Lawrence Berkeley National Laboratory
 LBL Publications

Title
The S/L Branching Ratio of Y *1

Permalink

https://escholarship.org/uc/item/7j54h04v

Authors

Alston, Margaret H
Alvarez, Luis W
Eberhard, Philippe
et al.

Publication Date

1961-04-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0

UNIVERSITY OF CALIFORNIA

Ernest O. Saurence

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFOKULA
 Lawrence Radiation Laboratory Berkeley, California
 Contract No. W-7405-eng-48

 William Graziano, Harold K. Ticho, and Stanley G. WojcickiApril 25, 1961

THE Σ / Λ BRANCHING RATIO OF $Y_{1}^{*}+$

Margaret H. Alston, Luie W. Alvarez, Philippe Eberhard, Myron L. Good,** William Graziano, Hatuld K. Ticho, ${ }^{74}$ and Stanley G. Wojcicki

Lawrence Radiation Laboratory and Department of Physics Univeraity of California, Berkeley, California
\qquad
April 25. 1961

Recently a $T=1$ resonance in the $\Lambda \pi$ eystem called X_{i}^{*} has been observed with a mass of 1385 Mev. ${ }^{1-6}$ Two types of resonances have been predicted that might relate this observation to other elementary-particle interactionis: (1) $3 / 2$ resonances in the $\Lambda \pi$ and $\boldsymbol{Z}_{\pi} \pi$ systemb predicted by global symmetry ${ }^{7,8}$ corresponding to the $(3 / 2,3 / 2)$ resonance of the HN sybtem, (2) a pin-1/2 Y-T resonance resulting from a bound state in the KN system. ${ }^{9,10}$ The position and width of the observed Y_{1}^{*} resonance agree with both theories, but since the epin and parity have not yet been determined, it is impossible at present to dietinguish between the two theoretical interpretations.

Global symmetry ${ }^{11}$ predicts a theoretical branching ratio $\left(X_{1}^{*+} \rightarrow \Sigma^{0}+\pi^{+}\right) /\left(Y_{1}^{*+} \rightarrow \Lambda+\nabla^{+}\right)=1 / 4$ for the $T=1$ resonance. The phase-space factor $\left(P_{\Sigma} / P_{\Lambda}\right)^{3}=(126 / 207)^{3}=0.225$ reduces the expected branching ratio for this process to $R=(1 / 4) \times 0.225 \sim 5 \%$. Eurthermore as. a consequence of charge independence the rates $Y_{1}^{\# \pm} \rightarrow \Sigma^{ \pm}+\pi^{0}, Y_{1}^{\#} \pm \Sigma^{0}+\pi^{*}$. and $Y_{1}^{* 0} \rightarrow \Sigma^{*}+\pi^{F}$ aŕe equal. In addition to the $T=1$ resonance, a $T=2 \mathbb{\Sigma} \pi$ resonance with a total energy of 1540 Mev and a half width, $\mathrm{r} / 2$, of 60 Mev is predicted by global symmetry. ${ }^{8}$

Work done under the auspices of the U.S. Atomic Energy Commiseion.
§Presently at Laboratoire de Physique Atomique, College de France. Patig, France. **Presently at University of Wisconsin. Madison, Wisconsin.

* Presently at the University of Calliornia at Los Angeles, Los Angeles, California

The $\bar{K}-N$ bound-state model suggests values of \mathbf{R} considerably larger
 R can become quite s mall, especially if the (EA) parity should be odd.

To investigate these possibilities, we have continued our study of $K^{-}-p$ interactions at $1.15 \mathrm{Bev} / \mathrm{C}$ in the Lawrence Radiation Laboratory $15-\mathrm{in}$. Kydrogen bubble chamber by studying events in which a Σ is observed. The total cross sections for these interactions are shown in Table I; only statistical errors are indicated. The separation of $\Sigma^{ \pm}+\pi^{\mp}+\pi^{0}$ and $\Sigma^{ \pm}+\pi^{\mp}+2 \pi^{0}$ events was difficult because many of the latter events can also be fitted to the first hypothesia. The numbers given in Table 1 and in the Dalite and mass plots below were corrected to account for this ambiguity. The correction factor was estimated by using our $\Sigma^{ \pm}+\pi^{\mp}+\pi^{+}+\pi^{-}$events.

Dalite plots for the threedbody reactions are shown in Fig. 1. The X_{i}^{*} resonance of mase 1385 Mev should appear as a bilnching of events about both horizontal and vertical lines corresponding to $T_{\pi}=282 \mathrm{Mev}$. To obtain an upper limit for the branching ratio R, we combined the events into different charge states of the Σ_{π} system. All charged Σ were observed; however, in the Σ^{0} cases only two-thirds of the events were observable because of the neutral decays of the Λ^{0}. Furthermore, we had estimated that about one third of the $\Sigma^{0} \pi^{+}+\pi^{-}$events also fitted a $\Lambda \pi^{+} \pi^{-}$interpretation and had been included in already published data. ${ }^{1}$ Consequently each $\Sigma^{0} \pi^{+} \pi^{*}$ event was given a weight of 2.25. The resultant mass spectra are shown in Fig. 2. In the cases of $\left(\Sigma_{\pi}\right)^{+}$and $\left(\Sigma_{\pi}\right)^{-}$there appears to be no excess of events in the region of $M_{1}=1385 \mathrm{Mev}$. Using the number of $\left(A w^{+}\right)$and $\left(A \pi^{\circ}\right)$ events with $1355 \mathrm{Mev}<\mathrm{M}_{\mathrm{A} \pi}<1415 \mathrm{Mev}$ from reference 1 , and assuming that all V_{π} events in the same regions of Eig. 2 are Y_{1}, we obtain $R_{\text {max }} \leqslant 8 \%$.

This treatment yields an uncealistic upper limit, since there is no evidence of any peaking above background. The reaults are consistent with $R=0$. The $\Sigma^{ \pm}+\pi^{+}+2 \pi^{0}$ events possibly misidentified as $\Sigma^{ \pm}+\nabla^{7}+\pi^{0}$ (or vice verba) do not fall into the mass band used in this analysis, aince they yield apparently high masses of the $\Sigma^{*} \mathbb{\pi}^{0}$ syatem.

We conclude that the Σ / Λ branching ratio $\{$ for the atrong decay of the $T=1 \quad X_{1}^{*}$ is at most a fow percent and is consiatent with zero. This result agrees with the value of R obtained by Berge. ${ }^{3}$ As indicated above this value of R does not rule out either the global symmetry or the KN bound-state model of the Y_{1}^{*} resonance. No ovidence for the resonance with $T=2$ prodicted by global symmetry at $M=1540$ Mev is observed; however, this wide resonance would be hard to separate from background.

The authors wish to thank the many members of the Bevatron and $15-\mathrm{in}$. bubble chamber crew and the acanners who made this experiment possible. One of us, Philippe Eberhard, wishes to thank the Philippe Foundation, Inc. and the Commisariat a L'Energie Atomique for a fellowship.

Reaction

$$
\begin{aligned}
K^{-}+\sigma & \rightarrow \Sigma^{-}+\pi^{+} \\
& \rightarrow \Sigma^{+}+\pi^{+} \\
& \rightarrow \Sigma^{+}+\pi^{-}+\pi^{0} \\
& \rightarrow \Sigma^{-}+\pi^{+}+\pi^{0} \\
& \rightarrow \Sigma^{0}+\pi^{+}+\pi^{-} \\
& \rightarrow \Sigma^{+}+\pi^{-}+\pi^{0}+\pi^{0} \\
& \rightarrow \Sigma^{-}+\pi^{+}+\pi^{0}+\pi^{0} \\
& \rightarrow \Sigma^{+}+\pi^{+}+\pi^{-}+\pi^{-} \\
& \rightarrow \Sigma^{-}+\pi^{-}+\pi^{+}+\pi^{+}
\end{aligned}
$$

No. of events (uncorrected)

Crose sections (m, b)

$1.40 * 0.16$
1.34 ± 0.18
0.97 ± 0.16
0.83 ± 0.20
0.97 ± 0.20
0.18 ± 0.06
$0.12 * 0.05$
$0.19 * 0.06$
0.12 ± 0.05

FOOTNOTES

1. M. Alston, L. Alvarez, P.Eberhard, M. Good, W. Graziano, H. Ticho, and S. Wojcicki, Phys. Rev. Letters 5, 520 (1960).
2. O. Dahl, N. Horwitz, D. Miller, J. Murray, and Dhite, Phys. Rev. Letters 6, 142 (1961).
3. J. P. Berge, P. Gastien, O. Dahl, M. Ferro-Luzai, J. EKirz, D. H. Miller, J.J. Murray, A.R. Rosenfeld, R.D. Tripe, and M. Watson, (aubmitted to Phys. Rev. Letters).
4. H. Martin, L. Leipuner, W. Chinowbky, E. Shively, and R. Adair, Phya. Rev. Letters 6. 283 (1961).
5. M. M. Block, E.B. Brucker, R. Gessaroli, T. Kikuchi, A. Kovacs, C.M. Meltzer, R. Kraemer, M. Nussbaum, A. Pevsper, P. Schlein, R. Strand, H. O. Cohn, E.M. Harth. J. Leitner, L. Lendinara, L. Monari, and G. Puppi. (submitted to Nuovo cimento).
6. R. Ely, Sifung, G. Gidal, Y. Pan, W. Powell, and H. White, Bull, Am. Phys. Soc. 6, 291 (1961).
7. M. Gell-Mann, Phys. Rev. 106, 1297 (1957).
8. P. Amati, A. Starghidhini, and B. Vitali, Phys. Rev. Letters 5, 524 (1960), Nuovo cimento 13. 1143 (1959).
9. R. Dalitz and S.F. Tuan, Phys. Rev. Letters 2. 425 (1959).
10. R. Dalitz, Phys. Rev. Lettere 6, 239 (1961).
11. Ph. Meyer, J. Prentki, and Y. Yamaguchi, Phya. Rev. Letters 5, 442 (1960).
12. J. L. Shaw, University of California at La Jolla (private communication).

FIGURE LEGENDS

Fig. 1. Dalite plota for the reactions:
(a) $\mathbf{K}^{-}+\mathbf{p} \rightarrow \mathbf{\Sigma}^{+}+\mathbf{z}^{-}+\boldsymbol{\pi}^{0}$
(57 events)
(b) $\mathrm{K}^{-}+\mathrm{p} \rightarrow \mathrm{E}^{-}+\pi^{+}+\boldsymbol{n}^{0}$
(54 eventa)
(c) $\mathrm{K}^{-}+\mathrm{P} \rightarrow \mathrm{E}^{0}+\mathrm{T}^{+}+\mathrm{F}^{-}$ (27 eventa).

Fig. 2. Mase plots of the charged and neutral \mathbb{Z} curves bepresenting phase-space distributions.
(a) Mass of $\left(\Sigma_{W}\right)^{-}$, from the reactions: $K^{-}+p-\Sigma^{0}+\#^{-}+H^{+}$

$$
\rightarrow x^{-}+\pi^{0}+\pi^{+}
$$

(b) Mass of (En) ${ }^{+}$. from the reactions: $K^{*}+p \rightarrow \mathbf{Z}^{0}++^{+}+{ }^{+}$

$$
\rightarrow \Sigma^{+}+\pi^{0}+\pi^{-}
$$

(c) Mass of $(\Sigma \pi)^{0}$, from the reactions: $K^{-}+p \rightarrow \Sigma^{4}+\pi^{-\infty}+\nabla^{0}$ $-\Sigma^{-}+\#^{+}+\#^{0}$.

