
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
An ensemble framework for real-time audio beat tracking

Permalink
https://escholarship.org/uc/item/7j43209f

Author
Daniels, Michelle L.

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7j43209f
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

An Ensemble Framework for Real-Time Audio Beat Tracking

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Music

by

Michelle L. Daniels

Committee in charge:

Professor Shlomo Dubnov, Chair
Professor Miller Puckette
Professor Bhaskar Rao
Professor Lawrence Saul
Professor Tamara Smyth

2015

Copyright

Michelle L. Daniels, 2015

All rights reserved.

The dissertation of Michelle L. Daniels is approved, and

it is acceptable in quality and form for publication on

microfilm and electronically:

Chair

University of California, San Diego

2015

iii

DEDICATION

For Nathan and Aunt Ruth

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . ix

List of Tables . x

List of Abbreviations . xi

List of Symbols . xiii

Acknowledgements . xv

Vita . xvi

Abstract of the Dissertation . xvii

Part I Introduction 1

Chapter 1 Introduction . 2
1.1 Introduction . 2
1.2 Novel Contribution . 3
1.3 Dissertation Organization . 5

Part II Background and Related Work 7

Chapter 2 Features . 8
2.1 Introduction . 8
2.2 Onset Detection Functions . 8

2.2.1 Spectral Magnitude ODFs . 10
2.2.2 Complex Domain ODF . 10
2.2.3 Beyond Traditional ODFs . 12
2.2.4 Sub-Band Features . 13

2.3 Beyond Onsets . 15
2.3.1 Low-Level Features . 15
2.3.2 Chord Changes . 16

2.4 Conclusion . 17

v

Chapter 3 Periodicity Estimation . 18
3.1 Introduction . 18
3.2 DFT and ACF . 19
3.3 Comb Filters . 20
3.4 Beat Spectrum . 21
3.5 Beat Histogram . 22
3.6 Autocorrelation Phase Matrix . 23
3.7 Metrical Templates . 23
3.8 Matching Periodicity Functions . 25
3.9 Conclusion . 26

Chapter 4 Beat Detection and Tracking . 27
4.1 Introduction . 27
4.2 Agent-Based Systems . 28

4.2.1 Goto and Muraoka . 28
4.2.2 Dixon . 30
4.2.3 Oliveira et al. 31
4.2.4 Comparison of Agents . 33

4.3 Dynamic Programming . 33
4.3.1 Laroche . 34
4.3.2 Ellis . 34
4.3.3 Eck . 34
4.3.4 Klapuri et al. 35
4.3.5 Degara et al. 36
4.3.6 Peeters and Papadopoulos . 37

4.4 Other Tracking Methods . 38
4.5 Conclusion . 40

Chapter 5 Ensemble Learning . 41
5.1 Introduction . 41
5.2 Ensemble Learning . 41

5.2.1 Ensemble Diversity . 42
5.2.2 Combining Models . 44

5.3 Ensemble Learning and Beat Tracking 45
5.3.1 Non-Causal Beat Tracking Ensembles 46
5.3.2 Real-Time Ensembles . 47

5.4 Conclusion . 48

Part III The Beaker Beat Tracking Framework 50

vi

Chapter 6 The Ensemble Framework . 51
6.1 Introduction . 51
6.2 Clustering Hypotheses . 53

6.2.1 Joint Clustering . 55
6.2.2 Separate Clustering . 56

6.3 Scoring and Voting . 59
6.3.1 Scoring Trackers . 59
6.3.2 Scoring Clusters - Joint Clustering 59
6.3.3 Scoring Clusters - Separate Clustering 60
6.3.4 Voting . 61

6.4 Updating Confidences . 62
6.4.1 Winners and Losers . 62
6.4.2 Tempo Continuity . 62
6.4.3 Beat Continuity . 63
6.4.4 Combining Confidences . 63

6.5 Beat Phase and Detecting Beat Locations 64
6.6 Conclusion . 65

Chapter 7 Ensemble Test Trackers . 66
7.1 Introduction . 66
7.2 Feature Extraction . 67

7.2.1 Magnitude-Based ODFs. 68
7.2.2 High Frequency Content ODFs 69
7.2.3 Complex Domain ODF . 70
7.2.4 Phase-Based ODFs . 70

7.3 Tempo Estimation . 71
7.3.1 Comb Filters . 72
7.3.2 Autocorrelation . 73
7.3.3 Discrete Fourier Transform . 73

7.4 Beat Phase Estimation . 74
7.5 TestTracker Confidence . 75

7.5.1 Tempo Confidence . 75
7.5.2 Beat Confidence . 76

7.6 Conclusion . 76

Part IV Evaluation and Results 77

Chapter 8 Evaluation Methodology . 78
8.1 Introduction . 78
8.2 Datasets . 79

8.2.1 Beatles . 79

vii

8.2.2 MIREX 2006 . 80
8.2.3 SMC MIREX . 80

8.3 Beat Tracking Evaluation Metrics . 81
8.3.1 F-measure . 81
8.3.2 Cemgil Accuracy Measure . 83
8.3.3 P-score . 84
8.3.4 Continuity-Based Methods . 86
8.3.5 Information Gain . 87

8.4 Evaluating Beaker . 88
8.5 Conclusion . 89

Chapter 9 Beaker Performance vs. Other Approaches 90
9.1 Introduction . 90
9.2 Comparison with Other Systems . 90

9.2.1 Beatles Dataset . 91
9.2.2 SMC Dataset . 92

9.3 Combining Features . 93
9.3.1 Combining Features with Beaker 94
9.3.2 Combining Features with Beaker vs. MMA 96
9.3.3 Beaker vs. MMA Varying Other Parameters 100

9.4 Conclusion . 103

Chapter 10 Ensemble Diversity . 105
10.1 Introduction . 105
10.2 Feature Diversity . 106
10.3 Predicting Improvement in Combined

Ensemble Performance . 107
10.4 Combining Periodicity Functions . 113
10.5 Conclusion . 114

Part V Conclusion 118

Chapter 11 Applications and Conclusion . 119
11.1 Introduction . 119
11.2 The Beaker UI Application . 120

11.2.1 Modes of Operation . 121
11.2.2 Visualization . 122

11.3 Future Work and Conclusion . 128

Bibliography . 131

viii

LIST OF FIGURES

Figure 2.1: Example metrical grid (4/4 meter) . 8
Figure 2.2: Beatles onset detection functions . 11
Figure 2.3: Vivaldi onset detection functions . 12
Figure 2.4: Spectral centroid . 15

Figure 3.1: Autocorrelation function of an onset detection function 20
Figure 3.2: Expected energy flux templates . 24

Figure 4.1: Beat location hypotheses for an agent pair 29

Figure 6.1: Diagram of ensemble framework . 51
Figure 6.2: Grid of discrete hypothesis classes . 54
Figure 6.3: Hypothesis clusters . 55

Figure 7.1: Diagram of TestTracker operation . 66

Figure 9.1: Beaker ensemble using only feature F0 . 94
Figure 9.2: Beaker ensemble using all features . 94
Figure 9.3: Flat MMA . 97
Figure 9.4: 2-layer Beaker ensemble . 98
Figure 9.5: Beaker + MMA . 99

Figure 11.1: Live input mode . 121
Figure 11.2: Virtual tapping foot with metronome . 123
Figure 11.3: Tempo view with clear metrical structure. Tempo hypotheses

are inscribed in a tracker’s ellipse and also represented by the
vertical position of the ellipse. Lighter-colored ellipses indicate
more confident trackers. 124

Figure 11.4: Tempo view with ambiguous metrical structure. Tempo hypothe-
ses are inscribed in a tracker’s ellipse and also represented by the
vertical position of the ellipse. Lighter-colored ellipses indicate
more confident trackers. 126

Figure 11.5: Phase view with one tracker highlighted. Each tracker is repre-
sented by a row of ellipses indicating future predicted beat times.
Lighter-colored ellipses correspond to more confident trackers. . . . 127

ix

LIST OF TABLES

Table 7.1: Available features . 68
Table 7.2: Available periodicity approaches . 72

Table 9.1: Beatles dataset algorithm comparison . 91
Table 9.2: SMC dataset algorithm comparison . 93
Table 9.3: Results for single features vs. all (best single feature for each mea-

sure highlighted in bold) . 95
Table 9.4: Results for Beaker vs. flat MMA (Beatles dataset) 97
Table 9.5: Results for 2-layer Beaker vs. MMA (Beatles dataset) 99
Table 9.6: Beaker vs. MMA for single-feature ensembles (Beatles dataset) . . 101

Table 10.1: Performance of single-feature ensembles (Beatles dataset) 106
Table 10.2: Performance of two-feature ensembles (Beatles dataset) 108
Table 10.3: Predicting performance of two-feature ensembles (Beatles dataset,

items in bold indicate disagreement between predicted and actual
performance) . 111

Table 10.4: Results for periodicity approach combinations (Beatles dataset) . . 115
Table 10.5: Predicting performance combining multiple periodicity approaches

(Beatles dataset) . 116

x

LIST OF ABBREVIATIONS

ACF autocorrelation function

APM autocorrelation phase matrix

BPM beats per minute

dB decibels

DFT discrete Fourier transform

DWT discrete wavelet transform

FFT fast Fourier transform

GACF generalized autocorrelation function

GUI Graphical User Interface

HMM Hidden Markov Model

IAI inter-annotation interval

IBI inter-beat interval

IDFT inverse discrete Fourier transform

IOI inter-onset interval

LDA linear discriminant analysis

MFCC Mel-frequency cepstral coefficient

MIDI Musical Instrument Digital Interface

MIREX Music Information Retrieval Evaluation eXchange

MMA Mean Mutual Agreement

ODF onset detection function

xi

STFT short-time Fourier transform

UI User Interface

xii

LIST OF SYMBOLS

B number of beats in sequence to be evaluated

Cn set of per-song scores for the nth ensemble

En nth ensemble

Fn nth feature

H(x) half-wave rectifier function

I binary indicator function

J number of beats in ground-truth annotated sequence

N STFT frame size

Pn nth periodicity estimation approach

S set of songs in a dataset

X[n, k] The STFT of x centered at time n

∆ difference

γb time of the bth beat in sequence γ

γ sequence of B beats

AMLc Allowed metrical level continuity required

AMLt Allowed metrical level continuity not required

CMLc Correct metrical level continuity required

CMLt Correct metrical level continuity not required

Cemacc Cemgil et al. beat tracking accuracy measure

Dg Global information gain

xiii

D Information gain

FN false negative

FP false positive

Gotoacc Goto beat tracking accuracy measure

Mean8 Mean of eight percentage-based evaluation metrics

TP true positive

ϕ signal phase

τ tempo period

aj time of the jth beat in sequence a

a sequence of J annotated beats

fs sample rate

h STFT hop size

i
√
−1

p precision

r recall

t tempo

w[m] time-domain window function

x[n] The nth sample of signal x

x signal x

F-measure F-measure beat tracking evaluation metric

P-score P-score beat tracking evaluation metric

xiv

ACKNOWLEDGEMENTS

I would like to thank the members of my committee for their invaluable guid-

ance over the years. My committee chair, Shlomo Dubnov, pointed me in the di-

rection of ensemble learning in the first place, and Miller Puckette somehow always

managed to find time to meet with me to talk through ideas and give me advice. My

friend and colleague Kevin Larke was also a helpful guide and a wonderful sounding-

board for ideas, often helping me to think through challenging problems or see things

in a new light. I would also like to thank Peter Otto, Director of Sonic Arts R&D at

CalIT2, for all of his efforts that supported my graduate studies through my position

as a Graduate Student Researcher. NTT, and Laurin Herr and Natalie Van Osdol

of Pacific Interface, were also instrumental in making this possible.

Finally, I would like to thank my parents for their incredible support. My

father, Murray Daniels, was always a reassuring force during stressful times, and my

mother, Karen Daniels, was always there for me, not just as my mother but also as a

computer science professor who was happy to talk to me about clustering algorithms,

research, how to do something in LATEX, or just to guide me through the PhD process

as she does with her own students.

Thank you everyone!

xv

VITA

2003 Bachelor of Arts in Music (Music, Science, and Technology)
with Distinction, Stanford University

2009 Master of Arts in Music (Computer Music),
University of California San Diego

2015 Doctor of Philosophy in Music (Computer Music),
University of California San Diego

xvi

ABSTRACT OF THE DISSERTATION

An Ensemble Framework for Real-Time Audio Beat Tracking

by

Michelle L. Daniels

Doctor of Philosophy in Music

University of California, San Diego, 2015

Professor Shlomo Dubnov, Chair

Beat tracking is a machine listening task which involves identifying both the

time-varying tempo of an acoustic music signal and the location of beats. Ensem-

ble learning methods, where the outputs of multiple classifiers or other models are

combined to produce a single more robust output, have become increasingly popular

in many machine learning problems but have not been extensively explored for beat

tracking applications. Existing ensemble approaches for beat tracking have focused

on non-real-time and non-causal beat tracking systems or have been agent-based ap-

proaches where agents must interact with the ensemble. However, real-time causal

beat tracking is desirable for a number of interesting applications including foot-

tapping robots and live musical machine improvisation or accompaniment. This dis-

xvii

sertation introduces Beaker, a flexible framework for creating ensembles of arbitrary

real-time causal beat trackers which do not require any knowledge of each other or of

the ensemble. The Beaker framework uses clustering of ensemble member hypotheses

to form discrete hypothesis classes, and reliability measures for each tracker are used

to weight hypotheses to determine the ensemble’s output. Simple TestTracker beat

trackers are introduced as example ensemble members and used to demonstrate the

performance of the Beaker ensemble framework. Diverse ensembles of TestTrackers

can be created by varying parameters such as the input features and periodicity

estimation approaches used by each tracker. Beaker ensembles using TestTrackers

are shown to be competitive with a state-of-the-art real-time causal beat tracking

system and can even outperform some non-causal beat tracking systems on certain

evaluation metrics. Beaker’s approach to combining the hypotheses of individual

TestTrackers is shown to give superior results compared to recent developments in

ensemble methods for non-causal beat tracking. The concept of ensemble diversity

is discussed as it relates to Beaker ensembles, and a metric for predicting when the

combination of two Beaker ensembles will give improved results over the individual

ensembles is introduced. Finally, a real-time implementation and visualization of

the Beaker ensemble framework in C++ is presented and areas for future work are

discussed.

xviii

Part I

Introduction

1

Chapter 1

Introduction

1.1 Introduction

Beat tracking is a machine listening task which involves identifying both the

time-varying tempo (beat period) of an acoustic music signal and the location or

alignment of beats (beat phase). As such, it encompasses the task of tempo es-

timation and is a necessary prerequisite for higher-level tasks such as automatic

music transcription. Applications of beat tracking include automatic playlist gen-

eration, beat-synchronous effects and processing, beat-synchronous visualization, a

foot-tapping or dancing robot, beat-aligned automatic analysis, automatic music

transcription, and musical machine improvisation or automatic accompaniment.

When defining the task of beat tracking, it is important to distinguish between

notated tempo and beat locations and perceived tempo and beat locations. For

example, if we assume that a quarter note represents a beat, then an eighth note

represents half a beat, and consecutive quarter notes played at a tempo of 120 beats

per minute (BPM) will sound the same as consecutive eighth notes played at a

tempo of 60 BPM. These are two different ways of notating the same rhythmic

pattern. Because of the ambiguities of musical notation, most beat tracking systems

concentrate not on the task of identifying the composer’s notated beats but rather

on the task of identifying perceived beats, where the perceived beats are the times a

human listener might tap his or her foot in time with music.

2

3

The majority of beat tracking algorithms are designed for offline use, mean-

ing that they can be non-causal and are not required to run in real time. Such

algorithms can “listen” to an entire song before making decisions about the most

likely locations of beats in that song and are useful when the audio to be tracked

is known in advance and real-time performance is unnecessary, such as when pre-

processing large databases of songs as part of a music recommendation system. This

dissertation will focus on the more challenging task of real-time causal beat tracking,

which is necessary for applications such as a foot-tapping or dancing robot, musical

machine improvisation, and automatic accompaniment. Real-time causal algorithms

are capable of processing an unknown incoming audio stream and making decisions

in real time about what the current tempo and beat phase are, and whether or not a

beat is present. This necessitates causal processing because future input is unknown,

and is therefore typically less accurate than non-causal processing. Real-time beat

tracking provides additional challenges. For example, consider the case of a foot-

tapping robot. When we tap our foot in time with music, we anticipate when the

next beat will occur in the future, lifting our foot off the ground and beginning the

tapping motion before a beat has happened, so that our foot hits the ground at the

same instant that we hear a beat. Reproducing a human listener’s predictive ability

is one of the challenges in real-time beat tracking.

1.2 Novel Contribution

Beat tracking is an inherently ambiguous process. Ask a group of human

listeners to tap their feet in time with a piece of music, and you are likely to find

listeners tapping at different tempos (i.e. different metrical levels), and perhaps out

of phase with each other (i.e. some on the off-beat). Machine listeners suffer from the

same problems. In addition, different beat tracking algorithms might perform better

or worse depending on the content of the music being tracked [53] or the evaluation

metric used [14]. In most machine listening algorithms, features representing impor-

tant aspects of the input are extracted and analyzed instead of operating directly on

audio samples. In beat tracking, some features work well in music with strong and

4

sharp onsets, while others are better for softer attacks. Similarly, when estimating

tempo, different techniques might emphasize faster or slower tempos. This makes

it difficult to design a single beat tracking algorithm which can perform well on all

genres of music and various tempo ranges.

Ensemble learning methods from the field of machine learning are intended to

address these kinds of situations, where different systems perform well on different

inputs and a single model is insufficient to represent all scenarios. In an example of

ensemble learning, the output of multiple classifiers is combined to produce results

which are better than those of a single classifier. The various classifiers might be

trained on different datasets or use different algorithms to determine their results, so

that they perform differently depending on the current input. Some algorithms will

provide similar or identical results, and agreement among algorithms is an indicator

of the correct output.

Along these lines, it has been shown that the task of tempo estimation can

benefit from combining the results of multiple tempo estimation algorithms using

a voting scheme [37]. Similarly, it should be possible to use an ensemble of beat

tracking algorithms to produce a more reliable output than a single algorithm would

obtain across a variety of input data.

Past work in ensemble methods for tempo estimation and beat tracking is

limited and has focused on combining the output of multiple systems in a non-causal

fashion. Results are obtained for each system on each track in a dataset, and then

combined after the fact. This is a perfectly valid approach for non-causal systems

and non-real-time use. However, for real-time systems, the concept of an ensemble

of beat trackers takes on a different meaning. Decisions must be made about how to

combine tracker output at each time instant rather than combining beat sequences.

For example, rather than discrete beat times, a real-time beat tracking application

may require continuously-updating tempo and beat phase values.

This dissertation is focused on the development of a framework for using

ensemble methods in real-time causal beat tracking systems. The beat tracking en-

semble framework, nicknamed Beaker, requires members of the ensemble to output

current tempo estimates and next predicted beat locations. The framework was

5

designed from the beginning for causal real-time use rather than using causal adap-

tations of non-causal algorithms as some real-time beat tracking systems do [54].

Because it is designed for real-time use, Beaker does not assume that its input will

be at a constant tempo. It is designed for adaptability at the expense of some output

continuity, and as a result can adapt quickly to tempo changes, including the end of

one song and start of another at a completely different tempo. This is in contrast

to the many beat tracking systems which either assume constant-tempo input [27],

include strong constraints minimizing the likelihood of tempo changes [46], or require

a specific state recovery and reset in the system to adapt to large tempo changes [54].

Inside the Beaker framework, the results of ensemble trackers are clustered into dis-

crete classes and combined via methods developed for ensembles of classifiers, using

reliability measures at both the ensemble and tracker levels to emphasize the best-

performing trackers. The output of the ensemble consists of the current estimated

tempo and a current estimated beat phase from which the next beat location can be

predicted if desired.

Simple causal beat trackers, called TestTrackers were used in the development

and testing of the Beaker ensemble framework. A diverse ensemble of TestTrackers

can be created by the use of different parameters that include the choice of input

feature, approach to periodicity estimation, and allowed tempo range. However, any

causal beat tracker could be a member of a Beaker ensemble, provided that it outputs

the necessary tempo and beat estimates and reliability measures to the ensemble,

and the goal of this work was not to create the best possible ensemble members

in the form of TestTrackers but rather to develop a flexible framework for creating

ensembles of arbitrary causal beat trackers.

1.3 Dissertation Organization

Related work in beat tracking will be discussed in Chapters 2 through 5.

Chapter 2 will discuss the variety of input features that have been used in beat

tracking systems, focusing on different kinds of onset detection functions (ODFs).

Chapter 3 will discuss a wide range of approaches to tempo estimation, a neces-

6

sary component of beat tracking systems. Chapter 4 will describe how various beat

tracking systems use these input features and tempo estimation approaches to detect

beats and track changes in tempo and beat locations over time. Chapter 5 will then

introduce ensemble learning techniques as they are traditionally applied in classifi-

cation systems and provide an overview of prior beat tracking work using ensemble

learning.

Following this survey of related work, the Beaker framework for beat tracking

using ensemble learning will be introduced in Chapter 6, and the TestTracker beat

trackers that were used to develop and test the Beaker framework will be described

in Chapter 7. Chapter 8 will then give an overview of the various datasets and

metrics used to evaluate the Beaker framework. This will be followed by Chapter

9, which will demonstrate the performance of the Beaker ensemble learning frame-

work in comparison to other beat tracking systems and to another approach to beat

tracking using ensemble learning in a non-causal fashion. It will be shown that a

Beaker ensemble of TestTrackers performs comparably to a state-of-the-art causal

beat tracker and that Beaker’s ensemble approach provides better results than a

state-of-the-art approach to combining non-causal beat tracker output. Chapter 10

will then discuss the concept of ensemble diversity as it relates to Beaker ensembles,

demonstrating that a larger ensemble is not always better. A preliminary method

for determining whether the merging of two ensembles will provide improved results

over the individual ensembles will be presented.

Finally, Chapter 11 will describe a real-world implementation and application

of the Beaker framework and discuss areas for future work.

Part II

Background and Related Work

7

Chapter 2

Features

2.1 Introduction

Feature extraction for beat tracking is the process of analyzing an acoustic

audio signal and converting it to one or more forms where periodicities and beat

locations can be more readily observed. Such representations of the signal are referred

to as features. In this chapter, I will review techniques that have been developed to

extract audio signal features that help identify musical events that might correspond

to beat locations.

2.2 Onset Detection Functions

w

q q

e e ee

q q

e e ee

�������

���	��

��	�

Figure 2.1: Example metrical grid (4/4 meter)

8

9

Most existing beat tracking or tempo estimation systems use some sort of note

or event onset detection function (ODF) as their feature for input to the periodicity

detection stage, where an ODF is a derivation of the original signal with peaks

indicating likely onset locations. While not all onsets lie on beats, in most music

the majority will lie approximately on a metrical grid such as that shown in Figure

2.1, which is defined by tatum, tactus, and measure durations, where the tatum

is the smallest subdivision of a beat, the tactus is the beat, and a measure is a

grouping of beats defined by musical meter. For example, Figure 2.1 represents a

measure in 4/4 meter, meaning that there are four beats in a measure and the beat

is at the quarter note level. In comparison, a measure in 3/8 meter would have

three beats per measure with the beat at the eighth note level. Because onsets fall

roughly on this metrical grid, one can ideally observe periodic behavior at each of

the tatum, tactus, and measure periods by examining the locations of onsets. In

early beat tracking systems that used symbolic data (such as Musical Instrument

Digital Interface (MIDI) data) as input, onsets were explicitly defined. However,

modern systems generally operate directly on acoustic audio signals and therefore

must determine likely onset locations automatically using some kind of ODF.

ODFs are typically computed on a frame-by-frame basis, resulting in a signal

which is at a lower sampling rate than the original audio signal, where each sample

value indicates the likelihood of an onset occurring in a particular analysis frame.

Given an ODF, onsets can be estimated explicitly using peak-picking, where peaks

in the ODF are identified as likely onset locations. This typically requires some kind

of thresholding and can be error-prone and context-sensitive. However, some early

audio-based beat trackers used this explicit approach to produce a list of discrete

onsets that could be used as input to a beat tracking system that was originally

designed for use with symbolic input [21].

ODFs can also be used as implicit indicators of the presence of onsets. In-

stead of peak-picking and providing a list of discrete note onsets to the periodicity

estimation stage of a beat tracker, periodicities can be detected in the ODF directly,

by methods such as computing the autocorrelation of the ODF. Because the peak-

picking process is imperfect and eliminates possibly meaningful information at an

10

early stage, most current beat tracking systems use some kind of ODF with this

implicit approach, and algorithms for tempo estimation which used ODFs in this

way have been shown to outperform those that relied on lists of discrete onsets [37].

The type of ODF that works best for beat tracking depends on the type of

content. The remainder of this section will discuss the ODFs most commonly used

in beat tracking systems and their performance on different kinds of content.

2.2.1 Spectral Magnitude ODFs

Spectral magnitude-based ODFs can take a variety of forms, but they all be-

gin by computing the difference between magnitude spectra of consecutive analysis

frames. Summing these differences across frequency bins indicates the amount of

change in the spectrum, with greater change corresponding to a greater likelihood

of an onset. Dixon [22] claims that summing the absolute difference between frames

gives better results than summing the squared difference, which had been used in

some earlier work [24]. Using the half-wave rectified difference between frames, where

negative differences are set to zero, emphasizes onsets (where energy increases) com-

pared to sudden decays (where energy decreases) [7]. This type of ODF was used by

Dixon [23] and more recently Oliveira et al. [54] in their beat-tracking systems.

Laroche [51] used a variation of this approach to generate his Energy Flux

Function, introducing a compression function which emphasized higher-frequency

bins where onsets were more likely to be noticeable. Alonso et al. [3] also used

spectral magnitude to compute an ODF, but instead of computing the difference

from frame to frame they used a higher-order differentiating filter, which they found

gave significant improvement compared to the first-order difference used in other

systems.

2.2.2 Complex Domain ODF

Magnitude-based ODFs typically perform well for percussive sounds, which

have sharp onsets that are clearly visible as increases in energy between consecutive

magnitude spectra. Unfortunately, magnitude-based ODFs are not as sensitive to

11

onsets with smoother attacks such as bowed string notes or low-frequency events. For

such content, a phase-based ODF that looks for discontinuities in phase evolution

between frames, indicative of changing notes, can perform better [7]. However, phase-

based ODFs don’t work as well on noisy or less tonal signals where the phase evolution

is not as predictable to begin with.

To address the issue of content-dependent ODFs, a complex domain ODF was

developed, which is sensitive to both magnitude changes and phase discontinuities

[6]. Instead of measuring differences in the magnitude spectra of consecutive frames,

the complex domain ODF measures the Euclidean distance between complex spec-

tra of consecutive frames, thereby taking into account both magnitude and phase

information. Because of its flexibility, the complex domain ODF has been used in a

variety of beat tracking systems, including those by Degara et al. [19], Davies and

Plumbley [16], and Stark et al. [65]. However, the spectral magnitude-based ODFs

are still sometimes preferred because they are computationally more efficient than

the complex domain approach [54].

3.72 3.74 3.76 3.78 3.8 3.82 3.84

x 10
6

−1
0
1

Original Waveform

Time (samples)

1.45 1.455 1.46 1.465 1.47 1.475 1.48 1.485 1.49 1.495 1.5

x 10
4

0
0.5

1
L1 Magnitude ODF

Time (frames)

1.45 1.455 1.46 1.465 1.47 1.475 1.48 1.485 1.49 1.495 1.5

x 10
4

0
0.5

1
L1 Rectified Magnitude ODF

Time (frames)

1.45 1.455 1.46 1.465 1.47 1.475 1.48 1.485 1.49 1.495 1.5

x 10
4

0
0.5

1
Complex Domain ODF

Time (frames)

Figure 2.2: Beatles onset detection functions

Figure 2.2 shows, from top to bottom, the original waveform for a segment

12

0.6 0.8 1 1.2 1.4 1.6

x 10
5

−1
0
1

Original Waveform

Time (samples)

200 250 300 350 400 450 500 550 600 650
0

0.5
1

L1 Magnitude ODF

Time (frames)

200 250 300 350 400 450 500 550 600 650
0

0.5
1

L1 Rectified Magnitude ODF

Time (frames)

200 250 300 350 400 450 500 550 600 650
0

0.5
1

Complex Domain ODF

Time (frames)

Figure 2.3: Vivaldi onset detection functions

of Beatles music, the ODF based on spectral magnitude absolute (L1) differences,

the ODF based on rectified spectral magnitude L1 differences, and the complex do-

main ODF. Figure 2.3 shows the same ODFs but for an excerpt of Vivaldi string

music. None of the three ODFs is significantly better than the others for both ex-

amples. However, the L1 rectified magnitude ODF has the sharpest peaks for the

Beatles music but the noisiest and least clear peaks in the string music, illustrating

the content-dependent nature of ODFs. Interestingly, although string music is sup-

posed to be an area where the complex domain ODF is superior to magnitude-based

ODFs, in this particular example the complex domain ODF is very similar to the L1

magnitude ODF and doesn’t show a clear advantage.

2.2.3 Beyond Traditional ODFs

Ellis [27] expanded on the traditional magnitude spectrum-based ODF to

create an onset strength envelope. He computed the Mel spectrum1 in decibels (dB)

1The Mel spectrum uses a non-linear frequency scale meant to represent human perception of
pitch.

13

for each analysis frame and derived the half-wave rectified difference between adjacent

frames. The differences were summed across Mel bands as they would be summed

over frequency bins in more traditional ODFs, but in this case the differences were

in dB, so it was as if linear differences were being multiplied rather than summed.

The results were smoothed over time to create an onset strength envelope which,

aside from being in dB rather than a linear scale, could be used like any other ODF.

Similarly, Eck [25] also used magnitude in dB, with frequency bands spaced on a

log scale, which he found outperformed linear magnitude ODFs, including Scheirer’s

[63]. In contrast, Dixon [22] reports that log (dB) magnitude did not perform as well

as linear magnitude for magnitude-based ODFs in his own empirical tests, so there

is no clear consensus about the use of linear vs. log magnitude. However, linear vs.

Mel or log frequency scale could also be a factor affecting performance in those cases.

2.2.4 Sub-Band Features

In their beat tracking system, Klapuri et al. [46] attempt to identify the

degree of musical accent in a signal. They first compute the power in each of 36

critical-band-based frequency bands2. The difference in power between consecutive

analysis frames is computed and then normalized using the current frame’s power in

order to approximate the change in loudness in each band over time. As with the

ODFs in Sections 2.2.1 and 2.2.2, the difference is half-wave rectified to emphasize

onsets rather than sudden decays.

Before passing these band-wise accent signals to the periodicity estimation

stage of their system, Klapuri et al. combine some number of adjacent bands to

produce a smaller number of higher-bandwidth accent signals. They discuss the

trade-offs between the number of sub-bands used for feature extraction and the

number of sub-bands used for periodicity estimation. Scheirer [63] had used ampli-

tude envelopes rather than Klapuri et al.’s power envelopes, and computed them in

six frequency sub-bands, each approximately one octave in bandwidth. Periodicity

estimation was then performed by passing each sub-band signal through a bank of

2Critical bands are narrow at low frequencies and wider at higher frequencies, and are intended
to reflect the way the human ear responds to sound.

14

comb filter resonators representing different tempo periods, and the output energy of

each comb filter was summed across all six bands before the maximum energy filter

was chosen as the optimal tempo. However, the limited number of sub-bands in

Scheirer’s system meant that tonal or harmonic changes were not very noticeable. In

contrast, fast Fourier transform (FFT)-based ODFs typically have more than enough

frequency resolution for harmonic changes to be noticeable.

Goto and Muraoka [32] used multiple FFT-based ODFs to detect onsets,

with each ODF based on spectral changes in different ranges of consecutive FFT

bins. Inspired by this approach, in order to make harmonic changes visible in their

band-wise accent signals, Klapuri et al. use a larger number of sub-bands in initial

computations and later, after computing power differences, combine them to make

fewer bands which could then each be used to detect periodicities separately. They

set both the initial number of sub-bands and combined number of sub-bands as pa-

rameters to their system and tested various combinations of these parameters. They

found that their system performed best when many narrow-band power difference

signals (which could show tonal changes) were combined to make three or four wider-

bandwidth “accent bands” on which periodicity analysis would be performed, rather

than when the sub-bands were not combined at all, since onsets were not very visible

in the individual narrower bands. In the opposite extreme, three or four sub-bands

outperformed the scenario when all sub-bands were combined to produce one single

full-bandwidth accent function the way the ODFs in Sections 2.2.1 and 2.2.2 were

computed. Klapuri’s results suggest that systems using a single ODF computed

across the entire spectrum could possibly be improved by performing periodicity

analysis on multiple sub-band ODFs.

Another example of sub-band ODF computation is the use of multiple sub-

bands by Tzanetakis and Cook during feature extraction to create their beat his-

tograms [67]. Their octave-spaced sub-bands were derived using the discrete wavelet

transform (DWT), but were essentially time domain envelopes for each frequency

band. Because of the octave spacing like Scheirer’s bands, these sub-bands were too

wide to indicate the presence of tonal changes. Also, in contrast to Klapuri and

Scheirer’s sub-band approaches, Tzanetakis and Cook added all of the sub-bands

15

before periodicity analysis and beat histogram generation.

2.3 Beyond Onsets

2.3.1 Low-Level Features

High-level features such as ODFs based on spectral magnitude or power

changes and phase discontinuities are not the only features that can help identify

onsets or beats. Ideally, even more features could be considered. For example, Fig-

ure 2.4 shows the spectral centroid of the same Beatles segment from Figure 2.2.

The spectral centroid can be thought of as the “center of mass” of the magnitude

spectrum and can indicate how much a spectrum is dominated by low vs. high fre-

quencies. While it is a well-known low-level feature for machine listening tasks in

general, spectral centroid is not a typical onset detection feature. However, at least

for this example, it shows clear periodic behavior that could help determine tempo.

1.45 1.455 1.46 1.465 1.47 1.475 1.48 1.485 1.49 1.495 1.5

x 10
4

0

0.05

0.1

0.15

0.2

0.25
Spectral Centroid

Time (frames)

Figure 2.4: Spectral centroid

Gouyon et al. [36] tested 172 different possible features for both beat classi-

fication and beat tracking tasks, including spectral centroid, and found that timbral

features such as Mel-frequency cepstral coefficient (MFCC) deltas, which are com-

monly used in speech recognition, were most valuable for classification, while features

that identified onsets were the most valuable for beat tracking. However, their results

16

may not generalize beyond the specific beat tracking system used. Dixon’s BeatRoot

beat tracker [23] was used to evaluate the suitability of each feature for input to a

beat tracker, but it requires discrete onsets as input, and therefore the evaluation

required peak-picking on each feature to detect onsets. In other words, each fea-

ture was treated as an onset detection function, so it is no surprise that the authors

concluded that onset detection functions were the best features for beat tracking.

2.3.2 Chord Changes

Some other possible alternatives to traditional ODFs are features which in-

dicate the presence of harmonic or chord changes. Such changes are more likely to

occur on a beat than between beats and more likely to occur at the start of a mea-

sure than elsewhere, so features which detect these changes regardless of the presence

of strong onsets can be valuable. While the ODFs described in Sections 2.2.1 and

2.2.2 can detect changes in the frequency content of a signal, they do not specifically

determine whether those changes reflect a chord change or a melodic figure.

Goto and Muraoka [35] devised a method intended to determine when a chord

change had occurred without having to solve the more difficult task of identifying

each chord, and they used this as a feature for their beat tracking system. Using

provisional beat location estimates based on a more traditional ODF, they looked for

peaks in the spectrum indicative of tonal components and, comparing the strength

and frequency of peaks between beat time estimates, they were able to estimate

the likelihood of a chord change occurring at each time and use this to evaluate

the reliability of different beat hypotheses. However, Goto and Muraoka’s approach

was still quite primitive and does not seem to actually distinguish between melodic

changes and harmonic (chord) changes.

Eronen and Klapuri [28] used chroma features to generate a musical accent

function which was a stronger indicator of chord changes than the musical accent

function used in their earlier work. Chroma features are a representation of the

strength of different pitch classes3 in a musical signal. Therefore, chord changes

3Musical notes that occur an octave apart in frequency are considered to be part of the same

17

should result in large changes in chroma features, but melodic variations within

or around the same chord should result in only small changes to chroma features.

Eronen and Klapuri compute their chroma features in 36 bands (12 semitones per

octave, each divided in thirds), and, treating the 36 chroma “bins” like the 36 sub-

band power signals in their earlier work [46], they compute the half-wave rectified

difference in each bin, from which a single musical accent function is derived. The

performance of the chroma features in a tempo estimation system was compared to

the performance of the musical accent function proposed in their earlier work but

using the same tempo estimation system, and the differences in performance between

the two were not statistically significant. However, the authors did note that the two

feature approaches performed well on different subsets of the test data, implying that

an approach combining the two feature extraction methods could outperform either

one individually.

2.4 Conclusion

This chapter has presented different approaches to feature extraction for beat

tracking systems, discussing both low-level features such as spectral centroid and

high-level features such as onset detection functions or chroma features. The depen-

dence of ODF performance on signal content was discussed, with the more versatile

complex domain ODFmentioned as a possible way to better handle sounds like bowed

strings which are not well-represented with spectral magnitude ODFs that are better

suited to percussive attacks. The benefits of computing features for periodicity esti-

mation in multiple frequency bands were described, along with the tradeoffs between

narrow sub-bands (which are better for detecting tonal changes but some sub-bands

may not show any sign of an onset) and wider sub-bands (where onsets are likely

visible in all bands to some extent, but tonal changes can be missed). The next

chapter will describe ways in which the beat tracking features introduced here can

be used to identify patterns and estimate tempo and other periodicities.

pitch class. For example, middle C and the C an octave above it are both in the “C” pitch class.

Chapter 3

Periodicity Estimation

3.1 Introduction

Techniques for estimating the rhythm and meter of music, given only the

acoustic signal, combine feature detection with higher-level pattern matching al-

gorithms which look for repeated patterns or periodicities in the chosen features.

Chapter 2 discussed possible approaches to beat tracking feature extraction in de-

tail. This chapter will review the various ways in which those features can be used

to find higher-level patterns indicative of rhythmic structure, typically producing

estimates of possible tempo candidates or beat locations.

Early beat tracking and tempo estimation systems operated primarily on

symbolic data such as Musical Instrument Digital Interface (MIDI) files, where lists

of discrete note event onset times were available, so various techniques were devel-

oped for finding patterns in onset times to estimate likely tempos. In more recent

tempo and beat tracking systems, symbolic data is no longer used as input. Instead,

acoustic audio data is used. As mentioned in Chapter 2, the peak-picking required to

produce a list of onsets from an acoustic audio signal is an unreliable and error-prone

process, so newer beat tracking systems prefer to detect periodicities by examining

frame features such as an onset detection function (ODF) or other input feature

directly. Gouyon et al. [37] compared a number of tempo estimation algorithms and

concluded that the ones that used frame-level features like those described in chapter

18

19

2 were more robust than those that relied on discrete lists of onsets. This chapter

will therefore focus on methods for estimating periodicities using such frame-level

features.

3.2 DFT and ACF

Given an ODF, accent function, or other frame-level feature, two of the sim-

plest ways of computing periodicities are the discrete Fourier transform (DFT) and

autocorrelation. The DFT or autocorrelation function (ACF) of the input feature is

computed to obtain a periodicity function, upon which peak-picking is performed to

identify the dominant periodicities. In the case of the DFT, peaks in the periodicity

function identify likely tempo frequencies, while peaks in the ACF represent likely

tempo periods. For example, Figure 3.1 shows the ACF of an ODF with peaks at

possible tatum, tactus, and measure periods labeled. In both approaches, octave

ambiguity is a problem: for the DFT, peaks will be present at both the actual tempo

frequency and its integer multiples, while for the ACF, peaks will be present at both

the actual tempo period and its integer multiples. Ellis [27] weighted his ACF before

peak-picking in order to emphasize the most common range of tempos. While this

helped reduce octave ambiguity for common tempos, it also increased the likelihood

of errors for less common tempos. In addition to octave ambiguity, both the DFT

and ACF also suffer from the classic time/frequency resolution trade-off: computing

over a larger time range provides better tempo resolution but makes the system less

responsive to sudden changes.

Besides Ellis, both Alonso et al. [3] and Oliveira et al. [54] used an ACF to

provide tempo estimates for their beat tracking systems. Davies and Plumbley [16]

and Stark et al. [65] also computed the ACF of their ODF. However, they introduced

an additional periodicity-finding stage, where the ACF was passed through a shift-

invariant comb filterbank that matched the ACF against possible ”comb templates”.

Each comb template contained pulses at integer multiples of a fundamental period

(lag) from the ACF, so this process emphasized tempo periods that were supported

by the presence of other metrical levels.

20

0 0.5 1 1.5 2 2.5 3 3.5 4
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Lag (seconds)

ACF of ODF

Measure Period

Tactus Period

Tatum Period

Figure 3.1: Autocorrelation function of an onset detection function

Other methods are combinations of the DFT and ACF approaches, including

a method by Peeters [57], which attempts to alleviate the octave ambiguity of both

approaches. Peeters computes both the DFT and ACF and maps the values of the

ACF into the bins of the DFT, multiplying the two functions. When the values of

the ACF are mapped to DFT bins, peaks at multiples of the tempo period become

peaks at subdivisions of the tempo frequency. In theory, only the true tempo will

have a dominant peak in both the DFT and ACF and will therefore be emphasized

when the two are multiplied.

3.3 Comb Filters

Comb filtering has been another popular approach to periodicity estimation

in tempo and beat tracking systems, based on work by Scheirer [63]. A filterbank of

comb filter resonators is created, where filter coefficients are chosen such that each

filter output indicates the degree of resonance at a different tempo period and has

the same half-energy decay time. By observing the energy output of each filter,

the filter with the strongest resonance can be identified, indicating the most likely

tempo. Klapuri et al. [46] expanded on this approach by normalizing the filter output

energy to account for skew due to the different tempo periods, providing improved

performance compared to Scheirer’s system.

21

Both Scheirer and Klapuri perform the comb filtering on multiple sub-band

accent signals and then sum the outputs across sub-bands to create one single peri-

odicity function. Klapuri et al. also suggested the use of the DFT of the periodicity

function to help determine the tatum pulse level, since by definition all events in the

signal should occur at integer multiples of the tatum period, and the DFT would

identify periodicities in the periodicity vector itself. While the DFT and ACF each

suffer from octave errors at either multiples or subdivisions of the actual tempo as

explained in Section 3.2, Klapuri et al. note that comb filtering suffers from both

kinds of octave errors. However, for both Klapuri et al. and Scheirer this is seen as

a strength rather than a weakness, because it makes it easier to observe the entire

metrical hierarchy.

3.4 Beat Spectrum

Foote and Uchihashi [29] introduced the concept of a beat spectrum, which

is somewhat unique in that it makes no attempt to identify onsets either explicitly

or implicitly. The frame-level feature used is simply the log-magnitude of the spec-

trum, but instead of computing the difference from frame-to-frame in this feature to

emphasize onsets, they instead compute a similarity matrix, where the entry at the

ith row and jth column of the matrix is the distance between the feature at frame i

and the feature at frame j. They use the cosine of the angle between spectra as their

distance measure, since it is independent of frame energy. This is in sharp contrast

to ODF-based approaches, where the difference in energy is itself a significant part

of the feature. The beat spectrum is derived from the similarity matrix either by

summing along the diagonals or computing the ACF of the similarity over either the

rows or the columns. A beat spectrogram can be obtained by computing successive

beat spectra and can be used to visualize variations in metrical structure over time.

Like peaks in the ACF of an ODF, peaks in the beat spectrum indicate

dominant periodicities in the input audio signal. Unlike the ACF of an ODF however,

because the beat spectrum incorporates distance measures between spectra of non-

adjacent frames, scenarios such as repetition of particular melodic or harmonic events

22

(even if repeated at a different energy level) will effect the results. The ACF of

an ODF will recognize repetitions in rhythmic patterns of onsets, but melodic and

harmonic patterns are lost when the ODF is computed.

3.5 Beat Histogram

Tzanetakis and Cook [67] proposed the beat histogram for observing metrical

hierarchies. They first derive an onset detection function based on the discrete

wavelet transform (DWT). The enhanced autocorrelation function of the ODF is

then computed, by first computing the traditional ACF and then subtracting from

the ACF versions of itself time-scaled by different integer factors. The benefit of the

enhanced ACF in this context is initially unclear, since the authors claim it removes

“repetitive peaks”, which would seemingly have the effect of reducing the visibility

of different metric levels. However, part of the goal of the beat histogram is to

help visualize those different levels. Once the enhanced ACF is computed for each

frame over time though, only the first three ACF peaks in the range of valid tempo

periods are added to a beat histogram, where each histogram bin corresponds to a

different tempo. In this way, the beat histogram accumulates large values in bins

corresponding to dominant periodicities in the input audio signal while less dominant

periodicities are ignored with the help of the enhanced ACF.

Initially, the beat histogram was used as a feature for genre classification,

but in later work, Tzanetakis used the beat histogram for tempo estimation [66].

The two largest peaks in the beat histogram were chosen as the most likely tempo

estimates, but there was no attempt to track tempo changes over time. However,

the beat histogram accumulated over an entire song has been used to provide infor-

mation about how variable the song’s tempo is, since a tempo which varies greatly

will produce less pronounced, more smeared histogram peaks. Compared to averag-

ing periodicity functions over multiple frames, it seems that the value of the beat

histogram lies in the fact that only dominant peaks in each frame are added to the

histogram, eliminating some of the noise that would be present in a simple average.

23

3.6 Autocorrelation Phase Matrix

The autocorrelation phase matrix (APM) was introduced by Eck [25] in an

attempt to improve upon traditional ACF-based methods. Typically, the ACF is

used to provide tempo estimates, but because the ACF does not retain any infor-

mation about beat phase, beat locations must be estimated separately. The APM

aims to allow joint beat period and phase estimation by preserving the intermediate

information used to compute a traditional ACF in a matrix, indexed by lag (rows)

and phase (columns). The traditional ACF can be obtained by summing across the

rows of the APM. Eck compared tempo estimation using a traditional ACF against

two methods using the APM. Like Ellis [27], Eck used a “tempo preference window”

to give preference to tempos which are more likely to occur in human performances,

which can help reduce octave errors.

Both APM-based methods outperformed the traditional ACF in tests using

constant-tempo excerpts. In the case of one of the models, APM-Phase, the ben-

efit came from estimating meter by summing metrically-related lags and searching

for high-magnitude [phase, lag] pairs. In later work [26], Eck extended his APM

approach to estimate changing tempos and beat phases over time by tracking high-

magnitude [phase, lag] values in APMs computed on successive frames. Following on

Eck’s work, Robertson et al. [61] later introduced a comb filter matrix based on the

APM, which was supposed to improve performance for syncopated rhythms where

lag times corresponding to the beat period would not show high correlation.

3.7 Metrical Templates

Laroche [51] uses what he calls an energy flux function, which is a type of

ODF, as his input feature. His approach to tempo estimation involves matching the

energy flux function to a set of metrical templates. Making the assumption of duple

meter1, he constructs an expected energy flux signal for each candidate tempo. The

1In a duple meter, events occur on a metrical grid where relationships between metric levels are
factors of two.

24

expected energy flux signal consists of discrete pulses spaced at the specified tempo

period. Additional pulses are added one quarter, one half, and three quarters of

the way between beats, but at lower amplitude than the beat pulses, reflecting the

expectation that energy flux signals derived from music signals will be stronger on

beats than on divisions of beats. For example, expected energy flux signals for three

different tempos are illustrated in Figure 3.2, with the template for the fastest tempo

at the top and the slowest at the bottom.

Given these expected energy flux signals, Laroche then computes the cross-

correlation of each template with the actual energy flux signal derived from the input

audio. The tempos whose templates result in the highest cross-correlation values at

their tempo periods are chosen as the best candidate tempos to consider in the

beat-tracking stage of his algorithm. This is an interesting approach for rock/pop

music, which often meets Laroche’s simple duple meter assumption. However, to

generalize to other musical meters, templates would have to be constructed for each

possible tempo and for each possible metrical structure, and this quickly becomes

computationally impractical.

0

0.5

1

Time

E
x
p

e
c
te

d
 F

lu
x

0

0.5

1

Time

E
x
p

e
c
te

d
 F

lu
x

0

0.5

1

Time

E
x
p

e
c
te

d
 F

lu
x

Figure 3.2: Expected energy flux templates

25

Oliveira et al. [54] used a similar template matching approach to determine

the initial beat phase hypotheses used to initialize their beat tracking system. How-

ever, their templates considered beat locations only and not the metrical structure

as Laroche’s did. While that means that their approach is not meter-specific like

Laroche’s, it also means that peaks in their ODF which occur at multiple of the

tatum period but not on beats are not able to contribute to a match.

Peeters and Papadopoulos [58] also used beat template matching in their

beat and downbeat2 tracking system. In one approach, they used meter-dependent

templates very similar to Laroche’s. However, they also introduced a method based

on templates learned from data with annotated beat times using linear discriminant

analysis (LDA), rather than hard-coded templates. The LDA-trained templates gave

better performance than the default templates, although the authors suggest that

the results of training the templates are somewhat genre-specific and therefore even

better performance could be obtained by training separate templates for different

genres.

3.8 Matching Periodicity Functions

Eronen and Klapuri used the generalized autocorrelation function (GACF)

[28] to create their periodicity function, where the GACF is defined using the inverse

discrete Fourier transform (IDFT) as

GACF(τ) = IDFT(|DFT(⃗am)|p) (3.1)

where τ is the tempo period (autocorrelation lag), and a⃗m is the musical accent func-

tion for frame m as described in Section 2.3.2. When the parameter p = 2, Equation

3.1 reduces to the traditional ACF. However, Eronen and Klapuri experimented with

different values for p for each of the different features they tested and found that for

the chroma features they used, p = 0.65 was optimal in the context of their system.

Assuming a constant tempo across all analysis frames, they computed the median of

periodicity functions across time to provide one single periodicity vector. Treating

2The downbeat is the first beat in a musical measure.

26

tempo estimation as a true pattern-matching problem, instead of peak-picking on

this vector to find the tempo period, they then used k-Nearest Neighbor regression

to find matches to periodicity vectors with known (annotated) tempos that were used

to train the system.

To compensate for a limited training set and cover a wider range of possible

tempos, periodicity vectors were stretched or shrunk by different factors, and matches

were also sought for those “resampled” periodicity vectors. The correct tempo was

chosen to be the weighted median of the tempos for the closest k training periodicity

vectors, with the closest matches given greatest weight. This approach gave better

results than traditional methods requiring peak-picking on the periodicity vectors and

allowed the metrical structure to be implicitly included as part of the tempo analysis

without having to explicitly define rules governing the expected ratios between peaks

in the periodicity function. Providing a training set with adequate representation

of all possible tempos and metrical structures is a challenge with this approach, but

the periodicity vector resampling during the search process helps to improve results

when using a limited training set.

3.9 Conclusion

This chapter discussed different ways of identifying patterns in acoustic sig-

nals that are indicative of periodicities such as tempo and meter. Unfortunately,

comparing the performance of different approaches to rhythmic pattern matching

and different choices of input features is difficult at best. Choices of features and

periodicity estimation approaches are typically evaluated within the context of a

complete beat tracking system, and since different tracking systems behave well

with different features or periodicity estimation methods, it is typically not possible

to generalize results to all other systems. However, having different periodicity esti-

mation approaches that work best with particular features or inputs suggests that a

combination of approaches in an ensemble context may be ideal for beat tracking.

Chapter 4

Beat Detection and Tracking

4.1 Introduction

In this chapter, I will discuss the beat detection and tracking stage of beat

tracking systems, which typically occurs once frame-level features such as onset de-

tection functions have been extracted from an acoustic audio signal as described in

Chapter 2 and initial analysis of feature periodicities has been performed as dis-

cussed in Chapter 3. The output of the beat tracking stage is usually a series of

estimated beat locations and tempos. Beat locations can also be described in terms

of beat phase, where the beat phase describes the location of the next beat in terms

of the current tempo period. Tracking other aspects of the metrical structure of the

music beyond the beat, such as tatum period and meter, can sometimes strengthen

beat-tracking estimates but is less common. I will describe different approaches for

tracking beat locations along with tempo and sometimes meter over time for both

real-time and non-real-time applications. Just as humans may change where they

tap their feet as a piece of music evolves over time, a beat tracking system must

adapt to new information which may cause it to change its hypothesis about tempo

and beat location. As a result, the majority of beat tracking systems use either a

multiple-agent architecture or dynamic programming-based approaches to consider

multiple concurrent hypotheses. I will describe a variety of such systems and discuss

other tracking methods that do not fit one of these two categories.

27

28

4.2 Agent-Based Systems

Multiple-agent architectures have been used in several different beat track-

ing systems as a way of maintaining multiple hypotheses in parallel. Each agent

maintains its own hypothesis about tempo and next expected beat time, and if one

agent loses track of the beat, one of the other agents should have maintained a valid

hypothesis and be able to take over. In some systems, a consensus among agents

determines predicted beats, and in others a single best agent is chosen to make

estimates.

4.2.1 Goto and Muraoka

Motivated by the need to maintain multiple hypotheses in a real-time causal

implementation, Goto and Muraoka [32] were the first to use a multi-agent architec-

ture in the context of beat tracking. While many different definitions of the term

“agent” have been proposed in computer science [30], Goto and Muraoka define an

agent to be a software component that satisfies the following three criteria:

1. the agent interacts with other agents to perform a given task.

2. the agent evaluates its own behavior on the basis of the input.

3. the agent adapts to the input by adjusting its own behavior.

In Goto and Muraoka’s beat tracking system, agents are grouped in pairs

where they work together to cover multiple possible beat phases. This satisfies

the first requirement from their definition of agents, that the agent interacts with

others to perform a task. While all agents follow the same features, each agent

pair bases its hypotheses on different parameters determining how the features are

interpreted. For example, each pair might detect onsets in different frequency sub-

bands, estimate tempo over different time intervals, or permit different ranges of

valid tempo hypotheses. After estimating the current tempo, the two agents in a

pair each choose beat phase hypotheses that are offset by half the chosen tempo

period, helping to guard against the common beat-tracking error of tracking half-

way between beats. An example of phase-offset beat location hypotheses for a pair

29

of agents is shown in Figure 4.1. Unlike some other beat-tracking systems, there is

no explicit induction stage initializing Goto and Muraoka’s system with tempo or

beat estimates. Instead, the agents’ varying parameters force them to begin with a

range of different hypotheses.

�������

�������

���������	�

���������	�

Figure 4.1: Beat location hypotheses for an agent pair

Goto and Muraoka’s agents are able to evaluate their own reliability over

time and adjust their parameters to focus on values that give high reliability scores,

satisfying the second and third requirements from their definition of agents. The

reliability of an agent is determined by how well beat times that were predicted in the

past correspond to onsets that were later detected as the system progressed in real-

time. For music with drum sounds [32], the agent’s reliability is also modified by how

well estimated drum patterns match pre-registered patterns, and for music without

drum sounds [34], reliability is modified based on how well estimated chord change

locations coincide with predicted beats. An agent’s parameters can be adjusted if

both agents in a pair are considered unreliable for a certain minimum time, but only

the least reliable of all agent pairs is allowed to adjust its parameters at any given

time. The agent-pair’s parameters are adjusted within the available parameter space,

in the direction of the parameters governing the most reliable agent pair and to a

set of parameters that is not already covered by a different agent-pair. A highly-

reliable agent’s parameters can also be adjusted to reduce the range of valid tempo

periods considered by that agent, focusing that agent’s attention on a reliable tempo

estimate.

30

The final element of the system consists of a hypothesis manager which makes

the final beat location predictions based on the hypothesis of each agent. Agents with

similar tempo and beat hypotheses are grouped, and each group is given a reliability

score based on the reliability of each agent in the group. The hypothesis of the most

reliable agent in the most reliable group is chosen as the output, in an approach

reminiscent of weighted majority voting to combine classifier output in ensemble

learning methods.

4.2.2 Dixon

Dixon also uses a multiple-agent based approach [21][23], but for a non-causal

beat tracking system rather than real-time and causal. He does not provide a def-

inition for his concept of agents, but his agents operate differently than Goto and

Muraoka’s: each agent is initialized with a different initial tempo and beat phase

hypothesis, but they track the same features over time with the same parameters.

Unlike Goto and Muraoka’s system, Dixon’s system includes an induction stage,

where initial tempos are estimated by clustering inter-onset intervals (IOIs), and

these initial tempos are used to ensure that the agents are initialized with a wide

range of hypotheses. Recall that Goto and Muraoka’s agents are not initialized with

specific tempos, but they do explicitly recompute periodicity estimates over time,

while Dixon’s agents never repeat the periodicity estimation after the induction pe-

riod.

At the tracking stage of Dixon’s system, features consist simply of a discrete

list of detected beat events (onsets) and the salience of each event. The list of

beat events is parsed sequentially, and for each event, agents evaluate their own

performance by scoring themselves on how well their predicted beats match with

the detected event and how salient that event was, so that matching a more salient

event gives a higher score than matching a less-salient event. Matching any beat

event increases an agent’s score, but there is no penalty for missing a beat event or

predicting a beat where no event occurs.

Matches are considered within two tolerance windows: an inner window and

31

an outer window. If an agent matches an event within the inner tolerance window but

not exactly, it adjusts its tempo hypothesis based on whether it undershot or overshot

the event, based on the assumption that the tempo must be changing (however,

this does not seem to consider the possibility that the tempo has not changed but

the event was performed slightly before or after the beat for an expressive musical

purpose). This is how agent tempo hypotheses get updated even though the agents

never explicitly perform any new periodicity estimation. If an agent misses the inner

tolerance window but matches within the outer tolerance window, the agent does not

change its hypothesis. Instead, it clones itself and one of the pair will proceed under

the assumption that the missed onset was a beat while the other agent proceeds

under the opposite assumption, that the missed onset was not a beat.

Once agents have been scored across the entire list of detected beat events, the

agent with the highest total score is chosen as the winner, and that agent’s history

of predicted beat locations is taken to be the output of the system. This is similar to

the optimal pathfinding of the dynamic programming-based approaches that will be

described in Section 4.3, since the agent’s score is really a score of the agent’s path

of beat locations, and agents whose paths converge are merged, keeping the higher-

scoring agent’s path history. Therefore, just as dynamic programming enables us to

find optimal paths, backtracking through the beat path of the agent with the highest

final score yields the globally-optimal beat path.

4.2.3 Oliveira et al.

Oliveira et al. [55][54] later implemented a real-time causal version of Dixon’s

system. Like Dixon’s agents, Oliveira et al.’s agents each maintain a tempo and beat

phase hypothesis and track the same feature over time. However, their agents are

initialized or induced in a way that improves upon Dixon’s approach by no longer

requiring discrete onset detection from the beginning. First, a spectral magnitude

onset detection function (ODF) is derived from the input audio signal and its auto-

correlation function (ACF) is computed. Initial tempo hypotheses are chosen from

peaks in the ACF, and initial beat phase hypotheses are determined by the quality

32

of beat template matches to the ODF at each of the candidate tempos. The system

is then initialized with an agent representing each candidate [tempo, beat phase]

hypothesis, and with an approach similar to Dixon’s ranking of IOI clusters, agents

are given initial scores based on whether their tempo period estimate has integer

relationships to other candidate tempos.

Agent tracking then proceeds similarly to Dixon’s system, except that a con-

tinuous ODF is used to evaluate each agent’s beat predictions instead of Dixon’s

discrete beat event list. Oliveira et al. keep the system of inner and outer toler-

ance windows, adjusting an agent’s tempo hypothesis if its beat location prediction

slightly overshoots or undershoots a local maximum in the ODF. Where Dixon’s

agents generate a new cloned agent if a beat prediction matches the outer beat tol-

erance window, Oliveira et al.’s agents produce three new agents to cover a wider

range of alternate hypotheses. A monitoring system is also added for state recovery

purposes, which looks for sudden decreases in agent scores to identify when a new

song has started (i.e. in a streaming radio broadcast) or if the tempo has changed

dramatically enough that the system is no longer stable. The induction process can

then be repeated using more current data, essentially resetting the system. This is

an important addition, since in Dixon’s system, unless a tempo was detected during

the IOI clustering and induction stage, the only way that tempo could be included

as a hypothesis was through gradual shifts away from one of the initial candidate

tempos.

Oliveira et al.’s agent scoring is performed by an “agent referee” and is more

sophisticated than the self-scoring by Dixon’s agents in that it introduces a penalty

for bad predictions in addition to rewarding good predictions. A non-causal mode

chooses the beat prediction history for the agent with the highest final score, as in

Dixon’s system. However, in the causal mode, globally-optimal pathfinding is not

possible, so the agent with the highest score at each point in time is used to make

beat predictions. This is in contrast to Goto’s system, where predictions are based

on agreement between agents, treating the agents as an ensemble and not relying

only on one agent’s hypothesis.

33

4.2.4 Comparison of Agents

This section has described three beat tracking systems based on two very dif-

ferent multiple-agent architectures. Each approach has its strengths and weaknesses.

For example, Goto and Muraoka’s system allows new tempos to be introduced into

the system over time, while in Dixon’s approach tempos can only change gradually.

However, Dixon’s approach has a beat induction stage which results in the agents

starting with more accurate tempo estimates in the first place. Goto and Muraoka’s

system makes certain limiting assumptions about meter (always 4/4) while Dixon’s

meter assumptions are less restrictive. In general though, their architecture is more

flexible than Dixon’s. It allows agents to track different features and base hypothe-

ses on different parameters, while including a type of weighted majority voting to

determine the best beat predictions. In contrast, Dixon’s approach assumes that all

agents follow the same features, and agreement between agents’ hypotheses results

in agents merging, making a majority voting system like that of Goto and Muraoka

irrelevant.

4.3 Dynamic Programming

In offline beat tracking systems, where a full song can be analyzed before

making any decisions about beat locations, approaches involving dynamic program-

ming, Hidden Markov Models (HMMs), and variations on the Viterbi algorithm [60]

to determine optimal “paths” of beats through an excerpt have been popular and

have generally performed well. In addition to offline use, dynamic programming ap-

proaches can also be modified for use in real-time causal settings, although other

techniques such as the agent-based approaches already described may be more ap-

propriate, since the Viterbi algorithm can no longer be used to find a globally optimal

path through the entire song. This section will describe several approaches which

vary widely in terms of what parameters they choose to optimize in the tracking

process as well as how optimality is defined.

34

4.3.1 Laroche

In his system, Laroche [51] chooses to find the optimal path of [tempo, down-

beat location] pairs over time, with initial candidates selected as the best matches of

energy flux functions to the metrical templates described in Section 3.7. Paths are

scored based on the quality of matches to these pre-defined templates, smoothness of

tempo over time, and whether the distances between successive downbeat candidates

are consistent with the current tempo.

4.3.2 Ellis

Ellis [27] also uses dynamic programming in his beat tracking system, but

unlike Laroche’s system where tempo is being tracked with the beat, Ellis assumes

a constant tempo throughout a song (estimated once using the autocorrelation of

his input ODF feature as described in Section 3.2). Given this tempo, he then

maximizes an objective function to find the optimal path of beat locations. The

objective function has a high value when there are peaks in the ODF (likely beat

locations) and when the distance between successive beat times is consistent with

the chosen tempo period.

4.3.3 Eck

Eck’s approach to beat tracking, using the autocorrelation phase matrix

(APM) described in Section 3.6, uses a variation of the Viterbi algorithm to find an

optimal trajectory of high-magnitude [phase, lag] states through a series of APMs

computed over the duration of a song or excerpt [26], where phase defines the beat

phase and lag defines the tempo period. Because an APM contains a large number of

possible states but changes in tempo and beat phase are typically small, a Gaussian

window is used to limit the variation in phase and lag between consecutive APMs,

reducing the number of possible transitions that must be considered in the Viterbi

decoding although limiting the potential to respond to actual large changes.

35

4.3.4 Klapuri et al.

Klapuri et al. [46] use a an HMM to determine an optimal path of [tatum,

tactus, measure] periods, making certain musically-informed assumptions to simplify

the formulation of the HMM parameters. An HMM is defined by hidden variables or

states, observations of those states, prior probabilities for each state, the probabilities

of transitioning between states, and the probability of an observation given a state.

In Klapuri et al.’s HMM, the hidden variables (unknowns) are [tatum period, tactus

period, measure period] triplets, and the observations consist of the musical accent

function computed as described in Section 2.2.3 and then processed as discussed in

Section 3.3 to obtain a periodicity estimation function for each point in time.

Prior probabilities for tatum, tactus, and measure periods were estimated to

have a log-normal distribution with parameters estimated from the authors’ anno-

tated database. Observation probabilities for a particular [tatum, tactus, measure]

period triplet are assumed to be proportional to the product of the periodicity func-

tion at tactus and measure periods and the discrete Fourier transform (DFT) of the

periodicity function evaluated at the tatum frequency. In other words, we expect

the periodicity function to have strong peaks at tactus and measure periods, and

we expect the DFT of the periodicity function to have a strong peak at the tatum

frequency. Transition probabilities are based on the assumptions that periods are

slowly varying, large changes in period are more likely for large periods than for

small periods, and period doubling and halving are equally probable.

Assumptions about conditional independence of the hidden variables include

that given the tactus period at time n− 1, the tactus period at time n is condition-

ally independent of the tatum and measure periods at time n, and given the tactus

period at time n, the tatum and measure periods at time n are conditionally inde-

pendent. Given these assumptions and probabilities, the Viterbi algorithm is used

to find the optimal path of [tatum, tactus, measure] periods through each song; in

other words, the sequence of [tatum, tactus, measure] periods that is most likely to

have occurred given the observations (periodicity functions). To reduce computation

time, the candidates considered in the Viterbi algorithm are periodically chosen as

36

permutations of the 5 most likely tatum, tactus, and measure periods, yielding 125

candidate triplets.

The HMM just described only determines tatum, tactus, and measure periods

however, so in Klapuri et al.’s beat tracking system, additional HMMs are needed

to determine optimal tactus phase (location) and measure phase given the optimal

tempo (the tatum phase is defined by the tactus phase). In both HMMs, the ob-

servations are the outputs of the comb filter corresponding to the chosen tactus or

measure periods for each sub-band (described in Section 3.3), and the hidden vari-

able is either the tactus phase or measure phase. Prior probabilities are assumed to

be uniformly distributed, while transition probabilities are chosen to reward beats

which fall within a Gaussian error window of a valid predicted beat location given the

chosen period. Tactus phase observation likelihoods are proportional to the weighted

sum of tactus period comb filter outputs across frequency sub-bands, similar to the

way Scheirer [63] suggested finding beat phase from his comb filters. Observation

likelihoods for the measure phase rely on higher-level musical knowledge and are

derived based on how well the comb filter output for the chosen measure period

matches certain predefined rhythmic patterns that are consistent with a 4/4 meter.

Therefore the measure phase estimation does not generalize well to music with other

time signatures, although the tactus phase estimation is meter-independent.

Overall, the approach described by Klapuri et al. has been shown to perform

well for tempo estimation - it was the winning algorithm in the 2004 tempo induction

contest during the ISMIR 2004 conference [37]. It also performed very well at the

2006 Music Information Retrieval Evaluation eXchange (MIREX) evaluation for both

the beat tracking and tempo estimation tasks [53].

4.3.5 Degara et al.

Degara et al. [19] also use separate HMMs in their beat tracking system to

track tempo and beat phase. An offline version of the HMM-like approach used by

Stark et al.’s [65] real-time system to be described in Section 4.4 is first used to derive

an optimal tempo (beat period) path. This tempo knowledge is then used by the

37

second HMM to estimate optimal beat locations (beat phase). In this second HMM,

the value of the hidden variable is the number of frames since the last beat, so a value

of 0 means that there is a beat event in the current frame. The observations are the

values of a complex domain ODF at each frame. To determine beat times, the Viterbi

algorithm is used to find the optimal sequence of states, and the beats are said to

occur at each time when the state is 0. Observation probabilities for state 0 (beat

state) are assumed to be proportional to values of the ODF (ot), while probabilities

for other states (non-beat states) are assumed to be proportional to 1 − ot. A

uniform distribution for initial probabilities is used, and transition probabilities take

the form of a Gaussian distribution centered at each expected beat location (given the

already-estimated tempo), where the Gaussian distribution models the probability

of deviations from expected beat times.

An important aspect of Degara et al.’s beat tracking system is the use of

reliability measures to determine the confidence of tempo and beat estimates. For

example, if the structure of the ODF is not clearly periodic, that reduces the relia-

bility of the system.

4.3.6 Peeters and Papadopoulos

Peeters [57] uses an HMM to estimate time-varying tempo without attempt-

ing to track the beat. In his HMM, the hidden states are [tempo, meter] pairs, where

meter is represented by one of three meter templates. Observations are periodicity

estimation functions computed using the combined DFT + ACF approach described

in Section 3.2, and observation probabilities are based on values of the periodicity

estimation function summed across related tempos defined by the current meter tem-

plate. As in other approaches, the transition probabilities favor tempo and meter

continuity, and prior probabilities are uniform for meter but take the form of a Gaus-

sian probability density function for tempos, favoring a common range of tempos.

The optimal path of [tempo, meter] pairs is computed with the Viterbi algorithm as

usual.

Later, Peeters and Papadopoulos [58] use a different HMM in a beat and

38

downbeat tracking system. They assume that the tempo and meter of their content

are already known and are given as inputs to the system (tempo is allowed to be

time-varying, only a 4/4 meter was tested). In their system, the hidden variables

are [beat time, beat-position-in-a-bar] pairs, where beat-position-in-a-bar (bpib) in-

dicates whether the beat falls on the first, second, third, or fourth beat in a bar

(measure), and observations are the degree of match to a beat template, chroma vari-

ation, and spectral balance (ratio between high-frequency energy and low-frequency

energy).

Initial probabilities are uniform for bpib and favor beat times that are close

to the beginning of a song. Transition probabilities are based on the assumption

that beat times always increase, distances between beats should be consistent with

the local tempo within some Gaussian error window, and bpib always transitions in

a repeating cycle ([1, 2, 3, 4, 1, 2, 3, 4, ...] for 4/4 meter). Observation probabilities for

beat times are based on correlation between an ODF and a beat template generated

for the known tempo at each candidate beat time, and bpib observation probabilities

are based on the assumption that chords are more likely to change on the downbeat

than in other positions in a bar. Also included in bpib observation probabilities is

the assumption, as in Goto and Muraoka’s work [32], that a particular drum pattern

is present, so that it is possible to estimate beat positions 1 and 3 vs. 2 and 4 in

a 4/4 measure based on high vs. low frequency content that would indicate the

presence of snare drum or kick (bass) drum. In evaluations, this system performed

comparably to Klapuri et al.’s system (described in Section 4.3.4) for beat tracking

and was significantly better for downbeat tracking.

4.4 Other Tracking Methods

Unlike the majority of systems described here, Robertson et al.’s real-time

beat tracking system maintains only one [tempo, beat phase] hypothesis at a time

[61]. Their system uses a weighting function to emphasize tempo and beat continuity,

where the weighting function is the product of two Gaussians centered at the current

[tempo, phase] hypothesis. In order for the system to change its hypothesis, the

39

strength of the new hypothesis multiplied by the weighting function evaluated at

the new hypothesis coordinates must be greater than the strength of the original

hypothesis. Depending on the values chosen for the Gaussian spreads, this approach

can prohibit the system from making large jumps in [tempo, phase] space. The

system is therefore best suited to music with a fairly constant tempo.

Bock et al. [8] use an ensemble of multiple recurrent neural networks for non-

causal beat tracking, with the neural network most suited to the current content

being tracked is chosen on a per-song basis from the ensemble. A dynamic Bayesian

network similar to previously-described dynamic programming approaches is also

used to jointly estimate tempo and beat phase.

Stark et al.’s real-time system [65] estimates tempo and beat location sepa-

rately. Tempo is modeled as slowly-varying and limited to a range of 80 beats per

minute (BPM) to 160 BPM. An initial tempo is estimated using Davies and Plumb-

ley’s shift-invariant comb filterbank method described in Section 3.2 and tracked

over time using a transition matrix consisting of Gaussian columns centered at each

possible tempo (row). For each frame, before choosing a new tempo from the comb

filterbank output, the output is weighted using the transition matrix and the tempo

probabilities from the previous frame to emphasize tempo continuity. The tempo

is then used to predict the next beat using a causal version of Ellis’s dynamic pro-

gramming approach mentioned in Section 4.3.2, extrapolating forward from the most

likely previous beat location.

The final system that will be described here is the context-dependent two-

state system by Davies and Plumbley [16]. In this system, the General State, which

considers all possible tempo hypotheses, is first used to estimate a stable tempo.

The Context-Dependent State then proceeds to track the tempo and beat but only

considers tempos in a small window around its initial tempo, while the General

State continues to work in parallel to the Context-Dependent State, examining the

full range of tempo hypotheses. If the General State and Context-Dependent State’s

tempo estimates deviate by too much, with the General State observing a new stable

tempo, then a new Context-Dependent State is generated to replace the old obsolete

one. Each future beat is predicted based on the current stable tempo estimate.

40

4.5 Conclusion

This chapter has discussed how beat tracking systems, including multiple-

agent based systems and dynamic programming based systems, maintain and/or

choose between multiple hypotheses about tempo and beat location over time. Ap-

proaches to beat tracking vary widely based on whether the system is causal or

non-causal and whether it must operate in real time. Some systems are also lim-

ited to specific genres, meters, or limited tempo ranges, so different beat tracking

algorithms perform well on different content, making it impossible to label any one

approach as the best.

Chapter 5

Ensemble Learning

5.1 Introduction

This chapter will provide some background on the field of ensemble learning

as traditionally used in machine learning applications. Then it will discuss prior

work that has been done using ensemble learning in conjunction with beat tracking,

related machine listening tasks, and real-time applications.

5.2 Ensemble Learning

Ensemble learning methods are approaches to machine learning that involve

combining multiple classifiers, regressors, or other models in order to obtain a more

accurate result than could be achieved by any single model. The performance of

an ensemble depends on both the diversity of the ensemble and the method used

to combine the hypotheses of ensemble members, regardless of whether supervised

learning or unsupervised learning methods are used. While the Beaker framework

is an unsupervised approach and does not involve classifier training, the overview

provided in this chapter will include some popular methods for supervised ensemble

learning such as bagging and boosting, since they are still relevant to the concept

of ensemble diversity. Section 5.2.1 will introduce ensemble diversity and discuss a

variety of approaches commonly used to create diversity in ensembles. Then Section

41

42

5.2.2 will describe possible methods for combining the output of multiple models to

determine the output of an ensemble. Overall, both methods for generating a diverse

ensemble and methods for determining the combined output of an ensemble are areas

of ongoing research in machine learning.

5.2.1 Ensemble Diversity

The models that make up a successful ensemble are generally complimentary

in some way. That is, they perform well on different kinds of input, so that when

one model performs poorly another will perform well, allowing it to compensate for

variations in the performance of a single model. Such an ensemble is considered to be

diverse, and diversity is a significant factor in the performance of an ensemble [59].

While the concept of models making errors on different inputs is easy to understand,

ensemble diversity is not well defined in the computational sense. For example,

numerous measures exist for measuring the diversity of an ensemble of classifiers,

and there is no one measure that is considered to be the best in all situations [59][48].

Ensemble diversity is typically achieved in a number of ways. In supervised

learning, where models must be trained on a particular dataset, ensemble diversity

is often achieved by training different models on different datasets or on different

subsets of a dataset. Comprehensive surveys of a variety of such methods can be

found in a variety of sources including [20], [59], and [64], and some of the most

popular methods will be described briefly here.

One of the earliest methods of this kind was Schapire’s boosting [62], which

involves the consecutive training of three classifiers in order to boost the performance

of a weak learner (classifier) to a strong one. In the boosting algorithm, the first

classifier is trained on a random subset of the training data. The second is then

trained on the most informative subset of the training data, given the first classifier

- a dataset where the first classifier correctly classified half of the instances and

incorrectly classified the other half. A third classifier is then trained on the subset

of the training data where the first and second classifiers disagree. A majority vote

between the three classifiers is used to determine the output of the ensemble, so that

43

the third classifier is only needed when the first two disagree.

Freund and Schapire later introduced AdaBoost [31], a generalization of the

boosting algorithm, and many variations of AdaBoost have been developed since,

due to its popularity [59]. In AdaBoost, classifiers are trained consecutively as in

traditional boosting. The first is trained on a random subset of the training data, and

subsequent classifiers are trained with increasingly difficult subsets of the training

data, representing training instances that were misclassified by previously-trained

classifiers. A weighted majority vote is used to determine the ensemble’s output,

where each classifier’s weight is determined by its performance during training such

that poorly-performing classifiers are given less weight than those that perform well.

Jacobs et al. introduced the concept of a mixture-of-experts [43] using an

ensemble of neural networks, each of which is an “expert” on particular kinds of

input data or certain subsets of the feature space. If the output of the experts is

discrete-valued, a second layer gating network chooses which of the experts is best

suited to the current input and chooses that network’s output as the output of the

system. If the output is continuous-valued, the gating network might combine the

experts by weighting each output according to how well that expert performed on a

particular kind of input during training. Other kinds of classifiers can be used for

the experts, but the gating network is typically a neural network.

Breiman’s bagging algorithm [10] (short for bootstrap aggregating) is another

method for training classifiers on different subsets of a training dataset. With bag-

ging, unlike boosting, an ensemble of otherwise identical classifiers is trained using

random subsets of the training data, rather than basing subsequent classifier training

on the performance of other ensemble members. The ensemble’s output is determined

by majority vote among the classifiers. Bagging can be very useful when only a small

training dataset is available, as each classifier can be trained on a relatively large

subset of the training data while still creating a diverse ensemble. Unstable models

are preferred for this use of bagging, meaning that small variations in the training

data subsets can create significantly different classifier performance. One of the more

popular examples of this is Breiman’s Random Forests algorithm [11], which can be

viewed as a variation on bagging which uses decision trees for classifiers [59].

44

Random Forests are perhaps better known in the context of their use of dif-

ferent feature subsets to create a diverse ensemble. This is another way in which

diversity can be achieved, and can be applicable to both supervised and unsuper-

vised learning applications. Models in an ensemble can use different input features

or subsets of a feature set. Ho introduced the random subspace method, training

decision trees on random subsets of the available input features [40], while Oza and

Tumer introduced an input decimation approach [56], which also trains different

classifiers on different input features. However, the input decimation approach does

not randomly choose feature subsets but rather performs dimensionality reduction

by eliminating irrelevant features and instead choosing ones that correlate well with

training data.

5.2.2 Combining Models

Once an ensemble has been generated, numerous methods exist for combin-

ing the output of ensemble members to produce the output of the ensemble, and

overviews of these can be found in sources such as [44] and [59]. The choice of

combination methods depends on the output of the classifiers in the ensemble and

whether they output discrete class values, rankings of classes, or the probability of

each possible class. The best approach to use when combining ensemble member

results is also based on many other factors including the nature of the problem being

considered, and, in the case of weighted approaches, how accurately the reliability of

different ensemble members can be estimated.

In classifiers that output only their selected class, majority voting or weighted

majority voting are popular approaches [59]. For example, a classifier might receive

greater weight in a vote if it has superior performance on a training dataset, or

weights might be adjusted dynamically based on how a classifier performs over time.

The class with the greatest number of votes is chosen as the ensemble output. As

mentioned earlier, majority voting and weighted majority voting are commonly used

with bagging and boosting algorithms.

Some classifiers might output a ranking of the most likely class choices. In

45

this case, several approaches are possible for combining classifier output [41]. One

option is to look at the ranks each class receives by the ensemble of classifiers and to

score classes based on the highest ranking each receives from the various classifiers

in the ensemble. Using these scores, the classes can then be ranked a second time,

with various ways for breaking ties in the ranking. The highest-ranking class is then

chosen as the output of the ensemble. Another possible approach is the Borda count,

which is a generalization of the majority vote. Each class is assigned a score based

on how how many classes are ranked below it by each classifier in the ensemble.

The class with the highest Borda count is chosen as the output of the ensemble.

Finally, a logistic regression approach can be used to address a problem with the

Borda count approach, which is that it blindly treats all classifiers equally. With

logistic regression, Borda counts are weighted by the relevance or performance of

each classifier.

With classifiers that output the likelihood of each class and not simply a

single class estimate or ranking, a wider range of output combination approaches

is possible [44][47]. One option is to use these likelihoods to rank the classes and

use the methods just described for combining ranks, but additional methods are

possible. For example, the product of the likelihoods given by each classifier for

each class can be multiplied using a product rule, where the class with the highest

likelihood product is chosen as the ensemble output. Alternatively, the sum of the

likelihoods can be used, and the class with the greatest sum of likelihoods chosen.

This gives results equivalent to an unweighted mean of likelihoods, but a weighted

mean can also be computed if appropriate weights for each classifier are known, for

example from performance on training data. Another option is to choose the class

with the greatest minimum likelihood amongst all classifier outputs or the class with

the greatest maximum or median likelihood.

5.3 Ensemble Learning and Beat Tracking

The strengths and weaknesses of the onset detection functions (ODFs) and

other possible input features to beat tracking systems based on signal content such as

46

genre or instrumentation are well known [7][22][36]. Therefore it might be desirable

to combine multiple input features to create a more robust beat tracking system.

One challenge of combining multiple features however lies in the fact that some

features are not directly comparable to each other. For example, one could reasonably

combine multiple ODFs by averaging them, assuming they were all normalized to

the same range and using the same scale (i.e. all linear or all in decibels (dB)).

However, even if they were normalized, it would not necessarily be valid to average,

for example, an ODF and the spectral centroid of a signal, since they represent

completely unrelated quantities.

These sorts of challenges have helped make ensemble learning methods an

area of interest in beat tracking tasks and related tasks such as onset detection,

particularly in recent years. Gouyon et al. [37] proposed an approach to tempo

estimation which involved combining the outputs of multiple tempo estimation al-

gorithms to determine the optimal tempo. Each algorithm received votes depending

on how well the other algorithms agreed with their tempo estimate, and the output

of the algorithm with the greatest number of votes was chosen as the tempo. Based

on this, Dixon proposed combining various onset detection algorithms in a similar

fashion as future work, to balance the strengths and weaknesses of the different ap-

proaches [22]. Degara et al. later employed a mixture-of-experts approach to note

onset detection [18] combining multiple onset detection functions.

5.3.1 Non-Causal Beat Tracking Ensembles

Recently, an ensemble approach to combining beat trackers using different

input features was presented by Zapata et al. [68]. A committee of beat trackers is

formed where each tracker uses a different input feature. On a per-song basis, each

tracker in the committee computes an output beat sequence, and agreement among

output sequences is sought using a Mean Mutual Agreement (MMA) approach. This

approach measures the similarity or mutual agreement of output beat sequences of

pairs of trackers as in [42], and the mean of each tracker’s agreement with all other

trackers is computed. The output of the tracker with the greatest MMA is chosen

47

as the output of the committee. This is similar to a mixture-of-experts approach,

where each beat tracker is an expert, and MMA serves the role of the gating network.

Zapata et al. found that this ensemble approach gives better results than the use

of a single beat tracker with a single input feature. A benefit of this approach is

that because only output beat sequences are required, MMA is tracker-agnostic,

meaning that arbitrary beat trackers can participate as members of the committee

without knowing about the committee themselves. However, there is a corresponding

downside. Because the MMA approach operates only on completed output beat

sequences, it cannot be used in a real-time causal system.

In another ensemble approach to beat tracking, Bock et al. [8] use multi-

ple recurrent neural networks, which, unlike most other beat tracking systems, is a

supervised learning approach. They create ensemble diversity by training multiple

models on different subsets of a dataset, with each subset representing a different

musical style. A reference model is then trained on the entire dataset, and for songs

where the style matches the model’s training data, each model performs slightly bet-

ter than the reference model. Conversely, when the style of a song does not match

the model, each model performs worse than the reference model. Like the system of

Zapata et al., Bock et al. treat the multiple models similar to a mixture-of-experts.

For each song, they choose the model with the lowest mean squared error compared

to the reference model to be used for beat tracking. This simple method for model

selection works in this case because the improvement with a matching model over

the reference model is typically smaller than the penalty for a mismatched model,

making the model closest to the reference more likely to match the style of the cur-

rent input. In the majority of their results, this multi-model approach performs

better than the reference model, and it performs very well in comparison to other

state-of-the-art non-causal beat tracking systems.

5.3.2 Real-Time Ensembles

Past work using ensemble learning in real-time applications appears to be

focused on the computer vision task of tracking moving objects using binary clas-

48

sification to distinguish between object and background. Collins et al. performed

adaptive feature selection by selecting the most discriminative features to update

their model in successive video frames [13]. Grabner and Bischof used an online

version of the AdaBoost algorithm for a similar purpose, using a weighted majority

vote to obtain the output of their ensemble of classifiers after each successive update

[38]. Avidan also uses an online version of AdaBoost and a weighted majority vote

but for an arbitrary ensemble of weak classifiers [5].

An approach to real-time beat tracking using arbitrary ensembles has not

been introduced prior to this dissertation. Among real-time beat tracking systems,

the multiple-agent-based approach of Goto and Muraoka [32] might be viewed as a

form of ensemble learning, using an ensemble of agents. However, the dependencies

and interactions between agents (which Goto and Muraoka see as strengths of the

agent-based approach), mean that their agents are not self-sufficient beat trackers

or models, as would typically be the case in traditional ensemble learning applica-

tions. As a result, Goto and Muraoka’s system does not allow combining arbitrary

beat tracking systems as an ensemble - only their agents are supported as ensemble

members.

5.4 Conclusion

This chapter has introduced ensemble learning in the context of traditional

machine learning models such as classifiers and regressors, focusing on the concepts of

ensemble diversity and how to combine the output of multiple models in an ensemble.

The use of ensemble learning in past tempo estimation and beat tracking work was

reviewed, including a description of the MMA committee-based scheme which will be

examined more closely in Chapter 9. Although prior work combining beat tracking

and ensemble methods is limited and focused on non-causal processing, the results

of Zapata et al. combining features [68] and those of Bock et el. combining musical

styles [8] both show benefits from the use of ensemble methods. The remainder

of this dissertation will focus on combining the real-time causal benefits of Goto

and Muraoka’s approach with Zapata et al.’s tracker-agnostic but non-causal MMA

49

approach, presenting a tracker-agnostic framework that can be used for real-time

causal beat tracking.

Part III

The Beaker Beat Tracking

Framework

50

Chapter 6

The Ensemble Framework

6.1 Introduction

��������

�

��������

	

��������

�������

����������

���������

�������������

������

����� ��

���!������

"����������

����������	
���	�

���������������	
���	�

����������	
���	�

���������������	
���	�

����������	
���	�

���������������	
���	�

#������������
$������!�

%����#������

������������&

'����(����&����

���!������

Figure 6.1: Diagram of ensemble framework

This dissertation attempts to expand on the limited previous work combining

ensemble learning and beat tracking by creating a framework that allows experimen-

tation using a wide variety of tracker ensembles as well as allowing real-time causal

beat tracking. This chapter will describe the Beaker ensemble learning framework in

detail, including how it combines the output of an ensemble of trackers to produce

a single output. Beat tracking using the Beaker framework begins by generating

an ensemble of independent trackers. Unlike agents in a multiple-agent architecture

like that described in Section 4.2, beat trackers in a Beaker ensemble are ensemble-

51

52

agnostic and context-free. In other words, they do not need to know anything about

the other members of the ensemble or the state of the ensemble itself. As a result, a

wide variety of beat tracking algorithms could be used as members of a Beaker ensem-

ble, including other Beaker ensembles. Evaluation of this framework has focused on

the TestTrackers to be described in Chapter 7, but the framework is general enough

to allow any tracker meeting the following criteria to participate in an ensemble:

1. Tracker must be able to estimate the current tempo and provide a confidence

level for that hypothesis

2. Tracker must be able to estimate the next beat location and provide a confi-

dence level for that hypothesis

3. Tracker must be able to output these hypotheses on a frame-by-frame basis in

a causal fashion

Algorithm 1 Ensemble tracking algorithm
ENSEMBLE-TRACK

1: while audio samples available do

2: for each tracker in ensemble do

3: update each tracker with new frame of samples

4: get new tracker tempo and beat hypotheses and confidences

5: end for

6: cluster hypotheses

7: score clusters

8: choose winning hypothesis

9: output current tempo and beat phase estimates

10: update ensemble’s confidence in each tracker

11: end while

The ensemble performs beat tracking causally on a frame-by-frame basis. As

shown in Figure 6.1 and described in Algorithm 1, a frame of audio samples is pro-

vided to each tracker, which is then responsible for reporting to the ensemble its

53

current tempo hypothesis, confidence in its tempo hypotheses, next predicted beat

location, and confidence in its beat prediction. The provided hypotheses are then

clustered to create a set of discrete tempo and beat location classes so that the

trackers behave as classifiers classifying the input audio data into one of the discrete

classes. A weighted majority vote among members of the ensemble (trackers/clas-

sifiers) is then performed, with weights given to each tracker based on the tracker’s

current confidence in its hypotheses, the ensemble’s current confidence in the tracker’s

hypotheses, and a prior probability which can be assigned to each tracker when the

ensemble is initialized in the event that a particular ensemble member is known in

advance to perform better than others. The hypothesis class winning the weighted

majority vote becomes the current output of the ensemble. The process shown in

Figure 6.1 is repeated for each successive frame of audio data, and after each vote, the

ensemble’s confidence in each tracker’s hypothesis is updated to affect the weighting

of trackers in the next iteration.

Section 6.2 will describe the process of clustering tracker hypotheses into

discrete classes. Section 6.3 will then describe the voting process used to determine

the winning hypothesis. Section 6.4 will describe how the ensemble determines its

confidence in each tracker’s hypotheses, and Section 6.5 will discuss how ensemble

member tracker beat location hypotheses are converted to an ensemble beat phase

output and how this beat phase is used to determine beat locations.

6.2 Clustering Hypotheses

The Beaker ensemble framework is responsible for combining the hypotheses

of all ensemble member trackers to obtain an updated global hypothesis at each point

in time. To accomplish this, Beaker treats the trackers as classifiers, where the input

feature to each classifier is a frame of audio samples, and possible output classes

are defined by discrete [tempo, predicted beat location] pairs. There are many ways

in which these classes could be defined. In one approach, the range of valid tempo

hypotheses could be divided into predefined discrete tempo classes and the range of

possible beat locations could be divided into predefined discrete beat location classes.

54

The set of possible tracker output classes would then be the product of the number of

tempo classes and the number of beat location classes. Each square in the grid shown

in Figure 6.2 could represent such a class, but this predefined grid-based approach

is problematic. To obtain the necessary tempo and beat location output resolution,

a large number of possible classes would be required. For example, we might wish

to have a resolution of 1 beat per minute (BPM) for tempo classes. However, at

the same time, we might want multiple adjacent classes to be treated as one single

class, such as combining tempo classes at 119 BPM, 120 BPM, and 121 BPM into

one class at 120 BPM.

50 60 70 80 90 100 110 120 130 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tempo (BPM)

B
e
a
t
T

im
e
 (

s
e
c
o

n
d

s
)

Figure 6.2: Grid of discrete hypothesis classes

Beaker’s approach instead uses a clustering algorithm to group tempo and

beat location hypotheses into discrete clusters or classes, as illustrated in Figure

6.3. This dynamic approach implicitly provides high resolution output hypotheses

while also allowing a wider range of hypotheses to belong to the same class. Beaker

has several options for clustering hypotheses. Section 6.2.1 describes how tracker

hypotheses can be jointly clustered based on both tempo and beat location. Sec-

tion 6.2.2 describes possible methods for clustering trackers first by tempo, then

55

50 60 70 80 90 100 110 120 130 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tempo (BPM)

B
e
a
t
T

im
e
 (

s
e
c
o
n
d
s
)

Hypotheses

Cluster Centroids

Figure 6.3: Hypothesis clusters

separately by beat location.

6.2.1 Joint Clustering

In the joint clustering approach, pairs of the [tempo, predicted beat location]

estimates from each tracker are clustered to determine groupings of similar hypothe-

ses. In this process, Beaker makes no assumptions about the number of clusters

that will be needed. It uses a clustering algorithm based on that used by Dixon

for tempo clustering [21], with the addition of beat location as a second dimension.

The algorithm is quite simple and is outlined in Algorithm 2. For each tracker, the

algorithm first checks to see if a cluster exists whose tempo and beat hypotheses

are within certain threshold distances of the cluster’s centroid. Because tempo and

beat location are on different scales, different thresholds are used for each dimen-

sion. The tempo threshold is defined as a certain percentage of the cluster’s centroid

tempo, and the beat threshold is defined as a percentage of the cluster’s centroid

tempo period. If both hypotheses are within their threshold distances, the tracker

56

is added to that cluster. Otherwise a new cluster is created for that tracker. If

the tracker’s hypotheses are within the threshold distances for multiple clusters, the

tracker is assigned to the closest cluster. Because tempo and beat location are on

different scales, a simple 2-dimensional Euclidean distance measure is not suitable

for comparing tempo distance vs. beat distance. To place the hypotheses on similar

scales, a scale factor can be specified so that the distance D between two hypotheses

is defined as

D = wt · (t1 − t2)
2 + wb · (b1 − b2)

2 (6.1)

Where [t1, b1] is the first [tempo,beat] hypothesis pair, [t2, b2] is the second pair, and

wt and wb are weights controlling the relative importance of tempo vs. beat location

differences.

Algorithm 2 Joint tracker clustering algorithm
JOINT-CLUSTER

1: while at least one tracker changed clusters and less than max iterations do

2: for each tracker in ensemble do

3: find cluster C with closest centroid tempo and beat location

4: compute tempo and beat radii from centroid tempo and beat of cluster C

5: if tempo and beat are both within radii then

6: assign tracker to cluster C

7: recompute centroid of C

8: else

9: assign tracker to new cluster

10: end if

11: end for

12: end while

6.2.2 Separate Clustering

Each cluster must be assigned a score in order for the ensemble to vote on

the “best” output class. In the joint clustering approach described in Section 6.2.1,

57

clusters must be scored based on both tempo and beat hypotheses simultaneously.

However, better performance can be achieved by scoring the hypotheses separately,

requiring separate clustering of tempo and beat hypothesis. This approach clusters

trackers based on tempo hypothesis, chooses the “best” tempo, and then separately

clusters the beat location hypotheses of the trackers with the winning tempo hy-

pothesis. Because this simplifies the problem into two one-dimensional clustering

problems rather than a two-dimensional problem, it is easier to explore a variety

of clustering approaches this way. In addition, it is not necessary to perform beat

clustering for trackers that are not in the winning tempo cluster, because only beat

locations for trackers in the winning tempo cluster are considered. Beaker uses a

one-dimensional version of the joint clustering approach when clustering beat loca-

tions, and that clustering algorithm is also one of the options for tempo clustering.

Additionally, Beaker provides the option of using a K-means clustering algorithm for

tempo clustering, outlined in Algorithm 3.

Algorithm 3 K-means tracker clustering algorithm
TEMPO-CLUSTER-KMEANS

1: pre-define K, the number of clusters

2: initialize cluster centroids

3: while at least one tracker changed clusters and less than max iterations do

4: for each tracker in ensemble do

5: assign tracker to cluster with closest tempo centroid

6: end for

7: re-compute cluster centroids

8: merge duplicate clusters

9: end while

K-means is a widely-used efficient clustering algorithm. Unlike the clustering

algorithm described in Section 6.2.1, K-means requires the user to specify in advance

a value forK, the number of clusters. When using K-means in a Beaker ensemble, the

value for K is specified as a constant input parameter rather than being dynamically

chosen. An optimal value of K can be determined experimentally given a particular

58

range of allowed tempos. For example, a large range of possible tempos might require

a larger K than a more limited tempo range.

Additionally, a decision must be made about how to initialize the cluster

centroids. Common approaches include randomly choosing K instances as centroids

or uniform initialization over the range of possible values [4]. In a Beaker ensemble,

the K-means initialization approach is specified as an input parameter, and several

variations on uniform initialization are used since we expect to see tempos over a

wide range of possible values. One available option is uniform initialization over the

range of possible tempos. Another specifies an exponential scale, where the distance

between clusters is smaller for smaller tempos, and becomes larger at higher tempos.

The third option is a variation on uniform initialization, where clusters are initialized

based on the tempo centroids chosen in the previous analysis frame.

Another consideration when using K-means is the presence of empty clusters.

One option when encountering an empty cluster is simply to ignore it, effectively

working with fewer than K clusters as a result. Another commonly-used option is

to re-initialize the empty cluster with the tempo furthest from any cluster centroid.

Both of these approaches are provided as options in a Beaker ensemble and the

desired approach can be specified as an input parameter.

Finally, there is also the possibility that the algorithm will produce two clus-

ters with very similar centroids. This scenario is most likely to occur when a tempo

cluster is present half-way between two centroids specified during initialization. To

prevent a true cluster from being split into two separate clusters, a Beaker ensemble

looks for tempo clusters with centroids separated by less than a specified distance.

If such a situation is found, the two clusters are merged into one, leaving the other

cluster empty.

59

6.3 Scoring and Voting

6.3.1 Scoring Trackers

After clustering tracker hypotheses, it is necessary to assign scores to each

cluster. To do this, Beaker first assigns each tracker in the ensemble a tempo score

and a beat score. The tempo score for a tracker, given in Equation 6.2, is the product

of three factors: ft (the tracker’s confidence in its own tempo hypothesis), fe (the

ensemble’s confidence in the tracker’s tempo hypothesis), and a prior confidence

weighting p, which is a constant value assigned to the tracker when the ensemble is

initialized.

tempoScore = ft · fe · p (6.2)

Similarly, the beat score for a tracker, given in Equation 6.3, is also the

product of three factors: gt (the tracker’s confidence in its own beat hypothesis),

ge (the ensemble’s confidence in the tracker’s beat hypothesis), and the same prior

confidence weighting p used to calculate the tracker’s tempo score.

beatScore = gt · ge · p (6.3)

6.3.2 Scoring Clusters - Joint Clustering

In the joint clustering approach, each cluster is assigned a score based on the

sum of the scores of each tracker in that cluster. Let Ti be the set of trackers in the

ith cluster. The score for the ith cluster is then given by summing the scores of all

trackers in the cluster as in Equation 6.4:

clusterScorei =
∑
a∈Ti

(wt · tempoScorea + wb · beatScorea) (6.4)

where tempoScorea is the tempo score of tracker a, beatScorea is the beat score of

tracker a, and wt and wb are weights to control the relative importance of tempo and

beat scores.

60

6.3.3 Scoring Clusters - Separate Clustering

Scoring Tempo Clusters

When clustering tempo and beat hypotheses separately, each tempo cluster

is assigned a score based on the sum of the tempo confidences of each tracker in that

cluster. Let Ti be the set of trackers in the ith tempo cluster. The score for the tempo

cluster is then given by summing the tempo scores of all trackers in the cluster as in

Equation 6.5:

clusterTempoScorei =
∑
a∈Ti

tempoScorea (6.5)

Tempo cluster scores are then weighted to emphasize tempos that occur in

integer relationships to other tempo clusters. The presence of tempos in integer

relationships to one another is an indicator of metrical structure so applying this

weighting will emphasize tempo clusters that have metrical relationships to other

tempo clusters. Candidate tempos with little or no relationship to other tempo

clusters are less likely to be the correct tempo. Accordingly, they will receive less

weight under this scheme. The weighting f(d) given in Equation 6.6 is based on that

used by Dixon to initialize his beat tracking system from tempo clusters [21], where

d is a scalar multiplier of the candidate tempos meant to emphasize more common

metrical relationships (i.e. ratios of 1, 2, 3, or 4 between metrical levels) over less

common relationships (i.e. ratios of 5, 6, 7, or 8).

f(d) =

6− d if 1 ≤ d ≤ 4

1 if 5 ≤ d ≤ 8

0 otherwise

(6.6)

Given the ith tempo cluster centroid ti and jth tempo cluster centroid tj, with

1 ≤ d ≤ 8, if (ti − d · tj) is within a small threshold then the score of cluster i

is increased by clusterTempoScorej · f(d) and the score of cluster j is increased by

clusterTempoScorei · f(d)
Extending Dixon’s scheme, Beaker additionally has an option to weight the

two tempos in the integer relationship differently by specifying a weight w. In this

61

case, the the score of cluster j is increased by w · clusterTempoScorei · f(d). A value

of w > 1 gives greater weight to the cluster with the smaller tempo, and vice-versa.

Scoring Beat Clusters

Each beat cluster is assigned a score based on the sum of the beat confidences

of each tracker in that cluster. Let Ti be the set of trackers in the ith beat cluster.

The score for the beat cluster is then given by summing the beat scores of all trackers

in the cluster as in Equation 6.7:

clusterBeatScorei =
∑
a∈Ti

beatScorea (6.7)

6.3.4 Voting

In all approaches, the tempo, beat, or joint cluster with the maximum score is

chosen as representative of the current winning hypothesis. This is equivalent to the

weighted majority vote approach to combining the output of an ensemble of classifiers

[59], where the weight given to each tracker/classifier is its score. Once winning a

winning joint cluster or winning tempo and beat clusters have been chosen, Beaker

has the option of computing the actual winning tempo and beat hypotheses in one

of two ways. When using joint clustering, the first approach uses the tempo and

beat centroids of the winning cluster as the winning hypotheses. Similarly, using

separate clustering, that approach uses the centroid of the winning tempo cluster

as the winning tempo and the centroid of the winning beat cluster as the winning

beat location. The second approach uses the tempo and/or beat hypotheses of the

highest-scoring tracker in the winning cluster(s). The latter approach is similar to

that used by Goto [32] when combining the hypotheses of multiple agents based on

the agents’ reliability scores.

The winning beat hypothesis is given in terms of the next predicted beat time

during the clustering, scoring, and voting process. Section 6.5 will discuss how this

beat hypothesis is converted into the beat phase output from the ensemble and used

to determine beat locations.

62

6.4 Updating Confidences

After Beaker has produced an updated hypothesis, it must update its level

of confidence in each tracker based on that tracker’s current performance in the

ensemble.

6.4.1 Winners and Losers

Trackers with the winning hypothesis are given greater weight than those in

losing clusters. This is done by reducing the confidence of losing trackers based

on how their tempo cluster scored compared with the winning tempo cluster. The

confidence-from-winning (fw) for a tracker is given by:

fw =
clusterScorec
clusterScorew

(6.8)

where c is the index of the tracker’s tempo cluster and w is the index of the winning

tempo cluster. When separate tempo and beat clustering is used, the cluster score

used in this computation is the score of the tracker’s tempo cluster. Because only

trackers from the winning tempo cluster are clustered by beat, a beat cluster score

is not available for all trackers. Therefore, the factor fw is used to update both the

tempo and beat confidences even when only based on tempo scores. Future work

will separately consider tracker beat cluster scores when determining how much to

penalize the beat confidence of losing trackers.

6.4.2 Tempo Continuity

The confidence factor ft for a particular tracker is based on the difference

between the tracker’s tempo estimate tempotracker and the ensemble’s current winning

estimate tempowinning, scaled by the current winning tempo.

ft = 1.0− |tempotracker − tempowinning|
tempowinning

(6.9)

This gives the ensemble higher confidence in trackers whose tempo estimates agree

with the ensemble’s output.

63

6.4.3 Beat Continuity

The confidence factor fb for a tracker is based on the continuity of the tracker’s

next predicted beat beattracker with the ensemble’s last recorded beat beatwinning,

similar to how Goto and Muraoka evaluated the reliability of their agents [32] based

on agreement with previously predicted beat times.

Equation 6.10 describes the difference between the two beat locations, which

are wrapped into a range of [− τ
2
, τ
2
] by subtracting the ensemble’s current winning

tempo period τ from the difference c times. For example, if a tracker’s tempo estimate

was half the current winning tempo, it would have twice the winning tempo period.

Therefore, if that tracker was in phase with the ensemble’s last recorded beat time,

the tracker’s next predicted beat location would be beatwinning + 2τ , resulting in a

value of c = 2.

diff = |beattracker − beatwinning| − c · τ (6.10)

The beat continuity confidence factor is then computed as shown in equation

6.11, where maxDiff = τ
2
.

fb =
maxDiff − diff

maxDiff
(6.11)

6.4.4 Combining Confidences

These continuity and winner-based confidence metrics are combined to pro-

duce tempo and beat confidences for each tracker in the ensemble. Equations 6.12

and 6.13 are used to compute the ensemble’s confidence in a particular tracker’s

tempo estimate (fe) and confidence in the tracker’s beat estimates (ge) at time n:

fe[n] = h · fe[n− 1] + (1.0− h) · (ww · fw + wc · ft) (6.12)

ge[n] = h · ge[n− 1] + (1.0− h) · (ww · fw + wc · fb) (6.13)

where ww and wc are weights controlling the relative importance of winning vs.

continuity, and h is a confidence history factor which specifies the level of continuity

64

enforced between the ensemble’s confidence in a given tracker over time. These values

are used to determine the next tempo and beat score for that tracker as described

in Section 6.3.1.

6.5 Beat Phase and Detecting Beat Locations

In a causal beat tracking system designed for real-time use, it is often more

practical to have continuous beat phase estimates rather than discrete beat locations

as ensemble output. For example, in the case of a foot-tapping robot application,

what is displayed to the user is the beat phase in terms of the current tempo. The

foot should be down on a beat, up on the off-beat, and between those positions in

between beats and offbeats. Because of this, Beaker ensembles by default provide

updated beat phase hypotheses along with tempo estimates. The current winning

beat phase is determined from the winning beat cluster time based on the current

tempo period, where the beat phase has a range of [0.0, 1.0], where a beat phase of

0.0 means that a beat is occurring in the current frame, a beat phase of 0.5 means

that a beat is predicted to occur half a tempo period in the future, and a beat phase

of 1.0 means that a beat is predicted to occur one tempo period in the future.

However, there is no guarantee that this phase will advance smoothly in the

event that different tempos or beat locations are chosen as winners from frame to

frame. To increase continuity in beat phase estimates, a dampening function is

applied to new beat phase estimates. A predicted beat phase is computed from the

previous beat phase estimate using the current tempo period, and the updated beat

phase is computed by interpolating between the winning beat phase and the predicted

beat phase. This prevents large unwanted phase discontinuities and essentially causes

the ensemble to behave as if it has an internal beat oscillator being perturbed by

updated ensemble beat phase estimates. This concept relates to the work of Large

and Kolen, who used oscillators to model beat perception [50][49].

When the updated beat phase exceeds 1.0, it is wrapped back into the range

of [0.0, 1.0], and the ensemble then knows that a beat has occurred in the current

frame. A precise beat location is then derived from the beat phase by comparing the

65

current and previous beat phase estimates to determine at what time the beat phase

hit the 1.0 mark. Actual beat locations are not output in real-time by default but

can be saved internally for later query or for writing to a text file when evaluating

the system so that recorded beat locations can be compared with annotated datasets

as will be described in Chapter 8.

6.6 Conclusion

This chapter introduced the Beaker framework for causal beat tracking us-

ing ensembles of beat trackers. Criteria were presented for tracker membership in

a Beaker ensemble, and Beaker’s approach to combining tracker hypotheses and

evaluating their reliability was discussed. The following chapter will describe the

TestTrackers used as members of an ensemble during development of this frame-

work.

Chapter 7

Ensemble Test Trackers

7.1 Introduction

��������

�	���
���

�����������

���������

������

���������

�������

������
��

��������������
�

�������������������
�

���������

�������������

Figure 7.1: Diagram of TestTracker operation

TestTrackers are simple yet flexible real-time causal beat trackers. An ensem-

ble of TestTrackers was used to develop the Beaker ensemble framework described

in Chapter 6. As shown in Figure 7.1 and Algorithm 4, each TestTracker first ex-

tracts features from its input audio. Available features will be discussed in Section

7.2. A periodicity function is computed from the extracted features, and the current

tempo is estimated from the periodicity function. TestTrackers can use one of several

methods discussed in Section 7.3 to compute the periodicity function. The tempo

estimate is then used to determine the optimal beat phase as discussed in Section

7.4. Once a TestTracker’s tempo and beat phase hypotheses have been updated,

its confidence level is updated and its hypotheses are given to the ensemble to be

combined with those of other trackers. The computation of TestTracker tempo and

beat confidences will be discussed in Section 7.5.

66

67

Algorithm 4 TestTracker tracking algorithm
TEST-TRACKER-TRACK

1: compute feature from frame of input samples

2: compute periodicity function from feature

3: estimate tempo from periodicity function

4: estimate beat phase

5: update tempo confidence

6: update beat confidence

7: output tempo and beat hypotheses and confidences

7.2 Feature Extraction

Onset detection functions (ODFs), introduced in Chapter 2 and described in

detail by Bello et al. [7] and by Dixon [22], are commonly used as input features to

tempo estimation and beat tracking systems. As previously discussed, not all onsets

occur on beats, and not all beats have an onset occurring on them, but in most

music, onsets will occur at points on a metrical grid defined by the time signature

of the music. Therefore, by analyzing likely onset locations and observing periodic

behavior, we can attempt to discern the tempo and metrical structure of a piece of

music and likely locations of beats.

Only ODFs are currently available as input features for the TestTrackers

described in this chapter. The nine ODFs used are listed in Table 7.1 and described

in the following sections. However, other features, especially ones that might be more

indicative of harmonic or chord changes may in some cases be more meaningful than

an onset detection function, and such features are planned for future work. When

initialized, each TestTracker is assigned one of the 9 available features to use, and

this assignment is constant for the life of the TestTracker.

To describe the various ODFs available to TestTrackers, I will use the following

notation: Let x[n] be the nth sample of an input audio stream x. The short-time

68

Table 7.1: Available features

Label Feature Name

F0 L1 Magnitude

F1 L1 Magnitude Rectified

F2 L2 Magnitude

F3 L2 Magnitude Rectified

F4 L1 High Frequency Content

F5 L2 High Frequency Content

F6 Complex Domain

F7 L1 Phase Deviation

F8 L2 Phase Deviation

Fourier transform (STFT) X[n, k] of x is then given as

X[n, k] =

N
2
−1∑

m=−N
2

x[hn+m]w[m]e−
2iπmk

N (7.1)

where N is the frame size, h is the hop size, and w[m] is a time-domain windowing

function. The magnitude of X[n, k] is given by |X[n, k]| and the phase by ϕ[n, k].

In addition, I will use the half-wave rectifier function H(x), given by

H(x) =
x+ |x|

2
(7.2)

Each TestTracker can be assigned a frequency range over which it will compute

its feature. This allows experimentation with sub-band features as introduced in

Section 2.2.4. The lowest bin for each TestTracker will be defined as K1 and the

highest as K2, where 0 ≤ K1 < K2 < N .

7.2.1 Magnitude-Based ODFs

TestTrackers can use one of four magnitude-based onset detection functions

as their input feature. Each computes the bin-by-bin difference between magnitude

spectra of adjacent input audio frames and then sums across the bin magnitudes or

69

magnitudes squared to get a single value representing the likelihood of an onset in

the current frame. Feature F0 “L1 Magnitude” uses the sum of the magnitude bin

differences. Feature F1 “L1 Magnitude Rectified” does the same but then half-wave

rectifies the result to emphasize onsets rather than ends of notes. Feature F2 “L2

Magnitude” is similar to Feature F0 but sums the squares of the differences between

bin magnitudes. Feature F3 “L2 Magnitude Rectified” is the half-wave rectified

version of Feature F2.

F0[n] =

K2∑
k=K1

∣∣ |X[n, k]| − |X[n− 1, k]|
∣∣ (7.3)

F1[n] =

K2∑
k=K1

H (|X[n, k]| − |X[n− 1, k]|) (7.4)

F2[n] =

K2∑
k=K1

(|X[n, k]| − |X[n− 1, k]|)2 (7.5)

F3[n] =

K2∑
k=K1

(H (|X[n, k]| − |X[n− 1, k]|))2 (7.6)

7.2.2 High Frequency Content ODFs

High-frequency content ODFs are also based on frame-by-frame differences

in the magnitude spectrum. However, they weight each bin’s difference by the bin

index, thereby giving greater weight to higher-frequency bins. Feature F4 “L1 High

Frequency Content” uses the sum of weighted magnitude bin differences, while Fea-

ture F5 “L2 High Frequency Content” uses the sum of the squares of the weighted

magnitude bin differences.

F4[n] =
1

K2 −K1 + 1

K2∑
k=K1

k|X[n, k]| (7.7)

F5[n] =
1

K2 −K1 + 1

K2∑
k=K1

k|X[n, k]|2 (7.8)

70

7.2.3 Complex Domain ODF

Feature F6 “Complex Domain ODF” incorporates phase information as well

as magnitude information by comparing bins of adjacent spectra in the complex

domain. The two previous frames’ magnitude and phase values are used to predict

the current magnitude and phase for a steady-state signal, with the assumption that

magnitude stays constant and phase advances linearly. The deviation of the actual

magnitude and phase from the predicted values is then indicative of non-steady-state

behavior, including onsets.

The predicted value of X[n, k], notated as XP , is given by:

XP [n, k] = |X[n− 1, k]| eϕ[n−1,k]+ϕ′[n−1,k] (7.9)

where ϕ[n, k] is the phase of X[n, k] and ϕ′[n, k] is the phase advance from

frame n− 1 to frame n, wrapped to the range (−π, π]:

ϕ′[n, k] = ϕ[n, k]− ϕ[n− 1, k] (7.10)

The complex domain ODF is then defined as

F6[n] =

K2∑
k=K1

|X[n, k]−XP [n, k]| (7.11)

7.2.4 Phase-Based ODFs

Phase-based ODFs use only phase information and not the bin magnitudes.

Similar to the complex domain ODF, the expected phase advance for each bin is

computed and compared with the observed phase advance. Phase-based ODFs are

then given by the sum of the differences between expected and observed phases.

Feature F7 “L1 Phase Deviation” sums the differences between observed and expected

phase advances, while Feature F8 “L2 Phase Deviation” sums the squares of the

differences.

We define ϕ′′[n, k] as the change in the phase advance ϕ′[n, k]:

ϕ′′[n, k] = ϕ′[n, k]− ϕ′[n− 1, k] (7.12)

71

wrapped into the range (−π, π]. Then the phase-based ODFs are defined as:

F7[n] =
1

(K2 −K1 + 1)

K2∑
k=K1

|ϕ′′[n, k]| (7.13)

F8[n] =
1

(K2 −K1 + 1)

K2∑
k=K1

|ϕ′′[n, k]|2 (7.14)

7.3 Tempo Estimation

In order to estimate the current tempo, each TestTracker looks for periodic

behavior in its extracted feature. Possible periodicity estimation methods in Beaker

currently include a bank of comb filters tuned to candidate tempo periods [46],

discrete Fourier transform (DFT) [57], and autocorrelation function (ACF) [27][54],

all of which generate a periodicity function from the input feature, some in terms

of tempo (DFT) and others in terms of tempo period (ACF, comb filter bank). A

list of the available approaches is given in Table 7.2. The time range over which the

periodicity function is computed is a parameter to each TestTracker, allowing varying

reaction times to tempo changes. TestTrackers are also assigned a range of tempo

periods τ1 ≤ τ ≤ τ2 from which they will select the maximum of the periodicity

function as their current tempo hypothesis. By assigning different tempo ranges,

TestTrackers are encouraged to track at different metrical levels, an approach which

generates a greater variety of tempo hypotheses and creates a more diverse ensemble.

Each of the periodicity estimation approaches described below produces a periodicity

function P [τ, n] at candidate tempo periods τ and time n. The TestTracker’s tempo

estimate in beats per minute (BPM) for time n is obtained from the maximum of

the periodicity function:

tempo =
60 · fs

max
τ1≤τ≤τ2

P [n, τ]
(7.15)

where fs is the sampling rate of the input feature. Additionally, it is possible to set

parameters such that additional TestTrackers will output not the maximum but the

second or third etc. highest peak in the periodicity function. This also creates a

larger number of hypotheses within a Beaker ensemble.

72

Table 7.2: Available periodicity approaches

Label Periodicity Approach

P0 Biased Autocorrelation

P1 Unbiased Autocorrelation

P2 DFT

P3 Comb Filter Bank

7.3.1 Comb Filters

The use of banks of comb filters for tempo estimation was discussed in Section

3.3. Beaker TestTrackers using comb filters use the approach of Klapuri et al. [46].

A comb filter is created for each candidate tempo period in the TestTracker’s valid

tempo range. The delay τ of the comb filter is defined by the tempo period the filter

is intended to observe. The output y[τ, n] of a comb filter with delay τ at time n is

given by Equation 7.16, where F [n] is the value of the TestTracker’s input feature

at time n.

y[τ, n] = ατy[τ, n− τ] + (1− ατ)F [n] (7.16)

As in [46], the feedback gain ατ , defined in Equation 7.17, uses a half-time T0 of 3.0

seconds.

ατ = 0.5
τ
T0 (7.17)

The instantaneous energy ŷ of each comb filter at time n is then given by Equation

7.18.

ŷ[τ, n] =
1

τ

n∑
i=n−τ+1

y[τ, n]2 (7.18)

The overall power γτ of a comb filter with delay τ is computed as in Equation

7.19 and used to normalize the instantaneous energy using Equation 7.20 to give the

value of the periodicity function P3[τ, n] at tempo period τ and time n.

γτ =
(1− ατ)

2

1− α2
τ

(7.19)

73

P3[n, τ] =
1

1− γτ

(
ŷ[τ, n]

v[n]
− γτ

)
(7.20)

Finally, the function v[n] given by Equation 7.21 gives the energy of the

feature F [n]:

v[n] = α1v[n− 1] + (1− α1)F [n] (7.21)

This normalization compensates for the skew seen in earlier comb filter-based peri-

odicity estimation approaches such as that by Scheirer [63], where energy increased

as τ increased.

7.3.2 Autocorrelation

Like the comb filter approach to periodicity estimation, autocorrelation pro-

duces a periodicity function indexed by tempo period τ , where the tempo period is

varied as the autocorrelation lag. The use of autocorrelation for tempo estimation

was discussed in Section 3.2. There are many ways of computing the autocorrela-

tion of a finite-length sequence, and TestTrackers have the option of two different

approaches. The first is approach P0, the biased ACF, defined in Equation 7.22:

P0[τ] =
1

N

N−τ−1∑
n=0

x[n]x[n+ τ] (7.22)

The second is approach P1, the unbiased ACF, defined in Equation 7.23:

P1[τ] =
1

N − τ

N−τ−1∑
n=0

x[n]x[n+ τ] (7.23)

The unbiased ACF attempts to compensate for the fact that in the biased ACF, as τ

increases the number of points in the sum decreases, giving extra weight to smaller

tempo periods.

7.3.3 Discrete Fourier Transform

The use of the DFT for tempo estimation was discussed in Section 3.2. Un-

like the comb filter and autocorrelation approaches, the DFT produces a periodicity

function indexed by tempo rather than tempo period. TestTrackers using the DFT

74

for periodicity estimation use an 8192-sample window, as Peeters did when perform-

ing his combined ACF+DFT approach [57]. A Hann windowing function is used,

and the number of samples in an analysis frame is padded with zeros if necessary to

reach this size of window.

7.4 Beat Phase Estimation

Once a TestTracker has obtained a tempo estimate, it determines the most

likely phase alignment of beats that fits the chosen tempo by correlating a simulated

beat sequence with its input feature F [n]. Similar approaches to determining beat

phase have previously been used by others including Goto and Muraoka [34] and

Bock and Schedl [9]. The beat sequence offset producing the maximum correlation

is chosen as the most likely alignment. An estimated beat phase is then reported

in the range [0.0, 1.0], where 0.0 means that a beat is occurring at the current time,

and 1.0 represents one tempo period in the future.

When using the comb filter and ACF approaches to tempo estimation, a Test-

Tracker’s tempo period is an integer value, and generating a simulated beat sequence

with the given tempo period is straightforward using single-sample impulses. How-

ever, when using the DFT approach, the tempo period is the inverse of an integer

value. Therefore, creating a simulated beat sequence at the correct tempo is not

as simple, as simulated beats may lie between samples. To handle this situation,

Beaker TestTrackers have several options for determining the optimal beat phase

given a particular tempo. Instead of using single-sample impulses, TestTrackers may

choose to generate simulated beat sequences using rectangular, triangular, or Gaus-

sian pulses centered at beat locations. The choices of pulse shape and width are

parameters of a TestTracker instance. In the case of triangular and Gaussian pulses,

more weight is implicitly given to the integer sample closest to the non-integer beat.

However, in all cases, only integer numbers of frames are considered as possible phase

offsets when determining optimal phase alignment. This means that the accuracy of

the beat phase estimation is limited by the choice of feature sampling rate.

75

7.5 TestTracker Confidence

Each TestTracker is responsible for reporting its level of confidence in its

tempo and beat phase hypotheses to the ensemble. This allows the ensemble to

give greater weight to more confident trackers when combining tracker results. All

confidence values are normalized to be in the range [0.0, 1.0].

7.5.1 Tempo Confidence

TestTracker tempo confidence at a particular time n is a combination of two

factors. As discussed in Section 4.3.5, Degara et al. used a measure of the periodic

nature of their ODF when determining the reliability of their tracker [19]. Along

these same lines, the first factor in TestTracker tempo confidence f1 is a measure of

the “peakiness” of the periodicity function. Peakiness is defined in Equation 7.24

and is based on the relationship between the value of the periodicity function at the

chosen tempo period τn and the mean µ of the periodicity function P :

f1[n] =
P (τn)− µ

P (τn)
(7.24)

The mean of the periodicity function for the nth frame is given by Equation 7.25:

µ =

1
T

∑T
τ=1 P (τ) if µ ≥ 0.0

0.0 otherwise
(7.25)

where T is the number of possible tempo periods in the periodicity function.

The second factor f2, defined in Equation 7.26, is based on continuity with pre-

vious tempo estimates made by the same TestTracker, where tn is the TestTracker’s

tempo estimate at time n:

f2[n] =

1.0− |tn−tn−1|
tn−1

, if |tn − tn−1| < tn−1

0.0, otherwise
(7.26)

At the nth frame, the TestTracker’s new tempo confidence, f [n] in Equation

7.27 is given by a weighted sum of factors f1[n] and f2[n] with weights w1 and w2,

76

normalized by the sum of the weights to keep the confidence in the range [0.0, 1.0]:

f [n] =
w1 · f1[n] + w2 · f2[n]

w1 + w2

(7.27)

Finally, the updated confidence for each TestTracker tempoConf[n] is obtained

by interpolating between the tracker’s previous confidence and new confidence based

on a confidence history factor parameter wh to provide some continuity in Test-

Tracker confidence levels over time:

tempoConf[n] = wh · tempoConf[n− 1] + (1.0− wh) · f [n] (7.28)

7.5.2 Beat Confidence

The beat confidence value is based on the quality of the correlation between

the input feature and estimated beat sequence described in Section 7.4 given the

chosen beat phase. In this way, ambiguous beat phase estimates will result in reduced

beat confidence.

7.6 Conclusion

This chapter has introduced the simple real-time causal TestTracker beat

trackers that were used to develop and test the Beaker ensemble beat tracking frame-

work. Various options for creating diverse ensembles of TestTrackers including dif-

ferent input features, approaches to periodicity estimation, and tempo ranges were

discussed, and the methods for determining a TestTracker’s confidence in its tempo

and beat hypotheses were described.

Part IV

Evaluation and Results

77

Chapter 8

Evaluation Methodology

8.1 Introduction

This chapter will discuss datasets and methods for evaluating the performance

of beat tracking systems. Some beat tracking datasets contain full songs, while others

contain song excerpts or combinations of full songs and excerpts. For simplicity,

throughout this dissertation the word song will be used to describe a member of a

dataset, whether it is a full song or only an excerpt. All of the methods described

in this chapter are used to evaluate the performance of a system after an entire song

has been processed and do not take into consideration whether a system processed

the excerpt in question using a causal or non-causal approach.

There are many challenges when evaluating beat tracking systems, particu-

larly since the goal of a beat tracking system is to determine the locations of perceived

beats - the places where a human might tap his or her foot in time to music. The

most obvious challenges arise from the fact that in the many cases humans themselves

cannot agree on one definitive ground-truth tempo or sequence of beat locations. Hu-

man listeners might tap their feet at different metrical levels (i.e. twice or half as

fast), and some might tap on the off-beat (out of phase). The term octave error is

commonly used to describe beat tracking errors that occur due to tracking at the

wrong metrical level.

Different evaluation metrics, and even different datasets, take these errors into

78

79

account in different ways. Starting in 2006, the beat tracking task from the Music

Information Retrieval Evaluation eXchange (MIREX) attempted to address the issue

of metric level ambiguity by obtaining annotations by multiple listeners and scoring

beat tracking systems based on how well their beat locations matched the various

annotations [53]. However, obtaining annotations from a large pool of listeners is not

practical for many researchers, so most beat tracking datasets still consist of a single

set of ground-truth annotated beats for each song or song excerpt. Some evaluation

methods attempt to compensate for the single set of annotations by computing beat

tracking errors at integer multiples or subdivisions of the annotated tempo [14], but

this approach cannot take into consideration the likelihood of a listener agreeing with

annotations at each possible metric level.

Another challenge in beat tracking evaluation is the availability of shared

datasets. There are often legal (copyright) issues involved with publicly sharing

audio files, and this can make it difficult to obtain both audio files and annotations

for datasets used by other researchers.

8.2 Datasets

8.2.1 Beatles

The majority of the evaluation of the Beaker beat tracking system was done

using the Beatles dataset. This is a dataset consisting of twelve Beatles albums

annotated by Davies, Degara, and Plumbley [14]. The Beatles were chosen because

of the large number of songs available and the variety of tempos and musical styles

represented.

Text files containing a single set of ground-truth annotated beat locations are

publicly available along with a list of the versions of each Beatles album used to

generate the annotations. Users of the dataset are responsible for obtaining their

own copies of the appropriate album versions. While this approach was intended to

work around the need for sharing copyrighted material, the dataset is not as easy to

obtain as the annotators intended, since some album versions were released in the

80

United Kingdom (where the annotators obtained their copies) differently from in the

United States, and these UK versions are not as easy to acquire in other countries.

Despite this obstacle, I was able to obtain the correct versions of all twelve albums

and complete the dataset.

8.2.2 MIREX 2006

Like most other beat-tracking datasets, the Beatles dataset provides a single

sequence of annotated beat locations for each song. However, this fails to take

into consideration the different behavior of human listeners and assumes that they

would all tap their feet in the same locations. To address this dilemma, McKinney

and Moelants recorded human tapping behavior for a collection of 160 constant-

tempo song excerpts that have been used in the MIREX audio tempo estimation and

audio beat tracking tasks since 2006 [52][53]. In this dataset, 40 separate annotation

sequences for each excerpt were generated by different human listeners. Differences

in human behavior are therefore captured in the distribution of annotations. While

a subset of this dataset consisting of 20 annotated training excerpts has been made

publicly available, the complete dataset is reserved for use in MIREX. The relatively

small size of the available training dataset, along with the constraint of constant

tempo excerpts makes this dataset less suitable for evaluating Beaker than the Beatles

dataset.

8.2.3 SMC MIREX

The SMC MIREX dataset was added to the MIREX audio beat tracking

evaluation beginning in 2012. This dataset consists of 217 song excerpts chosen by

Holzapfel et al. using a selective sampling approach [42] to choose excerpts which

were particularly challenging for existing beat tracking systems due to characteristics

such as expressive performances, tempo or meter changes, or lack of clear onsets. In

addition to its use as part of MIREX, this dataset has been made publicly available.

It is used in some evaluation of the Beaker beat tracking system along with the

Beatles dataset.

81

8.3 Beat Tracking Evaluation Metrics

This section provides an overview of the beat tracking evaluation methods

used in this dissertation. The majority of methods act on a per-song basis within a

dataset, with scores averaged across all songs to obtain a single score for the dataset.

The notation used to describe each metric is taken from Davies, Degara, and

Plumbley [14]: γ is a sequence of B beats generated by beat tracking algorithm

being evaluated and γb is the time of the bth beat, while a is the sequence of J

ground truth annotations, and aj is the time of the jth beat. The inter-beat interval

(IBI) is ∆b = γb − γb−1, while the inter-annotation interval (IAI) is ∆j = aj − aj−1.

8.3.1 F-measure

F-measure is an evaluation metric commonly used with binary classifiers. In

the case of beat tracking, as described in [14], we define the binary match or non-

match of an annotated beat aj to an estimated beat γb using a fixed tolerance window

of 70 milliseconds in the indicator function I[j, b] given in equation 8.1.

I[j, b] =

1, if |aj − γb| < 70 ms

0, otherwise
(8.1)

The match I[j] of an annotated beat aj to any estimated beat is given by

equation 8.2.

I[j] =

1, if |aj − γb| < 70 ms for any 1 < b ≤ B

0, otherwise
(8.2)

The match of an estimated beat γb to any annotated beat is given by equation

8.3.

I[b] =

1, if |aj − γb| < 70 ms for any 1 < j ≤ J

0, otherwise
(8.3)

Three quantities are computed for each excerpt. The first is the number of

true positives (TP) given by equation 8.4, which is the number of matches between

82

ground truth annotated beats a and estimates γ. The second is the number of false

positives (FP) given by equation 8.5, which is the number of unmatched estimated

beats, and the third is the number of false negatives (FN) given by equation 8.6,

which is the number of unmatched annotated beats.

TP =
J∑

j=1

B∑
b=1

I[j, b] (8.4)

FP = B −
B∑
b=1

I[b] (8.5)

FN = J −
J∑

j=1

I[j] (8.6)

The common statistical measures of precision p and recall r are computed

from these quantities as shown in equations 8.7 and 8.8.

p =
TP

TP + FP
(8.7)

r =
TP

TP + FN
(8.8)

In this work, as in [14], the traditional definition of F-measure as the harmonic

mean of precision and recall is used as in Equation 8.9, although Dixon [21] used a

variation of F-measure, shown in Equation 8.10.

Fmeasure =
2pr

p+ r
=

2TP

2TP + FP + FN
× 100% (8.9)

Fmeasure =
TP

TP + FP + FN
× 100% (8.10)

One criticism of F-measure is the fact that it does not take into account true

negatives. Also, tracking on the off-beat is heavily penalized, giving a score close

to zero, because none of the estimated beats will fall into the the windows around

annotations unless the tempo is very fast or the windows very wide.

83

8.3.2 Cemgil Accuracy Measure

F-measure uses a square window to determine matches between annotated and

estimated beats. All matches within that window are given equal weight. However,

depending on the precision of the annotations, it may be more informative to give

greater weight to the estimated beats which more closely match annotations. To

do this, Cemgil et al. use Gaussian windows to evaluate the performance of their

tempo tracker [12]. In the Cemacc evaluation metric, the list of annotated beats aj

is compared to the list of estimated beats γb. For each aj, the closest γb is found.

A Gaussian window is centered at the annotated beat time and used to weight the

score of that match, so that estimated beats lying exactly on the annotated beat

times give the greatest score. Match scores are summed across all annotated beats

and normalized by the number of annotations J and estimated beats B as shown

in Equation 8.11, where W is the Gaussian window defined by Equation 8.12 and

σe = 0.04 seconds. The results can be interpreted as the percentage of experimental

beats that lie within the window of annotated beats.

Cemacc =

∑
j maxb W (aj − γb)

(J +B)/2
× 100 (8.11)

W (aj − γb) = exp

(
−(aj − γb)

2

2σ2
e

)
(8.12)

Like F-measure, Cemacc gives a score of almost zero for tracking on the off-

beat, because the Gaussian windows are centered at annotated beats and will be close

to zero at the location of an off-beat. In general, estimated sequences tracking at

the correct tempo but with the wrong beat phase will be penalized based on how far

out of phase they are, with the greatest penalty given to off-beat tracking. Unlike

F-measure, which considers false positives, Cemacc ignores extra estimated beats,

because only the estimated beat closest to each annotation is considered. However,

the inclusion of the number of estimated beats B in the denominator of Equation 8.11

means that tracking at multiples of the correct tempo will still incur some penalty.

Missing estimated beats (false negatives) are similarly penalized due to the presence

of the number of annotated beats J in the denominator in addition to being given a

84

zero score.

8.3.3 P-score

P-score is a beat tracking evaluation metric used in MIREX since 2006 and

based on the cross-correlation of beat sequences [53]. An impulse train Ta is generated

with pulses at each annotated beat location aj as in Equation 8.13, quantized to a

sampling rate of 100Hz. Similarly, an impulse train Tγ is generated from estimated

beats γb as in Equation 8.14. Beat times in the first 5 seconds of an excerpt are

ignored in both sequences. The two impulse trains are then cross-correlated as in

Equation 8.16, using an error window W defined as 20% of the median IAI across all

annotations in a dataset. The normalization factor NP is defined in Equation 8.15 as

the number of annotations or the number of estimated beats, whichever is greater.

The resulting P-score is in the range 0.0 ≤ P ≤ 1.0 but in this work, as in [14], it is

multiplied by 100% to be consistent with other measures.

Ta(n) =

1, if n = aj

0, otherwise
(8.13)

Tγ(n) =

1, if n = γb

0, otherwise
(8.14)

NP = max(J,B) (8.15)

Pscore =
1

NP

W∑
m=−W

N∑
n=1

Tγ[n] · Ta[n−m] (8.16)

P-score does not attempt to take into account tracking at different metrical

levels or on the off-beat. It was developed for use with the MIREX 2006 dataset

described in Section 8.2.2, which contains annotations for each excerpt by 40 human

annotators. In that scenario, the P-score was averaged across all annotators, and

metrical ambiguity or off-beat tapping were considered implicitly by the fact that

different human annotators might tap in different ways. However, this is a weakness

85

of P-score as an evaluation metric when used with other datasets consisting of a

single set of annotations.

Goto Accuracy Measure

Goto and Muraoka introduced a continuity-based beat tracking accuracy mea-

sure [33]. Annotated and estimated beats are paired using a criteria where estimated

beat γb is paired with annotation aj if γb is the closest γb within a window of half

the IAI ∆j.

A normalized difference Pj, defined in Equation 8.17 is computed for each

pair containing annotated beat aj and estimated beat γb. The normalization factor

ij is defined in Equation 8.18 as half of the local IAI. A pair is considered a match

if Pn < 0.35.

Pj =

|γb−aj |

ij
, if aj is paired

1, if aj is unpaired
(8.17)

where

ij =

∆j+1/2, if γb ≥ aj

∆j/2, if γb < aj

(8.18)

After pairing, the mean µ, standard deviation σ, and max M of Pn are com-

puted, and the longest correctly-tracked sub-sequence in a sequence is identified. A

sub-sequence is correctly-tracked if each annotation has a matching estimated beat

according to Pn and no estimated beats in that sub-sequence are unpaired.

Goto and Muraoka obtain a binary answer for each sequence (either correct

or not), as they are interested in whether or not their beat tracker converges to the

correct tempo and beat phase over time and also in tracking accuracy as defined by

µ, σ, M . Their test material consists of 60-second constant-tempo song excerpts,

and a sequence is considered correct only if a correctly-tracked sub-sequence starts

before 45 seconds into the 60 second excerpt and continues through the end of the

excerpt. To be considered correct, each sequence must have µ < 0.2, σ < 0.2, and

M < 0.35.

86

Davies et al. modify Goto and Muraoka’s accuracy measure to account for

not having 60-second constant-tempo songs, since they are not testing convergence to

a single correct tempo [14] but rather overall performance. In the Gotoacc accuracy

measure, they look for any correctly-tracked period over 25% of the song, which will

give a score of 100%. If no correctly-tracked period is found, the song receives a

score of 0%. Goto and Muraoka compute scores for three metrical levels: eighth

note, quarter note, and half note and also check for off-beat tracking at the quarter

note and half note levels. However, with Gotoacc, no provision is made for tracking

at different metrical levels or on the off-beat, heavily penalizing trackers that give

those results even though the modifications of Davies et al. mean that missing one

beat towards the end of the song does not result in a score of 0% as it would with

Goto and Muraoka’s original approach.

8.3.4 Continuity-Based Methods

A family of continuity-based beat tracking evaluation methods was developed

by Klapuri [45], inspired by the Gotoacc method described in Section 8.3.3. A subset

of these methods was used by Hainsworth [39], and this work will use the varia-

tions specified by Davies et al. [14]. These methods look for the longest continuous

correctly-tracked segment as a percentage of the entire beat sequence, requiring both

tempo and beat phase to be within specified tolerances for an estimated beat to be

considered correct. Four variations on this approach will be discussed here: CMLc

(Correct Metrical Level, continuity required), CMLt (Correct Metrical Level, conti-

nuity not required), AMLc (Allowed Metrical Levels, continuity required), and AMLt

(Allowed Metrical Levels, continuity not required).

Davies et al. [14] define three criteria for an estimated beat γb to be considered

a correct match to annotated beat aj. As in the work of Klapuri et al. [46], a tolerance

window is defined to be within θ = 17.5% of the current IAI ∆j. The first criteria, in

Equation 8.19, is that the estimated beat γb must fall within the tolerance window

of the annotated beat aj. The second criteria, in Equation 8.20, is that the previous

estimated beat γb−1 must be within the tolerance window of the previous annotated

87

beat aj−1. Finally, the third criteria, in Equation 8.21, is that the IBI ∆b must be

within the specified tolerance window around the IAI ∆j. This third criteria forces

continuity of tempo as well as beat phase.

aj − θ∆j < γb < aj + θ∆j (8.19)

aj−1 − θ∆j−1 < γb−1 < aj−1 + θ∆j−1 (8.20)

(1− θ)∆j < ∆b < (1 + θ)∆j (8.21)

All continuous correctly-tracked segments of a beat sequence are identified

using these criteria. The four metrics CMLc, CMLt, AMLc, and AMLt are computed

from the M identified correct segments, which have length Υm. The first metric

CMLc is shown in Equation 8.22 and considers only the longest segment. To reduce

the effect of one bad beat in the middle of the sequence (which would result in

CMLc = 50%, the second metric, CMLt in Equation 8.23, considers the total length

of all correctly-tracked segments. Finally the last two metrics AMLc and AMLt are

computed in the same way but are more general and allow segments to be considered

correct if they track at double or half the annotated tempo or on the off-beat.

CMLc =
max(Υm)

J
× 100% (8.22)

CMLt =

∑M
m=1Υm

J
× 100% (8.23)

8.3.5 Information Gain

Davies et al. [17] introduced a beat tracking evaluation metric using the

entropy of a beat error histogram. In later work, this was refined to determine the

information gain (Kulback-Leibler divergence) between the beat error histogram of

annotated vs. estimated sequences and a beat error histogram with a uniform error

distribution, where the worst-case scenario is no correlation between annotations and

88

estimated beats [14] [15]. This information gain is intended to be a measure of the

peakiness of the beat error histogram. In a well-performing beat tracker, a very

peaky beat error histogram is expected, with a strong peak at 0. In the event that a

tracker tracks at a faster metrical level than the annotations, additional peaks would

be expected at subdivisions of the beat, and if a tracker tracks on the off-beat or other

consistent phase offset, the main peak of the histogram would appear offset from the

center. The information gain measure D is computed for a beat error histogram with

K bins of height 1/K as in Equation 8.24 for each song in a dataset, and the average

is used as the score for the dataset. The term pζ(zk) is the estimated probability mass

of the beat error distribution and H(pζ(zk)) is the entropy. Alternatively, the global

information gain measure Dg can be computed from a global beat error histogram

where beat errors are across all songs.

D = log(K)−H(pζ(zk)) (8.24)

Note that unlike all of the other error metrics discussed in this chapter, the

information gain measures do not provide scores in the range of 0-100% and therefore

cannot be directly compared with the other metrics.

8.4 Evaluating Beaker

Version 0.1 of the BeatEval Toolbox1 provides a MATLAB implementation of

the beat tracking evaluation methods used by Davies et. al. in [14] and described in

detail in this chapter. All ten methods provided by the BeatEval Toolbox were used in

this dissertation to evaluate the performance of the Beaker beat tracker. These meth-

ods are F-measure (Section 8.3.1), Cemacc (Section 8.3.2), Gotoacc (Section 8.3.3),

P-score (Section 8.3.3), CMLc (Section 8.3.4), CMLt (Section 8.3.4), AMLc (Section

8.3.4), AMLt (Section 8.3.4), D (Section 8.3.5), and Dg (Section 8.3.5). Because

each metric emphasizes different aspects of a beat tracker’s performance, it is often

difficult to draw conclusions from a single metric. Some systems will perform better

1http://c4dm.eecs.qmul.ac.uk/downloads/beateval/

89

with some metrics and worse with others. To simplify performance comparisons, the

following chapters will frequently use the mean of the first eight evaluation metrics

mentioned (abbreviated as Mean8). All of these metrics provide scores in a range of

0% (worst) to 100% (best), allowing them to be combined and compared in a mean-

ingful fashion. However, because they do not use a comparable scale, the information

gain metrics can not be included in this combined metric.

8.5 Conclusion

This chapter has introduced the beat tracking datasets and metrics that will

be used to evaluate Beaker performance in subsequent chapters. The strengths and

weaknesses of the various datasets and metrics were discussed, and the Mean8 metric

was introduced as a way of combining the eight percentage-based evaluation metrics.

Chapter 9

Beaker Performance vs. Other

Approaches

9.1 Introduction

This chapter presents some results of the performance of the Beaker ensemble

framework compared to other beat tracking approaches. First, a Beaker ensemble

of TestTrackers will be compared with state-of-the art beat tracking systems. Then

the performance of Beaker’s approach to combining the results of ensemble members

using different input features in a causal fashion will be compared with another

approach which combines the output of multiple beat trackers after the fact. Beaker

ensembles consisting of TestTrackers are used throughout this chapter to evaluate

Beaker performance.

9.2 Comparison with Other Systems

This section will show that a Beaker ensemble consisting of TestTrackers is

competitive with a state-of-the-art causal beat tracking system and, in some metrics,

can even compete with state-of-the-art non-causal beat tracking systems.

90

91

9.2.1 Beatles Dataset

Table 9.1: Beatles dataset algorithm comparison

Algorithm Causal? F-measure Cemacc Gotoacc P-score

Davies Non-causal 81.4 79.5 76.0 77.0

KEA Non-causal 80.4 67.0 71.5 77.9

Dixon Non-causal 83.2 77.0 65.9 79.1

Ellis Non-causal 75.7 49.7 44.7 69.7

Beaker Causal 74.9 57.2 46.9 76.8

Determin. N/A 24.4 17.4 0.0 34.0

Algorithm CMLc CMLt AMLc AMLt D Dg Mean8

Davies 63.0 67.6 81.0 87.7 3.46 2.72 76.650

KEA 52.5 68.3 67.3 86.9 2.20 1.46 71.475

Dixon 52.5 64.2 68.8 89.7 2.44 1.70 72.550

Ellis 37.0 46.3 49.2 83.1 2.56 1.51 56.925

Beaker 33.0 61.7 41.7 79.1 1.73 0.73 58.904

Determin. 2.4 15.5 2.8 17.6 0.08 0.01 14.262

In 2009, Davies, Degara, and Plumbley [14] presented an overview of the beat

tracking evaluation methods described in Chapter 8. As part of this overview, they

provided the results of each of the metrics for four state-of-the-art non-causal beat

tracking systems, and compared with the results of a completely deterministic tracker

(Determin.) that always tracks at 120 beats per minute (BPM). The Beatles dataset

described in Section 8.2.1 was used to test the systems. The first tracker included

in the comparison was the Davies tracker, which was expected to perform very well

because it was used in the process of generating the Beatles annotations. The other

systems used were those by KEA (Klapuri, Eronen, and Astola) [46], Dixon [23], and

Ellis [27].

Davies et al. made the MATLAB code used to generate their results publicly

available, so it is possible to use their code to evaluate other systems and compare

them to their reported results on the aforementioned trackers. The performance

of the Beaker beat tracking system on the Beatles dataset is shown in Table 9.1

92

in comparison with the other trackers. Because Beaker is a causal system being

compared to the other systems which are all non-causal, it is at a disadvantage and

we do not necessarily expect to see Beaker outperform the other systems. Despite

this, Beaker is able to outperform the Ellis system on the Cemacc, Gotoacc, P-score,

CMLt, and Mean8 metrics. Using the P-score metric, Beaker additionally performs

very similarly to the Davies tracker. Where Beaker suffers most compared to the

other systems is in the metrics requiring continuity: Gotoacc, CMLc, and AMLc. This

behavior is not unexpected, since Beaker, as a real-time causal system, is designed to

be more adaptable to changes in tempo and meter at the expense of some continuity.

9.2.2 SMC Dataset

It is also desirable to compare Beaker’s performance with a state-of-the-art

causal system. The IBT-C beat tracker [54], the causal version of Oliveira et al.’s

system described in Section 4.2.3, is one such system. It was evaluated in 2012 on

the Music Information Retrieval Evaluation eXchange (MIREX) audio beat tracking

task, so results for the SMC dataset described in Section 8.2.3 are publicly available

for comparison with the performance of Beaker on the same dataset during MIREX

2014. The MIREX results from [2] are shown in Table 9.2. Also shown are results

for an improved version of the Beaker beat tracker which represents bug fixes and

improvements in the performance since the 2014 MIREX evaluation.

Beaker’s results for the 2014 MIREX were verified using the BeatEval toolbox,

and all official MIREX results were reproducible except for the information gain

metrics D and Dg. For this reason, only the official MIREX results of those metrics

are included in Table 9.2, and no comparison is available using those metrics with

the improved version of Beaker.

The Beaker MIREX 2014 submission only outperformed the IBT-C MIREX

2012 submission on 4 of the 10 metrics, and its Mean8 was lower, but the more recent

Beaker implementation shows improvement in all metrics, additionally out-performs

the IBT-C MIREX submission in the CMLc metric, and has a higher Mean8 score.

We can conclude that for the SMC dataset, the performance of the Beaker beat

93

tracker is comparable to, if not better than, the state-of-the-art causal IBT-C beat

tracking system. In addition, one of the most significant weaknesses of the IBT-

C beat tracker is that it is designed to track slow changes in tempo and therefore

requires explicit state recovery and re-initialization of the system when handling in-

put with sudden tempo changes (such as streaming input of concatenated songs, a

scenario not tested in the MIREX evaluation) [54]. The Beaker beat tracker theo-

retically has an advantage over IBT-C because of its ability to handle such changes

without treating them as a special case.

Table 9.2: SMC dataset algorithm comparison

Algorithm F-measure Cemacc Gotoacc P-score

IBT-C MIREX 2012 27.3664 20.9755 4.1475 43.4168

Beaker MIREX 2014 28.9582 21.4169 2.3041 44.0329

Improved Beaker 30.0908 22.6250 3.2258 45.8494

Algorithm CMLc CMLt AMLc AMLt D Dg Mean8

IBT-C MIREX 2012 8.0578 13.1900 13.1597 23.1326 0.7115 0.0399 19.1808

Beaker MIREX 2014 5.0919 7.8419 10.7098 20.1576 0.6211 0.0552 17.5642

Improved Beaker 8.2538 12.1517 12.7624 21.7767 N/A N/A 19.5920

9.3 Combining Features

It has been shown that combining the results of beat trackers using different

input features can give improved results over using a beat tracker with a single input

feature [68]. A Beaker ensemble can be created using TestTrackers with different

input features, and Section 9.3.1 will demonstrate that Beaker ensembles utilizing

multiple features out-perform single-feature ensembles. Sections 9.3.2 and 9.3.3 will

then compare Beaker’s approach to combining trackers with different features to the

work of Zapata et al. [68] using non-causal beat trackers and show that Beaker’s

approach to combining multiple features provides better results than their Mean

Mutual Agreement (MMA) approach in addition to being applicable in both causal

94

and non-causal beat tracking scenarios.

9.3.1 Combining Features with Beaker

An experiment was performed comparing ten different Beaker ensembles.

Nine of the ten ensembles consisted of TestTrackers all using the same feature. One

ensemble used feature F0, another feature F1, etc. as defined in Table 7.1 in Section

7.2. For example, Figure 9.1 shows an ensemble consisting of trackers all using fea-

ture F0. The tenth ensemble was generated by merging the first nine ensembles into

one ensemble that included trackers using all of the different available features, as

shown in Figure 9.2.

�� �� �� ��

�������	
������������������

���
�������������������

Figure 9.1: Beaker ensemble using only feature F0

�� �� �� ��

���	�
���
�����������	�
���

����
��������������	��	

�� �� � �! �"��� ��� ��� ��� ��� ��� ��� ��� ���

Figure 9.2: Beaker ensemble using all features

As shown in Table 9.3, the multi-feature ensemble out-performed the single-

feature ensembles on all metrics. For each metric in Table 9.3, the score for the

highest-performing feature is highlighted in bold. Note that while the magnitude-

based and complex-domain-based onset detection functions (ODFs) (F0, F1, and

F6) consistently outperform the others, there is no one feature that performs the

best on all metrics. Because the evaluation metrics emphasize different aspects of

95

beat tracker performance, this supports the hypothesis that the various features

help to create a diverse ensemble. Another important observation is that while on

some metrics the improvement is minimal, on the continuity-based metrics including

Gotoacc, CMLc, and AMLc, the improvement is more significant. This implies that

combining features specifically plays a role in improving beat tracking continuity in a

Beaker ensemble, possibly because different features are performing well at different

times during a song, helping to maintain continuity at times when a single feature

might temporarily perform poorly.

Table 9.3: Results for single features vs. all (best single feature for each measure

highlighted in bold)

Feature F-measure Cemacc Gotoacc P-score

F0 74.0 56.3 38.5 76.0

F1 74.6 55.7 43.6 76.1

F2 71.4 54.5 38.0 74.9

F3 71.8 53.9 36.3 74.8

F4 65.1 49.3 27.4 68.5

F5 56.8 43.1 19.0 62.7

F6 73.6 56.4 38.5 76.1

F7 32.3 23.5 0 39.9

F8 33.9 24.8 0 41.2

All 74.9 57.2 46.9 76.8

Feature CMLc CMLt AMLc AMLt D Dg Mean8

F0 27.5 59.1 35.7 77.9 1.6465 0.6881 55.6136

F1 26.4 59.2 33.5 77.9 1.5836 0.6924 55.8694

F2 24.4 57.6 30.0 72.1 1.4587 0.6246 52.8432

F3 22.3 57.5 27.4 72.0 1.4123 0.6126 52.0153

F4 20.4 49.7 27.3 65.7 1.2670 0.4796 46.6711

F5 15.0 41.7 18.2 52.7 0.9051 0.3234 38.6383

F6 27.2 58.4 36.0 77.0 1.6625 0.6972 55.3927

F7 2.4 15.8 3.2 19.7 0.2156 0.0394 17.0885

F8 2.6 16.8 3.7 22.0 0.2359 0.0501 18.1258

All 33.0 61.7 41.7 79.1 1.7311 0.7337 58.9035

96

9.3.2 Combining Features with Beaker vs. MMA

Section 9.3.1 is not the first work to demonstrate the power of combining

multiple features for beat tracking. As discussed in Section 5.3, Zapata et al. tested

a committee of multiple beat trackers where each tracker used a different input fea-

ture [68]. However, they were working with non-causal systems and used a very

different approach to combining the trackers. In fact, they were not truly combining

tracker outputs but rather were using MMA to determine which tracker’s output to

use for each song after each tracker’s output beat sequence had been generated. This

section compares the results of their approach to combining features vs. Beaker’s en-

semble approach using the Beatles dataset described in Section 8.2.1 and shows that

Beaker’s ensemble approach gives superior results. Six different algorithms, including

Beaker ensembles of TestTrackers, MMA among TestTrackers, MMA among Beaker

ensembles, and combinations of these approaches were used in this evaluation. The

non-Beaker algorithms were implemented in MATLAB based on the descriptions

given in [68].

All of the tests described here begin with the TestTrackers described in Chap-

ter 7. TestTracker parameters varied across 9 possible features, 3 periodicity ap-

proaches, 4 tempo ranges, and 2 time ranges, for a total of 216 TestTrackers. The

first algorithm tested was Beaker where a single Beaker instance was used with all

216 TestTrackers as members of Beaker’s ensemble. A diagram of such a system was

shown in Figure 9.2.

Next, 216 distinct Beaker instances were created, each representing a single

TestTracker. As shown in Figure 9.3, in the Flat MMA algorithm, each of the Beaker

instances generated an output beat sequence, and MMA was used to determine the

optimal sequence for each song in the database. To do this, the information gain

score D (mutual agreement) for each sequence compared to each of the other output

sequences was computed on a per-song basis. Information gain was chosen out of all of

the possible evaluation metrics because of its use in the selective sampling and MMA

work of [42] and [68]. The mean of all mutual agreement scores containing a particular

output sequence was computed, and the output sequence with the maximum mean

97

mutual agreement was chosen as the final output sequence for that song. The Flat

Per-Song Max algorithm behaved similarly, except that the known annotations were

used to determine the optimal output sequence for each song. Flat Per-Song Max

therefore represents the best-case scenario for the Flat MMA algorithm when using

the information gain measure D as the evaluation metric.

�� �� �� ��

�����	
�����	�
��
�����	���	
�

�	�����������		�	����	�	����	
���������������
	��	��	

�� �� �� � �!��� ��� ��� ��� ��� ��� ��� ��� ���

Figure 9.3: Flat MMA

The results for these three approaches are shown in Table 9.4. When combin-

ing 216 TestTrackers using Beaker vs. Flat MMA, Beaker significantly out-performs

the MMA approach on all metrics and performs comparably to Flat Per-Song Max,

the best-case scenario for the MMA approach.

Table 9.4: Results for Beaker vs. flat MMA (Beatles dataset)

Algorithm F-measure Cemacc Gotoacc P-score

Beaker 74.9 57.2 46.9 76.8

Flat MMA 66.0 50.7 39.1 71.0

Flat Per-Song Max 73.9 56.1 48.6 77.7

Algorithm CMLc CMLt AMLc AMLt D Dg Mean8

Beaker 33.0 61.7 41.7 79.1 1.7311 0.7337 58.9035

Flat MMA 28.6 54.8 40.3 75.4 1.6345 0.5875 53.2221

Flat Per-Song Max 31.4 65.3 38.6 81.0 1.9092 0.7034 59.0648

Next, additional experiments were performed using a smaller number of track-

ers as input to the MMA algorithm. These experiments were designed to more closely

resemble the tests done in [68], which computed the MMA of committees containing

at most 6 trackers, each using a separate input feature, and concluded that feature

98

diversity gave improved results over the use of a beat tracker using a single feature.

These experiments were needed in order to demonstrate that combining features us-

ing Beaker rather than MMA gives better results even with smaller ensembles and

not only with the larger-sized ensembles/committees used in the tests just described.

For comparison with Beaker in this mode, a 2-Layer Beaker algorithm was

used by treating Beaker trackers as members of an ensemble for a parent Beaker

tracker. In this approach, results were generated by first creating 9 separate Beaker

ensembles, each using a single feature. Other parameters were identical to those used

in Beaker (3 periodicity approaches, 4 tempo ranges, and 2 time ranges resulted in

24 trackers per feature). As shown in Figure 9.4, these 9 Beaker instances were then

added as ensemble members to a parent Beaker instance (all other parameters were

the same in both layers) creating an ensemble where each ensemble member used a

single feature. The output of the parent Beaker ensemble was used.

�� ��

���������

��� �	 �	

�	�������

��� �
 �

�
�������

���

���

������������������������������

Figure 9.4: 2-layer Beaker ensemble

Results for Beaker + MMA were generated in the same way as those for Flat

MMA, except that, as shown in Figure 9.5, only the 9 Beaker instances used as input

to the second Beaker layer in 2-Layer Beaker were used as committee members to

generate output sequences for the MMA algorithm rather than the committee of 216

trackers tested for Flat MMA. Similarly, results for Beaker + Per-Song Max were

generated as in Flat Per-Song Max, using the same 9 Beaker instances to generate

output sequences. The Beaker + Per-Song Max algorithm is therefore the best-case

scenario for the Beaker + MMA algorithm, based on the use of the information gain

D as the evaluation metric.

99

�� ��

���������

��� �	 �	

�	�������

��� �
 �

�
�������

���

���

���

Figure 9.5: Beaker + MMA

Table 9.5: Results for 2-layer Beaker vs. MMA (Beatles dataset)

Algorithm F-measure Cemacc Gotoacc P-score

2-Layer Beaker 75.4 57.5 43.6 77.1

Beaker + MMA 74.8 57.1 40.2 76.8

Beaker + Per-Song Max 75.1 57.1 44.1 77.4

Algorithm CMLc CMLt AMLc AMLt D Dg Mean8

2-Layer Beaker 31.0 60.5 39.6 79.1 1.7045 0.7381 57.9698

Beaker + MMA 28.3 59.9 37.0 78.3 1.6684 0.7113 56.5440

Beaker + Per-Song Max 29.4 61.9 37.5 80.2 1.7710 0.7367 57.8268

100

The results of these experiments are shown in Table 9.5. When combining

nine single-feature trackers, 2-Layer Beaker is able to out-perform Beaker + MMA

on all metrics, demonstrating again that Beaker’s ensemble approach performs better

than MMA, although the improvement is less significant than that seen in Table 9.4

for the larger ensembles. On several metrics, 2-Layer Beaker even outperforms the

best-case scenario for Beaker + Per-Song Max. It is interesting to note that, as

in Section 9.3.1, the superior performance from Beaker is most noticeable in the

continuity-based metrics, reinforcing the idea that Beaker’s ensemble method is able

to compensate for discontinuities in individual tracker output.

In conclusion, for both the large and small ensemble scenarios, Beaker’s ap-

proach outperforms the MMA approach in quality. It can also be significantly faster

when using large ensembles. For example, comparing the output beat sequences of

every possible pair out of 216 TestTrackers can be very computationally expensive.

Another disadvantage of the MMA approach is that it cannot be used in a causal

fashion. This provides Beaker with an additional advantage even when using small

ensembles, where the improvement in scores using a Beaker ensemble vs. MMA may

be less significant.

9.3.3 Beaker vs. MMA Varying Other Parameters

While Section 9.3.2 compared Beaker’s performance to the MMA approach

when creating ensembles using multiple features, this section will show that for en-

sembles of TestTrackers where each ensemble uses a single feature and ensemble

diversity is achieved by varying other parameters, combining TestTrackers using

Beaker’s approach results in significantly better performance than combining Test-

Trackers using MMA. To do this, for each of the nine possible features F0 through

F8, an ensemble of 24 TestTrackers was created. Each TestTracker in the ensem-

ble used the same feature but varied other parameters (3 periodicity approaches, 4

tempo ranges, and 2 time ranges). The ensemble’s results were combined in a causal

fashion by Beaker. This was compared with taking the 24 beat sequences output

from the TestTrackers and combining them using MMA. The process was repeated

101

Table 9.6: Beaker vs. MMA for single-feature ensembles (Beatles dataset)

Algorithm F-measure Cemacc Gotoacc P-score

F0 Beaker 74.0 56.3 38.5 76.0

F0 MMA 67.1 51.0 39.1 71.9

F1 Beaker 74.6 55.7 43.6 76.1

F1 MMA 69.4 52.5 38.5 72.0

F2 Beaker 71.4 54.5 38.0 74.9

F2 MMA 67.0 51.0 35.8 71.7

F3 Beaker 71.8 53.9 36.3 74.8

F3 MMA 69.1 52.3 33.5 72.5

F4 Beaker 65.1 49.3 27.4 68.5

F4 MMA 59.6 44.7 26.8 64.5

F5 Beaker 56.8 43.1 19.0 62.7

F5 MMA 52.0 39.0 14.5 59.2

F6 Beaker 73.6 56.4 38.5 76.1

F6 MMA 65.7 50.0 35.2 71.4

F7 Beaker 32.3 23.5 0.0 39.9

F7 MMA 13.9 10.1 0.6 14.7

F8 Beaker 33.9 24.8 0.0 41.2

F8 MMA 14.6 10.7 0.0 15.1

Continued on next page

102

Table 9.6: Beaker vs. MMA for single-feature ensembles (Beatles dataset),

Continued

Algorithm CMLc CMLt AMLc AMLt D Dg Mean8

F0 Beaker 27.5 59.1 35.7 77.9 1.6465 0.6881 55.6136

F0 MMA 28.6 56.3 35.9 74.8 1.5628 0.5481 52.8217

F1 Beaker 26.4 59.2 33.5 77.9 1.5836 0.6924 55.8694

F1 MMA 24.8 54.7 35.2 76.8 1.5102 0.5749 52.9873

F2 Beaker 24.4 57.6 30.0 72.1 1.4587 0.6246 52.8432

F2 MMA 22.3 53.9 30.7 73.4 1.4173 0.5371 50.7106

F3 Beaker 22.3 57.5 27.4 72.0 1.4123 0.6126 52.0153

F3 MMA 20.4 54.5 28.9 74.4 1.3837 0.5529 50.6875

F4 Beaker 20.4 49.7 27.3 65.7 1.2670 0.4796 46.6711

F4 MMA 18.8 45.9 27.8 65.6 1.2225 0.3690 44.2146

F5 Beaker 15.0 41.7 18.2 52.7 0.9051 0.3234 38.6383

F5 MMA 13.1 39.1 18.3 55.0 0.9520 0.2490 36.2756

F6 Beaker 27.2 58.4 36.0 77.0 1.6625 0.6972 55.3927

F6 MMA 25.8 54.8 35.6 74.2 1.5918 0.5464 51.5910

F7 Beaker 2.4 15.8 3.2 19.7 0.2156 0.0394 17.0885

F7 MMA 1.3 3.8 2.1 6.1 0.1661 0.0124 6.5848

F8 Beaker 2.6 16.8 3.7 22.0 0.2359 0.0501 18.1258

F8 MMA 1.2 4.0 2.2 6.5 0.1695 0.0128 6.7987

103

for each of the nine features.

The results shown in Table 9.6 for the Beatles dataset show that for all fea-

tures, Beaker ensembles using that constant feature but varying other parameters

perform better than using MMA to combine results when using the Mean8 evalua-

tion metric, and that the same holds true for nearly all individual metrics as well.

The improvement in Beaker results over MMA are the most dramatic for features F7

and F8. These are the two phase-based onset detection functions discussed in Sec-

tion 7.2.4, and are generally less reliable features when used alone compared to their

magnitude or complex domain counterparts, producing lower scores. No single Test-

Tracker’s output sequence is particularly reliable using these features, and therefore

the MMA approach, which can at best perform as well as the best TestTracker, per-

forms poorly. In contrast, the Beaker approach, which is capable of outperforming all

of the individual TestTrackers in its ensemble, is able to perform significantly better

than MMA. These results strengthen the conclusion of Section 9.3.2 that Beaker’s

approach to combining the output of multiple beat trackers is superior to the MMA

approach.

9.4 Conclusion

This chapter compared the performance of Beaker ensembles of TestTrackers

with other approaches to beat tracking and to using ensemble learning methods with

beat tracking. Beaker’s performance on the Beatles dataset was shown to outperform

certain non-causal beat trackers on some evaluation metrics, and its performance on

the SMC dataset was shown to be comparable to that of the state-of-the-art IBT-C

causal beat tracker. The merits of creating ensembles using multiple input features

were then demonstrated, and Beaker’s approach to combining ensembles using Test-

Trackers with various input features was shown to give better results than MMA,

which was previous work in this area using non-causal beat trackers. Compared

to MMA and individual features, Beaker’s ensemble approach showed superior per-

formance most noticeably in continuity-based metrics, suggesting that the Beaker

ensemble framework is able to smooth over discontinuities in individual trackers

104

- something that a committee-based or mixture-of-experts ensemble approach like

MMA cannot do, since its output is always restricted to being the output of one of

the committee member trackers.

Chapter 10

Ensemble Diversity

10.1 Introduction

The performance of a Beaker ensemble depends heavily on the composition of

its ensemble of trackers. Chapter 9 demonstrated the value of using ensembles of beat

trackers using different input features. However, while it is often the case that larger

ensembles produce better results, in ensemble learning bigger is not always better.

Instead, it is the diversity of the ensemble rather than the size which determines

the quality of the ensemble. When dealing with ensembles of classifiers, there is no

one definition or measure of ensemble diversity [48], but according to Polikar [59]

and Dietterich [20], diversity is achieved when classifiers make different errors on

various inputs. Extending this concept to an ensemble of beat trackers, a tracker

should add diversity to a Beaker ensemble, thereby improving results, if it performs

well when other trackers in the ensemble perform poorly. This chapter will explore

the concept of ensemble diversity as it relates to ensembles of trackers with varying

parameters, including different features as in Chapter 9 as well as different periodicity

estimation methods. It will discuss when and why certain ensembles perform better

than others. Finally, a preliminary approach to predicting when the merging of two

ensembles containing trackers with different parameters will produce a single stronger

ensemble will be presented. All experiments in this chapter were performed using

the Beatles dataset with varying-sized ensembles of the TestTrackers described in

105

106

Chapter 7 initialized with different parameters.

10.2 Feature Diversity

This section will discuss the results of experiments which created ensembles

consisting of TestTrackers using various combinations of two of the nine possible

features discussed in Section 7.2. While Section 9.3.1 showed that an ensemble

consisting of all nine features always out-performed the corresponding single-feature

ensembles, the experiment presented here is intended to determine if the same holds

true for ensembles using two features. In other words, does combining two features

always improve the performance of an ensemble? If not, when and why does adding

trackers to an ensemble improve performance, and can this behavior be predicted?

First, nine single-feature ensembles were created as in the experiment in Sec-

tion 9.3.1. The performance of the single-feature ensembles using the Mean8 evalu-

ation metric is shown in Table 10.1 (summarized from Table 9.3).

Table 10.1: Performance of single-feature ensembles (Beatles dataset)

Feature Mean8

F0 55.6136

F1 55.8694

F2 52.8432

F3 52.0153

F4 46.6711

F5 38.6383

F6 55.3927

F7 17.0885

F8 18.1258

Next, 36 ensembles consisting of all possible combinations of two features

were created, merging the ensembles of two of the single-feature ensembles Ensemble

1 (E1) and Ensemble 2 (E2). For example, one ensemble used features F0 and F1,

another F0 and F2 etc. Table 10.2 shows the results for each of the 36 ensembles

107

compared with the results of the single-feature ensembles that were merged to create

each two-feature ensemble.

Based on these results, we can answer the following questions:

1. If I add E2 to E1, does this increase the Mean8 score for E1?

2. If I add E1 to E2, does this increase the Mean8 score of E2?

It is important to note that these scenarios are not symmetrical. If the com-

bined ensemble (E1 ∪ E2) scores greater than E1 but less than E2, then the answer

to question 1 will be yes, but the answer to question 2 will be no. From Table 10.2,

we can see that the answer to question 1 is yes 22 times out of 36, and the answer

to question 2 is yes 34 times out of 36. Although the answers to these questions

are yes the majority of the time, this is not true for every combination, meaning

that a larger ensemble is not always better. What then causes certain combinations

of features to not produce improved results? We know that ensemble diversity is a

significant factor in the performance of an ensemble, so in the cases where combining

features does not improve results, perhaps adding one ensemble to the other does

not increase ensemble diversity.

10.3 Predicting Improvement in Combined

Ensemble Performance

We want to be able to predict when a combined ensemble will improve results,

so we would like to have a measure of ensemble diversity. Unfortunately, no single

measure of ensemble diversity for ensembles of classifiers exists. Instead, there are

many such measures, and none is ideal for all circumstances [48]. To further com-

plicate things, while a Beaker ensemble of trackers acts like a classifier at each time

instant, the results it produces for evaluation (a series of beat times) are not directly

the results of the classification. Therefore, measures of diversity in classifiers based

on the output of those classifiers cannot be directly applied to the output of a Beaker

108

Table 10.2: Performance of two-feature ensembles (Beatles dataset)

E1 Feature Mean8 E2 Feature Mean8 Combined

Mean8

Improves

E1

Improves

E2

F0 55.6136 F1 55.8694 57.6623 yes yes

F0 55.6136 F2 52.8432 56.9987 yes yes

F0 55.6136 F3 52.0153 56.8787 yes yes

F0 55.6136 F4 46.6711 54.1770 no yes

F0 55.6136 F5 38.6383 51.5134 no yes

F0 55.6136 F6 55.3927 56.5746 yes yes

F0 55.6136 F7 17.0885 55.2395 no yes

F0 55.6136 F8 18.1258 55.5003 no yes

F1 55.8694 F2 52.8432 57.4427 yes yes

F1 55.8694 F3 52.0153 56.5727 yes yes

F1 55.8694 F4 46.6711 54.9715 no yes

F1 55.8694 F5 38.6383 51.8412 no yes

F1 55.8694 F6 55.3927 57.2992 yes yes

F1 55.8694 F7 17.0885 55.5795 no yes

F1 55.8694 F8 18.1258 55.3070 no yes

F2 52.8432 F3 52.0153 54.0608 yes yes

F2 52.8432 F4 46.6711 55.1303 yes yes

F2 52.8432 F5 38.6383 52.1407 no yes

F2 52.8432 F6 55.3927 57.3548 yes yes

F2 52.8432 F7 17.0885 53.3604 yes yes

F2 52.8432 F8 18.1258 53.3557 yes yes

F3 52.0153 F4 46.6711 54.5636 yes yes

F3 52.0153 F5 38.6383 50.9496 no yes

F3 52.0153 F6 55.3927 56.6768 yes yes

F3 52.0153 F7 17.0885 52.5846 yes yes

F3 52.0153 F8 18.1258 52.2773 yes yes

F4 46.6711 F5 38.6383 46.2813 no yes

F4 46.6711 F6 55.3927 53.7816 yes no

F4 46.6711 F7 17.0885 46.5345 no yes

F4 46.6711 F8 18.1258 47.0162 yes yes

F5 38.6383 F6 55.3927 50.8282 yes no

F5 38.6383 F7 17.0885 39.2454 yes yes

F5 38.6383 F8 18.1258 39.2274 yes yes

F6 55.3927 F7 17.0885 54.6880 no yes

F6 55.3927 F8 18.1258 54.7023 no yes

F7 17.0885 F8 18.1258 17.9617 yes no

109

ensemble. As a result, a new measure of ensemble diversity specific to ensembles of

beat trackers is required.

This section presents a preliminary attempt to create a metric which will

use ensemble diversity to predict when the combination of ensembles will produce

improved results. The metric is based on the idea that adding E1 to E2 will improve

the results of E2 if E1 performs well when E2 performs poorly. Because results for

the various ensembles are available on a per-song basis within a dataset, the metric

acts on a per-song level and not within a song. That means that it cannot take into

consideration cases where E1 performs well on half of a song, while E2 performs well

on the other half, or other such scenarios, but such cases are an area for future work.

To predict whether merging E1 with E2 will improve the score of E2, we

first look for songs in a dataset where E1 out-performs E2. We want E1 to perform

better than E2 on songs where E2 is performing poorly, because if E2 is already

performing well on those songs, adding E1 is not as necessary. First we will define

the set S of m songs in a dataset as S = {s1, s2, . . . , sm}, the set C1 as the per-song

scores for E1: C1 = {c11, c12, . . . , c1m}, and the set C2 as the per-song scores for E2:

C2 = {c21, c22, . . . , c2m}. We define an ensemble as having poor performance on a

song if the score for that song is below the median score for that ensemble across

all songs (if the song scores worse than half of all songs). For example, E2 performs

poorly on song sk if c2k < median(C2). Next, we define Y , the set of songs where

E1 performs better than E2: Y = {sk|c1k > c2k}. Then we look at the median score

for E2 on the songs in Y . If that score is lower than the median score for E2 across

all songs in the dataset, then we can say that E1 performs better than E2 when E2

performs poorly.

This criteria alone is not sufficient to predict when adding E1 to E2 will

improve the score of E2 however. It is also necessary to determine if the improvement

on the songs in Y is significant enough. We can look at the mean of the improvement

in scores across songs in Y . If that mean is above a certain threshold ρ1, we consider

the improvement significant. Experimentally, it was also found that even when the

median criteria described above was not met (E1 performed better than E2 when

E2 was already performing well), a significant enough mean per-song improvement

110

(greater than a threshold ρ2) was an indicator that adding E1 to E2 would still

improve the results of E2.

We can then define the rules for predicting ensemble improvement as follows.

Adding E1 to E2 will improve the score of E2 if either criteria 1 or criteria 2 is met:

1. the median score for E2 on the set Y is below the median of C2, and the mean

improvement in scores across the set Y is greater than ρ1, or

2. the mean improvement in scores across the set Y is greater than ρ2

Initial experiments show that threshold values of ρ1 = 6 and ρ2 = 25 give

good results for the Beatles dataset.

Returning to the results presented in Section 10.2, we can check if these rules

allow us to successfully predict when certain combinations of ensembles will give

improved results. There are 72 possible scenarios for adding E1 to E2, and as shown

in Table 10.3, these rules correctly predict 57 out of 72 times whether improvement

will occur. On the surface, this does not appear to be a high success rate. However,

in all but one of the cases where the rules produce an incorrect prediction, the actual

improvement (or lack thereof) is small enough to be ambiguous. The one exception

is adding the ensemble using feature F5 (E1) to the ensemble using feature F6 (E2).

In this case, as shown in Table 10.3, the score of E2 decreases by more than 4

percentage points, but the rules predict that the score should have improved. It

is likely that this is a case where a finer-grained evaluation, which could compare

ensemble performance on segments of a song and not simply the entire song, could

give a better prediction, so this is an area for future work.

111

Table 10.3: Predicting performance of two-feature ensembles (Beatles dataset, items

in bold indicate disagreement between predicted and actual performance)

E1 Mean8 E2 Mean8 Combined Improves Prediction

Feature Feature Mean8 E2

F1 55.8694 F0 55.6136 57.6623 yes yes

F2 52.8432 F0 55.6136 56.9987 yes yes

F3 52.0153 F0 55.6136 56.8787 yes yes

F4 46.6711 F0 55.6136 54.1770 no no

F5 38.6383 F0 55.6136 51.5134 no no

F6 55.3927 F0 55.6136 56.5746 yes no

F7 17.0885 F0 55.6136 55.2395 no no

F8 18.1258 F0 55.6136 55.5003 no no

F0 55.6136 F1 55.8694 57.6623 yes no

F2 52.8432 F1 55.8694 57.4427 yes yes

F3 52.0153 F1 55.8694 56.5727 yes yes

F4 46.6711 F1 55.8694 54.9715 no yes

F5 38.6383 F1 55.8694 51.8412 no no

F6 55.3927 F1 55.8694 57.2992 yes yes

F7 17.0885 F1 55.8694 55.5795 no no

F8 18.1258 F1 55.8694 55.3070 no no

F0 55.6136 F2 52.8432 56.9987 yes yes

F1 55.8694 F2 52.8432 57.4427 yes yes

F3 52.0153 F2 52.8432 54.0608 yes no

F4 46.6711 F2 52.8432 55.1303 yes yes

F5 38.6383 F2 52.8432 52.1407 no no

F6 55.3927 F2 52.8432 57.3548 yes yes

F7 17.0885 F2 52.8432 53.3604 yes no

F8 18.1258 F2 52.8432 53.3557 yes no

Continued on next page

112

Table 10.3: Predicting performance of two-feature ensembles (Beatles dataset, items

in bold indicate disagreement between predicted and actual performance), Continued

E1 Mean8 E2 Mean8 Combined Improves Prediction

Feature Feature Mean8 E2

F0 55.6136 F3 52.0153 56.8787 yes yes

F1 55.8694 F3 52.0153 56.5727 yes yes

F2 52.8432 F3 52.0153 54.0608 yes no

F4 46.6711 F3 52.0153 54.5636 yes yes

F5 38.6383 F3 52.0153 50.9496 no no

F6 55.3927 F3 52.0153 56.6768 yes yes

F7 17.0885 F3 52.0153 52.5846 yes no

F8 18.1258 F3 52.0153 52.2773 yes no

F0 55.6136 F4 46.6711 54.1770 yes yes

F1 55.8694 F4 46.6711 54.9715 yes yes

F2 52.8432 F4 46.6711 55.1303 yes yes

F3 52.0153 F4 46.6711 54.5636 yes yes

F5 38.6383 F4 46.6711 46.2813 no yes

F6 55.3927 F4 46.6711 53.7816 yes yes

F7 17.0885 F4 46.6711 46.5345 no no

F8 18.1258 F4 46.6711 47.0162 yes no

F0 55.6136 F5 38.6383 51.5134 yes yes

F1 55.8694 F5 38.6383 51.8412 yes yes

F2 52.8432 F5 38.6383 52.1407 yes yes

F3 52.0153 F5 38.6383 50.9496 yes yes

F4 46.6711 F5 38.6383 46.2813 yes yes

F6 55.3927 F5 38.6383 50.8282 yes yes

F7 17.0885 F5 38.6383 39.2454 yes no

F8 18.1258 F5 38.6383 39.2274 yes yes

Continued on next page

113

Table 10.3: Predicting performance of two-feature ensembles (Beatles dataset, items

in bold indicate disagreement between predicted and actual performance), Continued

E1 Mean8 E2 Mean8 Combined Improves Prediction

Feature Feature Mean8 E2

F0 55.6136 F6 55.3927 56.5746 yes no

F1 55.8694 F6 55.3927 57.2992 yes yes

F2 52.8432 F6 55.3927 57.3548 yes yes

F3 52.0153 F6 55.3927 56.6768 yes yes

F4 46.6711 F6 55.3927 53.7816 no no

F5 38.6383 F6 55.3927 50.8282 no yes

F7 17.0885 F6 55.3927 54.6880 no no

F8 18.1258 F6 55.3927 54.7023 no no

F0 55.6136 F7 17.0885 55.2395 yes yes

F1 55.8694 F7 17.0885 55.5795 yes yes

F2 52.8432 F7 17.0885 53.3604 yes yes

F3 52.0153 F7 17.0885 52.5846 yes yes

F4 46.6711 F7 17.0885 46.5345 yes yes

F5 38.6383 F7 17.0885 39.2454 yes yes

F6 55.3927 F7 17.0885 54.6880 yes yes

F8 18.1258 F7 17.0885 17.9617 yes no

F0 55.6136 F8 18.1258 55.5003 yes yes

F1 55.8694 F8 18.1258 55.3070 yes yes

F2 52.8432 F8 18.1258 53.3557 yes yes

F3 52.0153 F8 18.1258 52.2773 yes yes

F4 46.6711 F8 18.1258 47.0162 yes yes

F5 38.6383 F8 18.1258 39.2274 yes yes

F6 55.3927 F8 18.1258 54.7023 yes yes

F7 17.0885 F8 18.1258 17.9617 no no

10.4 Combining Periodicity Functions

While multiple features can increase ensemble diversity and therefore improve

performance, Table 9.3 showed that several of the individual features available to

TestTrackers could perform reasonably well by themselves. This suggests that it

114

would be useful to look at other ways of creating diversity in Beaker ensembles. One

such way in which diversity in a Beaker ensemble of TestTrackers can be achieved is

by using multiple different periodicity functions to perform tempo estimation. This

section examines the results for ensembles using the possible combinations of the

four periodicity estimation approaches available to TestTrackers as listed in Table

7.2. Again, all experiments were performed using the Beatles dataset.

The results for ensembles using various combinations of periodicity estimation

approaches are shown in Table 10.4. The interesting thing to notice about this data is

that the P0 periodicity estimation function (Biased autocorrelation function (ACF)),

while outperforming P2 and P3 in ensembles using only one periodicity estimation

approach and increasing the scores of those ensembles when added to them, decreases

the scores of ensembles using approach P1 (Unbiased ACF). This occurs because P0

and P1 are very similar approaches and therefore tend to perform well or poorly

on the same songs. Therefore, adding P0 to an ensemble that already uses P1 does

not always increase ensemble diversity, and because TestTrackers using P1 tend to

perform better than those using P0, adding P0 to such an ensemble can actually

decrease performance. As shown in Table 10.5, the method presented in Section

10.3 for predicting when a combination of ensembles will improve results correctly

predicts the lack of improvement in three of these scenarios including adding P0

to an ensemble already using P1, to an ensemble already using P1 and P2, and to

an ensemble already using P1, P2, and P3. Interestingly, adding P0 to an ensemble

already containing P1 does not always decrease results. For example, adding P0 to

an ensemble using P1 and P3 slightly increases results, and the method from Section

10.3 correctly predicts this behavior as well.

10.5 Conclusion

This chapter has discussed the concept of ensemble diversity in the context of

the Beaker beat tracking ensemble framework and emphasized that a larger ensemble

is not always better - diversity is more important than size. Additionally, prelimi-

115

Table 10.4: Results for periodicity approach combinations (Beatles dataset)

Periodicity Function(s) F-measure Cemacc Gotoacc P-score

P0 66.4 49.4 32.4 70.7

P1 68.1 51.1 38.5 72.7

P2 62.6 47.2 21.2 62.5

P3 62.2 47.1 30.2 67.0

P0, P1 68.5 51.2 40.8 72.9

P0, P2 72.8 54.7 34.1 72.8

P0, P3 69.5 53.0 40.2 73.7

P1, P2 75.3 56.5 40.8 76.5

P1, P3 70.2 53.7 43.0 74.7

P2, P3 70.8 54.2 35.2 72.9

P0, P1, P2 74.2 55.6 43.0 75.6

P0, P1, P3 70.9 53.9 43.6 74.9

P0, P2, P3 72.9 55.8 40.8 74.6

P1, P2, P3 74.9 57.2 46.9 76.8

P0, P1, P2, P3 74.4 56.6 44.7 76.2

Periodicity Function(s) CMLc CMLt AMLc AMLt D Dg Mean8

P0 22.3 53.6 26.1 65.6 1.2416 0.5005 48.3102

P1 26.2 58.0 31.3 71.0 1.3837 0.5303 52.1049

P2 17.0 43.0 26.1 61.9 1.2408 0.4667 42.6972

P3 20.6 48.7 23.8 59.9 1.1810 0.4436 44.9636

P0, P1 25.5 57.3 29.9 70.0 1.3535 0.5215 51.9952

P0, P2 24.7 55.2 33.0 73.2 1.5850 0.6656 52.5612

P0, P3 27.9 56.5 32.8 71.1 1.4485 0.5959 53.0855

P1, P2 28.7 60.7 35.9 77.4 1.7091 0.7233 56.4925

P1, P3 29.2 59.5 35.1 74.1 1.5497 0.6323 54.9512

P2, P3 25.3 55.2 33.9 72.9 1.5353 0.6292 52.5494

P0, P1, P2 28.9 60.1 35.6 76.3 1.6577 0.6892 56.1689

P0, P1, P3 29.2 59.9 34.6 74.5 1.5174 0.6211 55.1859

P0, P2, P3 29.6 57.7 38.2 75.5 1.6277 0.6770 55.6242

P1, P2, P3 33.0 61.7 41.7 79.1 1.7311 0.7337 58.9035

P0, P1, P2, P3 30.5 60.8 37.7 78.2 1.6938 0.7203 57.3865

116

Table 10.5: Predicting performance combining multiple periodicity approaches

(Beatles dataset)

E1 Mean8 E2 Mean8 Combined Improves Prediction

Approach Approach Mean8 E2

P1 52.1049 P0 48.3102 51.9952 yes yes

P2 42.6972 P0 48.3102 52.5612 yes yes

P3 44.9636 P0 48.3102 53.0855 yes yes

P0 48.3102 P1 52.1049 51.9952 no no

P2 42.6972 P1 52.1049 56.4925 yes yes

P3 44.9636 P1 52.1049 54.9512 yes yes

P0 48.3102 P2 42.6972 52.5612 yes yes

P1 52.1049 P2 42.6972 56.4925 yes yes

P3 44.9636 P2 42.6972 52.5494 yes yes

P0 48.3102 P3 44.9636 53.0855 yes yes

P1 52.1049 P3 44.9636 54.9512 yes yes

P2 42.6972 P3 44.9636 52.5494 yes yes

P0 48.3102 P1, P2 56.4925 56.1689 no no

P1 52.1049 P0, P2 52.5612 56.1689 yes yes

P2 42.6972 P0, P1 51.9952 56.1689 yes yes

P0 48.3102 P1, P3 54.9512 55.1859 yes yes

P1 52.1049 P0, P3 53.0855 55.1859 yes yes

P3 44.9636 P0, P1 51.9952 55.1859 yes yes

P0 48.3102 P2, P3 52.5494 55.6242 yes yes

P2 42.6972 P0, P3 53.0855 55.6242 yes yes

P3 44.9636 P0, P2 52.5612 55.6242 yes yes

P1 52.1049 P2, P3 52.5494 58.9035 yes yes

P2 42.6972 P1, P3 54.9512 58.9035 yes yes

P3 44.9636 P1, P2 56.4925 58.9035 yes yes

P0 48.3102 P1, P2, P3 58.9035 57.3865 no no

P1 52.1049 P0, P2, P3 55.6242 57.3865 yes yes

P2 42.6972 P0, P1, P3 55.1859 57.3865 yes yes

P3 44.9636 P0, P1, P2 56.1689 57.3865 yes yes

117

nary work was presented regarding a metric for predicting when the combination of

two ensembles would increase ensemble performance, and this metric was shown to

perform well when combining ensembles of TestTrackers varying input features and

correctly predicted when combining ensembles of TestTrackers varying approaches

to periodicity estimation would or would not produce improved results.

Part V

Conclusion

118

Chapter 11

Applications and Conclusion

11.1 Introduction

This chapter will discuss a real-world implementation and application of the

Beaker ensemble framework and provide some conclusions and areas for future work

on the framework. The Beaker ensemble framework is implemented as a single C++

class, designed as a library that can be used from a variety of higher-level applica-

tions. Possible real-time wrapper applications for Beaker include Pd or Max/MSP

externals, VST plugins, and the Beaker UI to be described in Section 11.2. It can

also be used in non-real-time scenarios when used as part of a Vamp plugin or a

console application for offline processing. Because of the wide range of possible ap-

plications, Beaker was designed to be as flexible as possible. It has a large number

of parameters that can be optimized for computational efficiency vs. beat tracking

performance or for a particular dataset.

In all cases, Beaker works in a causal fashion. The application using a Beaker

instance is responsible for providing consecutive blocks of samples which are then

analyzed and used to update its hypotheses about the current tempo and beat phase.

Updated hypotheses can then be queried by the application, and those hypotheses

can be predictive. For example, when playing a wavefile in real-time, an application

might provide samples to Beaker at the same time they are played, in which case

there is no input latency and no need for predicting a beat in the future. However,

119

120

when processing incoming samples from an audio capture interface, there is latency

between the time a user hears the samples and when the application receives them.

Therefore, to provide results in sync with the user’s experience, Beaker must predict

future beat locations based on the latency of the capture interface.

Beaker has minimal dependencies on third-party software to simplify inte-

gration with other applications. The only dependency of a Beaker ensemble using

TestTrackers is FFTW1, which is used for discrete Fourier transform (DFT) com-

putations in the TestTrackers. The underlying algorithm is implemented in such a

way that trackers from the ensemble could be distributed across multiple threads

to improve performance, but currently the audio processing all occurs on a single

thread. Instead, when using TestTrackers, performance is optimized by eliminat-

ing redundant operations that would otherwise arise from trackers with overlapping

parameters (i.e. the same input feature).

11.2 The Beaker UI Application

The Beaker UI is a Graphical User Interface (GUI) application wrapper

around the Beaker framework. It can track beats in real-time either from a wavefile it

plays or live from an audio capture interface. It also provides functionality for offline

batch processing and comparison of Beaker results with annotated beat locations and

tempos in test datasets. In real-time modes, the User Interface (UI) provides mul-

tiple ways of visualizing Beaker’s output and internal workings. Screenshots in this

section were generated using 112 TestTrackers running in real time. The number of

trackers that can be supported in real time for a particular machine depends on both

the complexity of the trackers (i.e. feature extraction and approaches to tempo and

beat phase estimation) and the parameters chosen for the ensemble, including the

type of clustering performed when combining tracker hypotheses. Beaker parameters

can be loaded, modified, and saved through a convenient UI to avoid modifying text

parameter files by hand. The Beaker UI is a cross-platform application (for Win-

1http://www.fftw.org/

121

dows, Mac OS X, or Linux) implemented using Qt2 for user interface and graphical

elements, supporting both Qt4 and Qt5. Additionally, it uses libsndfile3 for wavefile

reading and PortAudio4 for audio I/O.

11.2.1 Modes of Operation

Live Input Mode

Figure 11.1: Live input mode

In live input mode, shown in Figure 11.1, the Beaker UI captures an incoming

audio stream from an audio capture interface. As each block of audio samples is cap-

tured, it is given to a Beaker instance which analyzes the new samples and produces

an updated tempo and beat phase hypothesis. The updated hypotheses are used to

display the current tempo to the user and visualize the current beat phase. These are

displayed on the right-hand side of Figure 11.1 along with visualizations of Beaker’s

internal behavior in the large frame on the left side of Figure 11.1. Because there is

2http://qt-project.org/
3http://www.mega-nerd.com/libsndfile/
4http://www.portaudio.com/

122

latency between when a user hears the audio and when it is analyzed by Beaker, it is

necessary for Beaker to provide predictions for future tempo and beat phase values

so that when the UI is updated the user sees visualizations synchronized with the

audio they are hearing.

Wavefile Input Mode

Wavefile input mode appears the same as live input mode except that a wave-

file is loaded and played from within the Beaker UI rather than capturing an incoming

audio stream. At the same time each block of samples is passed to the sound card

for playback, the samples are also sent to a Beaker instance for processing, so the

visualization and analysis are synchronized (assuming similar audio and video output

latencies) without requiring Beaker to predict output beyond the current block.

Batch Processing

Batch processing mode enables offline processing of files for comparison of

results with annotated tempos or beat locations in datasets. Beaker is provided

audio samples on a block-by-block basis from a wavefile at whatever rate it is able

to process them. This rate might be faster or slower than real-time depending on

the parameters chosen and the capabilities of the host machine. Once an entire

wavefile has been processed, tempos and beat locations can be written to files for

later analysis, and if annotation files are provided, various evaluation metrics can

be computed to describe Beaker’s performance on each wavefile. Using this batch

mode, users can generate and save scripts that allow testing of large numbers of

wavefiles with many different parameter sets for comparison and view the progress

of the scripts while they run.

11.2.2 Visualization

When operating in either live or wavefile input modes, real-time visualizations

of the Beaker algorithm are available. The first is always visible: a virtual foot

tapping along to the music, along with the current tempo estimate. The remaining

123

visualizations can be selected to fill the visualization pane shown on the bottom left

of Figure 11.1. These include views of the tempo and phase hypotheses generated by

the ensemble of trackers and live-updating histograms of the features and periodicity

estimation approaches used by the trackers with winning hypotheses. The virtual

foot, tracker tempo, and tracker phase views will be described in further detail in

this section.

Virtual Tapping Foot

When in real-time mode, Beaker taps its virtual foot in time with the music.

For efficient drawing, the virtual foot is represented as a simple pie slice as shown

in Figure 11.2. The current beat phase is used to determine the size of the pie slice.

A beat phase of 0.0, indicating that a beat is occurring now, results in a pie slice

spanning 90 degrees. Half-way between beats, or on the off-beat, the beat phase is

0.5, which maps to a pie slice spanning 0 degrees. Figure 11.2a shows what this view

looks like half-way between the off-beat and beat, and Figure 11.2b shows the virtual

foot approaching a beat.

(a) Between beat and off-beat (b) Approaching a beat

Figure 11.2: Virtual tapping foot with metronome

Tracker Tempos

The tracker tempo view helps users visualize the tempo hypotheses of the

individual trackers that are combined to determine Beaker’s tempo estimate. Track-

ers are evenly spaced horizontally, and each is represented as an ellipse with the

124

Figure 11.3: Tempo view with clear metrical structure. Tempo hypotheses are

inscribed in a tracker’s ellipse and also represented by the vertical position of the

ellipse. Lighter-colored ellipses indicate more confident trackers.

125

tracker’s tempo in beats per minute (BPM) written inside. The vertical position of

a tracker corresponds to the tracker’s tempo estimate in BPM, and the brightness of

a tracker’s ellipse indicates the tracker’s confidence in its tempo hypothesis: lighter

trackers have higher confidence than darker ones. When “listening” to a song with

a strong metrical structure, most trackers will easily converge on one of the possible

metrical levels of the song. Figure 11.3 is an example of the tracker tempo view for

such a song. Most trackers have agreed that the tempo is around 139 BPM, with

some tracking at either twice or two-thirds of that tempo. However, Figure 11.4

shows a less ideal scenario, where the metrical structure of the song is less clear. In

this case, while some trackers agree on a tempo of around 239 BPM, there is little

agreement between trackers about other possible metrical levels, and most trackers

are darkly colored, meaning that they have low confidence in their hypotheses.

Tracker Phases

The tracker phase view shown in Figure 11.5 helps users visualize trackers’

hypotheses about beat phase, or the location of the next beat. Trackers are evenly

spaced vertically, and an ellipse is drawn to represent a tracker’s next predicated beat

time along the x-axis, where the current time is at the far left of the view frame,

and the far right corresponds to the longest possible tempo period in the future. For

trackers with tempo periods smaller than the maximum, additional predicted beat

times are extrapolated from the next predicted beat time and ellipses are drawn

for these as well. The ellipses corresponding to a single tracker are highlighted in

red in Figure 11.5 to illustrate this. As in the tempo view, lighter-colored ellipses

correspond to trackers with higher confidence. Because multiple ellipses are drawn

for most trackers, refreshing this view is more computationally demanding than

refreshing the tempo view. Therefore, the user is able to adjust a threshold which

will limit drawing to only the most confident trackers if desired.

126

Figure 11.4: Tempo view with ambiguous metrical structure. Tempo hypotheses

are inscribed in a tracker’s ellipse and also represented by the vertical position of the

ellipse. Lighter-colored ellipses indicate more confident trackers.

127

Figure 11.5: Phase view with one tracker highlighted. Each tracker is represented

by a row of ellipses indicating future predicted beat times. Lighter-colored ellipses

correspond to more confident trackers.

128

11.3 Future Work and Conclusion

This dissertation has introduced the Beaker framework for using ensembles of

beat trackers in real-time causal applications along with the simple TestTracker beat

trackers as example ensemble members. Beaker ensembles using TestTrackers were

shown to be competitive with a state-of-the-art causal beat tracking system and

outperform some non-causal beat tracking systems on certain evaluation metrics.

Beaker’s approach to combining the hypotheses of individual ensemble members was

also shown to give superior results compared to Mean Mutual Agreement (MMA), a

recent development in ensemble methods for non-causal beat tracking. The concept

of ensemble diversity was discussed as it relates to Beaker ensembles, and a metric

for predicting when the combination of two Beaker ensembles will give improved

results over the individual ensembles was introduced. Finally, a real-time implemen-

tation of the Beaker ensemble framework in C++ and corresponding visualization

was presented as a real-world application of this work.

There are many areas for future work on the task of combining ensemble learn-

ing methods with beat tracking in the Beaker framework. Some involve improvements

and additional experiments related to the TestTrackers used to develop and evaluate

Beaker. For example, the list of available input features for TestTrackers is currently

limited to onset detection functions (ODFs). However, as discussed in Chapter 2, a

number of other features such as chord changes have been used for beat tracking with

varying success, and it would be interesting to experiment with these to provide even

greater feature diversity to a Beaker ensemble. Similarly, as discussed in Chapters

3 and 4, there are other approaches for both periodicity estimation and beat phase

estimation that could potentially increase ensemble diversity and therefore improve

performance. Additionally, the method for determining a TestTracker’s confidence

in its beat phase estimate could be expanded to include continuity with previous

beat phase estimates and perhaps a measure of the reliability of the input feature

used, similar to how the tempo confidence takes into consideration the peakiness of

the periodicity function.

Another way to increase the diversity of ensembles of TestTrackers would

129

be to allow different TestTrackers to focus on separate channels of multi-channel

audio input. Currently all channels are mixed down to one channel for analysis,

but because multi-channel recordings often have different balances of instruments

in each channel, analyzing those channels separately could create a more diverse

ensemble. This approach could apply not only to TestTrackers but to any arbitrary

Beaker ensemble member, as each could be provided input audio frames consisting

of a subset of available channels.

Other areas for future work are part of the Beaker framework itself. Different

approaches to discretizing and clustering or combining tracker hypotheses could be

introduced. For example, different clustering algorithms could be added as options,

or when using K-means the choice ofK could be made dynamically instead of being a

hard-coded parameter. Further exploration of the concept of the ensemble’s internal

beat phase oscillator is also possible.

It would also be interesting to test the Beaker ensemble framework with other

causal trackers. For example, if Beaker can perform as well as it does with simple

TestTrackers, it should be able to do even better with ensembles of more sophisticated

beat trackers such as IBT-C [55] or other existing causal trackers. While the IBT-

C code is open source and available as part of the Marsyas framework, in order

to use IBT-C as part of a Beaker ensemble, it would be necessary to modify that

implementation to output tracker hypotheses and confidence levels on a frame-by-

frame basis, as the current implementation only supports writing output text files

containing beat and tempo hypotheses [1]. Therefore this remains a task for future

work.

There is also significant room for additional work examining the concept of

ensemble diversity in a Beaker ensemble. As previously discussed, the metric de-

scribed in Chapter 10 for predicting when the combination of two ensembles would

improve performance operates on a song-by-song basis. However, a finer-grained ap-

proach should allow more accurate predictions, enabling us to see cases where two

ensembles perform well on different segments of a song and not simply on the entire

song.

Overall, this dissertation has demonstrated that ensemble methods can be

130

applied in a real-time and causal fashion while remaining flexible enough to sup-

port arbitrary beat trackers as ensemble members and has laid the foundation for

significant future work in the combination of ensemble learning and beat tracking.

Bibliography

[1] ibt - Marsyas User Manual. http://marsyas.info/doc/manual/marsyas-
user/ibt.html, Acccessed: 2015-04-16.

[2] MIREX 2012: Audio Beat Tracking - MIREX12 SMC Dataset - Summary.
http://nema.lis.illinois.edu/nema out/mirex2012/results/abt/smc/, Acccessed:
2015-04-26.

[3] Miguel Alonso, Bertrand David, and Gael Richard. Tempo and Beat Estimation
of Musical Signals. In Proc. International Conference on Music Information
Retrieval, 2004.

[4] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, Cam-
bridge, MA, 2004.

[5] Shai Avidan. Ensemble Tracking. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(2):261–271, February 2007.

[6] Juan P. Bello, Chris Duxbury, Mike Davies, and Mark Sandler. On the Use of
Phase and Energy for Musical Onset Detection in the Complex Domain. IEEE
Signal Processing Letters, 11(6):553–556, June 2004.

[7] Juan Pablo Bello, Laurent Daudet, Samer Abdallah, Chris Duxbury, Mike
Davies, and Mark B. Sandler. A Tutorial on Onset Detection in Music Sig-
nals. IEEE Transactions on Speech and Audio Processing, 13(5):1035–1047,
September 2005.

[8] Sebastian Böck, Florian Krebs, and Gerhard Widmer. A Multi-Model Approach
to Beat Tracking Considering Heterogenous Music Styles. In 15th International
Society for Music Information Retrieval Conference, 2014.

[9] Sebastian Böck and Markus Schedl. Enhanced Beat Tracking With Context-
Aware Neural Networks. In Proc. Int. Conf. Digital Audio Effects (DAFx-11),
pages 135–139, Paris, France, September 2011.

[10] Leo Breiman. Bagging Predictors. Machine Learning, 24:123–140, 1996.

131

132

[11] Leo Breiman. Random Forests. Machine Learning, 45:5–32, 2001.

[12] Ali Taylan Cemgil, Bert Kappen, Peter Desain, and Henkjan Honing. On tempo
tracking: Tempogram Representation and Kalman filtering. Journal of New
Music Research, 29(4):259–273, December 2000.

[13] Robert T. Collins, Yanxi Liu, and Marius Leordeanu. On-Line Selection of
Discriminative Tracking Features. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(10):1631–1643, 2005.

[14] Matthew E. P. Davies, Norberto Degara, and Mark D. Plumbley. Evaluation
Methods for Musical Audio Beat Tracking Algorithms. Technical report, Queen
Mary University of London, 2009.

[15] Matthew E. P. Davies, Norberto Degara, and Mark D. Plumbley. Measuring
the Performance of Beat Tracking Algorithms Using a Beat Error Histogram.
IEEE Signal Processing Letters, 18(3):157–160, March 2011.

[16] Matthew E. P. Davies and Mark D. Plumbley. Context-Dependent Beat Track-
ing of Musical Audio. IEEE Transactions on Audio, Speech and Language Pro-
cessing, 15(3):1009–1020, March 2007.

[17] Matthew E. P. Davies and Mark D. Plumbley. On the Use of Entropy for
Beat Tracking Evaluation. In Proceedings of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), volume IV, pages 1305–
1308, Hawaii, USA, April 2007.

[18] Norberto Degara, Antonio Pena, Manuel Sobreira-Seoane, and Soledad Torres-
Guijarro. A Mixture-of-Experts Approach for Note Onset Detection. In Proc.
of the 126th AES Convention, May 2009.

[19] Norberto Degara, Enrique Argones Rua, Antonio Pena, Soledad Torres-
Guijarro, Matthew E. P. Davies, and Mark D. Plumbley. Reliability-Informed
Beat Tracking of Musical Signals. IEEE Transactions on Audio, Speech and
Language Processing, 20(1):290–301, January 2012.

[20] Thomas G. Dietterich. Ensemble Methods in Machine Learning. In Multiple
Classifier Systems, volume 1857 of Lecture Notes in Computer Science, pages
1–15. Springer Berlin Heidelberg, Cagliari, Italy, 2000.

[21] Simon Dixon. Automatic Extraction of Tempo and Beat From Expressive Per-
formances. Journal of New Music Research, 30(1):39–58, March 2001.

[22] Simon Dixon. Onset Detection Revisited. In Proc. of the 9th Int. Conference on
Digital Audio Effects, DAFx-06, pages 133–137, Montreal, Canada, September
2006.

133

[23] Simon Dixon. Evaluation of the Audio Beat Tracking System BeatRoot. Journal
of New Music Research, 36(1):39–50, March 2007.

[24] Chris Duxbury, Mark Sandler, and Mike Davies. A Hybrid Approach to Musical
Note Onset Detection. In Prod. of the 5th Int. Conference on Digital Audio
Effects (DAFx-02), pages 33–38, Hamburg, Germany, September 2002.

[25] Douglas Eck. Identifying Metrical and Temporal Structure With an Autocorrela-
tion Phase Matrix. Music Perception: An Interdisciplinary Journal, 24(2):167–
176, December 2006.

[26] Douglas Eck. Beat Tracking Using an Autocorrelation Phase Matrix. In Proc.
IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP 2007), pages 1313–1316, Honolulu, HI, April 2007.

[27] Daniel P. W. Ellis. Beat Tracking by Dynamic Programming. Journal of New
Music Research, 36(1):51–60, March 2007.

[28] Antti J. Eronen and Anssi P. Klapuri. Music Tempo Estimation With k-NN
Regression. IEEE Transactions on Audio, Speech, and Language Processing,
18(1):50–57, January 2010.

[29] Jonathan Foote and Shingo Uchihashi. The Beat Spectrum: A New Approach
to Rhythm Analysis. In Proc. Int. Conference on Multimedia and Expo (ICME),
Tokyo, Japan, August 2001. IEEE.

[30] Stan Franklin and Art Graesser. Is It an Agent, or Just a Program?: A Taxon-
omy for Autonomous Agents. In Proc. of the Workshop on Intelligent Agents
III, Agent Theories, Architectures, and Languages, Lecture Notes in Computer
Science, pages 21–35, August 1996.

[31] Yoav Freund and Robert E. Schapire. A Decision-Theoretic Generalization of
On-Line Learning and an Application to Boosting. Journal of Computer and
System Sciences, 55(1):119–139, August 1997.

[32] Masataka Goto and Yoichi Muraoka. Music Understanding At The Beat Level -
Real-time Beat Tracking For Audio Signals. In Working Notes of the IJCAI-95
Workshop on Computational Auditory Scene Analysis, pages 68–75, 1995.

[33] Masataka Goto and Yoichi Muraoka. Issues in Evaluating Beat Tracking Sys-
tems. In Working Notes of the IJCAI-97 Workshop on Issues in AI and Music
- Evaluation and Assessment, pages 9–16, 1997.

[34] Masataka Goto and Yoichi Muraoka. Real-time Rhythm Tracking for Drumless
Audio Signals - Chord Change Detection for Musical Decisions. In Proc. Int.

134

Joint. Conf. in Artificial Intelligence: Workshop on Computational Auditory
Scene Analysis, pages 135–144, 1997.

[35] Masataka Goto and Yoichi Muraoka. Real-time beat tracking for drumless audio
signals: Chord change detection for musical decisions. Speech Communication,
27(3-4):311–335, April 1999.

[36] Fabien Gouyon, Simon Dixon, and Gerhard Widmer. Evaluating Low-Level Fea-
tures for Beat Classification and Tracking. In Proc. of the 2007 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, pages 1309–1312,
2007.

[37] Fabien Gouyon, Anssi P. Klapuri, Simon Dixon, Miguel Alonso, George Tzane-
takis, Christian Uhle, and Pedro Cano. An Experimental Comparison of Audio
Tempo Induction Algorithms. IEEE Transactions on Audio, Speech and Lan-
guage Processing, 14(5):1832–1844, September 2006.

[38] Helmut Grabner and Horst Bischof. On-line Boosting and Vision. In 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
volume 1, pages 260–267, 2006.

[39] Stephen W Hainsworth. Techniques for the Automated Analysis of Musical
Audio. Doctor of philosophy, University of Cambridge, 2004.

[40] Tin Kam Ho. The Random Subspace Method for Constructing Decision Forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–
844, 1998.

[41] Tin Kam Ho, Jonathan J. Hull, and Sargur N. Srihari. Decision Combination
in Multiple Classifier Systems. IEEE Trans. Pattern Analysis and Machine
Intelligence, 16(1):66–75, 1994.

[42] Andre Holzapfel, Matthew E. P. Davies, Jose R. Zapata, Joao Lobato Oliveira,
and Fabien Gouyon. Selective Sampling for Beat Tracking Evaluation. IEEE
Transactions on Audio, Speech, and Language Processing, 20(9):2539–2548,
2012.

[43] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton.
Adaptive Mixtures of Local Experts. Neural Computation, 3(1):79–87, 1991.

[44] Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas. On Com-
bining Classifiers. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 20(3):226–239, March 1998.

[45] Anssi P. Klapuri. Musical meter estimation and music transcription. In Proc.
Cambridge Music Processing Colloquium, pages 40–45, 2003.

135

[46] Anssi P. Klapuri, Antti J. Eronen, and Jaakko T. Astola. Analysis of the Meter
of Acoustic Musical Signals. IEEE Transactions on Audio, Speech and Language
Processing, 14(1):342–355, January 2006.

[47] Ludmila I. Kuncheva. A Theoretical Study on Six Classifier Fusion Strategies.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2):281–
286, 2002.

[48] Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of Diversity in
Classifier Ensembles. Machine Learning, 51:181–207, 2003.

[49] Edward W. Large. Modeling Beat Perception with a Nonlinear Oscillator. In
Proc. of the 18th Annual Conference of the Cognitive Science Society, San Diego,
CA, July 1996.

[50] Edward W. Large and John F. Kolen. Resonance and the Perception of Musical
Meter. Connection Science, 6(2):177–208, 1994.

[51] Jean Laroche. Efficient Tempo and Beat Tracking in Audio Recordings. J.
Audio Engineering Society, 51(4):226–233, April 2003.

[52] Martin F. McKinney and Dirk Moelants. Ambiguity in tempo perception: What
draws listeners to different metrical levels? Music Perception: An Interdisci-
plinary Journal, 24(2):155–166, December 2006.

[53] Martin F. McKinney, Dirk Moelants, Matthew E. P. Davies, and Anssi P. Kla-
puri. Evaluation of Audio Beat Tracking and Music Tempo Extraction Algo-
rithms. Journal of New Music Research, 36(1):1–16, March 2007.

[54] João Lobato Oliveira, Matthew E. P. Davies, Fabien Gouyon, and Luis Paulo
Reis. Beat Tracking for Multiple Applications: A Multi-Agent System Architec-
ture With State Recovery. IEEE Transactions on Audio, Speech, and Language
Processing, 20(10):2696–2706, December 2012.

[55] João Lobato Oliveira, Fabien Gouyon, Luis Gustavo Martins, and Luis Paulo
Reis. IBT : A Real-Time Tempo and Beat Tracking System. In Proc. of the
11th International Society for Music Information Retrieval Conference, pages
291–296, Utrecht, Netherlands, August 2010.

[56] Nikunj C. Oza and Kagan Tumer. Input Decimation Ensembles: Decorrelation
through Dimensionality Reduction. In Multiple Classifier Systems, volume 2096
of Lecture Notes in Computer Science, pages 238–247. 2001.

[57] Geoffroy Peeters. Template-Based Estimation of Time-Varying Tempo.
EURASIP Journal on Advances in Signal Processing, 2007:1–15, 2007.

136

[58] Geoffroy Peeters and Helene Papadopoulos. Simultaneous Beat and Downbeat-
Tracking Using a Probabilistic Framework: Theory and Large-Scale Evaluation.
IEEE Transactions on Audio, Speech and Language Processing, 19(6):1754–
1769, August 2011.

[59] Robi Polikar. Ensemble Based Systems in Decision Making. IEEE Circuits and
Systems Magazine, (Third Quarter):21–45, 2006.

[60] Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected Ap-
plications in Speech Recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[61] Andrew Robertson, Adam M. Stark, and Mark D. Plumbley. Real-Time Visual
Beat Tracking Using a Comb Filter Matrix. In Proc. International Computer
Music Conference, 2011.

[62] Robert E. Schapire. The Strength of Weak Learnability. Machine Learning,
5(2):197–227, June 1990.

[63] Eric D. Scheirer. Tempo and beat analysis of acoustic musical signals. The
Journal of the Acoustical Society of America, 103(1):588–601, January 1998.

[64] Giovanni Seni and John F. Elder. Ensemble Methods in Data Mining: Improving
Accuracy Through Combining Predictions, volume 2 of Synthesis Lectures on
Data Mining and Knowledge Discovery. Morgan & Claypool, January 2010.

[65] Adam M. Stark, Matthew E. P. Davies, and Mark D. Plumbley. Real-Time
Beat-Synchronous Analysis of Musical Audio. In Proc. of the 12th Interna-
tional Conference on Digital Audio Effects, DAFx-09, pages 1–6, Como, Italy,
September 2009.

[66] George Tzanetakis. Tempo Extraction using Beat Histograms. In Proceedings
of the 1st Music Information Retrieval Evaluation eXchange (MIREX 2005),
2005.

[67] George Tzanetakis and Perry Cook. Musical Genre Classification of Audio
Signals. IEEE Transactions on Speech and Audio Processing, 10(5):293–302,
July 2002.

[68] José R. Zapata, Matthew E. P. Davies, and Emilia Gómez. Multi-Feature Beat
Tracking. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
22(4):816–825, April 2014.

