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Abstract

SMAD4 is a potent tumor suppressor and the primary mediator of the TGFß signaling pathway. 

SMAD4 genetic loss is frequent in squamous cell carcinomas (SCCs). Reports of SMAD4 

expression in SCCs vary significantly possibly due to inter-tumor heterogeneity or technical 

reasons. SMAD4 loss is an initiation event for SCCs. In tumor epithelial cells, SMAD4 mutant 

SCCs commonly present with increased proliferation, decreased apoptosis, and “Brca-like” 

genomic instability associated with DNA repair defects. SMAD4 loss also plays a role in 

expansion of cancer stem cells (CSC). Epithelial SMAD4 loss causes overexpression of TGFß 

which is released into the tumor microenvironment and contributes to SCC progression through 

pro-inflammatory and immune evasive mechanisms. SMAD4 loss, while not directly targetable, is 

associated with multiple targetable pathways that require further studies. Altogether, SMAD4 loss 

is a potential biomarker in SCCs that should be further studied to gain insight for prognosis and 

therapeutic approaches to potentially guide future clinical trials and improve SCC patient 

outcomes.
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Introduction

SMAD proteins were discovered as intracellular signaling mediators of the transforming 

growth factor ß (TGFß) superfamily and were named after non-mammalian homologs: Sma 
genes of Caenorhabditis elegans and the Mad gene in Drosophila melanogaster. SMADs are 

important for homeostasis during embryonic development, immune response, fibrosis, 

wound healing, genomic stability, and tumor development 1. Extracellular TGFß ligands 

bind transmembrane receptors activating receptor kinase activity leading to phosphorylation 

of members of the intracellular receptor-activated SMAD family, SMAD2 and SMAD3 in 

the case of TGFß stimulation 2. Phosphorylated SMAD2/3 heterotrimerize with SMAD4 and 
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translocate into the nucleus to interact with SMAD binding elements (SBEs) to regulate 

transcription of TGFß dependent genes (Figure 1a) 2. While the primary focus of this review 

is on SMAD4 as a mediator of TGFß signaling pathways, it is important to note bone 

morphogenic protein (BMP) and activin signaling pathways are also dependent on SMAD4 
2. Furthermore, TGFß/BMP ligands can also signal through non-canonical pathways 

including ERK, p38/JNK, Rho/Rac, and PI3K/AKT dependent or independent of SMADs 3.

The role of SMAD4 as a tumor suppressor was initially identified in pancreatic cancers as 

Deleted in Pancreatic Cancer 4 (DPC4) 4, and SMAD4 loss has since been identified as a 

key driver in skin cancers and head and neck cancers as well as other cancers 5–7 TGFß 

signaling inhibits epithelial cell growth and promotes cellular differentiation, thus defects in 

TGFß signaling via TGFßRI, TGFßRII, and/or SMAD4 dysregulation promote tumor 

growth 8 Impaired TGFß signaling in epithelial cells causes additional TGFß ligand release 

into the tumor microenvironment (Figure 1b) that stimulates angiogenesis and inflammation 

in stromal cells with intact TGFß signaling (Figure 1a) that can then promotes tumor growth 

and progression 9. This review will discuss the important roles of SMAD4 loss and the 

associated mechanisms that contribute to tumor initiation and progression of squamous cell 

carcinomas.

Prevalence of SMAD4 loss in squamous cell carcinomas (SCCs)

The SMAD4 gene is located at chromosome 18q 10 and large chromosomal deletion of 18q 

and loss of one or two SMAD4 alleles is the most common reason for SMAD4 loss of 

function in SCCs. Overall, 56% of primary head and neck squamous cell carcinomas 

(HNSCCs) have SMAD4 genomic alterations 11,12. SMAD4 loss occurs in 35 - 68% of 

human HNSCCs 13–15 and occurs in up to 70% of skin SCCs 16; however, SMAD4 point 

mutations are rare (< 5%) in these types of SCCs 17. Higher rates of genomic loss (56%) 

compared to point mutations (< 5%) are consistent with rates of genetic abnormalities in 

human cancers 18. In contrast, SMAD4 point mutations are more common in pancreatic 

cancers (~35% 19, 20) and colon cancers (~12% 21) than SCCs.

Reduced SMAD4 protein staining is associated with aggressive SCC tumor progression 
14, 15, 22. However, reports of reduced SMAD4 expression vary widely at 12 – 86% 6, 23. 

This wide range of reported SMAD4 reduction may be explained by the criteria used to 

define “reduced SMAD4 expression” and the tissue samples used as SMAD4 positive 

controls such as adjacent non-malignant tissue versus unrelated normal tissue. For example, 

reduced SMAD4 expression, defined as > 50% reduction of mRNA expression per 

specimen, was observed in 86% of human HNSCCs compared to 67% of the non-malignant 

adjacent mucosal specimens 6. By this criteria, “SMAD4 loss” would be under-reported in 

studies that compared SCCs to non-malignant adjacent mucosal tissue where SMAD4 

reduction may also have occurred. Furthermore, multiple reports support that single copy 

loss of SMAD4 occurs in 30 – 50% of HNSCCs 6, 10, 12, 13, 24; however, other reports 

suggest reduced SMAD4 immunostaining in < 30% of HNSCC cases which maybe be due 

to control tissues or poor antibody specificity. Additionally, intra-tumor heterogeneity of 

genomic SMAD4 loss as well as aneuploidy of chromosome 18 may also contribute to 

variations in reported SMAD4 loss 13. While genomic loss of SMAD4 is evident in ~ 50% 
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of SCCs, its detection by immunostaining or RNA expression analyses are not standardized 

and ideal expression standards for SMAD4 are lacking. With a central role in tumor 

development and potential therapeutic response marker as discussed below, a standard for 

“SMAD4 loss” is a critical and logical need in future studies.

SMAD4 loss initiates SCCs

We have shown that SMAD4 downregulation occurs in preneoplastic oral mucosa and 

actinic keratosis (AKs), suggesting SMAD4 downregulation is an early event in human SCC 

development 6, 25. In genetically engineered mouse models, keratinocyte-specific Smad4 

deletion in the oral cavity or skin spontaneously induces SCCs 5, 6, 25, 26 demonstrating that 

SMAD4 loss, as a single event, can initiate SCCs. Therefore early stage keratinocyte 

SMAD4 loss in patients may have a significant impact on SCC initiation in patients. This is 

quite different from pancreatic and colon cancers where SMAD4 loss occurs at later stages 

of cancer development and is more associated with metastatic progression 27–29. 

Interestingly, single copy deletion of Smad4 did not initiate HNSCC formation, but it 

accelerated HNSCC development initiated by oncogenic KrasG12D 6, which suggests that 

Smad4 haploid insufficiency can promote oncogene-driven HNSCC development. 

Keratinocytes-specific Smad4 deletion caused interruption of hair follicle cycling, 

hyperproliferative hair follicles, progressive hair loss, and well-differentiated skin SCCs 
5, 26. SCCs with SMAD4 loss activate survival factors including increased AKT, cyclin D1, 

and c-myc expression and promotes growth of Smad4−/− skin stem cells to promote 

development of sebaceous adenomas and basal cell carcinomas as well as other cancer types 
5, 26. Smad4 deletion in mammary epithelial cells of mice also caused mammary tumors 

with transdifferentiation to squamous histology 30. Furthermore, Smad4 deletion promotes 

PTEN−/− skin tumor formation 5. Collectively, these reports demonstrate that Smad4 loss 

promotes SCC initiation and accelerates oncogene-driven SCC development. Thus, early 

loss of Smad4 appears uniquely pathogenic in SCCs, further emphasizing the need for 

SMAD4 detection and evaluation in human SCCs.

Survival and invasive mechanisms of SMAD4 mutant SCCs

Several reports have shown that TGFβ/SMAD4 signaling induces growth arrest and/or 

apoptosis in normal keratinocytes 1, 6, 31. TGFß-induced growth arrest requires SMAD-2, -3, 

and -4 32. Spontaneous HNSCCs development driven by Smad4 deletion was associated 

with increased proliferation in the Smad4−/− malignant and adjacent-premalignant mucosa 

compared to Smad4+/+ normal mucosa 6. Inversely, apoptotic cells were less common in 

Smad4−/− malignant and adjacent-premalignant mucosa compared to normal mucosa 6. 

Therefore, Smad4 loss allows for epithelial derived SCCs to escape TGFβ-mediated growth 

inhibition and survive into tumor development. Mechanistically, Smad4 loss is associated 

with inactivation of tumor suppressors PTEN and p21 to bypass cell cycle arrest and 

promote cell proliferation and survival in SCCs 26. Furthermore, Smad4 mutant mouse 

models developed hyperplasia and hyperproliferative hair follicles associated with 

upregulated c-Myc and cyclin D1 to promote proliferation and downregulated p27 to 

promote survival 5. Taken together, SMAD4 loss leads to increased proliferation and 
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decreased apoptosis to promote tumor development of SCCs; however, additional survival 

mechanisms are at play.

Cancer stem cells (CSCs) with Smad4 deletion also contribute to tumor development and 

progression. Mouse models with keratinocyte-specific Smad4 deletion developed tumors in 

6-8 months 5, 26, but when Smad4 was deleted from K15 positive (K15.Smad4−/−) bulge 

stem cells, spontaneous skin tumors required 1 year to form 33. The slowed tumor 

development was likely due to the quiescent nature of bulge stem cells, suggesting that 

Smad4−/− driven tumor development requires more rapid proliferation. When oncogenic 

KrasG12D was co-expressed in K15.Smad4−/− bulge stem cells (K15.KrasG12D.Smad4−/−) 

tumor latency was accelerated to 1 month 33. However, tumor development required Smad4 

deletion as mice solely expressing the K15.KrasG12D mutation only developed benign 

papillomas 33. In contrast, K15.KrasG12D.Smad4−/− bulge stem cells led to the development 

of multi-lineage skin tumors (SCCs, basal cell carcinomas, trichoepitheliomas, and 

sebaceous adenomas) likely from uncommitted multipotent stem cells or immediate 

progenitor cells 33.

Smad4 deletion in stem cells also contributed to the metastatic progression of SCCs. Serial 

passage of K15.KrasG12D.Smad4−/− tumors presented with more aggressive outgrowth and 

epithelial-mesenchymal transition (EMT)-mediated metastatic progression which correlated 

with increased side population (SP) cells, a metastasis-associated CSC population 33. 

Expansion of metastatic CSCs was associated with miR-9 overexpression 33, and increased 

miR-9 correlated with a loss of E-cadherin and α-catenin, previously reported potential 

miR-9 targets associated with EMT and metastasis 34, 35. In human SCC metastases, the loss 

of α-catenin and E-cadherin was more commonly observed in miR-9 positive tumors than in 

miR-9 negative tumors 33, which suggest that miR-9 is an important driver of metastasis. 

These Smad4 loss-associated mechanistic findings are consistent with reports that EMT 

promotes an increase in CSCs and metastasis in other cancer types 36, 37.

While it has been well documented that Smad4 is required for TGFß-induced EMT to 

promote metastasis 29, 38, EMT is not always required for metastasis. Early stage EMT is not 

observed in Smad4−/− SCCs 16 that retain the ability to metastasize 6, 33. However, one 

report suggest that Smad4 downregulation is important for EMT induction by HNSCC cell 

lines that are already resistant to cetuximab, an EGFR inhibitor 39. One may speculate that 

these cetuximab-resistant, Smad4-deficient HNSCC cell lines unlocked EMT induction 

through non-TGFß-dependent mechanisms. In addition to EMT, SCCs with Smad4 

deficiency may metastasize through other mechanisms induced by pro-inflammatory 

cytokines and angiogenic response within the tumor-associated stroma 6. Together, these 

findings suggest further studies are required to understand how SMAD4 deficient SCCs 

survive and metastasize through non-EMT pathways such as increased pro-tumorigenic 

inflammation.

“Brca-like” genomic instability in SMAD4 mutant SCCs

Deletion of Smad4 in the mouse oral epithelia caused spontaneous HNSCC formation 

associated with increased genomic instability 6. In particular, Smad4 deletion down-
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regulated Fanc/Brca (Fanconi anemia and breast cancer associated) family genes that 

maintain DNA integrity and are therefore necessary for sustained genomic stability 6. Fanc 

family genes were functionally identified as germline mutations in Fanconi anemia (FA) 

patients who typically died at a young age without bone marrow transplantation due to 

chromosome instability-associated bone marrow failure 40. FA patients that survive to 

adulthood have an HNSCC-risk 500-fold greater than the general population 41. 

Furthermore, BRCA1 and BRCA2 mutations increase genomic instability and are associated 

with the development of breast and ovarian cancers 42–44. Therefore, early SMAD4 loss 

associated-downregulation of FANC/BRCA expression and the associated genomic 

instability may lead to the accumulation of genetic defects required to initiate HNSCC 

development.

We have shown that pre-malignant Smad4−/− oral epithelium with downregulation of Fanc/

Brca genes occurred prior to the development of malignancy in mouse models 6. Similar to 

FA cells in which DNA crosslinking agents, such as mitomycin C, induces chromosomal 

breaks and radial structures (Figure 2a) 45, Smad4−/− keratinocytes exhibit the same 

characteristics (Figure 2b) 6. Along with cancer progression, Smad4−/− SCCs had increased 

genomic instability as demonstrated by abnormal centrosome number and genomic 

aberrations 6. SMAD4 restoration in SMAD4 deficient human HNSCC cell lines increased 

Brca1 and Rad51 expression as well as increased Brca1 and Rad51 DNA repair foci found in 

the nucleus of cells treated with mitomycin C 6. Conversely, reduced SMAD4 

immunostaining correlated with reduced immunostaining of BRCA1 and RAD51 in human 

HNSCCs and the adjacent mucosal. Taken together, these data suggest that reduced SMAD4 

leads to downregulation of BRCA1 and RAD51 in human HNSCCs 6. This SMAD4 loss 

associated-reduction of Brca1 and Rad51 as well as the FA phenotype causes “Brca-like” 

phenotype:, defined as reduced expression or loss of other DNA repair genes-associated 

functional defect of homologous recombination rather than BRCA mutations per se, in 

SMAD4 deficient SCCs 46. While single gene deletions of the Fanc/Brca family do not 

develop HNSCCs 47, Smad4 loss in keratinocytes disrupts multiple functionally redundant 

Fanc/Brca family genes to initiate self-perpetuating DNA damage leading to genomic 

instability and HNSCC development. This is rather unique to keratinocytes, as Smad4 

deletion does not predict genomic instability in pancreatic cancers 48, nor do FA patients 

have increased incidence to colon or pancreatic cancers40.

Skin SCC mouse models driven by Smad4 loss was found to increase susceptibility to 

ultraviolet (UV)-induced carcinogenesis and subsequent genomic instability25. Smad4 

deletion in epidermal keratinocytes accelerated UV-induced skin SCCs 25. Multiple DNA 

repair genes were down regulated by UV-radiated Smad4-null tumors, most notably reduced 

was Ercc1 25. Ercc1 is an essential protein for DNA repair of nucleotide mismatches, 

double-strand breaks, and crosslinks 49. Furthermore, most human skin SCCs cases reported 

co-expressed (86%) or co-repressed (60%) SMAD4 and ERCC1 25. However, Ercc1 is not a 

direct target of Smad4 50, but instead Ercc1 was shown to be directly regulated by Snail 25. 

Snail is a direct target of Smad4 16, 51 that was also down regulated in the UV-radiated 

Smad4-null specimens 25. This suggests that Smad4 protects keratinocytes from UV-induced 

DNA damage by upregulating Snail-dependent Ercc1 to maintain functional DNA repair. 

Similar expression patterns of SNAIL and ERCC1 have been reported in HNSCCs and 
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bladder cancer 52, 53, therefore, SNAIL-regulated ERCC1 expression may occur broadly in 

human cancers. Future studies are necessary to identify the stage-specific effects of Smad4, 

Snail, and Ercc1-associated DNA repair in SCC initiation and progression. Additionally, 

Smad4 loss was associated with reduced expression of other DNA repair pathway genes 

(Exo1, Chaf1a, and Mre11 25 ) although it remains unknown how reduced expression of 

these genes affects UV-induced SCC development. Thus, SMAD4 regulates multiple nodes 

of DNA damage response and loss of SMAD4 causes genomic instability to promote SCC 

progression, placing SMAD4 as a central mediator of genomic stability.

Tumor microenvironment and progression of SMAD4 deficient SCCs

Loss of SMAD4 led to spontaneous SCC development associated with increased 

inflammatory infiltration of the tumor microenvironment 6 likely exasperated by neoantigens 

associated with genomic instability. TGFß1 ligand expression is increased in the tumor 

epithelial cells of Smad4−/− SCCs, and TGFß1 overexpression was associated with increased 

infiltration of neutrophils, T cells, and Th17 cells in the tumor microenvironment 6. Smad4 

loss-associated inflammation was abrogated in a Smad3+/− background, suggesting that 

inflammation in the microenvironment of Smad4−/− SCCs requires Smad3-dependent TGFß 

signaling 6. Smad4−/− SCCs show elevated cytokines including the chemoattractant proteins 

MCP-1, MCP-2, and MIP-2, compared Smad4+/+ mucosa 6. These cytokines have also been 

shown to be upregulated in skin keratinocytes with overexpressed TGFß1 54. It is well 

known that tumor cells can influence the local immune response within the tumor 

microenvironment 55 by producing inflammatory or immunosuppressive cytokines, 

recruiting immune suppressive cells, restraining T cell response via modulating the 

expression of checkpoint pathway components, and reprograming T regulatory cells (Tregs) 

to be more suppressive 56–59. Therefore, SMAD4 deficient SCCs induce a pro-tumorigenic 

immune response to promote SCC development.

SMAD4 loss may also be necessary for tumor evasion of the immune system and subsequent 

progression of SCCs. K15.KrasG12D.Smad4−/− SCC cells are metastatic in mouse models 33. 

K15.KrasG12D.Smad4−/− SCC tumor transplants develop secondary lesions, despite 

infiltration of active CD8+ T cell into the primary tumor microenvironment 60. However, 

K15.KrasG12D.Smad4−/− SCC primary tumor growth was unaffected by the presence of 

CD8+ cells, suggesting that immune evasion or T cell exhaustion. Several immune 

checkpoints have been implicated in preventing cytotoxic T cell killing of tumor cells 

including programmed cell death 1 (PD-1), PD-ligand 1 (PD-L1) 61 and lymphocyte 

activation gene-3 (LAG-3) 62. The K15.KrasG12D.Smad4−/− SCC tumors were infiltrated by 

active CD8+ T cells that were PD-1+ and LAG-3+ to indicate immune evasion by the tumors 
60. Furthermore, a large percent of the CD8+ T cells downregulated T cell antigen receptor 

(TCR) ß chain, an indication of suppressed CD8+ T cells 60. Isolated 

K15.KrasG12D.Smad4−/− SCC tumor cells also expressed higher PD-L1 in response to 

infiltrating CD8+ T cells, and K15.KrasG12D.Smad4−/− SCC tumor cells isolated from CD8-

null mice had reduced PD-L1 expression 60 to further support an immune-evasion phenotype 

by these Smad4-null tumors. Therefore, SMAD4 loss may predict evasion of active T cells 

by PD-1/PD-L1 and LAG3 in SCCs, but testing of this hypothesis in other models is 

necessary.
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Potential therapeutic approaches against Smad4 deficient SCCs

SMAD4 status may function as a biomarker for drug selection in SCCs as BRCA mutations 

have in breast and ovarian cancers. For example, BRCA mutant breast and ovarian cancer 

patients are being treated with the FDA approved PARP inhibitor, olaparib, which causes 

synthetic lethality due to the defective DNA damage repair mechanisms and increased 

genomic instability inherent with BRCA mutation and exacerbated by DNA damage repair 

inhibition 63, 64. SMAD4 deficient SCCs present a BRCA-like phenotype with decreased 

Fanc/Brca expression and increased sensitivity to genotoxic agents 6. Phase I clinical trials 

have reported olaparib with standard care (cetuximab and radiation) was well tolerated by 

patients with advanced head and neck cancer 65. Therefore, it is worthwhile to assess if 

SMAD4 deficient SCCs are more sensitive to PARP inhibition. Additionally, numerous 

DNA repair inhibitors or modulators are being studied as anti-cancer agents 66, such as DNA 

topoisomerase inhibitors, which suppressed Smad4 deficient lung cancers 67, 68. Clinical 

data from SCC patients treated with these drugs could also reveal if SMAD4 status predicts 

their therapeutic responses.

The increased TGFß-mediated signaling in the tumor microenvironment of SMAD4 mutant 

SCCs 6, 69 suggests therapeutic strategies inhibiting stromal TGFß. Alternatively, 

immunotherapies may be effective against SMAD4 deficient SCCs as there are several 

checkpoint inhibitors FDA approved that target PD-1 or PD-L1. For instance, 

K15.KrasG12D.Smad4−/− SCC tumor growth was suppressed by dual-blockade of immune 

checkpoint inhibitors, anti-PD-1 and anti-LAG3 60. Immunotherapies also have the potential 

to prime the host immune system to recognize tumor neoantigens associated with genomic 

instability and help prevent future tumor reoccurrence. Because single therapeutic 

approaches are often met with resistance, it is more likely that a combination targeting 

multiple SMAD4 deficient-associated mechanisms in addition to standard care approaches, 

such as olaparib with PD-1/PD-L1 blockade and radiation, would be more effective at 

reducing SMAD4 deficient SCC tumor burden.

Summary and future perspectives

Here, we review the unique functional impacts of SMAD4 loss in SCCs through its direct 

effects on stratified epithelial cells and indirect effects on stromal microenvironment (Figure 

3), and suggest various targetable mechanisms important for tumor initiation and 

progression of SMAD4 deficient SCCs. Therefore, rational clinical trials that include 

measurement of SMAD4 loss as a relevant biomarker of response will be required to 

determine which biological observations are relevant for therapeutic approaches against 

human SCCs.
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Abbreviations:

SCCs squamous cell carcinomas

LOH Loss of heterozygosity

CSC cancer stem cells

SBEs SMAD binding elements

EMT epithelial-mesenchymal transition

FA Fanconi anemia
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Figure 1. Normal versus deficient SMAD4 signaling.
(a) SMAD4 dependent TGFβ signaling in normal epithelial and stromal cells. (b) SMAD4 

loss results in increased TGFβ production and release TGFβ into the extracellular matrix 

that acts on stromal cells, inducing a pro-tumorigenic microenvironment.
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Figure 2. “Brca-like” phenotype in SMAD4 deficient keratinocytes.
(a) DNA repair and replication in normal, DNA damaged, and Fanconi anemia cells. (b) 

Karyotype of SMAD4 null keratinocytes treated with mitomycin C (40 ng/mL) leads to 

chromatin with radial structures (red circles) and chromosome breaks (red arrows), 

hallmarks observed in Fanconi anemia patients.
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Figure 3. SMAD4 deficient SCC initiation and progression.
Loss of SMAD4 causes increased genomic instability to initiate SCC formation and 

progression. A pro-tumorigenic microenvironment is induced by TGFβ-associated 

inflammation and immune suppression to promote tumor growth and metastatic progression.
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