
UC Davis
UC Davis Previously Published Works

Title
Intrinsic connectivity reveals functionally distinct cortico-hippocampal networks in the 
human brain

Permalink
https://escholarship.org/uc/item/7j1996k8

Journal
PLOS Biology, 19(6)

ISSN
1544-9173

Authors
Barnett, Alexander J
Reilly, Walter
Dimsdale-Zucker, Halle R
et al.

Publication Date
2021

DOI
10.1371/journal.pbio.3001275
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7j1996k8
https://escholarship.org/uc/item/7j1996k8#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE
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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Episodic memory depends on interactions between the hippocampus and interconnected

neocortical regions. Here, using data-driven analyses of resting-state functional magnetic

resonance imaging (fMRI) data, we identified the networks that interact with the hippocam-

pus—the default mode network (DMN) and a “medial temporal network” (MTN) that included

regions in the medial temporal lobe (MTL) and precuneus. We observed that the MTN plays

a critical role in connecting the visual network to the DMN and hippocampus. The DMN

could be further divided into 3 subnetworks: a “posterior medial” (PM) subnetwork com-

prised of posterior cingulate and lateral parietal cortices; an “anterior temporal” (AT) subnet-

work comprised of regions in the temporopolar and dorsomedial prefrontal cortex; and a

“medial prefrontal” (MP) subnetwork comprised of regions primarily in the medial prefrontal

cortex (mPFC). These networks vary in their functional connectivity (FC) along the hippo-

campal long axis and represent different kinds of information during memory-guided deci-

sion-making. Finally, a Neurosynth meta-analysis of fMRI studies suggests new hypotheses

regarding the functions of the MTN and DMN subnetworks, providing a framework to guide

future research on the neural architecture of episodic memory.

IAU : TheheadingIntroductionhasbeeninserted:Pleasecheckandcorrectifnecessary:ntroduction

Episodic memory allows us to relive past events that happened at a particular place and time

[1]. Most research investigating the neurobiology of episodic memory retrieval has focused on

the hippocampus and medial temporal lobe (MTL) cortex [2–4], but it is generally assumed

that the hippocampus supports memory by integrating information represented across distrib-

uted areas in the neocortex [5]. Consistent with this idea, functional magnetic resonance imag-

ing (fMRI) studies of memory retrieval have shown activity and connectivity in a cortico-

hippocampal network composed of medial and lateral parietal, lateral temporal, and medial
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prefrontal (MP) neocortical regions along with the MTL [6–10], and lesion studies have

shown that damage within this network can cause amnesia [11].

This distributed set of cortical regions that is recruited during episodic retrieval overlaps

extensively with regions that comprise the default mode network (DMN). The DMN is a large-

scale network that is typically identified in studies that use intrinsic functional connectivity

(FC) analysis of fMRI data [12], and some studies suggest that the DMN can be differentiated

into different subnetworks [13–15]. One approach to partition the DMN has been to view

DMN subnetworks as an extension of the connectivity differences within the MTL [16–18].

Guided by neuroanatomical studies of MTL connectivity in rodents and nonhuman primates

[19–22], studies of intrinsic FC in fMRI data [23–26] have differentiated between cortical

regions that preferentially affiliate with the perirhinal cortex and anterior hippocampus and

cortical regions that preferentially affiliate with the parahippocampal cortex and posterior hip-

pocampus [27,28]. For example, Libby and colleagues [24] demonstrated that the parahippo-

campal cortex has relatively higher FC with a network of posterior medial (PM) cortical

regions, including the posterior cingulate and retrosplenial cortex and posterior hippocampus,

whereas the perirhinal cortex has relatively higher connectivity with a network of anterior tem-

poral (AT) cortical regions, including the orbitofrontal and temporopolar cortex and anterior

hippocampus. Drawing on these findings, Ranganath and Ritchey [29] reviewed evidence con-

verging on the idea that PM and AT networks support different aspects of memory-guided

behavior. This “PM/AT framework” has provided a valuable framework for interpreting mem-

ory phenomena in imaging [9,30–32], stimulation [33,34], and disease [35–37]. However,

recent work has come to question the homogeneity of the PM network [38], with several stud-

ies highlighting a dissociation between parahippocampal cortex, retrosplenial cortex, and pre-

cuneal cortex from posterior cingulate cortex (PCC) [39,40] under conditions that seem to tax

perceptual, relative to abstract event processing, or scene relative to face processing.

A second approach to segmenting the DMN has used data-driven methods, and these stud-

ies have also found partially conflicting network delineations [15,41,42]. These studies have

generally partitioned the DMN into 3 subnetworks: an MTL subnetwork, a midline subnet-

work of posterior cingulate and medial prefrontal cortex (mPFC), and a third network com-

posed of dorsal mPFC, lateral temporal, and ventrolateral prefrontal cortex, but have focused

largely on cortical regions. It is unclear, however, whether these data-driven, cortical network

parcellations are relevant to understanding episodic memory or task-related recruitment of

cortico-hippocampal networks [43,44].

In the present study, we sought to use the data-driven approaches previously used to char-

acterize large-scale cortical networks to provide a comprehensive characterization of the cor-

tico-hippocampal networks that contribute to episodic memory. Using a whole-brain, data-

driven approach to examine FC in resting-state fMRI, we sought to (1) identify and partition

the DMN into subnetworks and examine whether these subnetworks converge with the PM/

AT framework; (2) examine the connectivity of the hippocampus to the identified networks;

and (3) determine whether these cortico-hippocampal networks play different roles in episodic

memory.

Results

Data-driven partition of neocortical networks

Our first objective was to use a data-driven approach to identify large-scale resting-state net-

works. Using 25 minutes of resting-state fMRI data acquired from 40 participants, we parti-

tioned the brain into canonical resting networks using state-of-the-art techniques [45]. We

extracted the average confound-corrected time series from each region in a recently published
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atlas of the human neocortex [46] and computed Fisher z-transformed Pearson correlations

between the time series of each cortical region and every other cortical region. We then created

a group-averaged FC matrix to be used for community detection. The Louvain community

detection algorithm [47] was run for 1,000 iterations, tuning the resolution (how large or small

communities might be) across a range of resolution parameters to identify a partition solution

that showed both high network modularity (i.e., higher within community connectivity than

would be expected by chance) and high network grouping consistency (quantified using the z-

Rand index [45,48]). The solution was also subject to a qualitative criterion that the partition

should separate the primary sensory networks [45]. The resolution parameter of gamma =

2.005 satisfied our criteria and produced a network partition (Fig 1) that corresponds closely

with previously reported partitions in other recent studies [45,49,50]. This partition identified

the DMN, but, interestingly, some areas (such as the parahippocampal cortex, precuneus, and

perirhinal cortex) that are often identified as part of the DMN were grouped within a separate

Fig 1. Louvain community detection identifies large-scale resting-state networks. (A) Inflated cortical surface, colored according

to community membership. (B) Connectivity matrix reordered by community to demonstrate the community structure of the

group-averaged brain. Colors along the axis demonstrate which rows/columns belong to a given community. Color bar represents

Fisher Z-transformed correlation values. (C) Force-directed graph of the group-averaged networks color coded by community

membership of the selected partition created using the ForceAtlas2 algorithm [54]. Attn, attention; DMN, default mode network;

Front Par, frontoparietal; MTN, medial temporal network; Som-Mot, somatomotor. Data can be found at https://github.com/ajbarn/

hippo_nets.

https://doi.org/10.1371/journal.pbio.3001275.g001
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network that included MTL and parietal regions. This set of regions overlaps with what has

been previously described as the MTL network [13], or the contextual association network

[51], and coactivates particularly during recall of places [52,53]. Here, we will describe this net-

work as the medial temporal network (MTN).

To provide internal validation of our partition, we split our dataset into 2 equal-sized sub-

samples and repeated the community detection procedures. We observed very high consis-

tency across the 2 split-halves, with an adjusted z-Rand index of z = 172, p< 0.0001, and 95%

of regions were given the same label in both halves comparable to the split-half analysis per-

formed by Ji and colleagues [45] (split-half results shown in S1 Fig). Importantly, we observed

the same expression of resting networks, including the DMN and MTN.

To provide external validation of our partition, we acquired an openly available resting-

state fMRI dataset from OpenNeuro.org acquired on a 3T scanner (https://openneuro.org/

datasets/ds000243/versions/00001). We used 69 participants from this dataset following pre-

processing and data quality checks. The total scan length, per subject, was 12.8 minutes on

average, and methodological details for data collection have been reported in previous publica-

tions [52,53]. Community detection was, again, repeated on this secondary dataset following

identical preprocessing procedures, and we observed comparable delineations of these canoni-

cal networks (shown in S2A Fig). Between the primary and secondary datasets, we observed

strong partition consistency with an adjusted z-Rand index of z = 150, p< 0.0001, and 93% of

regions were given the same label in both datasets. The only major difference in network par-

cellations across the 2 datasets was that, in the secondary dataset, temporal polar regions differ-

entiated into a single community that was disconnected from all of the other networks. We

observed that these regions had low FC (S2B Fig) and low temporal signal-to-noise ratio

(tSNR) in the secondary dataset (see S3 Fig for comparison of tSNR between datasets). Accord-

ingly, there is good reason to believe that the isolated network of temporal polar regions in the

secondary dataset is related to poor data quality in the AT lobes. Given the results of the split-

half analysis reported above and the fact that our acquisition sequence showed superior data

quality in the medial and AT lobes, we can be confident in the identification of communities

in the AT region in the University of California, Davis dataset.

We next interrogated the FC between the networks defined above and the hippocampus.

We segmented the hippocampus in each participant using FreeSurfer v6.0 (http://surfer.nmr.

mgh.harvard.edu/ [55]) and then manually segmented it further into anterior and posterior

regions, as these subdivisions of the hippocampus are known to have somewhat different

functional properties [16,20]. The posterior hippocampus was defined as all the hippocampus

posterior to the last slice of the uncal apex [16]. We calculated the connectivity of the hippo-

campus to every cortical region in the atlas and averaged together FC weights of cortical

regions within the same network based on network affiliations. This was done for each partici-

pant. Moreover, 1-sample t tests revealed that 2 networks were functionally connected to every

hippocampal region of interest (RAU : PleasenotethatROIhasbeendefinedasregionofinterestinthesentenceMoreover; 1 � samplettestsrevealedthat::::Pleasecheckandcorrectifnecessary:OI) in our sample—the DMN and the MTN (DMN range: t
(38) = 10.7 to 12.9, all p< 0.001; MTN range: t(38) = 4.2 to 9.3, all p< 0.01). The language net-

work and somatomotor network both showed significant anterior, but not posterior hippo-

campal connectivity (see S1 Table). The robust connectivity of the MTN and DMN to the

hippocampus corroborates previous investigations of hippocampal connectivity [56].

Network analyses support an interfacing role of the MTN

A recent review discussing the heterogeneity within the PM network suggested that parahippo-

campal and lateral parietal cortex interface with lower-level sensory cortex in service of higher-

order feature representation (i.e., perspective invariant representation of items and spaces)
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prior to binding in the hippocampus [29,38,57]. They also note that these regions interface

with other DMN regions such as the mPFC and PCC (regions found in the DMN, here) that

track long timescale event structure and provide conceptual knowledge pertaining to event

schemas [38,58]. Thus, the MTN may serve as a bridge between external, low-level perception

in the visual network and the hippocampus and DMN. By plotting the structure of the network

connections in Fig 2A (left), we do indeed see that the MTN shows FC with both the DMN,

hippocampus, and the visual network. Treating the brain as an abstract graph [59], we sought

to test the hypothesis that the MTN mediates network communication between the visual net-

work and the DMN and hippocampus. To do so, we used graph theory to calculate the shortest

path length between the visual network and the DMN and hippocampus. Path length refers to

the shortest number of links that needs to be traversed to link one node in a network to a target

node [59]. If 2 regions are directly connected by a strong link, they will have a short path

length, whereas if they are indirectly connected via multiple intermediate nodes, then they

would have a longer path length. To examine the influence of the MTN on internetwork com-

munication between the DMN and visual network, we compared the path length between the

visual network and DMN when the MTN was removed relative to the path length when we

removed all other networks. If the MTN mediates the connectivity between the visual network

Fig 2. Removal of the MTN disproportionately decreases the network connectivity of the DMN and visual network. (A) Force-

directed graph of the group-averaged networks color coded by community membership of the selected partition created using the

ForceAtlas2 algorithm [54] with the MTN present (left) and with the MTN excluded (right). (B) Boxplots displaying the path length

between the DMN and visual network or the path length between the hippocampi and visual network following removal of each

network. ��� p< 0.001. Ant, anterior; AAU : AnabbreviationlisthasbeencompiledforthoseusedthroughoutFig2:Pleaseverifythatallentriesarecorrect:ttn, attention; AUD, auditory; DAN, dorsal attention network; DMN, default mode network;

FP, frontoparietal; LANG, language; MTN, medial temporal network; Post, posterior; SAL, salience; SM, somatomotor; Som-Mot,

somatomotor; VIS, visual. Data can be found at https://github.com/ajbarn/hippo_nets.

https://doi.org/10.1371/journal.pbio.3001275.g002
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and DMN and hippocampus, then removal of the MTN should disproportionately increase

the average path length between visual network and DMN over and above any path length

increases caused by removal of all other networks. This was done at the individual subject level

to determine the significance of the effect and is similar to methods used by [60].

We found that, across subjects, removal of the MTN led to a disproportionately large

increase in DMN–visual network path length compared to removal of any other network (all

t(39) > 6.7, p< 0.001; Fig 2B), indicating that the MTN plays a critical role in cross-network

communication between the visual network and DMN. Importantly, this effect cannot be

explained simply by the number of nodes removed from the whole network, as the MTN has

fewer nodes (30 nodes) than the somatomotor (34 nodes), salience (35 nodes), frontoparietal

(44 nodes), and auditory (33 nodes) networks. To further confirm this, we randomly removed

30 nodes from each subject’s network (excluding DMN and visual nodes) and recalculated the

path length values. This was performed 1,000 times, and we compared the DMN–visual net-

work path length of the true removal of the MTN nodes compared to the distribution of

DMN–visual network path length following random node removals. We observed that the

MTN removal still resulted in greater average path length between the DMN and visual net-

work relative to removal of random nodes, t(39) = 9.4, p< 0.001.

However, another explanation for this effect is that the MTN is spatially the most proximal

to both the visual network and DMN within the brain. Thus, we identified a set of 32 non-

MTN regions that was matched for Euclidean distance to both the visual and DMN compared

to the MTN. Removal of the MTN nodes still resulted in a significantly higher path length

between the DMN and visual network compared to removal of these spatially proximal

matched control regions, t(39) = 5.5, p< 0.001. Further, removal of these control regions was

not significantly different in terms of the resultant path length compared to the frontal parietal

network removal, t(39) = 0.7, p = 0.5, although it was significantly higher than removal of the

other networks (all t(39) > 3.2, all p� 0.001). Another possible explanation is that due to the

high level of connectivity between the DMN and MTN, removal of the MTN will nonspecifi-

cally lead to a disproportionate increase in path length of the DMN to all other networks.

However, the path length effects caused by removal of the MTN were specific to the DMN–

visual network path lengths (S4 Fig).

As mentioned above, it is well known that MTL regions such as the perirhinal and parahip-

pocampal cortex provide the hippocampus with higher-order representations of objects and

scenes [4,61]. Therefore, we repeated the previous analysis, this time examining the effects of

MTN removal on the path length between the hippocampus and visual network. We observed

that removal of the MTN led to greater path length between the hippocampus and visual net-

work compared to removal of any other networks (all t(39) > 6, p< 0.001; Fig 2B). Again,

MTN removal led to disproportionately higher path length than removal of random nodes (t
(39) = 3.15, p = 0.003). To account for spatial proximity, as above, we identified a set of 31

non-MTN regions that was matched for mean Euclidean distance to the hippocampus and

visual network relative to the MTN. Removal of these spatial control nodes was not sufficient

to account for the effects of MTN removal, as removal of the MTN still led to significantly

greater increase in path length, t(39) = 7, p< 0.001. This effect was specifically between the

hippocampus and visual network path length, rather than leading to disproportionately higher

path length between the hippocampus and any other network (S5 Fig).

Partitioning the DMN

We next sought to identify whether the DMN could be broken up into subnetworks using sim-

ilar methods that we used in our whole-brain network partition. We selected the DMN regions

PLOS BIOLOGY Functionally distinct cortico-hippocampal networks
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identified in our whole-brain partition and performed Louvain community detection on the

functional connections between the regions in the network. This was done for 1,000 iterations

across a range of resolution parameters, and we again selected the partition yielding the highest

modularity and stability. The solution with the highest modularity-weighted stability produced

a partition of the DMN with 3 communities which we refer to as the PM subnetwork, the AT

subnetwork, and the MP subnetwork. The PM subnetwork and AT subnetwork were named

as such based on their resemblance to previous spatial maps of these networks [24]. The PM

subnetwork included PCC, anterior retrosplenial cortex, posterior angular gyrus, and dorsal

prefrontal cortex. The AT subnetwork included temporopolar cortex, lateral orbitofrontal cor-

tex, temporoparietal junction, and dorsomedial prefrontal cortex. The MP subnetwork

included mPFC regions and the entorhinal cortex (Fig 3).

Fig 3. The DMN can be partitioned into 3 interconnected subnetworks. (A) FC matrix organized by subnetwork.

Color bar represents Fisher Z-transformed correlation values. (B) Inflated cortical surface, colored according to

community membership of subnetworks. AT, anterior temporal; DMN, default mode network; FC, functional

connectivity; MP, medial prefrontal; PM, posterior medial. Data can be found at https://github.com/ajbarn/hippo_

nets.

https://doi.org/10.1371/journal.pbio.3001275.g003
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To visualize the topology of connections between these DMN subnetworks and the other

large-scale networks defined earlier, we constructed a force-directed graph in abstract graph

space (Fig 4). The ForceAtlas2 algorithm was used to construct the layout by modeling the

graph as a physical system in which nodes repel each other and the FC between the nodes act

as springs [54]. Regions within the PM subnetwork tightly clustered, and several nodes showed

prominent cross-network connectivity with the MTN and frontoparietal network. The AT

subnetwork showed cross-network interactions with the language and frontoparietal network,

and the MP subnetwork was less clustered with fewer out of DMN connections.

To quantify the diversity of connections in the DMN subnetworks to the rest of the brain,

we calculated participation coefficients—a graph theory metric that describes the extent to

which a node’s functional connections are spread across different communities. Nodes with a

high participation coefficient are connected not only within their own community, but also

communicate relatively more with nodes in other communities. This makes them well posi-

tioned to serve as regions that can integrate information from or coordinate activity toward

multiple communities. Disruption of such nodes can lead to altered network function and cog-

nitive impairment [62–65]. Here, we examined the diversity of connections for the nodes in

each of the DMN subnetworks to examine how information may be assimilated into the DMN

from communities across the brain and how information may be integrated within the DMN

itself. Of the subnetworks, the AT subnetwork had the greatest diversity of connections to

nodes outside of the DMN (AT> PM: t(43) = 3, p = 0.004; AT> MP: t(32) = 2.7, p = 0.01). As

shown in Fig 4B, the PM subnetwork had several nodes with relatively high participation.

These nodes connect to MTN, and the frontoparietal network, but the majority of the PM sub-

network showed less out of network connectivity. The MP subnetwork, on the other hand, had

relatively low participation outside of the DMN.

We next addressed the extent to which nodes in the DMN showed diverse connectivity

with nodes in the other DMN subnetworks. Interestingly, regions in the MP subnetwork

exhibited the highest participation coefficients across the DMN subnetworks (MP> PM:

t(28) = 2.7, p = 0.01; MP > AT: t(35) = 3.7, p< 0.001). These findings substantiate what can be

seen in Fig 4A—that nodes in the MP subnetwork are positioned to integrate information

across DMN subnetworks, whereas nodes in the AT subnetwork may interface with networks

outside of the DMN.

Cortico-hippocampal network connectivity

Having identified cortical networks and subnetworks that connect to the hippocampus (cor-

tico-hippocampal networks), we then examined whether these networks showed a preference

in connectivity along the hippocampal long axis. Previous research has shown differential FC

along the long axis of the hippocampus [24,28,66,67], with the anterior hippocampus demon-

strating greater connectivity to orbitofrontal cortex and temporal pole and the posterior hip-

pocampus demonstrating greater connectivity to retrosplenial cortex and precuneus. We,

therefore, hypothesized that the anterior hippocampus should have preferential connectivity

to the AT subnetwork, whereas the posterior hippocampus would have preferred connectivity

with the PM subnetwork. These predictions were partially confirmed by our findings. The

anterior hippocampus showed stronger connectivity to the AT and MP subnetworks (t(37) =

8.2, p< 0.00001; t(37) = 6.5, p< 0.00001), and the posterior hippocampus showed stronger

connectivity to the MTN than the anterior hippocampus (t(37) = 2.6, p = 0.01), but there was

no significant difference in anterior and posterior hippocampal connectivity with the PM sub-

network (t(37) = .41, p = 0.68) (Fig 5A). To determine whether these differences were evenly

spread across the networks or driven by particular regions within the networks, we contrasted
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Fig 4. DMN subnetworks interact with language, frontoparietal, and MTNs. (A) Force-directed graph of the group-averaged

networks with the DMN relabeled according to subnetwork membership. (B) Boxplots showing participation coefficient for DMN nodes

to the rest of the brain (Whole Brain) and participation coefficient for DMN nodes to subnetworks of the DMN (Within DMN). AT,

anterior temporal; Attn, attention; DMN, default mode network; Front Par, frontoparietal; MP, medial prefrontal; MTN, medial

temporal network; PM, posterior medial; Som-Mot, somatomotor. � indicates significant difference at p< 0.05. Data can be found at

https://github.com/ajbarn/hippo_nets.

https://doi.org/10.1371/journal.pbio.3001275.g004
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Fig 5. Regions within the MTN and DMN subnetworks exhibit differential FC with the anterior and posterior

hippocampus. (A) Bar graphs of FC from each of the cortical networks to the anterior and posterior hippocampus.

Error bars show 95% confidence interval. (B) T-contrast of anterior hippocampal connectivity versus posterior

hippocampal connectivity, with warm colors showing regions that had stronger anterior hippocampal connectivity and

cool colors showing regions that had stronger posterior hippocampal connectivity. Cortico-hippocampal network

boundaries are outlined on the surface of the brain. These results indicate that the temporopolar and mPFC show

preferential connectivity with the anterior hippocampus, whereas PM parietal cortex shows preferential connectivity

with the posterior hippocampus. Ant, anterior; AT, anterior temporal; DMN, default mode network; FC, functional

connectivity; HC, hippocampus; MP, medial prefrontal; mPFC, medial prefrontal cortex; MTN, medial temporal
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anterior and posterior hippocampal connectivity at a region-to-region level. As expected from

the network-level analysis, we observed significantly greater anterior hippocampal connectiv-

ity to MP, AT, and also anterior medial temporal cortex, whereas the posterior hippocampus

had significantly greater connectivity to the parietal occipital sulcus, precuneus, and dorsal

PCC. Thus, the anterior–posterior differences are fairly consistent in the AT and MP subnet-

works, but within the MTN, the overall anterior–posterior differences are driven by relatively

higher posterior hippocampal connectivity in the medial parietal cortex (Fig 5B).

Based on neuropsychological evidence demonstrating distinct functional roles of the left

and right hippocampus [68–70], we next investigated whether the left and right hippocampus

differed in their connectivity to the cortical networks. We observed significant hemispheric

laterality effects with the right hippocampus having greater connectivity to the MTN than the

left (t(37) = 3.8, p = 0.0001) and the left hippocampus having greater connectivity to AT sub-

network (t(37) = 2.6, p = 0.01). There was no significant laterality effect in the PM (t(37) =

0.29, p = 0.77) and MP subnetworks (t(37) = 0.98, p = 0.33). This connectivity difference might

help to explain differentiated function of the left and right hippocampus.

Regions within the same community represent similar kinds of

information during a memory task

We next sought to determine whether network membership was related to functional rele-

vance of these subnetworks using an independent dataset in which participants performed a

memory retrieval task (described in Mizrak and colleagues [71] and in Methods section) by

examining the representational profile similarity between regions within the same network or

in different networks [17,72]. Multivoxel pattern similarity was calculated between trials,

which created a trial-by-trial representational similarity matrix for every ROI in our cortico-

hippocampal networks. Here, we assume that trial-by-trial fluctuations in pattern similarity

for a given ROI are driven by trial-by-trial fluctuations in features for which the ROI is sensi-

tive. These fluctuations across trials represent the ROI’s rAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:epresentational profile. We sought to

determine whether regions within the same network had greater similarity in their representa-

tional profiles—and thus represent similar features—compared to regions outside their

network.

Here, we calculated the similarity of representational profiles between ROIs by correlating

each ROI’s representational similarity matrix to every other ROI. We then averaged the repre-

sentational profile similarities for pairs of ROIs within the same network to create a mean

within-network similarity value, for each subject (we removed the similarity of each ROI with

itself to avoid inflating the within-network similarity). To create a mean between-network sim-

ilarity value, for each subject, we averaged together the representational profile similarity val-

ues for pairings of ROIs that were in different networks. For the cortico-hippocampal

networks identified, we contrasted the mean within-network similarity with the mean

between-network similarity using a repeated measures ANOVA and observed that regions

within the same network had higher profile similarity compared to regions in different net-

works, t(21) = 18.5, p< 0.001 (Fig 6). This effect persists even when accounting for the similar-

ity in trial-by-trial mean BOLD activity (t(21) = 12.1, p< 0.001), suggesting it is not simply a

result of univariate activity similarity.

Another possible explanation of these findings is that regions in the same network tend to

be closer in spatial proximity, and there is some spatial nonindependence of adjacent ROIs of

network; PM, posterior medial; Post, posterior. � p< 0.05, ��� p< 0.001. Data can be found at https://github.com/

ajbarn/hippo_nets.

https://doi.org/10.1371/journal.pbio.3001275.g005
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these representational effects. To account for this spatial proximity, we created an ROI-by-

ROI distance matrix by calculating the Euclidean distance between the center of gravity of all

pairs of ROIs. We then regressed out the influence of spatial proximity from the representa-

tional profile matrix using this distance matrix and repeated the analysis. After statistically

removing the influence of spatial proximity, we still observed that ROIs within the same net-

work had greater representational profile similarity compared to pairs of ROIs in different net-

works, t(21) = 9.3, p< 0.001.

Neurosynth decoding

Having found evidence that regions within the same cortico-hippocampal networks carry sim-

ilar information, we next ran a meta-analysis on Neurosynth [73]—a neuroimaging database

with results from over 10,000 studies—to better understand the role these networks may play

in cognition. Neurosynth enables meta-analyses of whole-brain activation maps associated

with specific terms used in cognitive neuroimaging studies. We correlated meta-analytic acti-

vation maps of every term in the Neurosynth database with the binarized volumetric mask of

each cortico-hippocampal network (i.e., 1 mask for each network comprised of every ROI in

the network in MNI space). By examining the top cognitive terms associated with each net-

work we observed that the term “autobiographical” was the only term that was among the top

20 terms identified in all 3 networks. Activation in the MTN and PM subnetwork was dispro-

portionately associated with studies involving “episodic memory,” whereas this term did not

appear in the top 20 search terms for the AT and MP subnetworks (Fig 7). The MTN also

showed strong overlap with meta-analytic maps for preference for navigation (r = 0.15) and

scenes (r = 0.12), and the PM subnetwork showed strong overlap with self-referential

(r = 0.13) and theory of mind terms (r = 0.08). The top terms associated with AT subnetwork

related to theory of mind (r = 0.22), intentions (r = 0.17), mental states (r = 0.22), and social

cognition (r = 0.19), while the top terms associated with MP subnetwork were value (r = 0.17),

fear (r = 0.16), emotion (r = 0.16), and terms related to emotional valence (r = 0.14). Weight-

ings for each network are available in S2 Table.

Fig 6. Regions show higher representational profile similarity with community members compared to regions in other

communities. Left: individual subject representational profile similarity of regions within the same network or between network in

gray lines with the group average in red, with 95% confidence intervals represented by error bars. Right: boxplot of average region-

to-region representational profile similarity between each cortical-hippocampal network (labeled along the x-axis) to itself and every

other cortico-hippocampal network (each represented by a colored bar) across the sample (see S6 Fig for the representational profile

similarity of the cortico-hippocampal networks compared to every other cortical network). Individual participants represented as

dots. AT, anterior temporal; MP, medial prefrontal; MTN, medial temporal network; PM, posterior medial. Data can be found at

https://github.com/ajbarn/hippo_nets.

https://doi.org/10.1371/journal.pbio.3001275.g006
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Discussion

In the present study, we used data-driven analyses of resting-state fMRI to identify and com-

prehensively characterize cortico-hippocampal network connectivity. Analyses showed that

the MTN, a cluster of regions in the medial temporal and dorsomedial parietal lobes, could be

differentiated from the DMN, and we replicated this finding in a secondary dataset. We also

found that the DMN could be meaningfully subdivided into 3 subnetworks: the PM subnet-

work, encompassing the posterior cingulate, retrosplenial, lateral parietal, and dorsal lateral

prefrontal cortex; the AT subnetwork, encompassing the temporopolar, lateral orbitofrontal,

and dorsal mPFC; and the MP subnetwork, encompassing the ventral MP and entorhinal cor-

tex. The MTN and DMN subnetworks could be differentiated by connectivity strength along

the long axis of the hippocampus and in information carried by multivoxel activity patterns in

an independent dataset.

Prior work on the neurobiology of memory has drawn on the idea that the hippocampal

formation primarily interacts with the parahippocampal cortex and perirhinal cortex, such

that these areas collectively comprise an “MTL memory system” [2] that is functionally distinct

from surrounding cortical areas. More recently, we and others proposed that parahippocampal

cortex and perirhinal cortex are embedded in larger scale cortico-hippocampal networks as

evidenced by divergent anatomical pathways found in rodents and nonhuman primates [19–

22] and by differing FC of the parahippocampal cortex and perirhinal cortex in humans

[24,25,74]. In this “PM/AT” framework, the parahippocampal cortex is a core region in the

PM network, which also includes retrosplenial, posterior cingulate, and lateral parietal cortex,

whereas the perirhinal cortex is a core region in the AT network, which also includes temporo-

polar and orbitofrontal cortex [29]. As shown in Fig 8, the present results were not fully

Fig 7. Terms associated with activation of each cortico-hippocampal network. Word clouds are colored according to the network they describe which are displayed

on the inflated brain. The size of the terms in the word cloud relates to how strongly the meta-analytic activity of that term correlates with the spatial extent of the

network. Red, AT subnetwork; Blue, PM subnetwork; Yellow, MP subnetwork; Green, medial temporal network. Data can be found at https://github.com/ajbarn/

hippo_nets.

https://doi.org/10.1371/journal.pbio.3001275.g007
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consistent with either the original PM/AT or the MTL memory systems frameworks. We

found that the perirhinal cortex, parahippocampal cortex, parieto-occipital sulcus, inferior lat-

eral parietal, and dorsal medial parietal formed the MTN—a set of regions previously

described by Kravitz and colleagues [75] as the “parieto–medial temporal pathway”. Our

results converge with some previous data-driven community detection studies [15,42,49,76],

showing that the MTN can be differentiated from the DMN (but see [45,77]). Critically, both

the MTN and DMN showed strong FC with the hippocampus.

Although the present work shows that the MTN could be differentiated from the DMN,

they do not imply that regions within the MTN are homogenous in terms of connectivity or

function. Prior anatomical studies in animal models [79,80] and fMRI studies in humans have

shown that the perirhinal cortex and parahippocampal cortex have different FC patterns, par-

ticularly when contrasted against each other [24–26,81]. However, it is also clear that the 2

regions frequently show strong FC to each other and considerable overlap in the spatial extent

of their FC [24,25,81]. For example, Wang and colleagues [25] and Zhuo and colleagues [81]

showed that the parahippocampal cortex and posterior perirhinal cortex show high connectiv-

ity with each other, and with medial parietal, MP, lateral parietal, and temporopolar regions.

In line with this evidence, the results presented here demonstrate that, after accounting for the

topology of functional connections across the entire neocortex, the MTN can be segregated

from the DMN.

Treating the brain as an abstract graph, we observed that the MTN serves as a critical bridge

between the visual network, the DMN, and the hippocampus, such that removal of the MTN

results in disrupted information flow between the visual network and DMN/hippocampus.

Damage to perirhinal and parahippocampal cortex is often associated with a significant amne-

sic syndrome characterized by both episodic memory deficits and impaired acquisition of new

semantic knowledge [11,82,83]. Our results are consistent with the idea that amnesia caused

by damage to these MTL cortical regions may be due to a disconnection syndrome [84,85].

Fig 8. Left: hypothesized PM/AT divisions with PM nodes as blue and AT nodes as red [29,78]. Right: data-driven network assignments. ANG, angular gyrus;

AT, anterior temporal; mPFC, medial prefrontal cortex; OFC, orbitofrontal cortex; PCC, posterior cingulate cortex; PHC, parahippocampal cortex, PM,

posterior medial; PRC, perirhinal cortex; PreC, precuneus; RSP, retrosplenial cortex; TP, temporal pole.

https://doi.org/10.1371/journal.pbio.3001275.g008
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Specifically, damage to these areas should impair the ability to learn links between information

about the external visual world carried by the visual network and abstract knowledge about the

latent structure of events and individuals carried by the DMN [78,86]. Results consistent with

this idea were reported in a recent study that used a novel analytic method to map the FC of

regions in the brain where lesion damage resulted in amnesia [11]. The FC network that was

common to all the lesions encompassed the DMN, MTN, and encroached into visual network

regions as described in this study, underscoring the importance of these networks in memory

processing. Another study of amnesia following traumatic brain injury observed reduced FC

between the parahippocampal cortex and PCC was related to memory impairment and nor-

malized when memory functioning improved [87].

The distinction between the MTN and the DMN provides insight into recent studies that

suggested heterogeneity within the PM network [14,38,52,88]. Based on its network properties,

the MTN sits in a reasonable position to represent higher-order features of the visual world to

be encoded by the hippocampus. Supporting this interpretation, MTL regions have been

implicated not only in episodic memory, but also perception [57] and memory-guided eye

movements [89]. The MTN also has strong connectivity with the DMN, which is isolated from

networks involved in primary sensation, and, thus, positioned to represent more abstract

information, such as knowledge about different types of events [90–92]. Recent theories of

event cognition have suggested a separation between content (higher-order representations of

current environment) and structure (abstracted knowledge pertaining the typical way in

which sequences of events unfold) [86,93]. It is possible that the MTN represents content of

events and feeds that content to the DMN that represents the abstracted event structure.

Indeed, recent evidence has shown that regions in the MTN are more active during recall

focused on perceptual features [39] and during encoding of events in the absence of a strong

semantic framework [40], whereas regions in the DMN are more active during recall focused

on conceptual or thematic elements [39] and during encoding of events that can be interpreted

in the context of prior knowledge [40]. Further, multivariate patterns in DMN regions can

classify broad event types like restaurant versus airport events, suggesting that they have repre-

sent abstract event structure [91].

Although these studies support a distinction between the MTN and DMN, it is important

to note that these networks likely work in tandem to support retrieval of both content and

structure, such as during recall of naturalistic events spanning minutes [94]. Rather than view-

ing these systems as completely independent, a more measured interpretation is that task

demands may determine what networks are recruited for retrieval. For example, one might

expect that, even within the MTN, a contrast that focuses on the distinction between different

types of content, such as scenes versus objects, may split regions within the MTN that have a

bias toward those content types [35]. These findings demonstrate the necessity of our intrinsic

connectivity analyses to clarify that these differences in patterns of functional activity are likely

due to the presence of distinct functional networks.

The second major finding in the present study is that the DMN could be differentiated into

3 subnetworks: the PM, AT, and MP subnetworks. The PM subnetwork consisted of posterior

cingulate, retrosplenial cortex, angular gyrus, and dorsal prefrontal cortex, whereas the AT

subnetwork consisted of temporopolar, lateral temporal, orbitofrontal, and dorsal mPFC. The

collection of regions in the PM and AT subnetwork is in line with the PM/AT framework

[24,25], with the notable exception that the parahippocampal cortex and precuneus were not

in the PM subnetwork and the perirhinal cortex was not in the AT subnetwork. The PM and

AT subnetworks also resemble DMN subnetworks identified by previous data-driven methods

[15,41,42], confirming that the PM and AT distinctions theorized do indeed persist, but they

form distinct communities from their MTN counterparts when examining their connectivity
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architecture. Andrews-Hanna and colleagues [41] also fractionated the DMN, identifying an

MTL subnetwork that resembles our MTN, a dorsal medial subnetwork that resembles what

we have termed the “AT network” and a “core midline” network comprising both PCC and

mPFC. This midline network differs from our partition which separates the mPFC and PCC,

but it is important to note that the core midline network described in Andrews-Hanna and

colleagues [41] was created based on high betweenness centrality (a graph theory metric

thought to be related to “hubness”) of the mPFC and PCC, rather than from a data-driven par-

titioning procedure.

The MP subnetwork identified consists of mPFC, along with the entorhinal cortex, and was

not explicitly predicted by prior partitions [15,41,42]. However, recent work that has pushed

the resolution parameters of community detection have observed the mPFC forming a sepa-

rate network from the PM cortex [95]. The mPFC has long been distinguished from the orbito-

frontal cortex based on anatomical connectivity [21,22,96] and is often grouped together with

the PCC as one of the “core hubs” of the DMN [15,41,42]. The entorhinal cortex certainly has

dense interconnections with the mPFC [96], but also is strongly interconnected with the hip-

pocampus and adjacent medial temporal cortex [19,22,97]. Interestingly, the entorhinal cortex

often is part of the DMN even when the MTL cortex is distinguished from the rest of the

DMN ([76,98], but see [15,49]). Furthermore, network analysis on histologically defined axo-

nal connections between cortical regions in rodents showed that the lateral entorhinal cortex

was part of a community with the prefrontal cortex, consistent with our partition, although the

medial entorhinal cortex was placed in a community with the hippocampus, retrosplenial cor-

tex, and subiculum [99]. A distinction in the FC of entorhinal cortex subregions has been

shown in high-resolution human resting-state data [23,37], but the spatial resolution of the

current study is unable to resolve these subregions, and future work will be important to fur-

ther characterize its connectivity in humans.

We examined the topology of how these subnetworks connect to each other and the rest of

the brain finding that the MP subnetwork had the highest within-DMN participation coeffi-

cient, with nodes connecting broadly to AT and PM regions. Conversely, the MP subnetwork

had a low out of DMN participation coefficient, especially relative to the AT subnetwork. Our

results provide converging evidence for a recent study published by Gordon and colleagues

[95] that also found that a set of lateral networks resembling the AT subnetwork here showed

the highest participation coefficient out of network. Their AT equivalent showed intercommu-

nication with language and frontoparietal networks, as was also seen here. The participation

coefficient findings suggest that the AT subnetwork and several high participation PM nodes

are positioned to mediate information transfer in and out of the DMN, whereas the MP sub-

network may integrate and coordinate information within the DMN. A recent review of the

human lesion literature has reported that robust memory impairment can be observed follow-

ing mPFC damage and suggested that this may be due to the fact that the mPFC has a role in

initiating and coordinating cognitive processes for retrieval and episodic simulation [100].

Given the network findings here, and implications from the lesion literature, the MP subnet-

work is well positioned for higher-order integration and coordination of memory-guided

activity.

Differentiation of the 3 DMN subnetworks was reinforced by evidence from an indepen-

dent dataset in which we found that regions grouped in the same network represented similar

kinds of information, as compared to regions in different networks. These findings replicate

and extend results from previous studies that identified different functional differences

between different cortico-hippocampal networks [17,72]. For instance, Ritchey and colleagues

[17] used community detection to differentiate networks of regions hypothesized to show dif-

ferent patterns of MTL connectivity. Ritchey and colleagues [17] interrogated these networks
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in an independent study of episodic memory retrieval, as did Inhoff and colleagues [72] during

a concept learning task. The functional distinction of these networks was supported by find-

ings showing that regions grouped in the same network had greater representational profile

similarity [17] and activation profile similarity than regions grouped in different networks dur-

ing learning and memory tasks [17,72]. In these past studies, the regions used in network con-

struction were those that showed a significant difference in FC between the perirhinal cortex

and parahippocampal cortex, being motivated by anatomical evidence suggesting parallel

pathways in the MTL [19].

Whereas the seed selection that defined the networks in Ritchey and colleagues [17] and

Inhoff and colleagues [72] was based specifically on regions that had different FC between

parahippocampal cortex and perirhinal cortex, in the current study, we did not impose any

preexisting assumptions and identified networks holistically in the context of the entire brain.

In the independent task dataset we examined, Mizrak and colleagues [71] had participants

learn about desirability of foods in different stores where a latent task structure was available.

Specifically, participants learned about customer preferences for 8 food items in 4 different

grocery stores. The task was structured such that a food’s desirability could be context depen-

dent or context invariant. Some foods were desirable in some store contexts and not in others

(context dependent); some foods were always desirable or undesirable no matter what store

context they were paired with (context invariant). After learning the customer preferences in

each store, participants were scanned while they decided whether a food was desired or not by

customers based on previous learning for each food in each store context. During this mem-

ory-guided decision-making task, we saw reliably higher representational profile similarity for

regions in the same network—a pattern consistently found in every subject highlighting the

functional significance of these cortico-hippocampal networks and validating our delineation

of these cortico-hippocampal networks. Mizrak and colleagues focused on hippocampus and

OFC, examining how these 2 regions represented key information from the task. They showed

that hippocampal and OFC representations differentiated context-dependent and context-

invariant task states. TAU : PleasecheckwhethertheeditstothesentenceTheOFCandhippocampushavelongbeen:::arecorrect; andprovidecorrectwordingifnecessary:he OFC and hippocampus have long been studied in the context of deci-

sion-making, but only more recently have these regions been seriously explored in conjunc-

tion in memory-guided decision-making [101,102]. Our findings of strong FC between the

hippocampus and orbitofrontal regions, along with the joint representation of task structure in

these regions found by Mizrak and colleagues, bolsters the idea that these regions are working

in a coordinated fashion.

We also found that the MTN and DMN subnetworks differ in their connectivity across the

anterior and posterior hippocampus. The hippocampus is known to vary along its long axis in

terms of intrinsic connectivity, extrinsic connectivity, receptor distribution, and gene expres-

sion [19,20,103–106]. In humans, resting-state FC has been the primary tool for examining dif-

ferences in connectivity along the hippocampal longitudinal axis, although distinctions

between the anterior and posterior hippocampus have been observed using DTI [28]. TAU : PleasecheckwhethertheeditstothesentenceTheanteriorhippocampushasbeenshowntohave:::arecorrect; andprovidecorrectwordingifnecessary:he

anterior hippocampus has been shown to have greater connectivity to inferior temporal, tem-

poropolar, orbitofrontal, MP, and perirhinal cortex, whereas the posterior hippocampus has

been shown to have greater connectivity to parahippocampal cortex, retrosplenial cortex, infe-

rior parietal cortex, and precuneus, and anterior thalamus [24,26–28,66]. Here, we replicated

and extended these findings to characterize hippocampal connectivity to the networks formed

by these cortical regions. We found that the anterior hippocampus has relatively greater con-

nectivity to the MP and AT subnetworks, whereas the posterior hippocampus has relatively

greater connectivity to the MTN. The preferential connectivity to the anterior hippocampus

was relatively consistent across all regions in the MP and AT subnetworks, but there was het-

erogeneity in the MTN’s preference for the anterior and posterior hippocampus with the
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anterior hippocampus having stronger connectivity to anterior MTL cortex and the posterior

hippocampus having relatively stronger connectivity to dorsal medial parietal cortex. Theories

regarding the functional differences between the anterior and posterior hippocampus are

often informed by preferential long axis connectivity to the rest of the brain [16,107], but they

do not consider how the rest of the brain connects to form networks. The results presented

here suggest the possibility that functional differences between the anterior and posterior hip-

pocampus may reflect differences in their connections to the subnetworks of the DMN.

To better understand the functional specializations of these networks, we used meta-ana-

lytic maps from the Neurosynth database to identify the cognitive constructs that have been

reliably associated with regions in the DMN subnetworks. Activity within the MTN was associ-

ated with a set of terms heavily rooted in episodic memory and navigation. Activation in the

MP subnetwork, in contrast, was highly associated with terms pertaining to emotion and

value. As noted above, the MTN (in particular the dorsal precuneus and dorsal posterior cin-

gulate) had greater connectivity to the posterior relative to the anterior hippocampus, whereas

the MP subnetwork had greater connectivity with the anterior compared to posterior hippo-

campus. These connectivity patterns and neural decoding results converge with theories link-

ing the posterior hippocampus to cognitive and navigational processes and the anterior

hippocampus in motivation and emotional behavior [108]. We also found that activation in

the AT subnetwork was associated with terms that relate to social cognition, theory of mind,

and beliefs, in line with contemporary theories [109] and lesion evidence [110] of this network.

In the PM subnetwork, Neurosynth decoding revealed cognitive terms related to episodic

memory and the self. This is echoed by recent work by DiNicola and colleagues [111]. They

identified subject-specific default mode subnetworks that corresponded to our PM and AT

subnetworks using resting-state fMRI. They further observed that the AT-like subnetwork

showed increased activation during a theory of mind task, whereas the PM-like subnetwork

showed increased activation during an episodic projection task. It should be emphasized, how-

ever, that despite the fact that these networks can be differentiated, they are likely to work in

tandem depending on task demands. For example, the Neurosynth analysis showed that the

term “autobiographical” was strongly associated with all 4 cortico-hippocampal networks.

This broad association may be due to the fact that autobiographical memory tasks usually

involve retrieval of episodically rich events that dynamically unfold involving social interac-

tions, and relevance to the self [112], touching on many of the purported functions of the iden-

tified networks.

Although the Neurosynth decoding analysis is exploratory, and by definition, post hoc, it

can guide the generation of hypotheses to be tested in future studies. Further studies, similar to

the work of DiNicola and colleagues [111], should examine whether MTN and DMN subnet-

works segregate based on spatial, valuation, and social processes, within the same group of

individuals. For example, during encoding and recall of complex events, we might expect

regions within the MTN to represent high-level object and context features, regions within the

AT subnetwork to represent interpretations of theory of mind and social interactions, and

regions within the MP subnetwork to represent the emotional valence or perceived value of

the event. Indeed, a recent preprint demonstrated a dissociation between the MTN and MP

subnetwork during event simulation, with increased activity in the MTN occurring when sub-

jects were instructed to simulate past or future events using cues that were selected to elicit

high levels of vividness, whereas increased MP activity was observed when cues elicited simula-

tions with higher emotional valence [113]. Further, based on the FC of the MP subnetwork, we

hypothesize that it would be well suited to serve a coordinating role in network rearrangement

to accomplish task goals and demands. Again, a recent study by Nawa and Ando [114] found

that when elaborating AU : PleasenotethatvmPFChasbeendefinedasventromedialprefrontalcortexinthesentenceAgain; arecentstudybyNawaandAndo::::Pleasecheckandcorrectifnecessary:on autobiographical memories, the ventromedial prefrontal cortex (vmPFC)
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activity drove hippocampal activity, and this effect was augmented for more emotionally arousing

memories. Further, damage to the mPFC is associated with difficulties in elaborating on memories

unfold over time and events [100]. We hypothesize that these impairments may be associated with

dysfunction of network dynamics due to a loss of the coordination normally provided by the MP

subnetwork.

Finally, we note that recent studies have demonstrated the value in taking subject-specific

approaches to delineating functional networks in a voxel-wise fashion [14,49]. This work has

shown that there are individual differences in the location of boundaries between functional

networks, although it is notable that the majority of the cortex is labeled consistently in the

majority of participants [76]. A key goal of the present study was to provide a clear framework

to guide analyses in future task-fMRI studies, in which it might not be feasible to obtain inde-

pendent, subject-specific parcellations. We have listed each region and its community label in

S3 Table, and the HCP-MMP atlas is available online (https://balsa.wustl.edu/study/show/

RVVG [46]). Task fMRI studies that use group-level analyses can use the group-level charac-

terization of cortico-hippocampal networks reported here in order to rigorously test hypothe-

ses about the functions of these networks and how they may be implicated in memory

disorders, as resting connectivity has shown to predict spread of pathology in Alzheimer dis-

ease [115], and DMN subnetwork perturbation has been demonstrated in MTL amnesia [116].

Conclusions

The hippocampus affiliates with a broad set of regions that enable episodic retrieval. Here, we

have shown that the MTN and 3 subnetworks of the DMN can be differentiated on the basis of

their whole-brain FC. The 3 DMN subnetworks vary in connectivity along the hippocampal

long axis, have distinct representational roles during a memory task, and topologically are con-

nected by a set of hubs in the MP subnetwork. This subnetwork organization offers a novel

framework to investigate event cognition and memory retrieval.

Methods

Participants

For the primary resting-state fMRI dataset, 45 healthy, young adult participants were recruited

from the University of California, Davis and surrounding area (NFemales = 26, mean age = 25.6

years [SD = 4.2 years]). All participants were right-handed and neurologically healthy. The

study was approved by the Institutional Review Board of the University of California at Davis

(IRB #637028) and adheres to all principles of the Belmont Report. All participants provided

written informed consent prior to participation. Participants were compensated $20/hour for

their time. While there is no specific effect size that can be taken to approximate power for

identifying network communities, the current sample size is comparable to the cohort sample

sizes from the seminal Power and colleagues [117] study investigating functional brain organi-

zation, but has over double the amount of sampled resting-state time points (25 minutes of

rest as noted below). This amount of individual data has also been shown to be reliable in esti-

mating network communities, showing 77% to 83% similarity (measured with Dice coeffi-

cient) on a subject-level basis [76,118].

To assess the generalizability of our findings, we accessed a secondary resting-state fMRI

dataset consisting of 120 healthy young adults [119]. From this sample, we removed all partici-

pants who completed only one of the 2 scanning sessions, resulting in 76 participants to be

preprocessed and analyzed. An additional 7 participants were excluded due to data quality

(described below) resulting in 69 participants (Nfemales = 31, mean age = 24.5 years, [SD = 2.5

years]). All participants reported no history of neurological or psychiatric disorders. This
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dataset is available at https://openneuro.org/datasets/ds000243/versions/00001 and has been

previously described in [120].

MRI acquisition

MRI scanning for the primary dataset was performed using a 3AU : Pleaseprovidethemanufacturernameandlocationfor3TSiemensSkyrascannersysteminthesentenceMRIscanningfortheprimarydatasetwas::::T Siemens Skyra scanner sys-

tem (Siemens, USA) with a 32-channel head coil. A T1-weighted structural images was

acquired using a magnetization prepared rapid acquisition gradient echo pulse sequence

(TR = 2,100 ms; TE = 2.98 ms; field of view = 256 mm2; flip angle = 7˚; image matrix = 256 × 256,

208 axial slices with 1.0 mm3 thickness; GRAPPA acceleration factor 2 with 24 reference lines).

Functional images were acquired using a gradient echo-planar imaging (EPI) sequence

(TR = 1,220 ms; TE = 24 ms; field of view = 192 mm2; image matrix = 64 × 64; flip angle = 67˚;

bandwidth = 2442 Hx/pixel; multiband factor = 2; 38 interleaved axial slices, voxel size = 3

mm3 isotropic). Five runs of 5 minutes in duration were acquired for rest scans for a total of

25 minutes of resting-state fMRI data per subject. Participants were instructed to lay as still as

possible and try not to fall asleep. Scanning parameters for the secondary dataset can be found

in [120]. Each participant in the secondary dataset underwent an average of 12.8 minutes of

resting-state fMRI (SD = 3.7 minutes).

Anatomical preprocessing

T1-weighted anatomical scans were preprocessed using FreeSurfer, which included intensity

normalization, removal of non-brain tissue, transformation to Talaraich space, and segmenta-

tion of gray matter, white matter, and cerebrospinal fluid (CAU : PleasenotethatCSFhasbeendefinedascerebrospinalfluidinthesentenceT1 � weightedanatomicalscanswere::::Pleasecheckandcorrectifnecessary:SF). Surfaces were calculated for

the white matter–gray matter and gray matter–pial interface. Surface-based registration to the

HCP-MMP1.0 atlas [46] was performed, and subject-specific cortical regions were calculated

according to atlas boundaries. Surface-based cortical regions were converted to volumetric

regions of interest and transformed into functional native space. The hippocampus was seg-

mented in FreeSurfer in an automated fashion. Manual adjustments were done to correct mis-

classified voxels, and the hippocampus was divided into anterior and posterior segments based

off of the disappearance of the uncal apex [16], with the posterior hippocampus designated as

all of the hippocampus posterior to the disappearance of the uncal apex on a coronal slice.

fMRI preprocessing

Both the primary and secondary resting-state fMRI datasets underwent the same preprocess-

ing as described below. Functional preprocessing was performed using fMRIPrep 1.4.1

([121,122], RRID:SCR_016216), which is based on Nipype 1.2.0 ([123,124], RRID:

SCR_002502). For each of the 5 BOLD runs found per subject (across all tasks and sessions),

the following preprocessing was performed. First, a reference volume and its skull-stripped

version were generated using a custom methodology of fMRIPrep. A deformation field to cor-

rect for susceptibility distortions was estimated based on 2 EPI references with opposing

phase-encoding directions, using 3dQwarp from Cox and Hyde [125] (AFNI 20160207).

Based on the estimated susceptibility distortion, an unwarped BOLD reference was calculated

for a more accurate co-registration with the anatomical reference. The BOLD reference was

then co-registered to the T1w reference using flirt (FSL 5.0.9 [126]) with the boundary-based

registration [127] cost function. Co-registration was configured with nine degrees of freedom

to account for distortions remaining in the BOLD reference. Head motion parameters with

respect to the BOLD reference (transformation matrices and 6 corresponding rotation and

translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL

5.0.9 [128]). The BOLD time series were resampled onto their original, native space by
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applying a single, composite transform to correct for head motion and susceptibility distor-

tions. These resampled BOLD time series will be referred to as preprocessed BOLD. Several

confounding time series were calculated based on the preprocessed BOLD as part of fMRIPrep;

however, only the head motion estimates calculated in the correction step and frame displace-

ment (FD) were used in subsequent analyses. All resamplings can be performed with a single

interpolation step by composing all the pertinent transformations (i.e., head motion transform

matrices, susceptibility distortion correction when available, and co-registrations to anatomi-

cal space). Gridded (volumetric) resamplings were performed using antsApplyTransforms

(ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other

kernels [129]. Many internal operations of fMRIPrep use Nilearn 0.5.2 ([130], RRID:

SCR_001362), mostly within the functional processing workflow. For more details of the pipe-

line, see https://fmriprep.readthedocs.io/en/stable/workflows.html.

The preprocessed BOLD time series, anatomical images, and native space Glasser parcels

were imported into CONN Toolbox version 18b (www.nitrc.org/projects/conn, RRID:

SCR_009550). Based on Ciric and colleagues’ [131] assessment of 14 common denoising pro-

tocols, we selected the “9p” protocol because it was shown to facilitate the highest functional

network identifiability (see [131]; Fig 5B). BOLD time series were demeaned, linear and qua-

dratic trends were removed, and bandpass filtered between 0.008 and 0.09 Hz. The 9p protocol

includes as confound regressors 6 motion parameters, white matter, CSF, and global signal

regression. All regressors were bandpass filtered to maintain the same frequency range as the

data. Visual inspection of the frequency distributions of FC values as well as quality control

plots of the correlation between mean FD and FC values was performed to identify any aber-

rant runs or subjects. Five outlier subjects were identified in the primary dataset, and 4 outlier

subjects were identified in the secondary dataset, which each corresponded to previously iden-

tified subjects having a mean FD value of greater than 0.15 mm. These subjects were excluded

from further analyses. A further 3 subjects were excluded from the secondary dataset due to

anomalous FC distributions after denoising. FC matrices were created for each subject by com-

puting Pearson correlations between all possible pairs of each region’s confound-corrected

time series. Finally, each correlation value was Fisher z-transformed with the inverse hyper-

bolic tangent function.

Community detection

Cortical FC matrices from all subjects were thresholded to exclude negative connections that

may be introduced by global signal regression [132,133] and then averaged together. Using the

resulting group-averaged connectivity matrix, community detection was performed using the

Louvain method [47] via the brain connectivity toolbox (https://sites.google.com/site/bctnet/),

which iteratively performs a greedy optimization of modularity by randomly selecting nodes

and merging them into the community that maximally increases modularity, until no more

gains in modularity are possible. Modularity (Q) describes how well a network can be divided

into communities that have higher within-community connectivity than would be expected by

chance and can range from −1 to 1, with negative values indicating fewer intracommunity

connections than would be expected by chance and positive values indicating higher intracom-

munity connections than would be expected by chance [59]. We used a method of the Louvain

community detection algorithm adapted to accommodate weighted graphs [134], which

accepts the weighted, group average FC matrix. This algorithm can be tuned using a resolution

parameter, gamma, that biases the algorithm toward producing few, large networks (low

gamma) or toward many, smaller networks (high gamma). To determine the resolution

parameter in a principled manner, we adopted the approach used by Ji and colleagues [45].
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The criteria included (i) separation of the primary sensory–motor networks (visual, auditory,

and somatomotor) from all other networks; (ii) high stability across nearby parameters (simi-

lar network partitions across neighboring parameter settings); and (iii) optimized modularity.

Given that the Louvain algorithm detection is influenced by a random starting point, for

every tested resolution parameter, we ran the algorithm 1,000 times. To determine the optimal

partitioning solution at each resolution, gamma, we examined how consistent a given parti-

tioning solution was to every other solution produced over the 1,000 iterations at the same res-

olution. Consistency was calculated using the z-Rand score [48] (http://commdetect.weebly.

com/). For each partition solution, we weighted the mean z-Rand score (consistency) of the

partition with the modularity value of that partition to select a partition solution that was both

highly consistent at a given resolution and had high modularity. These methods are in keeping

with Ji and colleagues [45]. Using the default parameter, gamma = 1, we could not satisfy crite-

ria (i) as the somatomotor and auditory network were grouped together (also seen in Ji and

colleagues [45]). Thus, we ran a parameter sweep from gamma 1 to 2.8 by increments of 0.005

until we identified a resolution parameter at which the somatomotor and auditory network

separated consistently and produced the highest modularity-weighted z-Rand score.

To assess the internal validity of our community partition, we performed a split-half analy-

sis in which our primary sample was split into 2 equal halves, matched for gender (Group 1,

NFemale = 13; Group 2, NFemale = 13) and then age (Group 1, mean age = 25 years [SD = 4.3

years]; Group 2, mean age = 26 years [SD = 4.1 years]). Community detection analyses and cri-

teria described above were applied in both halves separately and compared using the z-Rand

index.

To assess the external validity of our community partition, we acquired a secondary dataset,

from OpenNeuro (https://openneuro.org/datasets/ds000243/versions/00001) and repeated the

community detection procedure described above. To compare the primary and secondary

datasets, we selected the resolution parameter that produced the same number of communities

in the secondary dataset that were observed in the primary dataset. The resulting partition was

compared to the primary dataset using z-Rand index.

tSNR comparison

Due to observations that one network in the secondary dataset was comprised of low FC

regions of interest in the secondary dataset, we compared the tSNRs between our primary

dataset and secondary dataset. In each dataset, for each subject, tSNR was calculated by first

temporally concatenating all functional runs. Next, we calculated the temporal mean signal

and temporal standard deviation at each voxel. Finally, we divided the temporal mean signal

by the temporal standard deviation at each voxel. We used FSL command line functions to

complete these calculations. For each subject, we masked each region of interest in the tSNR

image and calculated the mean tSNR of all voxels within each region of interest.

Path length analysis

Using the brain connectivity toolbox (https://sites.google.com/site/bctnet/), weighted path

length was calculated between all nodes in the brain for each subject, after excluding negative

connectivity weights. Path length is the fewest number of links that need to be traversed to

connect 2 nodes. To calculate the weighted path length, the FC weights were inverted creating

a distance matrix in which nodes with high FC had low distance. Then, the shortest path

between each pair of nodes was calculated providing a value that represented the minimal the

total weighted distance that needed to be traversed to connect 2 nodes.

PLOS BIOLOGY Functionally distinct cortico-hippocampal networks

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001275 June 2, 2021 22 / 34

http://commdetect.weebly.com/
http://commdetect.weebly.com/
https://openneuro.org/datasets/ds000243/versions/00001
https://sites.google.com/site/bctnet/
https://doi.org/10.1371/journal.pbio.3001275


We hypothesized that removal of the MTN would reduce the ability of the visual network

and DMN/hippocampus to connect with each other. To test this hypothesis, all the nodes from

the MTN were removed from each subject’s network, and the average weighted path length

was calculated between visual network and DMN and between visual network and hippocam-

pus. Because removal of nodes can only lead to an increase in path length (shorter paths can be

removed but will never be added following removal of nodes), we compared the weighted path

length following removal of the MTN to the weighted path length following removal of every

other network, using paired t tests. As a secondary control, we also compared the weighted

path length following removal of the MTN to the distribution of weighted path lengths follow-

ing removal of 30 random nodes (other than the DMN, visual network and hippocampus)

over 1,000 iterations. For this, we calculated the z-score of the weighted path length following

removal of the MTN compared to the distribution of weighted path lengths following removal

of 30 nodes over 1,000 iterations. This was done for each subject such that each subject had a

corresponding z-score. A 1-sample t test was then performed on the z-score values to examine

whether they were significantly greater than 0.

We also ran analyses to control for spatial proximity. Path length results following removal

of the MTN may be driven by the MTN’s spatial proximity to the visual network as well as the

DMN/hippocampus. Thus, we identified a set of 32 non-MTN regions that was matched for dis-

tance to both the visual and DMN compared to the MTN. We also were able to identify 31 non-

MTN regions that were matched for spatial distance to both the visual network and hippocampus

compared to the MTN. To do so, we calculated the region-to-region Euclidean distance for each

pair of ROIs for each subject. We then calculated the average distance between each MTN ROI to

each DMN ROI, the average distance between each MTN ROI and each VIS ROI, and the average

distance between each MTN ROI and hippocampal ROI, separately for each hemisphere. Then,

we identified 2 sets of control ROIs, one such that the average distance between this control set

and the DMN and the control set and the visual network would be within ±1 SD from the mean

MTN-DMN and MTN-visual network distance and the other control set was the same except

instead of controlling for MTN-DMN distance it controlled for MTN-hippocampal distance.

Having found these sets that fulfilled these criteria, we deleted the sets and recalculated path length

between the visual network and DMN and visual network and hippocampus and compared the

resulting path lengths to deletion of every other network using paired t tests.

Community partitioning of the default mode network

From the identified whole-brain partitioning, we selected the DMN based on visual similarity

to previously identified DMN solutions [42,45,135]. We repeated the community detection

procedure described above on the identified DMN (1,000 iterations of Louvain community

detection at each resolution parameter) and calculated modularity-weighted z-rand scores

across a range of resolution parameters, 0.75 to 1.1 at increments of 0.05. We selected local

modularity-weighted z-rand peaks as solutions for further exploration.

Connection diversity in the default mode network

The participation coefficient, which quantifies the degree to which a node is connected to a

diverse set of communities, was calculated using the tools from the brain connectivity

toolbox (https://sites.google.com/site/bctnet/). Since the participation coefficient calculation

uses node strength (the sum of the connectivity weights across the network) in the denomina-

tor of its calculation, nodes with unusually low strength can produce unstably large participa-

tion coefficient values. We, thus, excluded regions with node strength in the bottom 25% of

the network hubs. Participation coefficient calculations were performed across a range of
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network densities from 5% to 20% at 1% intervals. These methods for calculating participation

coefficient are in line with best practices in the literature [60,62,65,136,137]. Whole network

participation coefficient was calculated for each DMN region, using the whole-brain connec-

tivity matrix and community labels generated from the whole-brain Louvain community

detection. Within DMN, participation coefficient was also calculated for each DMN node,

using only the connections within the DMN and using the DMN subnetwork labels. Participa-

tion coefficient values were compared between DMN subnetworks using a within-subjects

mixed model using mixedlm from statsmodels in Python 3 [138].

Hippocampal-cortical network connectivity

To identify hippocampal-cortical networks, we calculated FC between each hippocampal ROI

and every cortical ROI in the brain. To identify average connectivity of the hippocampus to a

given network within-subject, FC weights were averaged together across cortical nodes, based

on community affiliation. A 1-sample t test was performed to determine what networks were,

on average, significantly connected to the hippocampus. Significance was set at p< 0.05, Bon-

ferroni corrected. We examined the connectivity of the resulting significant networks and sub-

networks to the hippocampus as a function of the long axis (anterior versus posterior) and

hemisphere (left versus right) in a within-subjects model as described above.

ROI level FC difference between the anterior and posterior hippocampus was performed in

CONN toolbox version 18b. Using the cortical ROIs that were a part of large-scale networks

connected to the hippocampus, a within-subject analysis was performed, which contrasted FC

in the left and right anterior hippocampus against the left and right posterior hippocampus.

Significance was set at p< 0.05, family-wise error (FAU : PleasenotethatFWEhasbeendefinedasfamily � wiseerrorinthesentenceSignificancewassetat::::Pleasecheckandcorrectifnecessary:WE) corrected.

Representational similarity analysis

Using an independent dataset collected during a memory-based decision-making task [71], we

examined the representational profile of each ROI in the DMN subnetworks (see S1 Text for a

detailed description of the task). If the hippocampal-cortical networks identified using resting-

state FC are functionally meaningful, then regions within those networks should have similar

representational profiles.

In brief, 22 participants in this dataset viewed a set of 8 grocery items one at a time, in a

pre-scanning session, and learned through trial and error whether each grocery item was desir-

able to a hypothetical customer within a store context or not. In each trial, a grocery item

appeared in the context of a grocery store. There were 4 different grocery stores, and for half of

the items, the particular grocery store modulated their desirability and for the other half, the

grocery store context was irrelevant to their desirability. For example, the apple at grocery

store “A” may be desirable, but the apple at grocery store “B” may be undesirable, which

makes apple’s desirability context dependent. Alternatively, desirability of a carton of milk

may be the same regardless or grocery store, which makes it context invariant. Overall prefer-

ence averaged to 50% desirable for both context dependent and invariant. Further, of the 4

contexts, 50% shared the same preference rules. Following successful learning, participants

were put in the scanner and shown the context and a food item, one at a time, and asked to

remember whether the food item was desirable to the hypothetical customer at the store con-

text based on their learning phase. Feedback was not provided during scanning. In the original

study, Mizrak and colleagues [71] examined representational similarity between memory-

based decisions depending on (a) shared features between grocery items such as being modu-

lated by the context or not; and (b) shared features between store contexts such as having simi-

lar desirability for the same grocery items or not.
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Here, using the RSA toolbox (https://www.mrc-cbu.cam.ac.uk/methods-and-resources/

toolboxes/license/ [139]), pattern similarity was calculated between memory-based decision-

making trials for each ROI using Pearson correlation, excluding (a) trials that occurred during

the same scanning run; and (b) incorrect trials. Thus, fluctuations in pattern similarity would

be driven by variations in shared features. Correlations were then calculated between ROIs to

calculate the similarity of their representational profiles. We then examined the representa-

tional similarity within cortico-hippocampal subnetworks versus between using a paired t test

to examine whether these networks identified using resting-state FC did indeed create func-

tionally relevant communities.

To account for univariate effects on the multivariate analysis, we further calculated the mean

BOLD activity within an ROI for each trial and correlated the trial-wise mean BOLD activity for

each pair of ROIs to create an ROI-by-ROI activation similarity matrix. Using the activation simi-

larity matrix, we regressed out the influence of univariate activity from the RDM similarity matrix

and reran the statistical analysis contrasting within- versus between-network RDM similarity.

To account for the effects of spatial proximity between ROIs, we calculated the Euclidean

distance between the centroids of each pair of ROIs to create an ROI-by-ROI distance matrix.

Using the distance matrix, we regressed out the influence of spatial proximity from the RDM

similarity matrix and reran the statistical analysis contrasting within- versus between-network

RDM similarity.

Cognitive characterization of hippocampal-cortical networks

We decoded cortico-hippocampal networks to determine what terms are most frequently

descriptive of the spatial distribution of the networks using the repository data version 0.7

(https://github.com/neurosynth/neurosynth-data)) of Neurosynth (https://github.com/

neurosynth/neurosynth) [73]. The meta-analytic activation of every term in the Neurosynth

database was correlated with the binarized volumetric masks of the hippocampal-cortical net-

works. For each hippocampal-cortical network, we examined the top terms whose meta-analytic

activation correlated most strongly with the spatial layout of the hippocampal-cortical network.

We removed terms that related to anatomy (e.g., vmPFC), network (e.g., default mode), tech-

nique (e.g., independent component), and report terms associated with cognitive functioning

(e.g., navigation). We also removed terms that were redundant with other terms (e.g., “autobio-

graphic” and “autobiographical memory”). When removing redundant terms, the term that was

more specific was retained (e.g., “autobiographical memory” retained in favor of “memory”);

otherwise, the term with the higher correlation to the network was retained. Word cloud visual-

izations were made using wordcloud 1.7.0 (https://pypi.org/project/wordcloud/).

Supporting information

S1 Fig. Inflated cortical surface, colored according to community membership for commu-

nity detection analyses performed on split-halves of the sample. Attn, attention; DMN,

default mode network; Front Par, frontoparietal; MTN, medial temporal network; Som-Mot,

somatomotor.

(PDF)

S2 Fig. (A) Inflated cortical surface, colored according to community membership for the sec-

ondary WashU120 dataset (top) and primary UCD dataset (bottom). (B) Connectivity matrix

reordered by community to demonstrate the community structure of the group-averaged

brain from the Secondary WashU120 dataset (left) and primary UCD dataset (right). Colors

along the axis demonstrate which rows/columns belong to a given community. Color bar
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represents Fisher Z-transformed correlation values. Arrow highlights the temporal polar net-

work in the WashU120 dataset that has overall low (near 0) whole-brain FC. Attn, attention;

DMN, default mode network; FC, functional connectivity; Front Par, frontoparietal; MTN,

medial temporal network; Som-Mot, somatomotor. TP, Temporal polar; UCD, University of

California, Davis. Data can be found at https://github.com/ajbarn/hippo_nets.

(PDF)

S3 Fig. A. The tSNR on the ventral surface of an inflated brain for regions with low tSNR

(tSNR < 30) for the primary (UCD) and secondary (WashU120) datasets. B. The t-statistics

for the difference in tSNR between the primary and secondary datasets. Regions in blue are

those that showed significantly lower tSNR in the secondary dataset compared to the primary

dataset. tSNR, temporal signal-to-noise ratio; UCD, University of California, Davis. Data can

be found at https://github.com/ajbarn/hippo_nets.

(PDF)

S4 Fig. Boxplots displaying the path length between the DMN and each of the other net-

works (targets) following removal of a given nontarget network. Data can be found at

https://github.com/ajbarn/hippo_nets. DMN, default mode network.

(PDF)

S5 Fig. Boxplots displaying the path length between the hippocampus and each of the

other networks (targets) following removal of a given nontarget network. Data can be

found at https://github.com/ajbarn/hippo_nets.

(PDF)

S6 Fig. Boxplot of average region-to-region representational profile similarity between

each cortical-hippocampal network (labeled as Target) to itself and every other network in

the brain (labeled along the x-axis) across the sample. AUD, auditory; AT, anterior tempo-

ral; DAN1, dorsal attention network 1; DAN2, dorsal attention network 2; FP, frontoparietal;

Lang, language; MP, medial prefrontal; MTN, medial temporal network; PM, posterior

medial; SAL1, salience 1; SAL2, salience 2; SM, somatomotor; VIS, visual. Data can be found at

https://github.com/ajbarn/hippo_nets.

(PDF)

S1 Table. Mean of the average FC between the hippocampus and the regions within each

cortical network across subjects with standard deviation in parenthesis. FC represented as

the Fisher z-transformed correlation between the functional time series between 2 regions. FC,

functional connectivity.

(DOCX)

S2 Table. Correlation values of spatial overlap between the cortico-hippocampal networks

and meta-analytic maps for cognitive terms.

(DOCX)

S3 Table. Regions of interest in the HCP-MMP atlas 1.0 that are found in the MTN, AT sub-

network, PM subnetwork, and MP subnetwork, with their community label provided. AT,

anterior temporal; MP, medial prefrontal; MTN, medial temporal network; PM, posterior medial.

(DOCX)

S1 Text. A description of the multivoxel pattern estimation for the task dataset used in the

representational profile similarity analysis provided by Mizrak et al. [71].

(DOCX)
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