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Abstract

Cell-cell communication is a fundamental process that shapes biological tissue. Historically, 

studies of cell-cell communication have been feasible for one or two cell types and a few genes. 

With the emergence of single-cell transcriptomics, we are now able to examine the genetic profiles 

of individual cells at unprecedented scale and depth. The availability of such data presents an 

exciting opportunity to construct a more comprehensive description of cell-cell communication. 

This review discusses the recent explosion of methods that have been developed to infer cell-cell 

communication from non-spatial and spatial single-cell transcriptomics, two promising 

technologies which have complementary strengths and limitations. We propose several avenues to 

propel this rapidly expanding field forward in meaningful ways.

Introduction

Cell-cell communication (CCC)---cell-cell interactions that are regulated by biochemical 

signaling---is an important aspect of tissue structure and function, regulating individual cell 

processes and intercellular relationships. Historically, CCC could only be studied in in vitro 
experiments consisting of one or two cell types and a select few genes. These studies paint 

an incomplete picture, as CCC involves many cell types and invokes a large number of 

genes. A new, powerful method to probe tissue heterogeneity is single-cell RNA sequencing 

(scRNA-seq), which measures gene expression at a single-cell resolution. As the number of 

cells that can be sequenced increases [1], computational tools mature, allowing researchers 

to analyze scRNA-seq data with increasing efficiency [2]. Thus, the study of single-cell 
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transcriptomics has begun to shift from only focussing on what cells are present to further 

focussing on what relationships between cells are present. Dissecting these relationships 

(lineage trajectories, cell-cell interactions) is crucial to understanding the “landscape” of 

biological systems. The availability of single-cell transcriptomics presents an exciting 

opportunity to study CCC in ways that have previously been impossible. Conversely, CCC 

inference presents as a meaningful way to utilize single-cell transcriptomics. As such, the 

number of tools that infer CCC from scRNA-seq, which lacks spatial resolution, has 

increased rapidly over recent years. Spatial transcriptomics (ST) has emerged as an 

alternative resource for CCC inference, albeit with complementary advantages and 

limitations.

The aim of this review is twofold: 1) to summarize the emerging and novel field of CCC 

inference at the single-cell resolution and 2) highlight possible research avenues to improve 

on current limitations of CCC inference. We first describe the general principles governing 

CCC inference from non-spatial scRNA-seq data. The current state of the art for CCC 

analysis and visualization are outlined. We then describe how CCC can be inferred from ST 

alone or by integrating it with scRNA-seq. We close with a list of pertinent avenues for 

future investigations.

Inferring CCC from single-cell genomics data

CCC is facilitated through various biochemical reactions that comprise signaling pathways. 

For a given signaling pathway, ligands expressed by a “sender cell” bind to corresponding 

receptor proteins expressed on the surface of a “receiver cell”, triggering downstream gene 

responses (Fig. 1(a)). There are two types of signaling: autocrine, when the sender and 

receiver are the same cell; and paracrine, when the sender and receiver are two different 

cells. From gene expression data, one can use corresponding ligand and receptor gene 

expression levels as indirect measures of protein expression. By scrutinizing the gene 

expression levels of a group of sender and receiver cells, where the ground truth is masked 

by biological and technical noise, communication is often quantitatively defined in a 

probabilistic sense. For example, one assigns an “interaction score” based on ligand and 

receptor expressions. As such, CCC inference will be most beneficial when there are 

sufficiently many cells from which one can sample the relevant ligand and receptor 

expressions.

While the core principle of CCC inference is intuitive to understand, it is overly simplistic 

and can overestimate communication activity for several reasons. First, cell signaling occurs 

at the protein level, not the gene level. As gene expression does not always translate directly 

to protein expression, it is possible that communication determined using ligand or receptor 

gene expression data alone may not have occurred at the protein level. In the case of receptor 

gene expression, communication can be further evaluated by examining the downstream 

target gene response caused by ligand-receptor binding (Fig. 1(a)). Second, cell signaling is 

spatially constrained. Many signaling pathways are activated through ligands diffusing from 

sender cells to nearby receiver cells. Hence, the number of cells with which the sender cell 

can communicate is limited by the finite spatial diffusivity of the ligand (Fig. 1(a)). Other 

pathways are activated by physical contact between adjacent cells. These spatial aspects of 

Almet et al. Page 2

Curr Opin Syst Biol. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biological tissue are lost in scRNA-seq but preserved in ST (Fig. 1(b)-(c)). Considering these 

limitations or caveats, numerous approaches have been devised to improve the accuracy of 

CCC inference from scRNA-seq data.

A summary of the different methods for CCC

Computational tools have been developed to infer CCC from scRNA-seq at both the 

individual cell and cell cluster levels. SoptSC is one of few methods to infer CCC between 

individual cells [3]; most methods infer CCC between cell clusters [4–5] (Table 1). We 

highlight the unique features of different methods. Some methods, such as SoptSC [3], 

CellChat [5], and SingleCellSignalR [6], calculate interaction scores using nonlinear 

modeling approaches, e.g. CellChat uses Hill-function-based mass action models, while 

other methods, such as CellPhoneDB [7] and ICELLNET [8], simply calculate the product 

of ligand and receptor expressions. To predict statistically significant and cell-cluster-

specific communications, CellChat [5], CellPhoneDB [7] and SingleCellSignalR [6] assign a 

p-value to each interaction by generating a score null distribution. To better recapitulate 

known ligand-receptor interactions, CellChat [5], CellPhoneDB [7], and ICELLNET [8] 

consider multi-subunit structure of ligands and receptors to represent heteromeric complexes 

accurately. Additionally, CellChat [5] modulates interactions due to cofactors (agonists and 

antagonists). Methods such as SoptSC [3], NicheNet [9], scMLnet [10] and CytoTalk [11] 

account for intracellular interactions in receiver cells that arise from CCC to improve 

inference. While most methods focus on pairwise analysis of signaling between cell clusters, 

scTensor models higher-order interactions, using tensor decomposition to detect many-to-

many CCC involving multiple cell clusters and ligand-receptor pairs [12].

In addition to quantifying CCC, these tools provide several ways to visualize the inferred 

intercellular communication network. CellChat is one such representation tool and includes 

powerful visualization features for different analytical tasks [5]. Figure 2 shows several 

common methods, including visualization of signaling networks mediated by a single 

ligand-receptor pair (Fig. 2(a)-(d)) and multiple ligand-receptor pairs (Fig. 2(e)). Unique to 

CellChat is a customized hierarchical visualization tool, which is especially useful to dissect 

complex signaling networks by explicitly specifying sender and receiver cells to distinguish 

paracrine from autocrine signaling (Fig. 2(d)).

The majority of tools focus exclusively on the inference of CCC. More recently, to facilitate 

the analysis and interpretation of the complex intercellular communication networks, 

CellChat utilizes methods from social network analysis, pattern recognition and manifold 

learning, allowing for: identification of major signaling sources and targets (Fig. 2(f)); 

prediction of coordination between cells and signals for function (Fig. 2(g)); and delineation 

of conserved and context-specific signaling across different datasets (Fig. 2(h)). Together, 

these tools provide an unprecedented opportunity to comprehensively probe underlying CCC 

that often drive heterogeneity and cell state transitions.

CCC tools have been applied successfully to a diverse range of systems to dissect 

mechanisms of cell fate decisions and disease [4]. For example: CellChat predicted key 

signaling mechanisms of dermal condensate and melanocyte cell migration during early hair 
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follicle development [5] and elevated inflammatory signaling from brain-barrier cells during 

COVID-19 infection [13]; CellPhoneDB inferred significant interactions that prevent 

harmful immune responses during early human pregnancy [14]; and NicheNet predicted 

upstream niche signals that regulate the liver macrophage niche [16].

Integration of scRNA-seq and spatial data

Using only scRNA-seq data to infer CCC often introduces false-positive links, because cells 

only communicate directly over a limited spatial distance---critical information lost in the 

scRNA-seq data. This limitation can be mitigated by integrating scRNA-seq with emerging 

ST technologies [17–19] that retain spatial information, but often, at the cost of 

compromised cellular resolution, coverage, or sequencing depth [20] (Fig. 3(a)). General-

purpose methods for integrating two heterogeneous datasets, representing different 

measurements of the same biological system, may be used [2]. More specialized methods to 

integrate spatial imaging or transcriptomics with scRNA-seq data have been developed to 

exploit the spatial structure of the former [21–26]. These methods rely on commonly 

measured genes to estimate similarity between positions and single cells, improving data 

integration with spatial information. For example, SpaOTsc refines data integration using 

structured optimal transport, utilizing both gene expression similarities and spatial distances 

between cells from scRNA-seq and ST, respectively [22]. Alternatively, a hidden Markov 

random field-based method utilizes the spatial neighborhood information when transferring 

labels from scRNA-seq data [25]. There are also methods for de novo spatial placement of 

scRNA-seq data without a spatial reference [27–29]. These methods place single cells in 

space based on different assumptions. For example, cells with similar gene expression 

profiles are considered to be nearby [27], or cells co-expressing ligands and receptors are 

assumed to be colocalized [29].

CCC inference using Spatial Transcriptomics

Spatial transcriptomics or ST integrated with scRNA-seq empowers CCC analysis in spatial 

contexts (Fig. 3(b)). While CCC inferred from scRNA-seq can be further refined by spatial 

constraints, there are specialized methods that use the spatial data directly to analyze CCC. 

To examine CCC through membrane-bound ligand and receptor expression, Giotto uses a 

spatial proximal graph to quantify signaling between clusters by restricting the average 

ligand and receptor expressions of the two clusters to cells that are connected in the spatial 

proximal graph [24]. To improve the confidence of identified CCC, cell2cell uses a Bray-

Curtis-like score over hundreds of ligand-receptor pairs followed by a spatial distance-based 

filter to identify interacting cells [30]. Rather than infer pairwise cell-cell interactions, 

stLearn computes a ligand-receptor co-expression score related to cell type diversity at 

individual “spots” to identify spatial regions with intensive signaling activity [21]. Taking a 

global perspective such that a lone receptor-expressing cell is likelier to receive a signal than 

a cell surrounded by many receptor-expressing cells, SpaOTsc derives two spatial 

distributions for signal senders and receivers, based on the ligand, receptor, and downstream 

genes, and finds an optimal transport plan from the sender distribution to receiver 

distribution with a minimum total transportation distance in space [22]. In a more general 

setting, SVCA uses probabilistic models to infer how cell-specific genes are impacted by 
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neighboring cells and the external environment [31]. Using a machine learning model, 

MISTy identifies predictor genes in the spatial neighborhood for target genes [32].

There are three functions of the current methods. First, they can identify interactions 

between cells through specified signaling pathways with known ligands, receptors, and 

downstream genes. Second, they can predict novel gene pairs that interact across 

neighbouring cells. Third, they can infer physical properties of CCC from spatial data. For 

example, SpaOTsc can estimate the spatial “diffusivity” of a signaling pathway by modeling 

downstream gene expression based on signals received over a range of distances [22]. 

Although CCC is a temporal process, there are no methods that consider this dynamical 

aspect inherent in ST data. With the advancements in ST resolution, it will be possible to 

develop spatiotemporal CCC inference methods based on spatiotemporal trajectories 

constructed from ST data [6, 22, 33].

Benchmarking and validation

To infer the most significant CCCs, a wide range of methodologies along with different 

underlying assumptions have clearly been developed (Table 1). To validate these methods, it 

is important to establish appropriate benchmarks. Generally, CCC inference methods may be 

validated by prior biological knowledge and evaluated using indicators such as robustness 

and enrichment analysis [7, 18, 34, 35]. However, it is difficult to completely benchmark 

identified CCC networks against the biological ground truth, which is often unknown. 

Besides being used as constraints to improve CCC inference, ST can also be used as a 

benchmark to evaluate false positive rates [11]. When applied as a hypothesis-generating 

tool for specific biological systems, the inferred CCC can be validated by parallel 

experiments, such as proteomics, and downstream functional studies that perturb certain 

CCC experimentally [35–36]. Additionally, assuming transcriptomics reflects proteomics 

well, which can be validated using emerging technologies [37–39], the algorithmic aspects 

of CCC inference methods can be benchmarked by in silico CCC simulations [32].

Outlook

We have described the current capabilities of CCC inference from single-cell 

transcriptomics. While CCC inference has advanced considerably in recent years, there are a 

number of limitations and future opportunities that warrant further studies.

1. Multiscale linking of CCC to downstream response and gene regulatory networks

Most CCC methods focus on the existence and likelihood of various signaling pathways. For 

example, CellChat [5], SingleCellSignalR [6], CellPhoneDB [7], ICELLNET [8], and 

iTALK [40] predict the potential CCC based on the expression of ligands and receptors---a 

major assumption of all CCC methods. Methods such as SpaOTsc [22] reduce false positive 

predictions by accounting for spatial distance between cells. However, very few methods 

account for the coupling between the downstream response and CCC, where the downstream 

responses indicate the cell processes regulated by the inferred signaling pathways. Within-

cell gene regulatory networks (GRNs) also drive cell fate and decision-making. While there 

are tools to infer GRNs from scRNA-seq [41], GRN inference is generally separate from 
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CCC inference. So far, there are only rudimentary efforts to link CCC to GRNs [11, 42, 43]. 

Improved linking of CCC to downstream response and GRNs in a coherent way will 

improve understanding of cell-type-specific responses to cell signaling.

2. Coupling with (lineage) trajectory analysis for landscape reconstruction

Another popular application of single-cell transcriptomics is trajectory inference, showing 

the capacity for one or more cell types to differentiate into other cell types within the 

population. Numerous trajectory inference methods have been developed for scRNA-seq 

[44], but, like GRN inference, trajectory inference is performed separately from CCC 

inference. However, differentiation trajectories can clearly be influenced by cell-cell 

signaling, and vice versa [4].

3. Simulating scRNA-seq data with realistic underlying CCC

A significant issue in CCC inference is the current lack of benchmarks, which are needed to 

validate the wide range of methodologies. Current approaches include using “high-quality” 

datasets [6] or ST [11]. A common approach for inference benchmarking is validation on 

synthetic data. However, it is not clear how to best generate synthetic scRNA-seq with a 

well-defined underlying CCC network, as the ground truth is unknown. While there exist 

methods to simulate synthetic scRNA-seq data [12, 32], there are no methods to generate 

CCC networks with realistic spatial constraints.

4. Integration with mathematical modeling

CCC is a spatiotemporal process, but neither its dynamic nor spatial aspects are fully 

captured by single-cell transcriptomics. Mathematical models can be harnessed to validate 

temporal and spatial effects and simulate perturbed variants of the studied system.

5. Multi-omics integration

In addition to scRNA-seq and ST, there are now other emerging single-cell technologies that 

provide protein [37–39] and epigenetic [45] information. For example, integrating scRNA-

seq with scATAC-seq provides additional insight into cell clustering and transcriptional 

regulation [46]. CCC will clearly benefit from such integration. As CCC involves both 

protein-specific and gene-specific responses, but neither scRNA-seq nor ST capture protein-

level information, it is pertinent that CCC methods be extended to incorporate these multi-

omics data to improve and validate CCC inference and enable better method benchmarking.

Single-cell transcriptomics has yielded enormous amounts of biological data, allowing for 

new insights into CCC. As more technologies and inference methods emerge and are 

refined, the field of CCC inference holds great promise for many exciting opportunities and 

insights.
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Figure 1. Principles of cell-cell communication inference.
(a) Cells can secrete ligands that diffuse and can bind to receptors expressed on the surface 

of nearby cells. This is likelier to occur for receiver cells that are closest to the sender cell 

and when there is sufficient receptor expression. Cell-cell communication only occurs when 

the bound ligand triggers a downstream response. The blue and orange cells represent 

different cell types. For the blue cells, darker shades represent stronger ligand expression. 

(b) Cell-cell communication can be inferred from scRNA-seq at either the individual cell or 

cell cluster level, but spatial distances between cells are lost. (c) Using spatial 

transcriptomics to infer cell-cell communication preserves spatial distances between cells 

but potentially at the loss of single-cell or gene resolution.
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Figure 2. Visualization and analysis of cell-cell communication from scRNA-seq data.
(a-e) Common visualization methods for cell-cell communication. (a) Circle plot: Circle 

size and edge width are proportional to the number of cells in each cell cluster and the 

communication score between interacting cell clusters, respectively. (b) Chord diagram. (c) 
Heatmap: Rows and columns represent sources and targets, respectively. Bar plots on the 

right and top represent the total outgoing and incoming interaction scores respectively. (d) 
The hierarchical plot consists of two parts: Left and right portions highlight the autocrine 

and paracrine signaling to clusters A/B/C and to clusters D/E/F, respectively. Solid and open 

circles represent source and target, respectively. Circle sizes are proportional to the number 

of cells in each cell group and edge width represents the communication score. (e) Bubble 

plot shows the ligand-receptor pairs contributing to the signaling from cell cluster A to other 

clusters. (f-h) Examples of analysis techniques of cell-cell communication from CellChat. 

(f) Ready identification of major signaling sources and targets using network centrality 
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analysis. For a given cell-cell communication network, the outgoing and incoming centrality 

scores are computed for each cell cluster and then visualized in a two-dimensional space. 

Circle size represents the total number of interactions associated with each cell cluster. (g) 
Alluvial plot shows the correspondence between the inferred latent patterns and cell clusters 

as well as signaling pathways. These patterns reveal how the cell clusters coordinate with 

each other as well as how they coordinate with certain signaling pathways. The thickness of 

the flow indicates the contribution of the cell group or signaling pathway to each latent 

pattern. (h) CellChat also delineates signaling changes across different contexts by jointly 

projecting signaling networks from two datasets onto a two-dimensional space, and 

quantitatively comparing the information flow of each signaling pathway between two 

datasets. The overall information flow of a signaling network is calculated by summarizing 

all the communication scores in that network.
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Figure 3. Integrating scRNA-seq with spatial transcriptomics.
(a) The major tasks involved in integrating scRNA-seq with spatial transcriptomics are: 

imputing gene expression in spatial data; assigning cell types to spatial data; inferring spatial 

origins of scRNA-seq data; and estimating spatial interactions in scRNA-seq. (b) The main 

outputs of current spatial cell-cell communication inference methods include: a cell-cell or 

cluster-cluster network due to ligand-receptor binding (for a specified signaling pathway) 

and more general intercellular gene regulatory networks in space.
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