C), we were able to co-precipitate the NFκB binding motif of the 

caspase-1 promoter with the p65 subunit of the NFκB complex (Figure 2G), suggesting that 

this transcription factor is a direct activator of caspase-1 expression.

Caspase-1 amplifies NFκB signaling in the epidermis

Upon establishing the NFκB/caspase-1 regulatory relationship in vitro, we then focused our 

attention on its regulation and function within a tissue. We incubated wild type or C8KO 

epidermal explants in media with vehicle control (DMSO) or IKK inhibitor and assayed for 

the amount of secreted IL-1, which is a read-out for activated caspase-1. We previously 

found that the levels of IL-`α in the C8KO skin is higher than wild type, but its secretion 

was still dependent on caspase-1 activity (Lee et al., 2009). Reducing caspase-1 expression 

in the C8KO epidermis through the inhibition of NFκB also reduces the secretion of IL-1α 
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to wild type levels (Figure 3A). This occurs concomitant with a blockage of proteolytic 

cleavage of caspase-1 into its active p20 fragment (Supplementary Figure 5A). Furthermore, 

we observed that the prolonged activity of NFκB in the IκBα deficient epidermis results in 

the higher expression of procaspase-1 (Figure 1D), prompting us to examine whether this 

likewise translates into an increase in IL-1α secretion. The prolonged NFκB signaling in the 

IκBα KO resulted in a substantial increase activated caspase-1 (Supplementary Figure 5B) 

and in IL-1α secretion (Figure 3B) compared to the wild type epidermis. Reducing the 

activity of caspase-1 in the IκBα knockout epidermis (Supplementary Figure 5B) 

dramatically reduced the amount of secreted IL-1α (Figure 3B). This effect of activated 

NFκB on raising IL-1α secretion can be reconstituted in vitro by transfecting keratinocytes 

with the IKK2-CA construct (Figure 3C). Moreover, pharmacological inhibition of 

caspase-1 activity can also abrogate the stimulation of IL-1α secretion. The secretion of 

IL-1α has been shown to be dependent upon caspase-1 activity (Keller et al., 2008), and the 

NFkB-caspase-1 signaling pathway also yields similar results when tested on the 

intracellular levels of IL-1α (Supplementary Figure 5C-F) as well as the secretion of IL-1β, 

a classical readout of caspase-1 function (Supplementary Figure 5G-I).

The ability of IL-1α ligand to activate NFκB suggests that the release of this cytokine can 

propagate the NFκB-caspase-1-IL-1α module throughout the epidermis via a paracrine 

effect. We found that removal of the IL-1 receptor in the wound model diminished the level 

of secreted IL-1α compared to the C8cKO epidermis (Figure 3D). We further tested this 

paracrine model by transfecting primary keratinocytes with the constitutively active IKK 

mutant construct (IKK2-CA). As we have shown, keratinocytes expressing IKK2-CA 

displayed nuclear NFκB twelve hours after transfection (Figure 2D). However, when we 

allowed the cells to incubate longer (∼24 hours), cells adjacent to the transfected cells were 

induced to activate NFκB (Figure 3E). Use of the IL-1α neutralizing antibody or the 

caspase-1 inhibitor restricted NFκB activation solely to cells transfected with IKK2-CA.

To test whether this is also valid in wound-like conditions in vivo, we subcutaneously 

injected vehicle control (DMSO), or IKK inhibitor daily in the back skin of newborn wild 

type or C8cKO mice for four days. Inhibition of NFκB activation, which blocks IL-1α 

release (Figure 3A), suppresses the expression of active NFκB throughout the epidermis, 

though the dermal activation of NFκB is largely unaffected (Figure 4A). This block in 

epidermal activation of NFκB was also present when excisional wounds were treated with 

IKK inhibitor (Supplementary Figure 6). Moreover, genetic removal of caspase-1 expression 

from the C8cKO epidermis (Figure 4B-C) likewise reduces the expression of active NFκB 

throughout the epidermis.

Since the inhibition of NFκB activity and caspase-1 expression both prevented the spreading 

of active NFκB in the C8cKO epidermis, we predicted that the expression of caspase-1 

would likewise be adversely affected. Caspase-1 is expressed at a low basal level in wild 

type epidermis, is significantly upregulated in the C8cKO tissue, and this induction is lost in 

the presence of IKK-I (Figure 4D). Interestingly, application of a pharmacological inhibitor 

of caspase-1 activity (C1-I) results in a dramatic reduction in the expression of caspase-1 

throughout the tissue and the remaining protein is restricted to the upper layers of the 

epidermis (Figure 4D). Moreover, in the absence of IL-1 signaling, caspase-1 expression is 
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not highly induced in the C8cKO epidermis (Figure 4E). Therefore, abrogation of NFκB 

activation inhibits the upregulation of caspase-1 expression and inhibition of the latter's 

proteolytic activity can effectively block the spreading of NFκB and caspase-1 expression 

from the surface of the epidermis to the lower layers of this tissue, which occurs through 

IL-1 paracrine signaling.

Inhibition of NFκB and caspase-1 delays wound closure rates

We then focused our attention on the functional contribution of these proteins to the wound 

healing response. Excisional wounds were made on the back of wild type mice treated with 

DMSO or IKK-I, caspase-1 knockout mice and IL-1R KO mice (Figure 5). Interestingly, 

inhibition of NFκB activation or caspase-1 expression significantly delayed the closure rate 

of an excisional wound compared to control samples (Figure 5A). This delay in wound 

closure by 2 or more days parallels the effects seen when other important factors for wound 

healing are deleted (Devalaraja et al., 2000; Echtermeyer et al., 2001; Jameson et al., 2002). 

We verified that both the inhibition of NFκB activation and caspase-1 expression indeed 

impacted inflammation as they were able to decrease the recruitment of immune cells to the 

skin. For instance, the number of macrophages and T-cells recruited to the skin in the 

C8cKO (Figure 5 B and C) or to wounded skin (Supplementary Figure 7 A and B) is 

severely reduced when NFκB activity or caspase-1 expression is suppressed. The failure to 

recruit immune cells to the skin under these conditions is also reflected in the diminished 

expression of inflammatory genes (Figure 5D). Together these data highlight the critical role 

for the NFκB/caspase-1/IL-1 axis in the establishment of the inflammatory phase of the 

cutaneous wound healing response.

NFκB/Caspase-1 signaling affects proliferation during the wound healing response

Closer examination of the effects of the NFκB and caspase-1 inhibition on the rate of wound 

closure reveals an affect during the proliferative phase of the wound response, which 

commences around day three post-wounding. This effect may be attributable to the role that 

NFκB and caspase-1 play in the secretion of IL-1. We previously demonstrated the IL-1 

mediated epithelial-mesenchymal signaling loop that stimulates keratinocytes proliferation 

in a wound is recapitulated in the C8cKO model (Lee et al., 2009). One outcome of this pro-

proliferation signaling network is the thickening of the epidermis (epidermal hyperplasia).

Consistent with this model, inhibition of NFκB activation or loss of caspase-1 expression in 

the C8cKO skin significantly reduced epidermal hyperplasia (Figure 6A and Supplementary 

Figure 8A). This phenomenon was also seen in response to excisional wounds 

(Supplementary Figure 8B). The thickening of the epidermis in the C8cKO mouse is fueled 

by an increase in the number of proliferating progenitor cells found in the basal layer of the 

epidermis and the hair follicle (Figure 6B). Both are reduced in the presence of the inhibitor 

of NFκB activation or loss of caspase-1 expression (Figure 6B-D). However, these effects 

are not applicable to all the phenomena associated with the proliferative phase of the wound 

healing response. For instance, new blood vessel formation is a feature of this phase of the 

wound-healing program, but the injection of IKK inhibitor or the loss of caspase-1 

expression do not qualitatively decrease angiogenesis in the skin (Figure 6E). Altogether, 
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these observations link a functional inflammatory phase of the wound healing response with 

the optimal stimulation of cell proliferation that occurs during a wound healing response.

Discussion

A major obstacle to understanding wound healing is the untangling of the extensive 

interdependence of the three classical phases of this process. Using the ablation of epidermal 

caspase-8 as a model of wound healing, we have uncovered a molecular mechanism 

synchronizing these complex reactions. Upon wounding, caspase-8, which normally resides 

in the granular layer near the surface of the epidermis is downregulated and initiates a 

biochemical program to promote tissue repair (Lee et al., 2009). One effect of this 

downregulation is the increase in IL-1α RNA expression as well as the release of the 

preexisting reservoir of this cytokine from epidermal keratinocytes (Lee et al., 2009). IL-1α 

has a plethora of effects ranging from the promotion of an inflammatory microenvironment 

to promoting a growth arrest and survival model in suprabasal keratinocytes to the 

stimulation of stem cell proliferation. Given the profound impact of IL-1α signaling in the 

framework of wound healing, the mechanism governing its release is an important issue to 

resolve. We found that at least two different signaling pathways impact the components of 

the NLRP3 inflammasome – p38 MAPK regulates NLRP3 expression (Lee et al., 2009) and 

NFκB influences caspase-1 expression levels (Supplementary Figure 9). Together these 

pathways lead to IL-1α secretion that can operate in an autocrine fashion to potentiate the 

NFκB signaling cascade or function in a paracrine manner to propagate NFκB signaling to 

different layers of keratinocytes in the epidermis. This exemplifies the central and complex 

role that IL-1α and NFκB play in regulating epithelial homeostasis (Swamy et al., 2010).

Recently, however, work from David Wallach's group has raised doubts about the role of 

IL-1α in mediating inflammation in the epidermal caspase-8 conditional knockout mouse 

(Kovalenko et al., 2009). This is based on their finding that genetic ablation of both IL-1α 

and IL-1β did not abrogate the cutaneous inflammation stimulated by the loss of epidermal 

caspase-8. However, as we observed, removal of one signaling pathway such as IL-1 can 

delay the kinetics of wound closure but not completely abrogate it. The ≥ 2 day delay in 

wound healing by blocking components of the NFκB/caspase-1/IL-1 axis is consistent with 

the delay in wound-healing found when other important components are deleted such as γδ 

T-cells (Jameson et al., 2002), syndecan-4 (Echtermeyer et al., 2001), and CXCR2 

(Devalaraja et al., 2000). We also observed that the C8cKO/IL1 receptor double knockout 

transiently dampens the phenotype of the C8cKO mouse, which is likely due to the fact that 

other components in the inflammatory phase can compensate for the loss of one constituent. 

Further support for IL-1 signaling in a wound-like environment is provided by the finding of 

increased nuclear NFkB when the IL-1 receptor antagonist is missing (Ishida et al., 2006). 

Thus we propose that the large reservoir of IL-1α released from damaged keratinocytes, is 

amongst the earliest responders to epidermal trauma to stimulate the wound healing 

response. In particular, IL-1α can induce the inflammatory phase and thereby promote the 

proliferative phase and this role is assumed by infiltrating immune cells, which secretes the 

more potent IL-1β.
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An important question that arises from our model is the link between the downregulation of 

caspase-8 and the activation of NFκB prior to the positive feedback loop mediated by IL-1α 

secretion. Of particular relevance are reports that deletion of RIP3 rescues the caspase-8 

knockout phenotype, including cutaneous inflammation (Gunther et al., 2011; Kaiser et al., 

2011; Welz et al., 2011). Interestingly, more recent studies have demonstrated that RIP3 can 

also activate NLRP3 and caspase-1 (Kang et al., 2013; Vince et al., 2012). Thus, the loss of 

caspase-8 may liberate RIP3 to interact with different partners to stimulate inflammasome 

activation. Further delineating the details of inflammasome activation will contribute 

important new insights on how to combat inflammatory diseases when these signaling 

pathways are perturbed.

Materials and Methods

Reagents

The list of antibodies, inhibitors and primers and their usage are detailed in the 

Supplementary information section.

Mice and cell/tissue culture

Generation of C8KO (Lee et al., 2009) and iκbα KO (Klement et al., 1996) mice have 

previously been reported. Wild-type primary mouse keratinocytes are obtained from the 

epidermis of newborn pups and cultured in low-calcium mouse keratinocyte media as 

described previously (Lee et al., 2009). Epidermal explants were taken from P0-P3 skin by 

chemically dissociating it from the dermis with dispase for 1 hour at 37°C. All animal work 

was carried out in accordance with the policies and approved procedures of the Institutional 

Animal Care and Use Committee of UC San Diego.

Tissue preparation

Epidermal explants were incubated with p38-I and IKK-I overnight and collected in Trizol 

(Invitrogen) for RNA extraction or in sample buffer for protein extraction. The wash-out of 

IKK-I treated epidermis was done by washing with PBS once and transferred to fresh mouse 

keratinocyte media and incubated for another 6 hours. Glyburide was incubated with the 

epidermis for 1 hour, and transferred to fresh media with glyburide for another hour. IL-1α 

(2 ng/ul) was added to WT and iκbα KO epidermis for 2 hours, and replaced with fresh 

media and incubated for another 6 hours prior to sample collection.

Wounding and injection of mice

DMSO, IKK-I, and C1-I were injected to the back skin of WT and caspase 8 KO daily for 4 

days starting at P0 prior to the onset of the phenotype, and back skin were harvested at the 

5th day for RNA extraction and OCT embedding. In vivo wounding was performed on the 

back skin of adult WT mice with 5mm-punch biopsy, and DMSO and inhibitors were 

applied to the wound site daily for 3 days. Wounded skin was collected for RNA extraction 

and OCT embedding. Data presented are averages of 2 wound per mouse (n=6 mice) +/- 

SEM for each treatment. For in vitro scratch wounds, primary mouse keratinocytes were 

cultured on coverslips to confluency. The scratch wound was performed on the cell 
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monolayer with a p200 pipet tip. Cells were incubated at 37°C for up to 16 hours and then 

fixed for immunofluorescence or harvested for RNA extraction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. NFκB regulates caspase-1 expression
Epidermal explants from wild type (WT) and caspase-8 KO (C8 KO) were treated with 

DMSO, or inhibitors for p38 MAPK (p38-I) or IKK (IKK-I) and qPCR and Western blots 

were performed for (A) caspase-1, (B) NLRP3, and (C) Asc expression. WO = inhibitor 

washed-out. (D) qPCR of caspase-1 expression in epidermis of newborn wild type or iκbα 

knockout mice treated with DMSO, IL-lα inhibitory antibody (IL-1α inhi. Ab), or caspase-1 

inhibitor (C1-I). For all experiments n=5 biological replicates and each sample was run in 

triplicate for qPCR; error bars are SEM, * denotes p<.001, and ** denotes p<.00001. β-

tubulin level was used as a loading control for Western blots.
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Figure 2. Regulation of caspase-1 by NFκB in wounded cells
(A) Immunofluorescence of (A) caspase-8 (red), DAPI (blue) and (B) NFκB (green) in 

primary keratinocytes after 8 or 16 hours of applying a scratch wound (dotted line denotes 

wound margin). Right panels in (B) are the magnified views of the boxed areas in the left 

panels. (C) qPCR of caspase-1 RNA levels at 0 and 16 hours after applying scratch wound. 

(D) Primary keratinocytes were transfected with constitutively active HA-tagged IKK2 

(IKK2-CA) and stained for active IKK2 (red) and NFκB (green) or caspase-1 (green). Cells 

expressing IKK2 have nuclear NFκB and higher levels of caspase-1. (E) qPCR of relative 

levels of caspase-1 RNA in keratinocytes transfected with empty vector (Con; normalized to 

1) or IKK2-CA. (F) Relative caspase-1 protein levels in keratinocytes exposed to IL-1 and 

DMSO, IKK-I, or glyburide. Caspase-1 protein levels in cells without IL-1α stimulation is 

normalized to 1 and data are presented as fold difference. Data is the mean of 3 biological 

replicates and error bars are SEM. (G) ChIP of NFκB upon stimulation with IL-1α and 

immunoprecipitation with IgG control antibody or an antibody recognizing the p65 subunit 

of NFκB. * = p<.001. For qPCR experiments (C & E), results are from 3 biological 

replicates with each PCR reaction performed in triplicate (error bars are SEM).
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Figure 3. Caspase-1 propagates NFκB signaling in epidermal keratinocytes
Secretion of IL-1α was measured by ELISA from different samples: (A) Wild type [orange 

bars] or caspase-8 null (C8KO) [blue bars] epidermis treated with DMSO or IKK-I; (B) wild 

type or iκbα null [purple bars] epidermis treated with DMSO or C1-I; (C) primary 

keratinocytes transfected with empty vector (control), IKK2-CA, or IKK2 CA and treated 

with C1-I; (D) epidermis from wild type, caspase-8 null, and caspase-8/IL-1R double 

knockout mice. ELISA results are the mean of 3 biological replicates and error bars are 

SEM. * denotes p<.001, and ** denotes p<.00001. (E) Primary keratinocytes were 

transfected with constitutively active IKK2 (HA-IKK2-CA) and treated with DMSO 

(control), IL-1α inhibitory antibody, or caspase-1 inhibitor (C1-I) and stained for IKK2-CA 

(red) and NFκB (green). Data is representative of 3 independent experiments.
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Figure 4. Caspase-1 expands NFκB activity throughout the epidermis
Immunohistochemistry of phosphorylated NFκB in (A) wild type and caspase-8 knockout 

skin injected with DMSO or IKK-I, and (B) in skin lacking both caspase-8/caspase-1 

(C8/C1 dKO) or skin that are null for caspase-8 and IL-1 receptor (C8/IL-1R dKO). (C) 

Level of phosphorylated NFκB, with total NFκB as loading control. (D) Caspase-1 

expression in wild type or C8KO epidermis treated with vehicle control or chemical 

inhibitors. (E) Caspase-1 expression in wild type, caspase-8 null and caspase-8/IL-1R 

double knockout skin samples.
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Figure 5. Effect of NFκB and caspase-1 on wound closure
(A) Rates of wound closure were measured in wild type mice treated daily with DMSO or 

IKK-I, or in mutant mice lacking either caspase-1 (C1KO) or IL-1 receptor (IL-1RKO). 

Data points are averages of 6 mice with two wounds/mouse (* denotes p<.001, and ** 

denotes p<.00001 when comparing DMSO vs. IKK-I kinetics in wild type mice). (B) 

Recruitment of macrophages (green) in the wild type and caspase-8 null skin treated with 

DMSO (control) or IKK-I or in skin lacking caspase-1 and -8. (C) Recruitment of T-cells 

(green) monitored using the pan T cell marker CD3. The epidermis (epi) and hair follicles 

(hf) in B & C are noted in red with an antibody detecting keratin-5. Scale bar: 50 μm; der = 

dermis (D) Inflammatory gene expression in the wounded/wound-like skin. RNA was 

extracted from the wounded skin of wild type mice (treated with DMSO [orange bars] or 

IKK-I [yellow bars]) or caspase-1 KO mice (C1KO; red bars) 3 days post excisional 

wounding. RNA was also extracted from the skin of P5 caspase-8 knockout (C8KO) mice 

(treated with DMSO [blue] or IKK-I [light blue]) or the caspase-8/caspase-1 (C1KO) double 

knockout mouse [magenta]. Results are from 3 biological replicates for each mouse 

genotype/treatment and each sample was repeated in triplicate. Error bars are SEM.
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Figure 6. Hyperproliferation of the epidermis in caspase-8 KO and wounded skin
(A) Measurement of epidermal thickness of wild type (WT) or caspase-8 knockout (KO) 

skin treated with DMSO, or IKK-I, or skin also lacking caspase-1. (B) Proliferating cells 

were marked by Ki67 (green) and the epidermis and hair follicle are marked by keratin 5 

(red) in mice treated as in (A). Scale bar: 50 μm. Quantification of proliferating (C) 

interfollicular epidermal (IFE) stem cells and (D) hair follicle stem cell (HFSC) in skin 

sections from (B). Results are the average of 6 skins (5 sections/skin) for each treatment and 

error bars are SEM, (* denote p<.001). (E) Angiogenesis monitored in wild type or knockout 

mice treated with DMSO, or IKK-I, or skin also lacking caspase-1 via staining with CD31 

(green).
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