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Abstract

We consider an empirical likelihood framework for inference for a statistical model based on
an informative sampling design. Covariate information is incorporated both through the weights
and the estimating equations. The estimator is based on conditional weights. We show that under
usual conditions, with population size increasing unbounded, the estimates are strongly consistent,
asymptotically unbiased and normally distributed. Our framework provides additional justification
for inverse probability weighted score estimators in terms of conditional empirical likelihood. In
doing so, it bridges the gap between design-based and model-based modes of inference in survey
sampling settings. We illustrate these ideas with an application to an electoral survey.

Key words: Complex survey data; Design weights; Model parameter estimation; Conditional likeli-
hood; Inverse probability weighted estimation; Design-based survey inference; Generalised linear
models.

1 Introduction

Because of their easy interpretability, parametric models are popular in statistics for explain-
ing natural phenomenon. These model parameters are usually estimated by maximising the so
called likelihood function computed from preferably independent sample observations identically
distributed according to the model in the population. In practice however, such data-sets are often
unavailable. More often than not, practitioners are forced to work with data obtained from various
surveys. In real world, surveys are complex. Observations are drawn according to informative
designs and are accompanied by unequal sampling weights. Because of such complex sampling
the observed data distribution varies from the distribution specified in the model. These sampling
weights thus contain important information about the distribution in the population and cannot be
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ignored. In most situations, ignoring the weights leads to sevrely biased and/or inefficient estima-
tors (Skinner et al., 1989).

There is a large literature dealing with the analysis of complex survey data. However, the in-
corporation of design weights in a parametric likelihood framework is difficult and many common
approaches are not fully likelihood based. In most cases design unbiased estimators for large but
finite population parameters are used (Narain, 1951; Horvitz and Thompson, 1952) and the model
parameters are assumed to be close to this estimator.

Empirical likelihood (Owen, 2001) provides alternative to such design unbiased estimators.
For data sampled with equal probabilities, empirical likelihood based procedures re-weighs the
data points with unknown weights. These weights are then estimated from the data by maximising
their product under various constraints. These constraints can involve unknown parameters which
can also be estimated simultaneously (Qin and Lawless, 1994). The constraints can also represent
known characteristics of the population obtained from census, registration data etc. (Chaudhuri
et al., 2008). Historically, the term was coined and made popular by Owen (1988). However, it
has been argued that precursor methods were available (see, for example, Hartley and Rao, 1968;
Thomas and Grunkemeier, 1975).

Empirical likelihood based methods which take into account the design weights in the sample
have been studied by several researchers. Chen and Sitter (1999) were motivated by the Horvitz-
Thompson estimator in survey sampling and proposed a pseudo-empirical likelihood. In brief, their
procedure estimates the total of the logarithm of unknown weights in the population using a design
unbiased Horvitz-Thompson estimator. The weights are then determined by maximising this sum
under various constraints. This procedure is based on an estimated likelihood not an observed one.
Rao, Wu and colleagues (notably Chen et al. (2002), Wu and Rao (2006), Rao and Wu (2008),
among others) study this method extensively and apply it to several design based surveys. The
pseudo empirical likelihood can be re-interpreted as a “backward” Kullback-Leibler divergence of
the unknown weights from the sampling weights. The distribution is specified by the choosing the
weights that minimise this divergence. Wu (2004) discuss a similar minimised weighted entropy
estimator.

In this article we develop a framework that results in a procedure which fundamentally differs
from the pseudo-empirical likelihood. We consider an observed likelihood based on the conditional
distribution of the observations given that the individuals were selected in the sample and estimate
their distribution in the population using empirical likelihood. We are motivated by Pfeffermann
and colleagues (e.g. Pfeffermann et al. (1998), Pfeffermann and Sverchkov (1999), Krieger and
Pfeffermann (1992)) who used a similar but fully parametric procedure in modelling survey data.
A previous instance of similar use in a more restrictive parametric set-up occurs in Patil and Rao
(1978), where it has been implemented on size-biased sampling. We propose a empirical likelihood
based semi-parametric approach here. The resulting conditional empirical likelihood is similar to
Vardi (1985). However, he is motivated solely by the non-parametric estimation of the distribution
from multiple samples obtained through different designs. The asymptotic properties of this non-
parametric estimator have been studied by Gill et al. (1988). For complex survey data, a fully
non-parametric estimation procedure has been studied by Chambers et al. (2003).
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Use of empirical likelihood in complex data goes back to Qin (1993), who employed it in a
two-sample testing problem, where only one sample was biased by the design. He showed that
under certain conditions the empirical log-likelihood ratio has an asymptotic Chi-squared limit.
A similar approach has been taken by Qin et al. (2002) to analyse data with non-ignorable non-
response. Qin and Zhang (2007) use an empirical likelihood based method in observational studies
where part of the response is missing. Calibration estimation using a similar empirical likelihood
in Poisson sampling has been considered by Kim (2009).

We start with basic assumptions on the model, design variables and the sampling probabilities,
which justifies the analytic form of the likelihood seen in Pfeffermann et al. (1998). In this endeav-
our, the sampling weights are interpreted as random variables depending on all observations of all
design variables in the population. Our framework does not require one to make all the design
variables available in the sample. Neither does it assume all observations of the design variables
available in the sample are known. This general framework results in a composite likelihood of the
data, which is then converted to an conditional empirical likelihood. The parameter estimates are
obtained by maximising this likelihood under the constraints imposed by the model. It is seen that
such estimates are strongly consistent and asymptotically normally distributed for the population
distribution under usual regular conditions. We also provide estimators of the variances. We end
by applying our method to estimating electoral success in the 2004 presidential election in United
States of America.

2 Model and Design Specification

2.1 Basic Assumptions and Notations

We consider a “superpopulation” model with response Y , a set of auxiliary variables X ={
X(1), X(2), . . . , X(p)

}
and a set of design variables D =

{
D(1), D(2), . . . , D(q)

}
. The superpopu-

lation is same as the probability space under which the model and the random variables are defined.
The set of events also includes all subsets of the set of integers, that is any funnction defined on the
all subsets of integers is well defined. These functions are used in defining the sample. The popu-
lation is comprised of N independent and identically distributed draws from the super-population
model. We label the elements of the population by P = {1, 2, . . . , N}.

A random sample S of n observations is drawn from P according to a design depending on D
and possibly on some unknown parameters (specified in Section 2.4). The available data does not
contain all variables in D, only a subset Z = {Z(1), Z(2), . . . , Z(m)} is supplied. Let Zc = D \ Z.
Variables in X and Y are not directly involved in the sampling design. We denote V = Y ∪X ∪Z
to be the m + p + 1 dimensional random vector observed in the data set. Further, we collect all
the explanatory variables in the model in a set A ⊆ V . Suppose, DP , XP , YP , ZP , Zc

P denote the
vectors and matrices of all observations of the corresponding variables on the population P . For
S ⊆ P , VS is the matrix of observations in S. VS̄ are the observations not in S, where S̄ = P \ S.

Primary scientific interest focuses on the relationship between a response Y and the set of ex-
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planatory variablesA. Examples of such models are generalised linear models (GLM) (McCullagh
and Nelder, 1989). As an important special case, we consider joint models for Y and A, Pθ(Y,A),
parametrised by θ. For example, for GLM µ(θ) = Aθ. We specify the broader class of applicable
models in Section 2.2 below.

2.2 Model specification

Suppose F 0 is the distribution of V1 in the population with density dF 0 w.r.t. a suitable mea-
sure. The relationship between the response Y and the set of auxiliary variables A is assumed to
be specified by:

EF 0 [ψθ (Y1, A1)] = 0. (2.1)

Here ψ = (ψ1, . . . , ψr) is a pre-specified function depending only on Y1 andA1 and some unknown
parameter θ. we assume r is at least as big as the dimension of the parameter vector. There may
be several choices for ψ (Qin and Lawless, 1994). For parametric models, such as the GLM
considered in the introduction, the corresponding score functions Sθ (Y,A) are natural choices.

For simplicity we would assume that the function ψ is well behaved and that the Hessian matrix
is continuous near the true value of the parameter (see A.6 in Section 5.1). This condition of course
can be relaxed. Medians, quantiles etc. can also be estimated similarly.

2.3 Design Specification

The sample S is a random subset or random multiset (for sampling with replacement) of size
n of P . If the sample units are drawn according to a design, the sampling mechanism may not be
ignorable. The observed distribution of V in the sample S may be different from its distribution
in the population (or the superpopulation) and may depend on the particular sample selected. The
likelihood of the parameter θ, based on the sample observations of V (ie. VS) differs from the
likelihood based on VP (ie. its population observations). In reality, it is almost impossible to
specify the likelihood based on the observations of V from a non-ignorable unequal probability
sample. The sample at hand would rarely contain all design variables, thus the actual design
procedure cannot be determined. Even if the design mechanism can be determined, incorporating
design information in the likelihood is anything but straightforward.

Pfeffermann et al. (1998) have introduced a sample likelihood of the parameter based on the
population density of V conditional on the event of selection in the sample. This likelihood de-
mands essentially no design information, other than the sampling probabilities of the sampled
observations. It is not however immediately clear that the proposed sample likelihood is mean-
ingful under the population distribution. Below, we first show the conditions under which the
sample likelihood indeed is the true population conditional likelihood, using which interpretable
inference about the model parameter can be drawn from the available sample. For simplicity, we
consider only the subsets of P (ie. sampling without replacement) here. Description for multisets
(ie. sampling with replacement) is similar.
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For S ⊆ P suppose IS is the random indicator function for S ⊆ S. The sampled units are
drawn according to a design depending on all observations of the set of design variables in the
population (ie. DP). With PrP [·] denoting the probability under the population (and by definition
the superpopulation), this implies that, for any S ⊆ P , the probability of selecting S in the sample
is given by:

πS = PrP [IS = 1 | DP ] . (2.2)

That is, πS represents the (joint) conditional probability for inclusion of subset S in the sample
given all observations of all design variables in the population. Being conditional probability,
for each S, πS is a function of DP , S, n, N and possibly some other parameters. That is, πS
is a random variable because of DP . Since IS is a binary variable, its distribution is completely
specified through πS .

We first argue that our definition of πS as a conditional expectation under the population distri-
bution does not conflict with the notion of sampling from a finite population. To that end, we first
assume that:

Assumption 1 (Conditional independence given the design.). For all S ⊆ P , under the population
distribution, πS is conditionally independent of YP and XP given DP . That is

πS ⊥⊥ (YP , XP) | DP . for all S ⊆ P . (2.3)

The assumption ensures that πS depends on the YP and XP only through the design variables
DP . Under Assumption 1 for all S, EP [πS | YP , XP , DP ] = EP [πS | DP ] = π (S,DP), for some
function π. This function may depend on the sample and the population size, but does not depend
directly on the distributions of XP and YP .

By construction, IS is a well-defined random variable under the superpopulation structure. Its
distribution is completely determined by π, which is specified by the practitioner or the sampling
procedure used to obtain S from P and not automatically determined by the super-population
model. A sampling design can be viewed as a list of πS assigned ideally to every subset S of P .
That is, once the function π is specified, the first-order probabilities of selection for {i}, i ∈ P are
given by πi = π ({i}, DP) , i = 1, . . . , n. The second-order probabilities are similarly determined
by πij = π ({i, j}, DP). Higher order probabilities can be specified exactly the same way.

In some cases, πS for each S ⊆ P is defined in advance and the design is constructed to ensure
that the subset S is selected with probability πS . As for example, by definition simple random
sampling without replacement procedure ensures that each subset of size | S | is chosen with pre-
specified probability of

(
n
|S|

)
/
(
N
|S|

)
, for | S |≤ n and zero otherwise. On the other hand, in some

cases a partial list of πS may be available. Various sampling designs are constructed to match these
specified probabilities. The sampling probabilities of rest of the subsets are then design specified.
As for example, for probability proportional to size (PPS) sampling the function π can be chosen
to yield the target first-order probabilities of selection π{i} = Z

(1)
i /

∑n
i=1 Z

(1)
i , for some positive

random variable Z(1). Several procedures for PPS sampling to sample unit {i} with a specified
probability π{i} are known (see Brewer and Hanif (1983), Chaudhuri and Voss (1988), Tille (2006),
among others). Each of these procedures have different higher order selection probabilities.
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Once a list of πS is specified for all S ⊆ P , the physical act of sampling observations from
the population P to the sample S contributes no more to the statistical inference. That is, once
we know the specification of πS , the second randomisation and sampling from P to S can be
subsumed under the superpopulation probability structure. The concept is akin to the resampling
procedures popularly used in statistics. The difference as well as the difficulty for non-ignorable
sampling is that the population resampled from is unobserved and we can draw only one weighted
resample.

The concept that the actual sampling procedure can be subsumed in the probability structure
of the superpopulation is valid even if Assumption 1 does not hold. From Assumption 1 and the
definition of πS as EP [IS | DP ] we obtain the following result.

Lemma 2.1. Assumption 1 holds iff πS = π (S,DP).

Lemma 2.1 follows from the definition of conditional independence (Lauritzen, 1996). It fur-
ther shows that, under Assumption 1, conditioning on DP and the pair (DP , πS) is same. The
following relationships can also be obtained from Assumption 1 and Lemma 2.1.

Lemma 2.2. Suppose EP [·] denotes the expectation under the population distribution. Under
Assumption 1, for all S ⊆ P , the following holds:

1. EP [IS | πS] = πS .

2. IS ⊥⊥ DP | πS .

Pfeffermann et al. (1998) use the relationship in Conclusion 1. to justify their parametric like-
lihood (see below). The conditional independence relation in 2. is exactly the “Condition 1” in
Sugden and Smith (1984), which implies that under Assumption 1 the set of joint probabilities
{πS : S ⊆ P} contains all design information and given the design the selection procedure (i.e.,
the actual dependence of πS on DP) can be ignored for inference.

The assumption that the set of joint selection probabilities contains all information about the
sampling mechanism is natural and facilitates analysis. In sample surveys, the probability of select-
ing an observation becomes unequal due to clustering, stratification, post-stratification, attrition,
purposive “oversampling” and other non-response adjustments. In most cases, the published data
does not contain all the design variables, thus the actual design procedure cannot be determined.
Further, in many cases large data sets are constructed by merging several available data sets ob-
tained from different surveys (e.g. Rendall et al. (2008); Tighe et al. (2010)). Typically, each
survey is based on different designs dependent on different variables. A common design for the
merged data set is mostly unavailable or may not be easy to specify, but weights from individual
surveys can be used to provide information about the underlying designs.

Assumption 2 (Conditional independence given the sampling probabilities). For all S ⊆ P , under
the population distribution, IS is conditionally independent of XP , YP and DP given πS . That is,

IS ⊥⊥ (XP , YP , DP) | πS for all S ⊆ P . (2.4)
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Assumption 2 implies that inclusion depends on the XP , YP and DP only through the joint
inclusion probabilities. In particular, it implies

PrP [IS = 1 | XP , YP , DP , πS] = PrP [IS = 1 | πS] = EP [IS | πS] = πS.

Pfeffermann et al. (1998) make this assumption without stating it explicitly.

Lemma 2.3. For all S ⊆ P , under Assumptions 1, Assumption 2 is equivalent to IS ⊥⊥ DP | πS
and IS ⊥⊥ (XP , YP) | DP .

The condition IS ⊥⊥ (XP , YP) | DP is the basic design assumption of Scott (1977). According
to Sugden and Smith (1984), any design which only depends on DP should satisfy this condition.

Lemma 2.4. For all S ⊆ P , Assumptions 1 and 2 imply the following conditional independence
relationships.

1. IS ⊥⊥ VS | πS ,

2. (IS, πS) ⊥⊥ (XP , YP) | DP and

3. IS ⊥⊥ (XS, YS) | DP .

The statement 1. of Lemma 2.4 implies that EP [IS | VS, πS] = EP [IS | πS] = πS for all
S ⊆ P . From this, following Pfeffermann and Sverchkov (2003) we obtain

PrP [IS = 1 | VS] = EP [IS | VS] = EP [EP [IS | VS, πS] | VS] = EP [πS | VS] ,

P rP [IS = 1, VS] = PrP [IS = 1 | VS]PrP [VS] = EP [πS | VS]PrP [VS] . (2.5)

Equation (2.5) shows that under our assumptions the joint probability of selection of a subset S
and the measurement of the variable V on S i.e. VS can be expressed without modelling the design
procedure explicitly. Expectation of the selection probability conditional on the observation is
required. However, this conditional expectation is a function of the data observed in the sample.
The joint probability does not depend on rest of the unobserved elements in the population.

A graphical representation of the conditional independencies in Assumptions 1 and 2 for S = S
can be found in Figure 1. In the graph, πS and IS may depend on the whole of YP and XP via Zc

P
which are not available in S . Thus even though πS does not depend on YS andXS directly, in (2.5),
EP [πS | VS ] 6= EP [πS | ZS ] in general. Furthermore, the relation YS ⊥⊥ IS | AS does not hold.
So the design ignorability condition of Pfeffermann et al. (1998) and Pfeffermann and Sverchkov
(1999) is clearly not satisfied.

Note that our assumptions do not require IS to be conditionally independent of VS̄ given VS
(see Figure 1). Thus the observations are not missing at random (in the sense of Little and Rubin
(2002)). However missing at random is an important special case, because the relationship, IS ⊥⊥
(VS̄ , πS̄) | (VS , πS) holds.
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Figure 1: A graphical representation of the assumptions. The directed edges do not necessarily
indicate a causal relationship.

Finally, we note that, Assumption 2 is sufficient but not necessary for (2.5) to hold. One of
the conditions IS ⊥⊥ VS | πS or IS ⊥⊥ (XS, YS) | DP would suffice. We could have alternatively
assumed:

Assumption 2′. For all S ⊆ P , under the population distribution, IS is conditionally indepen-
dent of XS and YS given DP . That is,

IS ⊥⊥ (XS, YS) | DP for all S ⊆ P . (2.6)

Unlike Assumption 2, however, Assumption 2′ still allows IS to be conditionally dependent
on (XS̄, YS̄) given πS without violating Lemma 2.2. This will happen in very special situations
where typically the information about the design available from πS is incomplete and the design is
potentially mis-specified. In most cases though Assumption 2 would be satisfied.

2.4 A composite likelihood for unequal probability sampling

Let the ith element in S be drawn with probability πi (i.e. π{i}), i = 1, 2, . . . , n,. Suppose that
πi is positive for i = 1, 2, . . . , N .

We consider the implication of (2.5) on each Vi (i.e. V{i}), i = 1, 2, . . . , n selected in the
sample. Let F (i)

S be the conditional distribution of Vi given {i} ⊆ S, with density dF (i)
S . Using

Bayes’ rule (Pfeffermann et al., 1998), (A.1) and (2.5) it follows that:

dF
(i)
S =

PrP(I{i} = 1, Vi)

PrP(I{i} = 1)
=
EP [πi | Vi] dF 0(Vi)

PrP(I{i} = 1)
, (2.7)

where

PrP(I{i} = 1) =

∫
PrP(I{i} = 1, Vi)dVi =

∫
EP [πi | Vi] dF 0(Vi)dVi. (2.8)
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We call the conditional inclusion probability νi≡EP [πi | Vi] the conditional visibility for the
ith element in the population and Υi ≡

∫
νidF

0(Vi)dVi = EP [πi] = EF 0(Vi)[νi] the visibility factor
for the ith element in the population (Patil and Rao, 1978). By substituting these expressions into
(2.7) we obtain:

dF
(i)
S =

νidF
0(Vi)

Υi

. (2.9)

To specify dF (i)
S in (2.9) it is typically necessary to model the conditional visibility (EP [πi | Vi])

and the distribution of Vi in the population (dF 0(Vi)). Both of these models may depend on
unknown parameters. We denote the parameter for dF 0(Vi) by θ and that for the model for
EP [πi | Vi] by α.

The composite likelihood for α and θ, using all Vi, i = 1, 2, . . . , s can now be constructed as:

L (V, α, θ) =
n∏
i=1

dF
(i)
S . (2.10)

It is similar to the sample likelihood of Pfeffermann and Sverchkov (2003). Note that (2.10) does
not capture the dependence structure of the F (i)

S . It is a conditional likelihood if the units are drawn
independently of each other, for example, via Poisson sampling. However, Pfeffermann, Krieger,
and Rinott (1998) show that for several designs, and under fairly general conditions, the sampled
observations in the conditional distribution are asymptotically independent as the population size
N → ∞. These results suggest that the (2.10) may be a useful surrogate for the conditional
likelihood in these settings. This is also seen in the illustrative example presented in Section 6
below.

Notice that, (2.10) is invariant to the scale of π and ν, which can be specified up to an arbitrary
positive scaling constant. We can estimate νi directly from the data if the conditional distribution
of πi given Vi in S is equal to that in P . Otherwise, from Pfeffermann and Sverchkov (1999), we
obtain PrS

(
π−1
i | Vi

)
= {πiPrP

(
π−1
i | Vi

)
}/EP [πi | Vi]. This implies:

EP [πi | Vi] =
[
ES
(
π−1
i | Vi

)]−1
. (2.11)

Thus when the sample and population distribution differ a model for π−1
i in terms of Vi is

sought. The required population expectation can be estimated from the reciprocal of fitted values
of π−1

i obtained from the model. It is however not clear how to check if the conditional distribution
of π given Vi in the population and the sample are different. We reckon that in most cases use of
(2.11) would be appropriate.

Pfeffermann et al. (1998) discuss a class of conjugate parametric models for the distribution
of Vi and conditional distribution with πi given Vi such that dF (i)

S is in the same class as dF 0(Vi).
This avoids a complicated computation of Υi. However, estimation of θ is typically complex. The
parameters in dF (i)

S usually depends on both θ and α. This is uneconomical since estimates of
α usually are not of primary interest. Furthermore, (2.10) may have multiple modes in θ and α
(Pfeffermann and Sverchkov, 1999, 2003). Thus α̂ and θ̂ are estimated separately.
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Typically, νi would only depend on a subset of variables in V which may be quite different
from A. In particular, if the sample S was obtained by merging several sub-samples drawn from
different designs, νi depend on the particular sample the ith observation belongs to. Such sample
indicator variables usually would not be useful in modelling the response.

Parametric estimation of F 0 by maximising (2.10) has been discussed in Patil and Rao (1978).
Vardi (1985); Gill et al. (1988) consider the corresponding non-parametric likelihood when ν = π
and study the empirical distribution for biased sampling models in one dimension.

3 Empirical likelihood to incorporate sampling weights in parameter estimation

3.1 A Conditional Empirical likelihood based formulation

If F0 is specified by a parametric family Fθ, a natural way to estimate θ is to maximise (2.10)
over Θ. Direct maximisation of (2.10) however poses several problems. First of all, analytic
expression of dF (i)

S are available only if one restricts to conjugate families of distributions for Vi
and νi. Outside this class Υi has to be computed numerically (see Pfeffermann and Sverchkov
(2003)) which may be time consuming. Furthermore, correct specification of the parametric joint
distribution of Vi is difficult in many situations, specially when Vi contains design variables.

An alternative is to use empirical likelihood (Owen, 2001) and estimate F 0 non-parametrically
from the observed weighted sample and include all the available parametric information in the
analysis.

For the empirical likelihood based formulation the following assumption on Υ is made.

Assumption 3 (Label-independence of the visibility factors). Visibility factors do not depend on
the population labels but only on the design variables, i.e. Υi = Υ (DP) ≡ Υ.

Whether the visibility factors should depend on the individual labels have been discussed in
survey sampling literature in the past. See e.g. Godambe (1975); Hartley (1975). Under As-
sumption 3 each element in the population and sample will have equal visibility factor. In view of
Assumption 1, Υi = EP [πi]. Thus Assumption 3 implies EP [πi] are all equal in the population.

We introduce our conditional empirical likelihood. To that goal, suppose that, for each F ∈ F ,
wi = F ({Vi}) is the weight F assigns on Vi (wi = 0 for all F continuous at Vi). Let ∆n−1 denote
the n dimensional simplex and for each θ ∈ Θ we define,

Wθ =

{
w ∈ ∆n−1 :

n∑
i=1

wiψθ (Yi, Ai) = 0

}
andW =

⋃
θ∈Θ

Wθ. (3.1)

Under Assumptions 1, 2 and 3, a natural conditional empirical composite likelihood func-
tion corresponding to (2.10) is obtained by substituting dF 0

i = F 0({Vi}) by wi and Υ by Υ̂ =
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∑n
i=1 νiwi. It takes the form:

L (V, α, θ) = nn
∏n

i=1 νiwi
(
∑n

i=1 νiwi)
n . (3.2)

The factor nn is for normalisation. The log-likelihood is given by:

LCE(θ, w, ν) = n log(n) +
n∑
i=1

log(νiwi)− n log

(
n∑
i=1

νiwi

)
. (3.3)

In presence of parametric information we estimate the weights ŵCE as arg maxw∈W LCE(w, ν).
A constrained estimator θ̂CE ∈ Θ can be obtained as (Qin and Lawless, 1994; Chaudhuri et al.,
2008)

θ̂CE = arg max
θ∈Θ

{
max
w∈Wθ

(LCE(w, ν))

}
. (3.4)

Kim (2009) considers estimation of population mean under Poisson sampling and uses expres-
sion (3.3) with νi replaced by πi. In the context of two sample testing, Qin (1993) maximises (3.3)
w.r.t. wi and Υ with the additional constraint

∑n
i=1 wiπi = Υ. Similar approaches have been taken

by Qin et al. (2002); Qin and Zhang (2007) to include auxiliary information in the presence of
non-ignorable missing observations.

Choice of Υ̂ in the second term of (3.3) is crucial. Our choice involves both νi and wi. Use of
the sample mean of π or ν would lead to unweighted estimator of the parameters.

We follow Pfeffermann and Sverchkov (1999, 2003) and estimate α separately from w. In
particular, α̂, the maximum likelihood estimator for α obtained under the model for EP [π|V ] is
used to obtain ν. In most cases, our main interest is in finding ν, not α̂.

4 A characterisation of the maximum empirical likelihood estimator

4.1 Connection to inverse conditional visibility weighted pseudo-likelihood estimator

When the data is collected through a complex design, in order to estimate θ, it is perhaps natural
to consider the solutions of the following estimating equations:

n∑
i=1

1

νi
ψθ (yi, ai) = 0 (4.1)

Estimators based on inverse probability weighted score functions, as in (4.1), but with ν re-
placed by π, have been studied in details in the statistics literature. They occur very often in connec-
tion with missing data, two-phase designs, etc. Even if the conditional visibilities are replaced by
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fixed sampling probabilities π, the left hand side of equation (4.1) is based on a pseudo-likelihood
(Pfeffermann and Sverchkov, 2003) and can be seen as a design unbiased Horvitz-Thompson es-
timator of the total of ψθ (yi, ai) in the finite population. Beaumont (2008) uses smoothed version
of fixed weights, in practice similar to conditional visibilities in what he regards as a smoothed
Horvitz-Thompson estimation. However, in our case since both π and ν are assumed random,
the justification (4.1) as an usual Horvitz-Thompson type estimator is not entirely appropriate. In
this section we show that an alternative explanation using our proposed empirical likelihood based
estimator is available.

Suppose V is the set of solutions of (4.1) and Θ̂CE is the collection of all θ̂CE in (3.4). Then
we have the following result.

Theorem 4.1. If V is non-empty, then V = Θ̂CE .

Our procedure works even when V is empty. Thus the framework introduced above is more
general. Furthermore, it avoids invoking Horvitz-Thompson estimator and provides a better ex-
planation of inverse probability weighted score function based estimators in terms of conditional
empirical likelihood. It is plain to see that our derivation follows naturally from a likelihood frame-
work. The resulting log-likelihood is also different from a typical weighted log-likelihood found
in the literature. This can be exploited in Bayesian formulations of related problems specially in
small-area estimation and in multi-phase sampling where the design in the later phases depend on
the observed variables in the earlier phase (e.g. Breslow and Wellner (2006)).

If (4.1) has a unique solution, θ̂CE is unique. Thus if ψ is obtained from a score function
corresponding to a generalised linear model, θ̂CE would be unique.

The following corollary is an easy consequence of Theorem 4.1 which provides an estimate of
F 0.

Corollary 4.1. When V is non-empty, the estimate of F0 obtained by maximising (3.3) overW is
given by:

F̂CE(C) =
n∑
i=1

(1/νi)∑n
i=1(1/νi)

1{Vi∈C⊆Rm+p+1}. (4.2)

4.2 General Result

For a given θ, in order to get a constrained estimator of w the objective function is given by:

L (w, λ1, λ2) =
n∑
i=1

log(wi)− n log

(
n∑
i=1

νiwi

)
− λ1

(
n∑
i=1

wi − 1

)
− nλT2

n∑
i=1

wiψi, (4.3)

where ψi = ψθ (yi, ai). λ1 and λ2 are unknown Lagrange multipliers which depend on θ as well.
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By differentiating (4.3) with respect to wi and following Owen (2001) mutatis mutandis, it
follows that λ1 = 0 and with κ = λ2

∑n
i=1 νiwi we get:

wi =

∑n
i=1 νiwi
n

1

νi + κTψi
. (4.4)

Under our assumptions about ψ, (see Qin and Lawless (1994)) κ is a continuous differentiable
function of θ. It is easily seen that κ satisfies the following equation,

n∑
i=1

wiψi =
n∑
i=1

ψi
νi + κTψi

= 0. (4.5)

The value of κ for a given θ can be determined from (4.5). Since for each i, wi ≤ 1, from (4.4)
for each i, κ would satisfy the constraint n

(
νi + κTψi

)
≥
∑n

i=1 νiwi. Even though our motivation
and formulations are completely different, the expression forwi in (4.4) is similar to those obtained
by, Kim (2009); Berger and De La Riva Torres (2016); Oguz-Alper and Berger (2016) in their
respective settings. In their formulation however, expressions with ν replaced by π are obtained.

Now by substituting the value of wi in the expression of log-likelihood in (3.3) we get,

LCE(θ, w, ν) = −
n∑
i=1

log(νi + κTψi) +
n∑
i=1

log(νi). (4.6)

It is evident that (4.6) is satisfied by any θ such thatWθ 6= ∅. So the derivative, ∂LCE/∂θ evaluated
at each θ̂CE will be equal to zero.

The discussion outlined above leads to the following general sets of estimating equations for
θ̂CE .

Theorem 4.2. Under our assumptions, each θ̂CE ∈ Θ̂CE satisfy the following sets of equations:

n∑
i=1

ψθ̂CE (yi, ai)

νi + κT (θ̂CE)ψθ̂CE (yi, ai)
= 0, (4.7)

n∑
i=1

κT (θ)ψ′θ(yi, ai)

νi + κT (θ)ψθ (yi, ai)

∣∣∣∣∣
θ=θ̂CE

= 0 (4.8)

where ψ′θ′ = ∂ψθ/∂θ|θ=θ′ .

Equations (4.7) and (4.8) closely resemble those used by Qin and Lawless (1994) to inspect
the asymptotic properties of empirical likelihood based estimators using independent and identi-
cally distributed data sets. These equations are also used in Section 5.1 to derive the asymptotic
properties of proposed θ̂CE .
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5 Asymptotic properties and estimators of standard errors

5.1 Asymptotic properties

We consider the asymptotic properties of θ̂CE under the true population distribution F 0 as the
population size N grows to infinity. We shall show that these properties of θ̂CE closely resembles
those for ordinary empirical likelihood based estimator as described in Qin and Lawless (1994).
For a formal framework for asymptotic analysis of growing population size we refer to Fuller
(2009).

Let us denote, f (y, a, ν, θ) = ψθ (y, a) /ν. Suppose θ0 be the true value of θ. We make the
following assumptions on f (Qin and Lawless, 1994; Serfling, 1980):

A.1. For all 1 ≤ i ≤ N , f (yi, ai, νi, θ0) are independent and identically distributed random
vectors for any θ.

A.2. For all ν, EP [f(y, a, ν, θ0)] = 0.

A.3. EP
[
f (y1, a1, ν1, θ0) f (y1, a1, ν1, θ0)T

]
is positive definite.

A.4. The Jacobian ∂f (y1, a1, ν1, θ) /∂θ is continuous in a neighbourhood of θ0. Furthermore, in
this neighbourhood ||∂f (y1, a1, ν1, θ) /∂θ|| and ||f (y1, a1, ν1, θ) ||3 are both bounded by an
integrable function G(y, a, ν).

A.5. EP [∂f (y1, a1, ν1, θ) /∂θ|θ=θ0 ] has rank p.

A.6. The Hessian matrix ∂2f (y1, a1, ν1, θ) /∂θ∂θ
T is continuous in θ in a neighbourhood of the

true value θ0 and in this neighbourhood, ||∂2f (y1, a1, ν1, θ) /∂θ∂θ
T || is bounded by some

integrable functionH(y, a, ν).

Lemma 5.1. Suppose the assumptions A.1.- A.5. hold. Then, asN →∞, underF0, with probabil-
ity 1, LCE attains its maximum value at some point θ̂ in the interior of the ball ||θ− θ0|| ≤ N−1/3.
θ̂ and κ̂ = κ(θ̂) satisfy equations (4.7) and (4.8).

To prove asymptotic unbiasedness and normality, we first define, G = EP
[
ν−1

1 ∂ψθ (y1, a1) /∂θ|θ0
]

and G? = EP

[
ν−2

1 ψθ0 (y1, a1)ψθ0 (y1, a1)T
]
.

Theorem 5.1. Suppose the assumptions A.1. - A.6. hold. Then equations (4.7) and (4.8), with n
replaced by N , admits a sequence of solutions

(
θ̂

(N)
CE , κ̂

(N)
)

such that,

1.
(
θ̂

(N)
CE , κ̂

(N)
)
−→ (θ0, 0) almost surely,
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2.
√
N
(
θ̂

(N)
CE − θ0

)
=⇒ N (0, VCE) in distribution, where

VCE =
{
GT (G?)−1G

}−1
, (5.1)

3.
√
N
(
κ̂(N) − 0

)
=⇒ N (0, Vκ) in distribution, where

Vκ = (G?)−1
{
I −GVCEGT (G?)−1

}
, (5.2)

4. θ̂(N)
CE and κ̂(N) are asymptotically independent.

Corollary 5.1. If G is invertible, VCE = G−1G?(GT )−1. Furthermore, κ̂ is asymptotically degen-
erate at 0.

5.2 Estimators for finite sample sizes

For finite sample size n, the standard error of θ̂CE can be estimated from a sandwich estimator
based on the expression of VCE in (5.1). To that effect we define Ĝ =

∑n
i=1 ŵi∂ψθ (yi, ai) /∂θ|θ=θ̂CE

and Ĝ? =
∑n

i=1 ŵ
2
iψθ̂CE (yi, ai)ψθ̂CE (yi, ai)

T . The estimated variance of θ̂CE is then given by

V̂CE =
{
ĜT (Ĝ?)−1Ĝ

}−1

.

5.3 Predictors for finite population

Suppose that the parameter θ can be interpreted as a valid summary of the finite population of
size N which is the solution of the set of equations

∑N
i=1 ψθ (yi, ai) = 0 . Let θ̂P is the predicted

value of θ in the population. Clearly, one choice of θ̂P is θ̂CE .

When the sample size is N and each πi = νi = 1, by Theorem 4.1 ŵi = N−1 for each i = 1,
2, . . ., N . That is θ̂CE = θ̂P . Likewise, under the same conditions V̂CE becomes

1

N
·

[
1

N

N∑
i=1

∂ψθ (yi, ai)

∂θ

∣∣∣∣
θ̂P

]−1 [
1

N

N∑
i=1

ψθ̂P (yi, ai)ψθ̂P (yi, ai)
T

][
1

N

N∑
i=1

∂ψθ (yi, ai)

∂θ

∣∣∣∣
θ̂P

]−1

.

This is exactly the square of the standard error of θ̂CE obtained from N i.i.d. observations. This
shows that our estimates comply with the assumptions of the superpopulation model.

The prediction variance VP for this choice of θ̂P , is more difficult to estimate. Such variances
should converge to zero as the sample size increases to the population size. The simple finite pop-
ulation correction leading to V̂P

(
θ̂P

)
= (1− n/N) V̂CE does not seem to be very accurate. It

should be also noted that, the proposed variance estimate does not include the dependence among
the sampled observations or the association between the observations and the inclusion probabili-
ties. These terms will play a significant role in estimating the prediction variance.
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6 Illustration in the 2004 U.S. presidential election

In this section, we illustrate the inference resulting from this framework and compare it to
a standard estimator. We consider the county-wise vote counts from the presidential election in
United States of America in 2004. The data contains the total votes cast in favour of John Kerry,
George W. Bush and Ralph Nader in each of the N = 4600 counties in the country. Let p be
the proportion of counties where John Kerry had the majority of the cast votes in the election.
From the data we find that Mr. Kerry won 1507 counties, which means the true value of the
proportion is approximately 0.3276. Suppose we want to estimate p from a sample of size n = 40.
Samples were drawn with probability proportional to the total votes cast in the county for the
three candidates. We use the Tillé, Midzuno and PPS-systematic schemes (Cochran, 1963; Tille,
2006) to draw our samples. The observations from the Tillé scheme are nearly independent, those
from the Midzuno scheme observations are slightly more dependent, and those from the systematic
sample are highly dependent. All samples were drawn using the sampling package for R (Lumley,
2013; R Development Core Team, 2013).

Suppose Ii is the indicator that Kerry won the ith county in the sample. Thus the constraint
imposed by the model on the unknown weights w is given by

n∑
i=1

wi (Ii − p) = 0. (6.1)

Suppose ci denote the total votes cast in the ith county for the three candidates. The probability of
its selection, πi, is proportional to ci. Since ci is available in the sample, we take Vi = (Ii, ci) and
since π is proportional to ci, we get νi = πi for all i.

The unique solution of the equation
∑n

i=1 (Ii − p) π−1
i = 0 is p̂CE =

∑n
i=1 Iiπ

−1
i /

∑n
i=1 π

−1
i .

This coincides with the Hajek estimator, usually motivated by design-based considerations. Note
that, although the point estimators coincide, the CE approach provides a different inferential frame-
work. From Theorem 4.1, p̂CE is the unique empirical likelihood based estimate and ŵ ∝ π−1.
Furthermore, from Theorem 5.1 and Corollary 5.1, an estimate of the variance is given by

V̂CE =

∑n
i=1 (Ii − p̂CE)2 π−2

i(∑n
i=1 π

−1
i

)2 . (6.2)

We estimate p̂P and V̂P as described in Section 5.3.

We compare the CE estimator to the Horvitz-Thompson (HT) estimator for a mean, given by
p̂HT = (4600)−1

∑n
i=1 Ii/πi.

We summarise the results of our study in Figure 2, Table 1 and Table 2. They are based on
an average of 1000 draws. Standard errors and the coverage of the two-sided nominally 95%
confidence intervals, obtained using Gaussian limits, are also presented.

From the histograms in Figure 2 it is seen that the Horvitz-Thompson estimator is not always
bounded above by one. So in some cases the estimates of the proportion is hard to interpret. This is
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Figure 2: Histograms of Horvitz-Thompson and Constrained Empirical Likelihood esti-
mator of the proportion of counties won by John Kerry in the 2004 United States Presi-
dential election. The plots are based on 1000 replications each of sample size 40 collected
using 2(a) Tille, 2(b) Midzuno and 2(c) PPS-systematic schemes, respectively. The ver-
tical black line indicates the true value of this proportion in the population, which is
0.3276.

specially true for PPS-systematic sampling where the highest value turns out to be 11.34 (truncated
in Figure 2(c)). This estimator turns out to be larger than the one in other two types of sampling
as well. In contrast, the Constrained Empirical Likelihood estimator always varies between zero
and one. The mean of the Horvitz-Thompson estimator of proportion turns out to be quite close
to the correct value for all sampling schemes (see Table 1). This is similar to the proposed p̂P .
The histograms show that it has a higher modal value than the proposed estimator. However, the
skewness of the former is larger.

In Table 2, we intend, first, to compare the variation in the Horvitz-Thompson estimator with
the Constrained Empirical Likelihood estimator, and second, to compare the performance of the
Constrained Empirical Likelihood asymptotic variance estimator in (6.2) with some competing
ones. For comparison we calculate (using the survey package in R (R Development Core Team,
2013)) the Hartley-Rao and Yates-Grundy-Sen estimators of the variance of the Hajek estimator.
Note that, like V̂CE , the Hartley-Rao estimator only uses the first-order inclusion probabilities.
The pairwise inclusion probabilities are used in the Yates-Grundy-Sen estimator only. All three
estimators are compared with the observed root mean squared error of p̂P from 1000 draws. This
root mean squared error is used as a benchmark in our comparison. As expected, it has coverage
close to the nominal value.

The root mean squared errors of the Constrained Empirical Likelihood estimator are insensi-
tive to the choice of sampling procedures. An exception is the Yates-Grundy-Sen estimator under
systematic sampling, where negative estimates of variance are obtained. We see that all three es-
timators, that is the proposed V̂CE , Hartley-Rao and Yates-Grundy-Sen estimators underestimates
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Table 1: Point estimates of the Constrained Empirical Likelihood and the Horvitz-Thompson es-
timator under three different sampling schemes. We estimate the proportion of counties won by
John Kerry in the 2004 presidential election. The true value is 0.3276.

Sampling Mean
Scheme Estimator Estimate
Tillé Horvitz-Thompson 0.3376

Conditional EL 0.3086
Midzuno Horvitz-Thompson 0.3205

Conditional EL 0.3089
Systematic Horvitz-Thompson 0.3277

Conditional EL 0.3111

Table 2: Standard errors and coverages for two-sided nominally 95% confidence intervals of the
Horvitz-Thompson and the Constrained Empirical Likelihood estimator under three different sam-
pling schemes.

Sampling Estimator Variation
scheme Observed Conditional EL Hartley-Rao Yates-Grundy-Sen

SE CI% SE CI% SE CI% SE CI%
Tillé HT 0.383 95.0% - - 0.386 63.1% 0.385 63.1%

CE 0.188 95.1% 0.139 72.3% 0.136 69.4% 0.136 69.4%
Midzuno HT 0.348 95.6% - - 0.366 63.1% 0.342 62.0%

CE 0.189 95.8% 0.136 69.4% 0.139 71.0% 0.144 69.5%
Systematic HT 0.511 97.8% - - 0.524 62.7% NA NA

CE 0.187 95.5% 0.136 74.0% 0.137 74.5% NA NA

the observed root mean squared error (when it exists). This underestimation is expected, since both
estimators only approximates the true variance of the Hajek estimator (Särndal et al., 2003). Their
performances seems to be comparable.

The Horvitz-Thompson estimator, in general, has higher variance and lower coverage than the
proposed estimator. It is also seen that the average values of Hartley-Rao and Yates-Grundy-Sen
estimators are very close to its observed variance (except for systematic sampling). However, the
histograms of these two variance estimators are skewed, which explains the low coverage.

We intend to make the data and R code available for these procedures on CRAN (R Develop-
ment Core Team, 2013). The core routines will be compatible with the survey package (Lumley,
2013).
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A Proofs

In this section we present the proofs of the theorems.
Proof of Lemma 2.1

Proof. Recall that EP [IS | DP ] = πS . Now Assumption 1 implies

π (S,DP) = EP [πS | DP ] = EP [EP [IS | DP ] | DP ] = EP [IS | DP ] = πS.

The other side is immediate.

Proof of Lemma 2.2

Proof. 1. Using πS = π (S,DP), EP [IS | πS, DP ] = EP [IS | DP ] = πS . This means

EP [IS | πS] = EP [EP [IS | πS, DP ] | πS] = EP [EP [IS | DP ] | πS] = πS. (A.1)

2. Clearly PrP [IS = 1 | πS, DP ] = πS . Since IS is binary, its conditional distribution given
πS and DP is a function of πS only. So from the definition of conditional independence
(Lauritzen, 1996) the result follows.

Proof of Lemma 2.3

Proof. From Lauritzen (1996, page 29) it can be shown that, IS ⊥⊥ (XP , XP , DP) | πS is equiv-
alent to IS ⊥⊥ DP | πS and IS ⊥⊥ (XP , XP) | (πS, DP). From Lemma 2.1, under Assumption 1,
the second conditional independence relationship is equivalent to IS ⊥⊥ (XP , XP) | DP .

Proof of Lemma 2.4

Proof. The proofs follow from Lauritzen (1996, page 29). We only present a sketches.

1. Follows from Assumption 2.

2. From Assumption 2, it follows that IS ⊥⊥ (XP , XP) | (πS, DP) holds. This together with
Assumption 1 completes the proof.

3. This statement follows from 2. above.
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Proof of Theorem 4.1

Proof. Since the geometric mean is bounded by the arithmetic mean. Clearly the relationship
(
∏n

i=1 nνiwi) / (
∑n

i=1 νiwi)
n ≤ 1 holds. The equality holds iff wi ∝ ν−1

i for each i = 1, 2, . . . , n.

Now for any θ̂ ∈ V ,
∑n

i=1 ψθ̂ (yi, ai) /νi = 0. Thus ŵi(θ̂) = ν−1
i /

∑n
i=1 ν

−1
i , i = 1, 2, . . . , n

satisfy the constraints. Furthermore,
{∏n

i=1 nνiŵi(θ̂)
}
/
{∑n

i=1 νiŵi(θ̂)
}n

= 1. Thus θ̂ ∈ Θ̂ and

V ⊆ Θ̂.

Now let θ ∈ Θ̂ \ V . For each fixed θ, Wθ is a convex set and the log-likelihood (3.3) is
a concave function. Thus the latter has a unique maxima ŵ. Since

∑n
i=1 ψθ (yi, ai) /νi 6= 0,

ŵi(θ) 6= ν−1
i /

∑n
i=1 ν

−1
i , for at least one i. Thus {

∏n
i=1 nνiŵi(θ)} / {

∑n
i=1 νiŵi(θ)}

n
< 1.

However, since V 6= ∅, there is a θ? ∈ V such that {
∏n

i=1 nνiŵi(θ
?)} / {

∑n
i=1 νiŵi(θ

?)}n >

{
∏n

i=1 nνiŵi(θ)} / {
∑n

i=1 νiŵi(θ)}
n. This implies θ 6∈ Θ̂ and Θ̂ \ V = ∅.

Proof of Corollary 4.1

Proof. Evident from the definition of F̂CE and Theorem 4.1 above.

Proof of Lemma 5.1

Proof. Note that, for any θ, equation (4.7) can be re-expressed as,

n∑
i=1

ψθ(yi, ai)/νi
1 + κ(θ)ψθ(yi, ai)/νi

= 0. (A.2)

Now the rest of the proof follows from Owen (2001) and Qin and Lawless (1994, Lemma 1.),
mutatis mutandis.

Proof of Theorem 5.1

Proof. The proof is very close to that of Qin and Lawless (1994, Theorem 1). We expand (4.7)
and (4.8) around (θ0, 0). After some algebra this yields(

κ̂(N)

θ̂
(N)
CE − θ0

)
= J−1

N

(
− 1
N

∑N
i=1 f(yi, ai, νi, θ0) + op(δN)

op(δN)

)
,
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where

JN =

− 1
N

∑N
i=1

1
ν2i
ψθ0(yi, ai)ψθ0(yi, ai)

T 1
N

∑N
i=1

1
νi

∂ψθ(yi,ai)
∂θ

∣∣∣
θ=θ0

1
N

∑N
i=1

1
νi

(
∂ψθ(yi,ai)

∂θ

)T ∣∣∣∣
θ=θ0

0

 −→ (
−G? G
GT 0

)
a.s.

and δN = ||θ̂(N)
CE−θ0||+||κ̂(N)|| = Op

(
N−1/2

)
. The proof follows since

∑N
i=1 f(yi, ai, νi, θ0)/N =

Op(N
−1/2).

Proof of Corollary 5.1

Proof. The first part is trivial. For the second part note that if G is invertible, Vκ = 0.
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