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Journal Name

Extracting Structured Seed-Mediated Gold Nanorod
Growth Procedures from Scientific Text with LLMs

Nicholas Walker,a,‡ Sanghoon Lee,a,d John Dagdelen,a,d Kevin Cruse,b,d Samuel Gleason,a,e

Alexander Dunn,a,d Gerbrand Ceder,b,d A. Paul Alivisatos,b,d,e, f Kristin A. Persson,c,d, f Anub-
hav Jaina,‡

Although gold nanorods have been the subject of much research, the pathways for controlling their
shape and thereby their optical properties remain largely heuristically understood. Although it is
apparent that the simultaneous presence of and interaction between various reagents during synthesis
control these properties, computational and experimental approaches for exploring the synthesis space
can be either intractable or too time-consuming in practice. This motivates an alternative approach
leveraging the wealth of synthesis information already embedded in the body of scientific literature by
developing tools to extract relevant structured data in an automated, high-throughput manner. To
that end, we present an approach using the powerful GPT-3 language model to extract structured
multi-step seed-mediated growth procedures and outcomes for gold nanorods from unstructured
scientific text. GPT-3 prompt completions are fine-tuned to predict synthesis templates in the
form of JSON documents from unstructured text input with an overall accuracy of 86% aggregated
by entities and 76% aggregated by papers. The performance is notable, considering the model is
performing simultaneous entity recognition and relation extraction. We present a dataset of 11,644
entities extracted from 1,137 papers, resulting in 268 papers with at least one complete seed-mediated
gold nanorod growth procedure and outcome for a total of 332 complete procedures.

1 Introduction

Gold nanoparticles have been synthesized for centuries due to
their interesting optical properties, dating back to the Lycurgus
Cup from 4th century Rome,1 as well as imperial bowls and deco-
rated dishes from the Qing dynasty.2 However, scientific interest
did not develop until the work of Michael Faraday in the mid-19th

century, when he accidentally synthesized colloidal gold while
investigating the interaction between light and matter.3 In the
last three decades, chemists have developed the ability to synthe-
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size anisotropic metal nanoparticles in a controllable and repro-
ducible fashion.4 Around the turn of the millennium, multi-step
seed-mediated growth methods were developed to prepare gold
nanorods with aspect ratios ranging from 8 to 20.4–6 This gen-
erated a great deal of interest in anisotropic gold nanoparticles
due to a combination of the convenience of the wet-chemistry
approach, as well as the ability to tune the shape of the syn-
thesized nanorods. The anisotropic gold nanoparticles, in turn,
provide access to shape-dependent optical phenomena not ob-
served with spherical gold nanoparticles.7–10 Their applications
are widespread across many domains, including semiconductor
technology,11,12 biomedicine,13,14 and cosmetics.15 The suitabil-
ity of a nanoparticle for a particular application depends on its
morphology and size, which correspond to different plasmonic
properties.16–18

Despite the popularity of anisotropic gold nanoparticles, sys-
tematic investigation of the control of these properties has only
recently been approached.19 Although some theories and models
do exist for identifying and explaining the mechanisms of syn-
thesis that determine nanoparticle morphology,4,20–22 most syn-
thesis exploration is still guided by heuristics based on domain
knowledge.

For gold nanorods, it is clear that the simultaneous presence of
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various reagents during the synthesis affects the characteristics of
the resulting gold nanoparticles.4 To better understand these ef-
fects, computational simulation and analysis of the formation en-
ergetics of the nanoparticles or the nucleation and growth steps
can be used. Density functional theory (DFT) can be used to in-
vestigate the energetic landscape of potential gold nanoparticle
morphologies, including the effects of surface ligands that are
vital for the solution-phase synthesis of noble metal nanoparti-
cles.23–25 However, this approach does not account for the nu-
ances of nucleation and growth competition in solution-based
nanoparticle syntheses. These aspects can be addressed by mod-
eling real-time growth and dispersity dynamics with continuum-
level model, though this sacrifices access to small-scale energetics
granted by DFT.26 Alternatively, direct experimentation can be
used to explore the synthesis space by varying precursor amounts
over many experiments, though this is impractical due to the both
the number of experiments required to sample the synthesis space
and the condition that a single experiment can take many hours
to complete. Automated labs may address this problem in the
future, though most are still in their infancy.

A third approach seeks to leverage the wealth of informa-
tion contained in scientific literature. Many seed-mediated gold
nanorod recipes have been published in the materials science and
chemistry literature, but parsing them requires domain experts to
manually read these articles to retrieve the relevant precursors,
procedures, laboratory conditions, and target characterizations.
This comes with its own complications, however, as over time, the
body of materials science literature has grown to an unwieldy ex-
tent, preventing researchers from absorbing the full breadth of in-
formation contained in established literature or even reasonably
following research progress as it emerges.27 Thus, it is unreason-
able to expect domain experts in gold nanoparticle synthesis to
manually read and parse the complete existing synthesis litera-
ture efficiently, motivating the development of high-throughput
text-mining methods to extract this information.

The resulting databases built with these methods are the first
steps toward developing data-driven approaches to understand-
ing synthesis, which are being developed at an accelerating pace
as a rapidly emerging third paradigm of scientific investigation.
Generally speaking, these approaches involve the use of both
conventional and machine learning methods to both build large
databases and perform downstream analysis and inference over
said databases. Natural language processing (NLP) has been suc-
cessfully applied in the chemical, medical, and materials sciences
to produce structured data from unstructured text using meth-
ods and models such as pattern recognition, recurrent neural net-
works, and language models.28,28–52

For applications specifically related to materials synthesis, data-
driven approaches have been successful for tasks such as materi-
als discovery, synthesis protocol querying, and simulation and in-
terpretation of characterization results.53–57 However, these ap-
proaches are fundamentally limited by the quality of the data,
such as the completeness and substance of the data source. To
address this, careful data curation is necessary, as seen with the
construction and maintenance of large databases of characteristic
features of nanostructures.58

Recently, the wealth of unstructured information about gold
nanoparticle synthesis and characterization in literature has been
directly tapped through the combination of various NLP models
and other text-mining techniques to produce a dataset of over five
thousand codified gold nanoparticle synthesis protocols and out-
comes.59 This general dataset contains a wealth of information,
including detected materials, material quantities, morphologies,
synthesis actions, and synthesis conditions, as well as tags for
seed-mediated synthesis, synthesis paragraph classifications, and
characterization paragraph classifications.

Despite the breadth of accurate information provided, the gen-
eral dataset still suffers from a few pitfalls: (i) the inability to
distinguish between seed and growth solution procedures in seed-
mediated growth synthesis; (ii) the inability to detect references
to materials that do not contain specific formulae or chemical
names (e.g. “AuNP seed solution”); and (iii) the inability to de-
tect target morphologies as opposed to incidentally mentioned
morphologies. To address these issues, this work intends to use a
large sequence-to-sequence language model to extract full synthe-
sis procedures and outcomes in a single-step inference. Generally
speaking, a sequence-to-sequence model in NLP maps an input
sequence to an output sequence by learning to produce the most
likely completion of the input by conditioning the output on the
input.60

In this work, we leverage the capabilities of the latest lan-
guage model in the Generative Pre-trained Transformer (GPT)
family, GPT-3,61 to build a dataset of highly structured synthe-
sis templates for seed-mediated gold nanorod growth. A sim-
ilar approach using GPT-3 to build materials science datasets
has been applied to extracting dopant-host material pairs, cat-
aloging metal-organic frameworks, and extracting general chem-
istry/phase/morphology/application information for materials.62

We extracted these templates for seed-mediated gold nanorod
growth from 2,969 paragraphs across 1,137 filtered papers,
starting with using a question-answering framework aided by
the zero-shot performance of GPT-3 to construct a small initial
dataset. We then fine-tuned GPT-3 to produce complete synthesis
templates for input paragraphs. Fine-tuning GPT-3 consists of us-
ing multiple examples of paragraph and synthesis template pairs
to train GPT-3 to perform this specific task. Each synthesis tem-
plate in the final dataset contains information on relevant synthe-
sis precursors, precursor amounts, synthesis conditions, and char-
acterization results, all structured in a JSON format. This dataset
provides reproducible summaries of procedures and outcomes,
explicitly establishing the relationships between the components
of the recipe (e.g. accurately linking the correct volumes and con-
centrations with the correct precursors in the correct solution).
However, this specificity comes at the cost of generality, as the
dataset focuses on seed-mediated gold nanorod growth. The final
dataset consists of 11,644 entities extracted from 1,137 filtered
papers, 268 of which contain least one complete seed-mediated
gold nanorod growth procedure and outcome for a total of 332
complete procedures.

While our primary focus revolved around the application of
a fine-tuned GPT-3 Davinci model, we further extended our
research horizon by employing 13 billion parameter variant of
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Llama-263 to undertake the same task for benchmark. Llama-2,
an acronym for "Large Language Model Meta AI - 2", emerges
from a lineage of language models that have been reported
to exceed performance of much larger models (such as GPT-3
Davinci) on many NLP benchmarks.64 Compared to GPT-3,
Llama utilizes different approaches to architecture including the
use of SwiGLU activations instead of ReLU,65 rotary position
embeddings instead of absolute position embeddings,66 and RMS
layer-normalization67 instead of standard layer normalization.68

Additionally, Llama-2 boasts a 4,192 token context window
instead of the 2,048 token context window provided by GPT-3.

2 Dataset
The relevant data for constructing the training, testing, and pre-
diction data for this model was collected using the database of
gold nanoparticle synthesis protocols and outcomes developed by
Cruse et al.59 from the full-text database developed by Kononova
et al.28 through text- and data-mining agreements with several
major scientific journal publishers. The original full-text database
contains more than 4.9 million materials science articles, and the
pipeline for identifying and extracting gold nanoparticle synthesis
articles consists of progressively finer-meshed filtering steps us-
ing text-mining tools adapted from Kononova et al.28 and Wang
et al.69 These steps include regular expression matching to iden-
tify nanomaterial papers, document and vocabulary vectorization
using term frequency-inverse document frequency (TF-IDF) to re-
veal papers related more to gold than other noble metals, BERT-
based binary classifiers to identify paragraphs related to gold
nanoparticle synthesis or characterization (particularly morpho-
logical information), a combination of BiLSTM-based named en-
tity recognition (NER) and rules-based methods to extract synthe-
sis procedure details from synthesis paragraphs, and MatBERT49

NER to extract morphology and size information from character-
ization paragraphs.

Using the extracted information, 5,145 papers were iden-
tified to contain gold nanoparticle synthesis protocols,70 of
which 1,137 filtered papers were found to contain seed-mediated
recipes using the "seed_mediated" flag as well as rod-like mor-
phologies ("rod or "NR" in "morphologies" under "morphologi-
cal_information") or aspect ratio measurements ("aspect" or "AR"
in "measurements" under "morphological_information"). This
was done to filter the total papers down to only those likely to
contain seed-mediated synthesis recipes for gold nanorods.

3 Methods
At the core of the GPT-1 model was a focus on improving lan-
guage understanding by generative pre-training involving the use
of a large language model in conjunction with a very large and di-
verse pre-training corpus with long stretches of contiguous text,
which greatly facilitated the model’s ability to learn “world knowl-
edge” alongside its ability to process long-range dependencies.71

For a sequence-to-sequence generative model, outputs are gener-
ated by maximizing the log probability of p(output|input).60 To
further improve zero-shot performance for both learning and task
transfer, GPT-2 modified the training objective to include task con-
ditioning, p(output|input, task), thus establishing the model as an
unsupervised multitask learner.72 With GPT-3, more extensions of
the model size and the pre-training corpus have produced a model
with considerable capacity for few-shot learning that is capable of
producing text that is difficult to distinguish from human-written
text or performing tasks it was not explicitly trained on, such as
writing code or summing numbers.61 We employed the 175 bil-
lion parameter variant of GPT-3 (OpenAI Davinci) for this work.

Of the 1,137 filtered papers identified to contain information
about seed-mediated gold nanorod synthesis, 240 (consisting of
661 relevant paragraphs) were randomly sampled and fully an-
notated with JSON-formatted recipes by a single annotator with
machine assistance to serve as a training set. An additional 40
filtered papers (consisting of 117 relevant paragraphs) were an-
notated to serve as a testing set. Each relevant paragraph was
separately annotated due to length constraints imposed by GPT-
3, which limits the capability to process an entire article at once.
A limit of 2,048 tokens is shared between the input prompt and
the output completion, corresponding to approximately 1,500
words.61
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3.1 Overall Procedure

Fig. 1 A diagram illustrating the overall procedural approach for extract-
ing synthesis templates from text with GPT-3 is shown. All unstructured
text paragraphs were drawn from the seed-mediated gold nanorod growth
dataset of 1,137 filtered papers (purple). The first stage involves fill-
ing initial templates using a zero-shot question/answer framework with
GPT-3, which is then corrected (orange). The plus sign indicates a com-
bination of the texts and queries used as input. Template correction is
done through manual editing of the templates according to the described
annotation procedure. These annotated templates are used to fine-tune
an initial GPT-3 model, which produces complete templates in a single
prediction (green). From there, the process of iteratively predicting more
templates with a fine-tuned model, correcting them, adding them to the
training set, and then fine-tuning the model again is then performed
(blue). The plus signs for these stages indicate that text-template pairs
are used as input for fine-tuning.

A diagram outlining the general process for producing the final
fine-tuned model for template-filling is shown in Figure 1. In
the initial stage (orange), a simple question-answering frame-
work is used to individually fill in templates for an initial set of
paragraphs. These results are then corrected according to the
described annotation procedure and used as an initial training
set for fine-tuning GPT-3 to produce complete templates in the
second stage (green). The final stage (blue) is an iterative train-
ing process in which new templates are predicted, corrected, and
added to the training set to update the fine-tuned model, thus
improving its performance with each iteration. Default settings
through the OpenAI API (v0.13.0) are used for all fine-tunes of
the GPT-3 Davinci model, and a temperature of zero is used for all
model predictions with a double line break as the stop sequence.
By using a temperature of zero, the results should be determinis-
tic assuming that floating point errors in the GPU calculations are
smaller than the differences between the log probabilities of the
next token prediction candidates.

To assess Llama-2-13B’s efficacy in extracting two-step seed-

mediated gold nanorod synthesis procedures, we adopted a fine-
tuning approach using Low-Rank Adaptation (LoRA) as described
in73, facilitated by the Parameter-Efficient Fine-Tuning library74.
The base model of Llama-2-13B75 with 8-bit quantization was
fine-tuned with the identical training data on a single GPU
(NVIDIA A100). Some of the fine-tuning parameters we used are
as follows: 4 epochs, batch size of 1, learning rate of 0.0001,
LoRA r of 8, LoRA alpha of 32 and LoRA dropout of 0.05.

3.2 Template Structure and Annotation Scheme

Fig. 2 A diagram representing the structure of the seed-mediated gold
nanorod growth JSON template. From left to right, the structure is di-
vided into three components, the seed solution, the growth solution, and
the resulting gold nanorods. For the seed and growth solution compo-
nents, there are entries for the precursors and their associated quantities,
as well as entries for experimental conditions such as the age and aging
temperatures of the solutions and stir rates when adding the reducing
agent (for the seed solution) or the seed solution (for the growth solu-
tion). For the gold nanorod component, there are entries for the char-
acterization information that may be present, including the aspect ratio
(ar), length (l), and longitudinal/transverse surface plasmon resonances
(l/tspr).

The structure and content of the synthesis templates are shown in
Figure 2. The synthesis templates are stored as JSON documents,
which contain three components: the seed solution, the growth
solution, and the resulting nanorods. For the seed and growth
solutions, the precursors and their associated volumes (vol), con-
centrations (concn), and/or masses are recorded, as well as the
ages of the respective mixed solutions at the time of use and the
temperatures (temp) at which they are aged. Furthermore, the
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stirring rates when adding sodium borohydride (NaBH4) to the
seed solution and when adding the seed solution to the growth
solution are recorded. The shape and size of the gold seeds in
the seed solution are also noted. For the gold nanorods (AuNR),
the aspect ratios (ar), lengths (l), widths (w), and longitudi-
nal/transverse surface plasmon resonances (SPRs) are recorded.
The JSON documents have identical structures and thus contain
an entry for every value that can be requested; any values not
present in a given paragraph are filled with an empty string.

When available, numerical quantities with units are extracted.
For precursor volumes, the units are provided in variations of
liters, though the concentrations may be measured in either mo-
larity, molality, or weight percentage. In some cases, the total
volume of a collection of precursors may be specified instead of
the individual volumes of the precursors. In this case, the ex-
plicit volume is associated with the first precursor and the vol-
umes for the remaining precursors refer to the name of the first
precursor, implicitly communicating a shared volume. For tem-
peratures, degrees Celsius are most commonly provided, though
more qualitative descriptions such as “room temperature” will still
be recorded if the explicit temperature is not provided in the text
but a qualitative description is. Similarly, for solution ages, min-
utes or hours are most common, but sometimes only descriptions
like “overnight” are provided and recorded. For stirring rates, the
revolutions per minute (rpm) is preferred, but many papers will
instead provide descriptions such as “gentle” or “vigorous” that
are recorded. For the gold nanorod properties, aspect ratios are
unitless while the other quantities (length, width, SPRs) are pro-
vided in units of length, with the exception of some cases where
the LSPR is only provided as “NIR” (near-infrared). Throughout
all stages of the annotation process, three additional researchers
were consulted to reach a consensus on the appropriate annota-
tions for various edge cases caused by unclear wording or other
ambiguities.

3.3 Question Answering Completions

Fig. 3 An example of a question answering completion using GPT-3.
The input is bounded by a purple box containing the prompt (orange),
paragraph text (green), and query (blue). The output is bounded by a
red box.

Unfortunately, the standard pre-trained GPT-3 Davinci model is
not capable of providing consistent completed templates of high
quality in one request. However, the model is capable of an-

swering simple questions about synthesis paragraphs without any
fine-tuning, which allows for the fields of the synthesis templates
to be individually filled using answers from a simple question-
answering framework using GPT-3. An example is shown in Fig-
ure 3.76 This machine-assisted annotation approach avoids the la-
borious process of manually filling in each field of the templates
by hand, as an annotator only needs to verify and correct the
provided answers as-needed. However, this approach does not
scale well to large numbers of papers, as each query is a sepa-
rate model request, meaning that each paragraph in each paper
would require a large number of requests in order to fill a single
template. Therefore, this approach is used to construct an ini-
tial dataset consisting of synthesis templates for paragraphs from
a small number of papers. Due to the small number of papers
used, this initial dataset does not necessarily capture the variety
of precursors or manners in which critical data can be communi-
cated in text. As such, only information known to be commonly
present in seed-mediated gold nanorod synthesis (e.g. the com-
mon precursor volumes/concentrations) were queried. Neverthe-
less, these initial templates, when corrected, provide a suitable
starting point for fine-tuning GPT-3 to provide complete synthe-
sis templates in single requests for each paragraph. Through an
iterative process of fine-tuning GPT-3 on the available templates,
predicting new templates, correcting them, and fine-tuning a new
model using all of the corrected templates constructed thus far, a
final fine-tuned model can be obtained.

The initial synthesis template dataset was constructed using
the zero-shot question-answering framework with 40 randomly
sampled filtered papers. If a relevant precursor, condition, or
characterization was identified with regular expression pattern
matching in the paragraph, the framework would be to request
the information using GPT-3. For example, if “ascorbic acid”,
“AA”, “vitamin C”, or “C6H8O6” appeared in the paragraph, the
framework would request the volume, concentration, and mass
of ascorbic acid. This initial dataset only requested information
about the eight most common precursors, including “HAuCl4”,
“CTAB”, and “NaBH4” for the seed solution, and “HAuCl4”,
“CTAB”, “AgNO3”, “AA”, and “seed solution” for the growth so-
lution. To capture different ways of expressing each precursor,
multiple aliases were checked to include variations on chemi-
cal names as well as the chemical formulas. Additionally, the
framework requested information about the stir rate when adding
NaBH4 to the seed solution, the age of the seed solution, the tem-
perature of the seed solution during aging, the size and shape
of the seeds, the stir rate when adding the seed solution to the
growth solution, the age of the growth solution, and the tempera-
ture of the growth solution during aging. All request completions
for each paragraph were aggregated into a single JSON entry ac-
cording to the synthesis template scheme shown in Figure 2.

The approach of using zero-shot GPT-3 question answering re-
quests to fill the templates tended to produce poor results, but
it offered an acceptable starting point for collecting structured
recipes. Most of the templates only required correcting the in-
correct entries, rather than filling them in manually from scratch,
which greatly accelerated the creation of the initial dataset. How-
ever, some entries had to be added from scratch due to recipes
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including precursors outside the initial set of eight common pre-
cursors. Note that the static nature of the synthesis templates
across all paragraphs means that when one paragraph requires
the addition of a new precursor to the template, this is applied
to all templates for all paragraphs. Additionally, annotation was
done strictly, requiring that the synthesis method must be seed-
mediated growth and the target gold nanoparticle morphology
must be nanorods. This provides an important test for the model,
as the difference between recipes that produce very similar mor-
phologies can sometimes be subtle.

3.4 Fine-tuning Procedure and Dataset Construction

These corrected templates derived from the question answering
completions provided an initial training set for fine-tuning GPT-3
to produce the desired filled templates. From there, templates
for paragraphs from 40 more randomly sampled filtered papers
were iteratively predicted, corrected (adding new precursors
as necessary), and added to the training set until templates for
paragraphs from 240 filtered papers had been corrected in total.
With each iteration, the correction process became much easier
and faster. Initially, templates for information-dense paragraphs
took approximately 4 minutes to validate and correct, whereas,
by the end of the process, they took around a minute each.
This is because GPT-3 largely predicted filled templates with
high accuracy. The testing dataset was composed of paragraphs
from an additional random sampling of 40 papers. Not all of
the papers filtered from the original dataset were guaranteed
to contain information that should be placed into synthesis
templates. For example, seed-mediated growth or nanorod
measurements and morphologies may only be incidentally
mentioned in a given paragraph that is otherwise not relevant to
a specific seed-mediated gold nanorod growth procedure. Of the
240 filtered papers in the training set and the 40 filtered papers
in the testing set, 141 and 23 papers respectively contained at
least one paragraph with information that could be placed into a
synthesis template. The following command was used to perform
the fine-tuning: openai api fine_tunes.create -t <.jsonl
file containing prompt/completion pairs> -m davinci.

4 Results

The described training dataset of synthesis templates was used
to fine-tune a GPT-3 model to reproduce said synthesis templates
from the unstructured text. Default parameters for the fine-tuning
process were employed, incurring a cost of 85.30 USD (191,069
prompt tokens and 522,649 completion tokens). The predictions
over the testing dataset (40 papers composed of 117 paragraphs)
took around eighty minutes to complete and incurred a cost of
14.39 USD (27,327 prompt tokens and 92,126 completion to-
kens). The performance of the fine-tuned model was then evalu-
ated using the testing dataset.

4.1 Error Evaluation Examples and Definitions

Fig. 4 A model prediction example is shown, with empty entries omitted.
The original unstructured text is shown on the top, and the components
of the predicted synthesis template in JSON form are shown on the
bottom. The important information from the unstructured text is colored
in orange (for precursors) and green (for quantities), while any errors are
highlighted in red.

An example prediction is depicted in Figure 4.77 Errors are high-
lighted in red. For this example, two errors were made. First,
the quantities for “Borohydride” in the seed solution were instead
placed under “NaBH4” in the seed solution. Arguably, this is not
truly an error since sodium borohydride is often conventionally
referred to as “borohydride”, possibly indicating “world knowl-
edge” exhibited by GPT-3. However, there are technically other
borohydrides, such as potassium borohydride, that can be used
as a reducing agent for seed-mediated gold nanorod growth,78

so this was still marked as incorrect due to possible ambiguity.
The second error was the failure to extract the HCl volume. Note
the rather complex relationship in the growth solution precursor
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volumes, where CTAB, HAuCl4, ascorbic acid, AgNO3, and HCl
all share the same 25 mL volume. To avoid confusion, the volume
is explicitly associated with the first-mentioned precursor in the
mixture, and the following precursors refer back to that first pre-
cursor. This ensures that downstream applications can unambigu-
ously process the data to mean that the precursors are sharing a
single volume. Other than these two errors, the model performs
very well at extracting quantities in this example.

Fig. 5 A diagram depicting the different types of prediction errors made
by the model is presented. Generally, two categories of errors exist: place-
ment errors and transcription errors. Placement errors refer to whether
the prediction has placed any information, correct or incorrect, into the
appropriate fields as determined by the ground truth. These are indicated
with the lines connecting the fields in the ground truth and the prediction
templates. A false positive prediction occurs when the prediction places
information in a field that is empty, while a false negative prediction is the
reverse. A true negative prediction is when a field is empty in both the
ground truth and the prediction, and a true positive prediction is when a
field is non-empty in both the ground truth and the prediction. Since the
placement evaluations do not consider whether the predicted value in a
field is actually correct for true positives, an additional transcription eval-
uation is used to measure how well the predicted value explicitly matches
the ground truth value. These are indicated with boxes encapsulating
the fields. The transcription evaluation is only applied to true positive
placements.

For the 117 testing paragraphs, two types of errors are tracked:
placement errors and transcription errors. This is done in order
to evaluate the model’s capability for separately identifying which
fields of the synthesis templates should contain information, as
well as how accurate the appropriately placed information is. To
evaluate information placement, only the existence of information
in the fields of the prediction and ground truth synthesis tem-
plates are considered. For example, if the same field contains in-
formation (as opposed to being empty) in both templates, that is
considered a true positive prediction regardless of whether the in-
formation explicitly matches. If both fields are empty, then that is
a true negative. If the prediction field contains information while
the ground truth field is empty, then that is a false positive, while
the reverse is a false negative. These categories of placement er-
rors are used to calculate the precision, recall, and F1-score for
information placement. Examples of these evaluations are shown

in Figure 5.

For evaluating transcription accuracy, only the agreement be-
tween the prediction and the annotation for true positive place-
ments are considered, as the other types of errors are accounted
for by the evaluations of information placement. For numerical
values with units, the units must be exactly correct and the quan-
titative relative error was calculated according to the function
s(p,q) = 2 ·min(p,q)/(p+ q), which is derived from the absolute
proportional difference r(p,q) = |p−q|/(p + q) and is bounded
on [0,1] for non-negative numerical values p (predicted numeri-
cal value) and q (annotated numerical value). Some values may
have modifiers attached, such as “> 3 h”. If the prediction misses
this information, e.g., gives “3 h”, the prediction is considered
half-correct even if the quantity and unit are both correct. Some
quantities will additionally be expressed as a range or list of val-
ues. In these cases, the range boundaries are split into a list as
necessary, and the transcription accuracies are scored and aggre-
gated across the values in the list with proper ordering enforced.
For non-numerical predictions such as stir rates described as “vig-
orous” or gold seed morphologies, an exact string match is re-
quired for the prediction to be marked as correct. The combined
accuracy (adjusted F1-score) is presented as the product of the
F1-score for information placement and the transcription accu-
racy. This is the most meaningful metric to evaluate the overall
performance of the model.

4.2 Model Performance

The total performance of the model aggregated over each recipe
component as well as all entries is shown in Table 1. The model
appears to be proficient at generally identifying which informa-
tion should be filled in the template based on the content of
the text, with a rather high F1-score of 90% that favors neither
precision nor recall. It additionally performs exceptionally at ac-
curately transcribing the information with an accuracy of 95%.
By taking the product of the placement F1-score and the tran-
scription accuracy, this provides an impressive overall adjusted
F1-score of 86%. This indicates a significant improvement over
comparable efforts in solid-state synthesis text-mining, which re-
port an overall accuracy of 51% for extracting all recipe items
(chemistry, operations, and attributes of the operations).28 Di-
rect comparison is, however, rather challenging, as some aspects
of the two-step, seed-mediated growth synthesis are more com-
plicated, such as the presence of two solutions with distinct pre-
cursor sets and a greater amount of precursor information needed
due to the solution-based format. On the other hand, solid-state
synthesis extraction carries its own challenges, considering the
greater variation in procedural steps and conditions that must be
considered.

It is clear that the adjusted F1-scores for the recipe entities as-
sociated with the seed and growth solutions are very promising,
indicating that the model is reliable for extracting the necessary
information from the text for the component solutions to the syn-
thesis procedure. However, the performance is worse overall for
the gold nanorod properties, with an adjusted F1-score of approx-
imately 72%. This is still an improvement over similar results, as
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Table 1 Model F1-scores and accuracies for recipe entities aggregated by recipe component. The support numbers in parentheses account for only the
true positives used for the accuracy calculation.

Placement Transcription Combined
Precision Recall F1 Accuracy Adj. F1 Support

Seed Solution
GPT-3 0.97 0.92 0.94 0.95 0.90 159 (142)

Llama-2 0.90 0.91 0.91 0.94 0.85 169 (140)

Growth Solution
GPT-3 0.90 0.94 0.92 0.96 0.88 244 (206)

Llama-2 0.88 0.92 0.90 0.94 0.84 247 (202)

AuNR
GPT-3 0.79 0.74 0.76 0.95 0.72 96 (59)

Llama-2 0.75 0.70 0.72 0.97 0.70 99 (56)

Overall
GPT-3 0.90 0.90 0.90 0.96 0.86 499 (407)

Llama-2 0.87 0.88 0.87 0.94 0.82 515 (398)

Table 2 Model performance for precursor detection in the seed and growth solution information.

Seed Solution Growth Solution
Precision Recall F1 Support Precision Recall F1 Support

Precursor
GPT-3 0.98 0.90 0.94 61 0.93 0.92 0.92 118

Llama-2 0.95 0.90 0.92 63 0.91 0.91 0.91 120

the gold nanoparticle synthesis protocol and outcome database
developed by Cruse et al.59 extracts morphology measurements,
sizes, and units with F1-scores of 70%, 69%, and 91% via NER
with MatBERT. However, these entities are not linked together, so
while doing so would inevitably introduce additional sources of
error and performance would be additionally constrained by the
lowest performing extractions, a direct quantitative comparison
is not applicable.

Table 2 shows the model performance for detecting precursors
in the seed and growth solutions. Precursor detection is calcu-
lated implicitly based on which precursors the extracted volumes,
concentrations, and masses are associated with. This is a clear
improvement over the results in the gold nanoparticle synthesis
protocol and outcome database developed by Cruse et al.,59. The
prior work detected precursors via a BiLSTM-based NER model
with an F1-score of 90%. However, as mentioned earlier, this does
not distinguish between seed and growth solution precursors and
cannot detect precursors that do not contain specific formulae or
chemical names, such as the seed solution that is added to the
growth solution. This means that direct quantitative compari-
son is not applicable. The fine-tuned GPT-3 model missed cases
where cationic surfactant, PP, BH4, and AuCl3 were used as well
as a case where HCl was used in the seed solution. None of these
cases occurred in the training set. Notably, the model correctly
normalized “AsA” to “AA”, despite “AsA” never appearing in the
training data.

The adjusted F1-scores aggregated over extracted entities for
the paragraph-wise and paper-wise predictions are shown in Fig-
ure 6. Instances in which there were no entities present in either
the ground truths or the predictions are omitted from the results,
giving a total of 66 paragraphs and 26 papers. For the paragraphs,
the average adjusted F1-score was approximately 64% with 22
(33%) perfect predictions and 32 (48%) predictions with > 90%
adjusted F1-score. For the papers, the average adjusted F1-score
was approximately 76% with 4 (15%) perfect predictions and 16
(62%) predictions with > 90% adjusted F1-score.

Fig. 6 Histograms showing the adjusted F1-score performances for the
(a) paragraphs and (b) papers.

Comparative performance of Llama-2-13B against GPT-3
Davinci is also detailed in Table 1, and 2. Although Llama-2
exhibits comparatively diminished performance, its viability is
context-dependent. Its value arises from being a smaller model,
amenable for non-commercial on-premise deployment without
relying on an API. Moreover, its reduced size compared to GPT-3
Davinci makes it an economical choice from a computational
standpoint.
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Table 3 A table depicting the format of each data record for each article in the dataset is presented (constructed by merging paragraph templates).
The “doi” key contains the article DOI and the “text” key contains index keys of the relevent paragraphs within that article which in turn contain the
paragraph text. The “seed” and “growth” keys respectively contain the keys for the seed and growth solution information, including the “prec” key
for precursors, the “stir” key for stir rates (when adding the reducing agent for the seed solution and when adding the seed solution for the growth
solution), the “temp” key for the aging temperature, and the “age” key for the solution aging time. The “seed” key has an additional “seed” key that
contains the “size” and “shape” keys for the size and shape of the seeds in the seed solution. The “prec” key for each solution contains multiple keys
for each precursor in each solution, anonymized as “<precursor name>” in the table. For each precursor, there are three keys: “vol”, “concn”, and
“mass” for the precursor volume, concentration, and mass, respectively. The “AuNR” key contains keys for measurements of gold nanorod dimensions:
“ar”, “l”, “w”, “lspr”, and “tspr” for the aspect ratio, length, width, LSPR, and TSPR, respectively. Each extracted value is additionally stored as a key
with a corresponding list of the paragraph indices that the value was extracted from in order to preserve information about entity sources. The final
column displays the total number of entities extracted for each key (with no subkeys).

Root Key First Subkey Second Subkey Third Subkey Description Total
doi Article DOI 1137
text <integer> Paragraph text for

<integer>th paragraph
2969

seed

prec <precursor name>
volume Seed solution precursor vol-

ume
1347

concentration Seed solution precursor con-
centration

1385

mass Seed solution precursor mass 6

seed
size Seed solution seed size 137
shape Seed solution seed shape 24

stir Seed solution reducing agent
stir rate

266

temp Seed solution aging tempera-
ture

284

age Seed solution aging time 352

growth

prec <precursor name>
volume Growth solution precursor

volume
2664

concentration Growth solution precursor
concentration

2178

mass Growth solution precursor
mass

65

stir Growth solution reducing
agent stir rate

134

temp Growth solution aging tem-
perature

322

age Growth solution aging time 464

AuNR

ar Gold nanorod aspect ratio 587
l Gold nanorod length 443
w Gold nanorod width 452
lspr Gold nanorod LSPR 357
tspr Gold nanorod TSPR 177

4.3 Full Filtered Dataset

The fine-tuned GPT-3 model was applied to the full filtered
dataset of 1,137 filtered papers (2,969 paragraphs) at a total cost
of 384.31 USD (838,901 prompt tokens and 2,332,796 comple-
tion tokens) over 33 hours. In total, 11,644 entities were ex-
tracted from the paragraphs that contained information of inter-
est. The dataset is presented as a JSON file containing a list with
each element corresponding to a single article. Table 3 summa-
rizes the structure of the JSON documents for each paper along-
side a breakdown of how the total extracted entities across the en-
tire dataset are distributed across the entity types. While the tem-
plate extractions were performed paragraph-by-paragraph, the
templates have been merged by article for convenience. However,
this does mean that some conflicts and repetitions are present
in the dataset. A conflict arises when a particular entity type in

a paper (e.g. the volume of a particular precursor) is specified
with different values across multiple paragraphs and a repetition
arises when it is specified with the same value across multiple
paragraphs. Of the 11,644 extracted entities, 10,098 (∼ 87%) are
uniquely identified, meaning there are no conflicts or repetitions
(the associated value is extracted from exactly one paragraph).
An additional 353 entries present at least one conflict without
any repetitions, 251 with at least one repetition and no conflicts,
and 57 with both conflicts and repetitions. Repetitions do not
need to be manually resolved since this arises from the specifi-
cation of identical information across multiple paragraphs (e.g.
mentioning the gold nanorod aspect ratios in paragraphs about
both the synthesis procedure as well as the nanorod characteri-
zation), but conflicts can be challenging to resolve in a consistent
manner without manual inspection. For instance, if two separate
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volumes for a particular precursor are provided in two separate
paragraphs, it can be ambiguous whether the volumes are part of
the same synthesis procedure or distinct synthesis procedures in
the same paper due to the lack of cross-paragraph context. With
this in mind, of the 11,644 extracted entities, 10,349 (∼ 89%) can
be safely extracted by automatically resolving repetitions and dis-
carding entities with conflicts. Of the entities with conflicts, 341
have two distinct values, 47 have three, 12 have five, 9 have four,
and 1 has five.

With post-processing applied (as was done for evaluation of the
testing dataset), splitting lists of extracted values into distinct en-
tities and resolving repetitions of identical information extracted
across different paragraphs within the same papers results in a to-
tal of 11,770 unique entities. In the post-processed version of the
dataset, each property contains a list of dictionaries with struc-
tures indicated in Table 4.

4.4 Full Filtered Dataset Analysis

4.4.1 Procedure Completeness Analysis

An ideal database of gold nanorod growth procedures should con-
tain fully-specified, reproducible procedures alongside their out-
comes. This is desirable because missing information could in-
hibit downstream applications that need complete information
about the synthesis procedure. For instance, if a scientist wants to
reproduce an experiment that produces gold nanorods of a par-
ticular aspect ratio, they would at the very least need to know
all of the relevant seed and growth solution precursors with their
amounts. Similarly, a data science project that intends to investi-
gate the relationship between procedures and outcomes will need
complete information for the seed and growth solutions in addi-
tion to the gold nanorod measurements in order to produce reli-
able predictions. To evaluate the completeness of the information
this dataset contains, we examined 1,137 filtered papers in the
full filtered prediction dataset. Of these, 701 (62%) contained
at least one paragraph with a non-empty synthesis template. Of
these 701 papers, 678 (97%) fully specified at least one synthesis
component: the seed solution, the growth solution, or the gold
nanorod dimensions. This is encouraging since the vast majority
of the papers that contain information at least fully specify one
component of the procedure or the outcome.

In order to evaluate the completeness of the components of
the procedure and the outcome, for seed and growth solutions,
only fully specified precursors were considered necessary for re-
producibility. Auxiliary information, such as stirring rates, aging
times, aging temperatures, and seed particle morphologies and
sizes, while useful, was not considered necessary. The precursor
information was considered to be full specified for a given pa-
per if all of the precursor quantities were fully specified with ei-
ther volume and concentration, mass, or a specific concentration
within another solution for each precursor with extracted quanti-
ties. Exceptions were made for water and the seed solution that is
added to the growth solution, which both only needed a reported
volume or mass. Additionally, seed solution in the growth solu-
tion precursors was required for the growth solution precursors
to be considered complete. For the gold nanorod dimensions to

be considered complete, either the aspect ratio, length, or LSPR
measurement had to be specified, with the latter two at least pro-
viding an avenue for estimation of the aspect ratio if reported
alone.

Fig. 7 A diagram showing the proportional overlaps of papers with com-
plete synthesis procedure and outcome components. Each vertex of the
triangle corresponds to the labeled recipe component. The areas of the
circles are proportional to the corresponding number of papers inscribed.
The circles on the midpoints of the edges correspond to papers with com-
plete recipe components corresponding to the bounding vertices. The
center circle corresponds to the papers with complete recipes and com-
plete characterizations.

Figure 7 shows how the papers in the full filtered prediction
dataset are distributed across fully-specified synthesis procedure
and outcome components according to these criteria. The vast
majority of the papers reported gold nanorod dimensions, with
80% of the 678 papers with at least one fully specified synthesis
component containing fully-specified gold nanorod dimensions.
Additionally, the majority of the papers fully-specified the seed
and growth solutions (respectively 61% and 67%). However, they
are distributed such that 40% (268) of the papers fully specified
all three components. This is a reasonable result considering that
many papers will directly report the relevant gold nanorod dimen-
sions without specifying a synthesis procedure, opting instead to
reference the established recipe that the researchers used to pro-
duce the gold nanorods. Additionally, some researchers will opt
to purchase gold seed solution instead of producing their own,
which accounts for cases where some papers are missing infor-
mation about seed solution preparation. Most of the papers with
fully-specified synthesis procedures and outcomes (162) used the
typical 8-precursor synthesis and an additional 49 use the same
synthesis precursors with the addition of HCl in the growth solu-
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Table 4 A table depicting the format of each extracted value in the post-processed version of the dataset.

Key Structure Description
mod <modifier> A string indicating if a value is a range, ap-

proximate, bounding, or unprocessed.
val [<value>, ..., <value>] A list of the extracted values. Ranges will

consist of two values for the range bound-
aries. Processed values will be numbers
while unprocessed values will be strings.

unit <unit> The units for the extracted values, if appli-
cable, as a string.

src [[<index>, ..., <index>], ..., [...]] A list of lists of paragraph indices to indicate
the source for the extracted information.

index [[<index>, ..., <index>], ..., [...]] A list of lists of positional indices to retain
ordering for values that were split from a
list during post-processing.

tion. In the post-processed version of the dataset, it is determined
that of the 268 papers that fully specified all three components,
233 contained exactly one procedure. An additional 16 contained
two, 13 contained three, 3 contained four, 2 contained five, and
1 contained six for a total of 332 complete procedures. This final
dataset should be suitable for downstream analysis and inference,
given the overall model performance for extracting complete syn-
thesis procedures and outcomes from the literature.

4.4.2 Data Consistency Analysis

Fig. 8 A diagram showing the relationships between the gold nanorod
aspect ratios and other gold nanorod measurements extracted from the
literature including the (a) ratio between length and width and (b) the
LSPR peak. The inlier datapoints are shown in purple and the outlier
datapoints in red. The linear regressions derived from the text-mined
data using all of the available data and only the inlier data are respec-
tively shown in red and purple on each sub-diagram. For the comparison
to the ratio between length and width (a), the ideal relation is shown
with a dashed black line and for the LSPR comparison (b), a simulated
relationship is shown with a dashed black line.79
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Figure 8 shows the relationship between various measurements
extracted from text compared to the aspect ratios extracted from
the text. Only co-occurring measurements explicitly present
within the extracted information from a given paragraph are con-
sidered data points for comparison. No derived measurements
were used. As a sanity check, the first diagram (a) shows the re-
lationship between the ratios of the explicit lengths and widths
present in the text (excluding ranges) and the reported aspect
ratios. Ideally, the relationship should be an identity as shown
with the dashed line. However, while the vast majority of the
data approximately complies with this trend, there are several
outliers that produce deviation from the ideal trend in the re-
gression of the text-mined data. This is primarily caused by two
papers with mismatches in measurements extracted from three-
step seed-mediated gold nanorod overgrowth procedures where
the dimensions of the nanorod seeds used for overgrowth into
nanowires are confused with the dimensions of the nanowires
themselves. With all outliers removed via outlier detection using
an elliptic envelope80,81 followed by manual verification, the lin-
ear regression almost exactly matches the ideal relationship. The
most common errors were caused by nanorod overgrowth mea-
surements taken from three-step seed mediated growth proce-
dures and cases in which the ordering of the aspect ratios and the
lengths and widths were mismatched (e.g. the lengths and widths
are listed while the aspect ratios are presented as a range). Only 8
of the 78 data points were identified as outliers. For the compar-
ison between the LSPR peaks and the aspect ratios (b), a strong
linear trend is similarly present. However, for this relationship,
there is an additional comparison to a relationship derived from
simulation using a set refractive index for gold nanorods shown
in blue, which is in general agreement with the relationship de-
rived from text-mined empirical data.79 The deviations can be
explained by multiple factors including deviations from ideal con-
ditions shifting the LSPR peaks such as deviation from spherical
end-cap geometries, low nanorod yields, or impurities in the gold
nanorod solution or the nanorods themselves that change the re-
fractive index (including poor cleaning or high concentrations of
silver in procedures using AgNO3).79,82 While there are extrac-
tion errors present, outlier removal using an elliptic envelope fol-
lowed by manual verification does not significantly change the
linear regression. Outliers were most commonly caused by ex-
traction errors that swapped the LSPR and TSPR measurements
provided in the text. Only 9 of the 86 data points were identi-
fied as outliers. Deviation from the theory in such a manner is to
be expected when considering empirical data from real-world ex-
periments. Still, the LSPR for spheres should be around 520 nm
while the text-mined trend line points towards a value closer to
580 ∼ 590 nm. However, for larger aspect ratios, the text-mined
trend line is more representative of the text-mined empirical data
than the trend line derived from simulation. The major outlier
present in the text-mined data is once again explained by a mis-
match in measurements from a three-step seed-mediated gold
nanorod overgrowth procedure.

4.4.3 Gold Nanorod Aspect Ratio Distribution Analysis

Fig. 9 A diagram showing the distributions of gold nanorod aspect ratios
resulting from different precursor sets including the (a) standard proce-
dure, (b) the addition of HCl in the growth solution, and (c) all complete
precursor sets. Negligible contributions for aspect ratios larger than 20
are not shown (P(AR > 12) < 0.02). In each sub-diagram, the median is
shown with a solid black line and the first and third quartiles are shown
with dashed black lines.

Figure 9 shows the distributions of the aspect ratios extracted
from fully-specified experiments using precursor sets found in
more than 10 papers in the full filtered prediction database (Fig-
ures 9a and 9b), in addition to the complete set of papers (Figure
9c). For many of the papers, the aspect ratios were directly re-
ported. However, there are multiple different ways that they are
reported that must be addressed in order to properly construct the
distributions. If the aspect ratio is provided as a range of values,
the distribution across that range was taken to be a normal dis-
tribution with a mean and standard deviation determined by the
midpoint and endpoints of the range, respectively. For papers that
did not report aspect ratios directly, length and width information
was used instead. In cases where the lengths and widths were
presented as ranges, they were similarly cast as normal distribu-
tions, and the distributions of the aspect ratios were calculated as
ratio distributions. For cases where only the LSPR was provided,
the text-mined linear relationship with outliers removed shown
in Figure 8 was used to estimate the aspect ratios. In cases where
any quantities were accompanied by an approximation modifier
(e.g. ∼), the values were cast as uniform distributions over the
range of ±10% of the value. Any calculated aspect ratios that fell
below 1 (e.g. due to overlaps in length and width distributions
for gold nanorods with small aspect ratios) were inverted.

From the distribution of the standard recipe, it is readily appar-
ent that the median nanorod aspect ratio is 3.3 with respective
first and third quartiles of 2.75 and 3.98. Comparing with exper-
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iments reporting that varying the concentration of AgNO3 in the
growth solution varies the resulting nanorod aspect ratios from
1.83 to 5.04,83 the distribution of gold nanorod aspect ratios text-
mined from the literature is consistent with this range, though it
is narrower. Notably, there is a non-negligible amount of samples
with aspect ratios greater than 5 in the distribution for the stan-
dard procedure. This is not consistent with heuristic knowledge
of the limitations of the standard procedure for producing large
aspect ratio gold nanorods, usually due to shorter growth times
compared to procedures that adjust the pH of the growth solution
to retard the nanorod growth.84,85 This is primarily due to erro-
neous extractions of nanowire measurements from overgrowth
experiments or missed precursors based on manual inspection of
the data. However, the statistics are still dominated by the lower
aspect ratios. Comparing to the distribution for experiments us-
ing HCl in the growth solution, it is apparent that the addition
produces a distribution shifted towards larger aspect ratios. This
is consistent with experiments that have determined that the use
of HCl in the growth solution grants broader tunability of the
gold nanorod aspect ratios, allowing for more controlled growth
of longer nanorods relative to the standard procedure.86,87 No-
tably, ∼ 7% of the procedures using the standard procedure and
∼ 9% of the procedures using HCl in the growth solution provide
nanorods with aspect ratios of 5 or higher. However, when all
recipes are considered, it is clear that even longer nanorods can
be synthesized, though these recipes are not as popular in the
literature.

5 Discussion
Overall, the model performs well at identifying and extracting rel-
evant information specific to seed-mediated gold nanorod growth
procedures in the literature. The model achieves an overall ad-
justed F1-score of 86% on the testing dataset, indicating that it
performs rather well at the task of simultaneous entity recogni-
tion and relation extraction. However, due to the static nature
of the relations provided by the synthesis template and the sin-
gle inference step, the entity recognition and relation extraction
tasks are not easily disentangled, which limits direct comparison
with conventional two-step approaches. Instead, the model per-
formance for information retrieval is evaluated according to its
ability to place information into fields of the template where in-
formation should exist and then the accuracy of the information
that is correctly placed. For information placement, the precision,
recall, and F1-score are balanced at 90%, indicating notable per-
formance with no preference for false positives or false negatives.
Of the information that is correctly placed in the templates, the
model predicts the specific values with 96% accuracy. Thus, the
primary source of error is the accurate placement of information
into the template rather than the accurate prediction of correctly
placed information. However, the template model struggles with
identifying new precursors that were not present in the training
set.

The dataset produced by the model provides a wealth of infor-
mation about seed-mediated gold nanorod growth experiments
and, to our knowledge, constitutes the largest structured database
with this level of depth and completeness. The model’s ability to

distinguish between precursors in the seed and growth solutions
provides an example of very useful information. The simulta-
neous identification of precursors alongside linking them to the
appropriate solutions in the two-step seed-mediated procedure
had proven difficult using established methods due to the prop-
agation of errors introduced by the reliance on separate models
for entity extraction and relation. However, with this model, if
a researcher wants to quickly find papers that used a particular
precursor in the seed solution for seed-mediated growth of gold
nanorods, this task can be accomplished with high fidelity using
the predicted templates. Access to this information can be ex-
pected to greatly improve tools for scientific literature searches,
as conventional simple keyword searches do not offer this specific
relational dependence for complicated multi-step procedures.

For a more ambitious goal, the full synthesis procedure data can
be leveraged for multiple downstream tasks, which would require
the creation of additional models for inference. One example
would be a model that predicts gold nanorod dimensions condi-
tioned on a specific synthesis procedure: p(properties|procedure).
Such a model may be leveraged to predict the outcomes of pro-
posed procedures without the need to perform them explicitly.
Building on this, the inverse problem, p(procedure|properties),
can also be modeled. This would be very useful for streamlining
synthesis experiments, as the necessary procedures for synthesiz-
ing gold nanorods with the desired properties can be inferred to
provide a starting point that reduces the number of experiments
that must be conducted to synthesize the desired gold nanorods.
However, in the most likely case, any model trained on literature
data alone will be incomplete and require further data generation
and fine tuning.

Furthermore, it is worth considering how these templates fit
into a larger project for downstream synthesis outcome predic-
tions and synthesis procedure recommendations. The data ex-
tracted from literature can be used to pre-train models used for
these purposes, while explicit experimental data can be used to
further train the models to produce better predictions. The new
templates provided by the experimental results are expected to be
of extremely high quality, which will mitigate the errors present
in the pre-training data from literature over time as more experi-
mental results are added to the template database.

While this dataset is restricted to seed-mediated gold nanorod
growth, the flexibility and performance of the templating ap-
proach using GPT-3 motivates application to other tasks for struc-
tured information retrieval from unstructured scientific text as
has been shown in recent literature.62 To this end, the dataset
can be extended to accommodate seed-mediated growth of other
gold nanoparticle morphologies, which may even improve over-
all model performance, as many errors were caused by the model
erroneously extracting information from procedures that men-
tioned nanorod morphologies, but synthesized a different mor-
phology. Additionally, more complex synthesis methods, such as
three-step processes in which nanorods are first synthesized via
seed-mediated growth to be used as seeds in a growth solution
for overgrowth into nanowires, as well as other synthesis meth-
ods, such as citrate reduction, may require the creation of new
templates and fine-tuning a separate model for each synthesis
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method to improve overall performance. Generally, it can be ex-
pected that more complex templates will require more examples
for fine-tuning.

6 Conclusions
The presented model for static structured templating of seed-
mediated gold nanorod growth procedures extracted from un-
structured text using GPT-3 is demonstrated to be a promising ap-
proach for constructing high-quality structured databases of infor-
mation from the scientific literature. This approach for extracting
seed-mediated gold nanorod procedures and outcomes achieves
an impressive adjusted F1-score of 86% for the simultaneous iden-
tification and linking of synthesis procedure components. We
present a final dataset of 11,644 entities extracted from 1,137
filtered papers, resulting in 268 papers with at least one complete
seed-mediated gold nanorod growth procedure and outcome for
a total of 332 complete procedures. This method can potentially
be utilized for many downstream applications including proce-
dure searches oriented around specific features, statistical anal-
ysis of synthesis outcomes, synthesis outcome predictions condi-
tioned on procedures, and synthesis procedure recommendations
conditioned on outcomes among others given the wealth of struc-
tured information present. Overall, we present this approach as
a flexible candidate for general-purpose structured data extrac-
tion from unstructured scientific text and contribute a dataset that
may serve as a useful tool for investigating synthesis pathways be-
yond heuristics.
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