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ever, with more visitations to different planets, the agent makes increasingly
accurate and precise predictions. B. Without structure learning If the
forager’s prior assumes a single cluster (α = 0), the forager makes inaccu-
rate and imprecise predictions - either over or underestimating the upcoming
decay, depending on the planet type. This inaccuracy persists even with ex-
perience because of the strong initial assumption. Uncertainty adaptive
discounting. C. The effect of γcoef The entropy of the posterior distribu-
tion over patch type assignment is taken as the forager’s internal uncertainty
and is used to adjust their discounting rate, γeffective. The direction and
magnitude of uncertainty’s influence on the discounting rate is determined
by the parameter, γcoef . The more positive the parameter is, the more the
discounting rate is reduced with increasing uncertainty, formalized as entropy.
If negative, the discounting rate increases with greater uncertainty. D. The
effect of γeffective on overharvesting Increasing γbase increases the base-
line discounting rate while increasing the slope term increases the extent the
discounting rate adapts in response to uncertainty. E. Overharvesting in-
creases with α and γcoef in single patch type environments Simulating
the model in multiple single patch type environments with varying richness,
we find that increasing α and γcoef , holding γbase constant, increases the extent
of overharvesting (PRT relative to MVT). The richness of the environment
determines the extent of the parameters’ influence, with it being greatest in
the poor environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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2.3 Model-free results A. Planet richness influences over and under-
harvesting behavior. Planet residence times (PRT) relative to Marginal
Value Theorem’s (MVT) prediction are plotted as the median (± one quar-
tile) across participants. The grey line indicates the median while the white
cross indicates the mean. Individuals’ PRTs relative to MVT are plotted as
shaded circles. In aggregate, participants overharvested on poor and neutral
planets and acted MVT optimally on rich planets. B. Decision times are
longer following rare switch transitions. If a participant has knowledge
of the environment’s planet types and the transition structure between them,
then they should be surprised following a rare transition to a different type.
Consequently, they should take longer to decide following these transitions.
As predicted, participants spent longer making a decision following transitions
to different types (“switch”) relative to when there was transition to a planet
of the same type (“no switch”). This is consistent with having knowledge of
the environment’s structure and dynamics. C. Overharvesting increases
following rare switch transitions. On poor and neutral planets, partic-
ipants overhavested to a greater extent following a rare “switch” transition
relative to when there was a “no switch” transition. This is consistent with
uncertainty adaptive discounting. Switches to different planet types should
be points of greater uncertainty. This greater uncertainty produces heavier
discounting and in turn staying longer with the current option.*p <0.05, **p
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harvesting. This demonstrates that overharvesting, a seemingly suboptimal
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2.5 Parameter distributions A. Participants learned the structure of the
environment. Distribution of participants’ priors over environment complex-
ity, α. Each individual’s parameter is shown relative to a baseline threshold,
0.8. This threshold is the lowest value that produced multi-cluster inference in
simulation. Most participants (76%) fall above this threshold indicating a ma-
jority learned the environment’s multi-cluster structure. B. Environment
complexity parameters were positively related to reaction time sen-
sitivity to transition frequency. An individual must infer multiple planet
types to be sensitive to the transition structure between them. In terms of
the model, this would correspond to having a sufficiently high environment
complexity parameter. Validating this parameter, it was positively corre-
lated with individual’s modulation of reaction time following a rare transition
to a different planet type. C. Participants adapted their discounting
computations to their uncertainty over environment structure. Dis-
tribution of participant’s uncertainty adaptation parameter, γcoef . Each indi-
vidual’s parameter is shown relative to a baseline of 0. A majority were above
this threshold (93%) indicating most participants dynamically adjusted their
discounting, increasing it when they experienced greater internal uncertainty.
D. Uncertainty adaptation parameters were positively related to
overharvesting sensitivity to transition frequency. If an individual in-
creases their discounting to their internal uncertainty over environment struc-
ture, then they should discount more heavily following rare transitions and
stay longer with the current option. Consistent with this, we found that the
extent an individual increased their overharvesting following a rare transition
was related to their uncertainty adaptation parameter. . . . . . . . . . . . . 26
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their own characteristic distribution over depletion rates. C. Environment
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3.2 A. Structure learning computation. Based on the distribution of deple-
tions observed on the current planet, the forager must infer the type that the
current planet is most likely to belong to. Simultaneously, the forager must
also infer the number of planet types present in the environment. This higher
level inferential process is done according to a Chinese Restaurant Process. B.
Structure learning predictions. The number of planet types the forager
infers is dependent on the concentration parameter, α. Our model predicts
distinct patterns of over- and under-harvesting on the various planet types de-
pending on the number of planet types the forager infers. Bar heights indicate
the agent simulated under the model’s predicted planet residence time while
the dotted lines indicate the MVT-optimal PRT. C. Uncertainty adap-
tive planning computation. Foragers adapt their planning horizon with
respect to their uncertainty over the current planet’s underlying type. When
uncertain, they shouldn’t plan too far in advance, but when certain, they
should plan further into the future. D. Uncertainty adaptive planning
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Humans often fail to accord with the predictions of optimal decision making models. How

can we be such poor decision makers in simple task environments and yet also be deft naviga-

tors of the real world? This dissertation presents work suggesting that these two observations

are likely related: Our decision making strategies have been shaped by the complexity and

uncertainty of real-world decision problems, and we apply these strategies even in much

simpler decision contexts. In each of the dissertation’s chapters, we consider a presumed

suboptimal behavior and demonstrate how it can emerge from rational responses to uncer-

tainty. In chapters 2 and 3, we focus on the case of patch foraging. We show that both

adults’ over-exploitation and children’s over-exploration can stem from rational inference of

the environment’s underlying structure. Our results reveal that these two opposing behaviors

emerge from different structural priors. Finally, in chapter 4, we focus on the reward learning

deficits that characterize anhedonia. Using a reinforcement learning model, we show that

simulated agents who have rationally adapted to an unpredictable early life environment

produce anhedonia-like behavior when later placed in a predictable environment. Collec-

tively, this work demonstrates how multi-scale learning processes work to mitigate the many

forms of uncertainty present in real-world decisions. By taking these learning processes into

account, we are able to rationalize multiple “suboptimal” behaviors.
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Chapter 1

Introduction

“Evolution strikes me as infinitely more spiritually profound than Genesis.”

Maggie Nelson, The Argonauts

How does the mind acquire its form? Cognitive scientists have historically turned to the

surrounding environment for answers. Illustrating why, Roger Shepard, famously likened the

mind to a ”mirror” reflecting the world’s invariant features [174]. Underlying his metaphor

is an insight that underpins rational approaches to modeling cognition: the environment

poses problems to the mind, and to solve them, the mind internalizes the environment.

Rational frameworks, exemplified by John Anderson’s rational analysis [8] and David Marr’s

computational level of analysis [127], take the problem posed by the environment and derive

the problem’s optimal solution to obtain a model of a cognitive process. What is unique

about a rational model is that it provides insights into the purpose of a particular cognitive

process. Put differently, it tells us why the process occurs the way it does.

Most rational models start with the working assumption that the mind is already well-

adapted to the environment. To ensure this assumption is met, many decision making tasks
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provide participants with full knowledge of the task environment [76, 132]. And yet, even

with an abundance of information, participants continue to violate the predictions of optimal

models of decision making [196]. How is it possible that we can fail at such simple choice

tasks and at the same time, thrive in the real world?

While the decision making literature suggests we are poor decision makers, the learning

literature paints a more optimistic picture, suggesting we are exceptional learners. Humans

excel at uncovering the hidden structure of novel environments [71] and using this structure

knowledge to learn from unobserved, counterfactual outcomes [52, 37]. Sometimes the desire

to find structure is so great, that learners occasionally “see” structure where there is, in

fact, only noise [208]. Further demonstrating humans’ impressive learning abilities, they

flexibly modulate their learning in response to environmental changes, in ways consistent

with theoretical predictions of rational learning models [17, 136, 204, 109, 138]. Perhaps most

strikingly and pertinently for our work, similar models have been used to demonstrate the

normative advantages of our noisy and sometimes error prone learning processes [2, 141, 207].

How can we reconcile our poor decision making with our excellent learning? To gain traction

on this question, we begin by reflecting on how the decision problems encountered in task

environments differ from those found in real-world environments. Task environments tend

to be simple and static, whereas real world environments are complex and dynamic. Thus,

behavior that seems suboptimal in the context of a single task may actually reflect rational

adaptation to the agent’s previous environment, and perhaps even to the entire distribution

of environments the agent has experienced across their lifetime.

The work in this dissertation uses rational learning models to re-frame seemingly “irrational”

decisions. Central to our approach is the recognition that our experiences in past environ-

ments shapes learning in the current environment. Even when task environments are much

simpler, we transfer over learning and decision making strategies that are adaptive in real-

world environments (Chapters 2 and 3). Moreover, we demonstrate particular persistence
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in using strategies that were adaptive early in life. (Chapter 4). Unlike many optimal mod-

els, we do not start with the assumption of already being well-adapted to the environment.

We instead model how it might rationally occur over multiple timescales – within-task and

across development. This work suggests that the mind should be well-adapted not to a single

environment, but many.

In Chapter 2, we use a Bayesian structure learning model to explain the widely observed

suboptimality of “overharvesting” in patch foraging. Foragers, from rodents to humans, stay

in patches of resources longer than the optimal decision rule prescribes. Importantly, this

optimal model assumes the forager has perfect knowledge of their environment. By relaxing

this assumption and replacing it with the assumption that foragers are Bayes-optimal struc-

ture learner, we show that even a Bayes-optimal learner can overharvest. They specifically

do so when they expect the environment to be more complex than the simple environment

they end up in. We test the critical predictions of the model against participants’ behavior

in a novel patch foraging task and find that our model provides a superior explanation of

participants’ adaptation to the richness and dynamics of the environment, relative to the

optimal policy and other comparison models, .

In Chapter 3, we demonstrate that the model from Chapter 2 can also explain the overexplo-

ration of children and adolescents. In the patch foraging task presented in Chapter 2, we find

that children and adolescents are more exploratory than adults, acting in greater alignment

with the optimal decision policy. Our model proposes that this behavioral difference stems

from a difference in structural priors – children and adolescents expect environments to be

simpler.

In Chapter 4, we look over a longer timescale of adaptation – development. We examine

how early life environments’ persistent role in shaping how we learn and act can give rise

to behaviors that are considered maladaptive. In this chapter, we focus on the deficits

in reward learning which characterize anhedonia. We use a reinforcement learning model
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that models how an agent internalizes their environment. We demonstrate that a simulated

agent exposed to an unpredictable environment, during a period of heightened plasticity,

will develop internal representations that produce anhedonia-like behavior in predictable

environments.

By introducing models that take into account learning processes as they unfold over multiple

time scales, we not only provide better explanations of participants’ behavior, but we are

also able rationalize it. Through widening the scope of rational modeling to more expansive

timescales, we extend its set of possible use cases to include development. We can begin to

ask questions such as: why does the developmental trajectory take this form?
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Chapter 2

Overharvesting in human patch

foraging reflects rational structure

learning and adaptive planning

The contents of this chapter were published in Harhen, N.C., Bornstein A.M. Overharvesting

in human patch foraging reflects rational structure learning and adaptive planning. Proceed-

ings of the National Academy of Sciences (2023).

2.1 Introduction

Many real world decisions are sequential in nature. Rather than selecting from a set of known

options, a decision-maker must choose between accepting a current option or rejecting it for

a potentially better future alternative. Such decisions arise in a variety of contexts including

choosing an apartment to rent, a job to accept, or a website to browse. In ethology, these

decisions are known as patch leaving problems. Optimal foraging theory suggests that the
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current option should be compared to the quality of the overall environment [132]. An agent

using the optimal choice rule given by Marginal Value Theorem (MVT [35]) will leave once

the local reward rate of the current patch, or concentration of resources, drops below the

global reward rate of the environment.

Foragers largely abide by the qualitative predictions of MVT, but deviate quantitatively

in systematic ways - staying longer in a patch relative to MVT’s prescription. Known as

overharvesting, this bias to overstay is widely observed across organisms [40, 91, 101, 140?

, 173, 203, 34]. Despite this, how and why it occurs remains unclear. Proposed mechanisms

include a sensitivity to sunk costs [203, 34], diminishing marginal utility [40], discounting

of future rewards [25, 34, 40], and underestimation of post-reward delays [101]. Critically,

these all share MVT’s assumption that the forager has accurate and complete knowledge of

their environment, implying that deviations from MVT optimality emerge in spite of this

knowledge. However, an assumption of accurate and complete knowledge often fails to be

met in dynamic real world environments [100]. Relaxing this assumption, how might foragers

learn the quality of the local and global environment?

Previously proposed learning rules include recency-weighted averaging over all previous ex-

periences [40, 67] and Bayesian updating [105]. In this prior work, learning of environment

quality is foregrounded while knowledge of environment structure is assumed. In a ho-

mogeneous environment, as is nearly universally employed in these experiments, this is a

reasonable assumption as a single experience in a patch can be broadly generalized from

across other patches. However, it may be less reasonable in more naturalistic heterogeneous

environments with regional variation in richness. To make accurate predictions within a

local patch, the forager must learn the heterogeneous structure of the broader environment.

How might they rationally do so?

Prior work has found that humans act in accordance with rational statistical inference of

environment structure [2, 179, 39]. Here, we build on this work and extend it to a foraging
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context. We show that apparent overharvesting in these tasks can be explained by combin-

ing structure learning [165, 71] with adaptive planning, a combination of mechanisms with

potentially broad applications to many complex behaviors performed by humans, animals,

and artificial agents [107].

We tested the model’s predictions with a novel variant of a serial stay-switch task (Fig. 3.1A;

[40]). Participants visited different planets to mine for “space treasure” and were tasked to

collect as much space treasure as possible over the course of a fixed length game. TOn

each trial, they had to decide between staying on the current planet to dig from a depleting

treasure mine or traveling to a new planet with a replenished mine at the cost of a time

delay. To mimic naturalistic environments, we varied planet richness across the broader

environment while locally correlating richness in time. More concretely, planet richness

was drawn from a multimodal distribution (Fig. 3.1B) and transitions between planets of

a similar richness were more likely (Fig. 3.1C). Our model predicted distinct behavioral

patterns from structure learning individuals versus their non-structure learning counterparts

in our task. Specifically, within the multimodal environment, non-structure learners are

predicted to underharvest on average, while structure learners overharvest. Furthermore,

structure learners’ extent of overharvesting are predicted to vary across the task — decreasing

with experience and increasing following rare transitions between planets. In contrast, non-

structure learners should consistently underharvest.

We found that principled inference of environment structure and adaptation to this structure

can 1) produce key deviations from MVT that have been widely observed in participant

data across species and 2) capture patterns of behavior in a novel patch foraging task that

cannot be explained by previously proposed models. Taken together, these results reinterpret

overharvesting: Rather than reflecting irrational choice under a fixed representation of the

environment, it can be seen as rational choice under a dynamic representation.
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2.2 Methods

2.2.1 Participants

We recruited 176 participants from Amazon Mechanical Turk (111 male, ages 23-64, Mean=39.79,

SD=10.56). Participation was restricted to workers who had completed at least 100 prior

studies and had at least a 99% approval rate. This study was approved by the institutional

review board of the University of California, Irvine, under Institutional Review Board (IRB)

Protocol 2019-5110 (“Decision-making in time”). All participants gave informed consent in

advance. Participants earned $6 as a base payment and could earn a bonus contingent on

performance ($0-$4). We excluded 60 participants according to one or more of three criteria:

1. having average planet residence times 2 standard deviations above or below the group

mean (36 participants) 2. failing a quiz on the task instructions more than 2 times (33

participants) or 3. failing to respond appropriately to one or more of the two catch trials

(17 participants). On catch trials, participants were asked to press the letter “Z” on their

keyboard. These questions were meant to “catch” any participants repeatedly choosing the

same option (using key presses “A” or “L”) independent of value.

2.2.2 Task

Participants completed a serial stay-switch task adapted from previous human foraging stud-

ies [40, 117]. With the goal of collecting as much space treasure as possible, participants

traveled to different planets to mine for gems. Upon arrival to a new planet, they performed

an initial dig and received an amount of gems sampled from a Gaussian distribution with

a mean of 100 and standard deviation (SD) of 5. Following this initial dig, participants

had to decide between staying on the current planet to dig again or leaving to travel to a

new planet (Fig 3.1A). Staying would further deplete the gem mine while leaving yielded a
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replenished gem mine at the cost of a longer time delay. They made these decisions in a

series of five blocks, each with a fixed length of 6 minutes. Blocks were separated by a break

of participant-controlled length, up to a maximum of 1 minute.

On each trial, participants had 2 seconds to decide via key press whether to stay (“A”) or

leave (“L”). If they decided to stay, they experienced a short delay before the gem amount

was displayed (1.5 s). The length of the delay was determined by the time the participant

spent making their previous choice (2 - RT s). This ensured participants could not affect the

environment reward rate via their response time. If they decided to leave, they encountered

a longer time delay (10 s) after which they arrived on a new planet and were greeted by

a new alien (5 s). On trials where a decision was not made within the allotted time (2 s),

participants were shown a timeout message for two seconds.

Unlike previous variants of this task, planets varied in their richness within and across blocks,

introducing greater structure to the task environment. Richness was determined by the rate

at which the gem amount exponentially decayed with each successive dig (Fig. 3.1B). If a

planet was “poor”, there was steep depletion in the amount of gems received. Specifically, its

decay rates were sampled from a beta distribution with a low mean (mean = 0.2; sd = 0.05;

α = 13 and β = 51). In contrast, rich planets depleted more slowly (mean = 0.8; sd = 0.05;

α = 50 and β = 12). Finally, the quality of the third planet type — neutral — fell in between

rich and poor (mean = 0.5; sd = 0.05; α = 50 and β = 50). The environment dynamics were

designed such that planet richness was correlated in time. When traveling to a new planet,

there was an 80% probability of it being the same type as the prior planet (“no switch”). If

not of the same type, it was equally likely to be of one of the remaining two types (“switch”,

Fig. 3.1C). This information was not communicated to participants, requiring them to infer

the environment’s structure and dynamics from rewards received alone.
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Figure 2.1: A. Serial stay-switch task. Participants traveled to different planets and mined for
space gems across 5 6-minute blocks. On each trial, they had to decide between staying to dig from a
depleting gem mine or incurring a time cost to travel to a new planet. B. Environment structure.
Planets varied in their richness or, more specifically, the rate at which they exponentially decayed
with each dig. There were three planet types — poor, neutral, and rich — each with their own
characteristic distribution over decay rates. C. Environment dynamics. Planets of a similar
type clustered together. A new planet had an 80% probability of being the same type as the prior
planet (“no switch”). However, there was a 20% probability of transitioning or “switching” to a
planet of a different type.

2.2.3 Marginal Value Theorem

Participants’ planet residence times, or PRTs, were compared to those prescribed by MVT.

Under MVT, agents are generally assumed to act as though they have accurate and complete

knowledge of the environment. For this task, that would include knowing each planet type’s

unique decay rate distribution and the total reward received and time elapsed across the

environment.

Knowledge of the decay rate distributions is critical for estimating Vstay, the anticipated

reward if the agent were to stay and dig again.

Vstay = rt ∗ d (2.1)
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where rt is the reward received on the last dig and d is the upcoming decay.

d =


0.2 if planet is poor

0.5 if planet is neutral

0.8 if planet is rich

Vleave is estimated using the total reward accumulated, rtotal, total time passed in the envi-

ronment, ttotal, and the time delay to reward associated with staying and digging, tdig.

Vleave =
rtotal
ttotal

∗ tdig (2.2)

rtotal
ttotal

estimates the average reward rate of the environment. Multiplying it by tdig gives the

opportunity cost of the time spent exploiting the current planet.

Finally, to make a decision, the MVT agent compares the two values and acts greedily,

always taking the higher valued option.

choice = argmax(Vstay, Vleave) (2.3)

2.2.4 Structure Learning & Uncertainty Adaptive Discounting Model

Making the stay-leave decisions

We assume that the forager compares the value for staying, Vstay, to the value of leaving

Vleave, to make their decision. Similar to MVT, we assume foragers act greedily with respect

to these values.
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Learning the structure of the environment

Learning the structure of the environment affords more accurate and precise predictions

which support better decision-making. Here, the forager predicts how many gems they’ll

receive if they stay and dig again and this determines the value of staying, Vstay. To gener-

ate this prediction, a forager could aggregate over all past experiences in the environment

[40]. This may be reasonable in homogeneous environments but less so in heterogeneous

ones where it could introduce substantial noise and uncertainty. Instead, in these varied

environments, it may be more reasonable to cluster patches based on similarity and only

generalize from patches belonging to the same cluster as the current one. This selectivity

enables more precise predictions of future outcomes.

Clusters are latent constructs. Thus, it is not clear how many clusters a forager should

divide past encounters into. Non-parametric Bayesian methods provide a potential solution

to this problem. They allow for the complexity of the representation — as measured by the

number of clusters — to grow freely as experience accumulates. These methods have been

previously used to explain phenomena in category learning [83, 165], task set learning [39],

fear conditioning [71], and event segmentation [176].

To initiate this clustering process, the forager must assume a model of how their observations,

decay rates, are generated by the environment. The generative model we ascribe to the

forager is as follows. Each planet belongs to some cluster, and each cluster is defined by a

unique decay rate distribution:

dk ∼ Normal(µk, σk) (2.4)

where k denotes cluster number. The generative model takes the form of a mixture model

in which normal distributions are mixed together according to some distribution P (k) and
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observations are generated from sampling from the distribution P (d|k).

Before experiencing any decay on a planet, the forager has prior expectations regarding the

likelihood of a planet belonging to a certain cluster. We assume that the prior on clustering

corresponds to a “Chinese restaurant process” [9]. If previous planets are clustered according

to p1:N , then for the current planet:

P (k) =


nk

N+α
if k is old

α
N+α

if k is new

Where nk is the number of planets assigned to cluster k, α is a clustering parameter, and

N is the total number of planets encountered. The probability of a planet belonging to an

old cluster is proportional to the number of planets already assigned to it. The probability

of it belonging to a new cluster is proportional to α. Thus, α controls how dispersed the

clusters are — the higher α is the more new cluster creation is encouraged. The ability to

incrementally add clusters as experience warrants it makes the generative model an infinite

capacity mixture model.

After observing successive depletions on a planet, the forager computes the posterior prob-

ability of a planet belonging to a cluster:

P (k|D) =
P (D|k)P (k)∑J
j=1 P (D|j)P (j)

(2.5)

Where J is the number of clusters created up until the current planet, D is a vector of all

the depletions observed on the current planet, and all probabilities are conditioned on prior

cluster assignments of planets, p1:N .

Exact computation of this posterior is computationally demanding as it requires tracking all
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possible clusterings of planets and the likelihood of the observations given those clusterings.

Thus, we approximate the posterior distribution using a particle filter [60]. Each particle

maintains a hypothetical clustering of planets which are weighted by the likelihood of the

data under the particle’s chosen clustering. All simulations and fitting were done with 1

particle which is equivalent to Anderson’s local MAP algorithm [8].

With 1 particle, we assign a planet definitively to a cluster. This posterior then determines

(a) which cluster’s parameters are updated and (b) the inferred cluster on subsequent planet

encounters.

If the planet is assigned to an old cluster, k, the existing µk and σk are updated analytically

using the standard equations for computing the posterior for a normal distribution with

unknown mean and variance:

d̄ =
1

n

n∑
i=1

di

µ′
0 =

n0µ0 + nd̄

n0 + n

n′
0 = n0 + n

ν ′
0 = ν0 + n

ν ′
0σ

2
0
′
= ν0σ

2
0 +

n∑
i=1

(di − d̄)2 +
n0n

n0 + n
(µ0 − d̄)2

(2.6)

where d is a decay observed on the current planet, n is the total number of decays observed

on the current planet, n0 is the total number of decays observed across the environment

before the current planet, µ0 is the prior mean of the cluster-specific decay rate distribution

and ν0 is its precision. µ
′
0 and ν

′
0 are the posterior mean and variance respectively.

If the planet is a assigned to a new cluster, then a new cluster is initialized with the following

distribution:
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dnew ∼ Normal(µ = 0.5, σ = 0.5) (2.7)

This initial distribution is updated with the depletions encountered on the current planet

upon leaving.

The goal of this learning and inference process is to support accurate prediction. To generate

a prediction of the next decay, the forager samples a cluster according to P (k) or P (k|D)

depending on whether any depletions have been observed on the current planet. Then, a

decay rate is sampled from the cluster specific distribution, dk. The forager averages over

these samples to produce the final prediction.

To demonstrate structure learning’s utility for prediction, we show in simulation the predicted

decay rates on each planet with structure learning (Fig. 2.2A) and without (Fig. 2.2B).

With structure learning, the forager’s predictions approach the mean decay rates of the true

generative distributions. Without structure learning, however, the forager is persistently

inaccurate, underestimating the decay rate on rich planets and overestimating it on poor

planets.

Adapting the model of the environment

Because the inference process is an approximation and foragers’ experience is limited, their

inferred environment structure may be inaccurate. Theoretical work has suggested that a

rational way to compensate for this inaccuracy is to discount future values in proportion to

the agent’s uncertainty over their representation of the environment[96]. We quantified an

agent’s uncertainty by taking the entropy of the approximated posterior distribution over

clusters. We sample clusters 100 times proportional to the posterior. These samples are

multinomially distributed. We represent them with the distribution, X:
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X ∼ Multinomial(100, K) (2.8)

Where K is a vector containing the counts of clusters from sampling 100 times from the dis-

tribution, P (k) or P (k|d) depending on whether depletions on the planet have been observed.

Uncertainty is quantified as the Shannon entropy of distribution X.

We implemented this proposal in our model by discounting the value of leaving as follows:

Vleave =
rtotal
ttotal

∗ tdig ∗ γeffective (2.9)

γeffective =
1

1 + e(−γbase+γcoef∗H(X))
(2.10)

where γbase and γcoef are free parameters and H(X) is the entropy of the distribution X.

Model simulations in single patch type environments - parameter exploration

For each combination of α, γcoef , and environment richness, we simulated the model 100

times, with γbase held constant at 5. Decay rates in each patch in an environment were

drawn from the same beta distribution. Critically, the parameters of the beta distribution

varied between environments but not patches (poor - a = 13, b = 51; neutral - a = 50, b =

50; poor - a = 50, b = 12). This was done to create single patch type environments, similar to

those commonly used in prior work on overharvesting [40, 91, 101, 41, 44, 45, 99]. Simulated

agents’ choices were compared to those that would be made if acting with an MVT policy

(see Comparison to Marginal Value Theorem). The difference was taken between the agent’s

stay time in a patch and that prescribed by MVT, and these differences were averaged over

to compute a a single average patch residence time (PRT) relative to MVT for each agent.
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2.2.5 Model fitting

We compared participant PRTs on each planet to those predicted by the model. A model’s

best fitting parameters were those that minimized the difference between the true partici-

pant’s and simulated agent’s PRTs. We considered 1000 possible sets of parameters gener-

ated by quasi-random search using low-discrepancy Sobol sequences [184]. Prior work has

demonstrated random and quasi-random search to be more efficient than grid search [21] for

parameter optimization. Quasi-random search is particularly efficient with low-discrepancy

sequence, more evenly covering the parameter space relative to true random search.

Because cluster assignment is a stochastic process, the predicted PRTs vary slightly with each

simulation. Thus, for each candidate parameter setting, we simulated the model 50 times

and averaged over the mean squared error (MSE) between participant PRTs and model-

predicted PRTs for each planet. The parameter configuration that produced the lowest

MSE on average was chosen as the best fitting for the individual.

2.2.6 Model Comparison

We compared three models: the structure learning and adaptive discounting model described

above, a temporal difference model previously applied in a foraging context, and a MVT

model that learns the mean decay rate and global reward rate of the environment.

MVT-Learning In this model, the agent learns a threshold for leaving which is determined

by the global reward rate, ρ [40]. ρ is learned with a simple delta rule with α as a learning

rate and taking into account the temporal delay accompanying an action τ . The value of

staying is d ∗ rt where d is the predicted decay and rt is the reward received on the last time

step. The value of leaving,Vleave, is the opportunity cost of the time spent digging, ρ ∗ tdig.

The agent chooses an action using a softmax policy with temperature parameter, β which
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determines how precisely the agent represents the value difference between the two options.

P (at = dig) =
1

(1 + e(−c−β(d∗rt−ρ∗tdig)))

δi =
ri
τi

− ρt

ρt+1 = ρt + (1− (1− α)τt) ∗ δt

(2.11)

TD-Learning The temporal difference (TD) agent learns a state-specific value of staying and

digging, Q(s, dig) and a non-state specific value of leaving, Q(leave). The state, s is defined

by the gem amounts offered on each dig. The state space is defined by binning the possible

gems that could be earned from each dig. The bins are spaced are according to log(bj+1) -

log(bj) = log(k̄) where bj+1 and bj are the upper and lower bounds of the bins and d̄ is the

mean decay rate. This state space specification is taken from [40]. We set bj+1 to 135 and

bj to 0 as these were the true bounds on gems received per dig. We set k̄ to 0.5 because

this would be the mean decay rate if one were to average the depletions experienced over all

planets. The agent compares the two values and makes their choice using a softmax policy.

P (at = dig) =
1

(1 + e(−c−β(Qt(st,dig)−Qt(leave))))

Dt ∼ Bernoulli(P (at))

δt = rt + γτt(Dt ∗Qt(st) + (1−Dt) ∗Qt(leave))−Qt(st−1, at−1)

Qt+1(st−1, at−1) = Qt(st−1, at−1) + α ∗ δt

(2.12)

where c, α, β, γ are free parameters and t is the current time step. c is a perseveration term, α

is the learning rate, β is the softmax temperature, and γ is the temporal discounting factor.

Cross Validation Each model’s fit to the data was evaluated using a 10-fold cross validation

procedure. For each participant, we shuffled their PRTs on all visited planets and split

them into 10 separate training/test datasets. The best fitting parameters were those that
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minimized the sum of squared error (SSE) between the participant’s PRT and the model’s

predicted PRT on each planet in the training set. Then, with the held out test dataset, the

model was simulated with the best fitting parameters and the SSE was calculated between the

participant’s true PRT and the model’s PRT. To compute the model’s final cross validation

score, we summed over the test SSE from each fold.

2.3 Results

2.3.1 Model simulations in single patch type environments

We examined the extent of over- and underharvesting as a function of the richness of the

environment and the parameters governing structure learning (α) and uncertainty adap-

tive discounting (γcoef ). We simulated the model in single patch type environments to

demonstrate that overharvesting could be produced through these two mechanisms in an

environment commonly used in patch foraging tasks. It is important to note that, because

of our definition of uncertainty, discounting adaptation is dependent on the structure learn-

ing parameter. We take uncertainty as the entropy of the posterior distribution over the

current patch type. If a single patch type is assumed (α = 0), then the entropy will al-

ways be zero and the discounting rate will be static. In our exploration of the parameter

space, we find that as α increases over harvesting increases. Similarly, increasing γcoef also

increases overharvesting, however, only if α > 0 (Fig 2.2E). Additionally, the overall richness

of the environment interacts with the influence of these parameters on overharvesting — α

and γcoef ’s influence is attenuated with increasing richness. The environment’s richness also

determines the baseline (when α = 0 and γcoef ≤ 0) extent of over- and underharvesting.

Because our model begins with a prior over the decay rate centered on 0.5, this produces

overharvesting in the poor environment (mean decay rate = 0.2), optimal harvesting in the
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neutral (mean decay rate = 0.5), and underharvesting in the rich (mean decay rate = 0.8).

In sum, we have shown, in multiple single patch type environments varying in richness, that

overharvesting can be produced through a combination of mechanisms — structure learning

and uncertainty adaptive discounting.

Figure 2.2: Structure learning improves prediction accuracy. A. With structure learn-
ing A simulated agent’s posterior probability over the upcoming decay rate on each planet is
plotted. If the forager’s prior allows for the possibility of multiple clusters (α > 0), they learn
with experience the cluster-unique decay rates. Initially, the forager is highly uncertain of their
predictions. However, with more visitations to different planets, the agent makes increasingly ac-
curate and precise predictions. B. Without structure learning If the forager’s prior assumes
a single cluster (α = 0), the forager makes inaccurate and imprecise predictions - either over or
underestimating the upcoming decay, depending on the planet type. This inaccuracy persists even
with experience because of the strong initial assumption. Uncertainty adaptive discounting.
C. The effect of γcoef The entropy of the posterior distribution over patch type assignment is
taken as the forager’s internal uncertainty and is used to adjust their discounting rate, γeffective.
The direction and magnitude of uncertainty’s influence on the discounting rate is determined by
the parameter, γcoef . The more positive the parameter is, the more the discounting rate is reduced
with increasing uncertainty, formalized as entropy. If negative, the discounting rate increases with
greater uncertainty. D. The effect of γeffective on overharvesting Increasing γbase increases the
baseline discounting rate while increasing the slope term increases the extent the discounting rate
adapts in response to uncertainty. E. Overharvesting increases with α and γcoef in single
patch type environments Simulating the model in multiple single patch type environments with
varying richness, we find that increasing α and γcoef , holding γbase constant, increases the extent
of overharvesting (PRT relative to MVT). The richness of the environment determines the extent
of the parameters’ influence, with it being greatest in the poor environment.
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2.3.2 Model-free analyses

Participants adapt to local richness

We first examined a prediction of MVT — foragers should adjust their patch leaving to

the richness of the local patch. In the task environment, planets varied in their richness or

how quickly they depleted. Slower depletion causes the local reward rate to more slowly

approach the global reward rate of the environment. Thus, MVT predicts that stay times

should increase as depletion rates slow. As predicted, participants stayed longer on rich

planets relative to neutral (t(115) = 19.77, p < .0001) and longer on neutral relative to poor

(t(115) = 12.57, p < .0001).

Experience decreases overharvesting

Despite modulating stay times in the direction prescribed by MVT, participants stayed

longer or overharvested relative to MVT when averaging across all planets (t(115) = 3.88,

p = .00018). However, the degree of overharvesting diminished with experience. Participants

overharvested more in the first two blocks relative to the final two (t(115) = 3.27, p = .0014).

Our definition of MVT assumes perfect knowledge of the environment. Thus, participants

approaching the MVT optimum with experience is consistent with learning the environment’s

structure and dynamics.

Local richness modulates overharvesting

We next considered how participants’ overharvesting varied with planet type. As a group,

participants overharvested only on poor and neutral planets while behaving MVT optimally

on rich planets (Fig. 2.3A; poor - t(115) = 6.92, p < .0001; neutral - t(115) = 9.00, p < .0001;
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rich - t(115) = 1.38, p = .17).

Environment dynamics modulate decision time and overharvesting

We also asked how participants adapted their foraging strategy to the environment’s dynam-

ics or transition structure. Upon leaving a planet, it was more common to transition to a

planet of the same type (80%, “no switch”) than transition to a planet of a different type

(“switch”). Thus, we reasoned that switch transitions should be points of maximal surprise

and uncertainty given their rareness. However, this would only be the case if the participant

could discriminate between planet types and learned the transition structure between them.

If surprised, a participant should take longer to make a choice following a rare “switch”

transition. So, we next examined participants’ reaction times (z-scored and log-transformed)

for the decision following the first depletion on a planet. We compared when there was

a switch in planet type versus where there was none. As predicted, participants showed

longer decision times following a “switch” transition suggesting they were sensitive to the

environment’s structure and dynamics (Fig. 2.3B; t(115) = 2.65, p = .0093).

If uncertain, our adaptive discounting model predicts that participants should discount re-

mote rewards more heavily and, consequently, overharvest to a greater extent. To test

this, we compared participants overharvesting following rare “switch” transitions to their

overharvesting following the more common “no switch” transitions. Following the model’s

prediction, participants marginally overharvested more following a change in planet type

(t(115) = 1.86, p = .065). When considering only planets that participants overharvested on

on average (poor and neutral), overharvesting was significantly greater following a change

(Fig. 2.3C; t(115) = 4.67, p < .0001).
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Figure 2.3: Model-free results A. Planet richness influences over and underharvesting
behavior. Planet residence times (PRT) relative to Marginal Value Theorem’s (MVT) prediction
are plotted as the median (± one quartile) across participants. The grey line indicates the median
while the white cross indicates the mean. Individuals’ PRTs relative to MVT are plotted as shaded
circles. In aggregate, participants overharvested on poor and neutral planets and acted MVT
optimally on rich planets. B. Decision times are longer following rare switch transitions. If
a participant has knowledge of the environment’s planet types and the transition structure between
them, then they should be surprised following a rare transition to a different type. Consequently,
they should take longer to decide following these transitions. As predicted, participants spent
longer making a decision following transitions to different types (“switch”) relative to when there
was transition to a planet of the same type (“no switch”). This is consistent with having knowledge
of the environment’s structure and dynamics. C. Overharvesting increases following rare
switch transitions. On poor and neutral planets, participants overhavested to a greater extent
following a rare “switch” transition relative to when there was a “no switch” transition. This
is consistent with uncertainty adaptive discounting. Switches to different planet types should be
points of greater uncertainty. This greater uncertainty produces heavier discounting and in turn
staying longer with the current option.*p <0.05, **p <0.01, ***p <0.001

2.3.3 Model-based analyses

Structure learning with adaptive discounting provide the best account of partic-

ipant choice

To check the models’ goodness of fit, we asked whether the compared models could capture

key behavioral results found in the participants’ data. For each model and participant, we

simulated an agent with the best fitting parameters estimated for them under the given

model. Only the adaptive discounting model was able to account for overharvesting when

averaging across all planets (Fig. 2.4A, t(115) = 8.87, p < .0001). The temporal-difference
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learning model predicted MVT optimal choices on average (t(115) = 1.30, p = .19) while

the MVT learning model predicted underharvesting (t(115) = -7.26, p < .0001). These

differences were primarily driven by predicted behavior on the rich planets (Fig. 2.4B).

Model fit was also assessed at a more granular level (stay times on individual planets) using

10-fold cross validation. Comparing cross validation scores as a group, participants’ choices

were best captured by the adaptive discounting model (Fig. 2.4C; mean cross validation

scores — adaptive discounting: 16.55, TD: 22.47, MVT learn: 32.31). At the individual

level, 64% of participants were best fit by the adaptive discounting model, 14% by TD, and

22% by MVT learn.

Figure 2.4: Modeling results A. The adaptive discounting model predicts overharvest-
ing. Averaging across all planets, only the adaptive discounting model predicts overharvesting
while the temporal-difference learning model predicts MVT optimal behavior and the MVT learning
model predicts underharvesting. This demonstrates that overharvesting, a seemingly suboptimal
behavior, can emerge from principled statistical inference and adaptation. B. Model predictions
diverge most on rich planets. Similar to participants, the greatest differences in behavior be-
tween the models occurred on rich planets. C. The adaptive discounting model provides the
best account for participant choices. The adaptive discounting model had the lowest mean
cross validation score indicating it provided the best account of participant choice at the group
level.
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Adaptive discounting model parameter distribution

Because the adaptive discounting model provided the best account of choice for most par-

ticipants, we examined the distribution of individuals’ best fitting parameters for the model.

Specifically, we compared participants’ estimated parameters to two thresholds. These

thresholds were used to identify whether a participant 1) inferred and assigned planets to

multiple clusters and 2) adjusted their overharvesting in response to internal uncertainty.

The threshold for multi-cluster inference, 0.8, was computed by simulating the adaptive dis-

counting model 100 times and finding the lowest value that produced multi-cluster inference

in 90% of simulations. 76% of participants were above this threshold (Fig 2.5A). Thus, most

participants were determined to be “structure learners” using our criteria.

The threshold for uncertainty-adaptive discounting was assumed to be 0. A majority of

participants, 93%, were above this threshold (Fig 2.5C). These participants were determined

to be “adaptive discounters”, those who dynamically modulated their discounting factor in

accordance with their internal uncertainty.

We next looked for relationships between parameters. Uncertainty should be greatest for

individuals who have prior expectations that do not match the environment’s true struc-

ture, whether too complex or too simple. Consistent with this, there was a non-monotonic

relationship between the structure learning and discounting parameters. γbase and γcoef

were greatest when α was near its lower bound, 0, and upper bound, 10 (γbase: β = 0.080,

p < .0001; γcoef : β = 0.021, p < .0001). An individual’s base level discounting constrains

the range over which uncertainty can adapt the effective discounting. Reflecting this, the

two discounting parameters were positively related to one another (τ = -0.33, p < .0001).
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Figure 2.5: Parameter distributions A. Participants learned the structure of the envi-
ronment. Distribution of participants’ priors over environment complexity, α. Each individual’s
parameter is shown relative to a baseline threshold, 0.8. This threshold is the lowest value that
produced multi-cluster inference in simulation. Most participants (76%) fall above this threshold
indicating a majority learned the environment’s multi-cluster structure. B. Environment com-
plexity parameters were positively related to reaction time sensitivity to transition
frequency. An individual must infer multiple planet types to be sensitive to the transition struc-
ture between them. In terms of the model, this would correspond to having a sufficiently high
environment complexity parameter. Validating this parameter, it was positively correlated with
individual’s modulation of reaction time following a rare transition to a different planet type. C.
Participants adapted their discounting computations to their uncertainty over envi-
ronment structure. Distribution of participant’s uncertainty adaptation parameter, γcoef . Each
individual’s parameter is shown relative to a baseline of 0. A majority were above this thresh-
old (93%) indicating most participants dynamically adjusted their discounting, increasing it when
they experienced greater internal uncertainty. D. Uncertainty adaptation parameters were
positively related to overharvesting sensitivity to transition frequency. If an individ-
ual increases their discounting to their internal uncertainty over environment structure, then they
should discount more heavily following rare transitions and stay longer with the current option.
Consistent with this, we found that the extent an individual increased their overharvesting follow-
ing a rare transition was related to their uncertainty adaptation parameter.
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Parameter validation

Correlations with model-free measures of task behavior confirmed the validity of the model’s

parameters. We interpret α as reflecting an individual’s prior expectation of environment

complexity. α must reach a certain threshold to produce inference of multiple clusters and

consequently, sensitivity to the transitions between clusters. Validating this interpretation,

participants with higher fit α demonstrated greater switch costs between planet types (Fig

2.5B, Kendall’s τ = 0.17, p = .00076). Moreover, this relationship was specific to α. γbase and

γcoef were not significantly correlated with switch cost behavior (γbase: τ = -0.036, p = .57;

γcoef : τ = -0.10, p = .11). This is a particularly strong validation as the model was not fit

to reaction time data. Validating γcoef as reflecting uncertainty-adaptive discounting, the

parameter was correlated with the extent overharvesting increased following a rare transition

or “switch” between different planet types (Fig 2.5D, τ = 0.15, p = .016). This was not

correlated with α nor the baseline discounting factor γbase (α: τ = -0.011, p = .86; γbase: τ

= 0.082, p = .20).

2.4 Discussion

While Marginal Value Theorem (MVT) provides an optimal solution to patch leaving prob-

lems, organisms systematically deviate from it, staying too long or overharvesting. A critical

assumption of MVT is that the forager has accurate and complete knowledge of the envi-

ronment. Yet, this is often not the case in real world contexts — the ones to which foraging

behaviors are likely to have been adapted [90]. We propose a model of how foragers could

rationally learn the structure of their environment and adapt their foraging decisions to it. In

simulation, we demonstrate how seemingly irrational overharvesting can emerge as a byprod-

uct of a rational dynamic learning process. In a heterogeneous, multimodal environment, we

compared how well our structure learning model predicted participants’ choices relative to
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two other models — one implementing a MVT choice rule with a fixed representation of the

environment and the other a standard temporal-difference learning algorithm. Importantly,

only our structure learning model predicted overharvesting in this environment. Partic-

ipants’ choices were most consistent with learning a representation of the environment’s

structure through individual patch experiences. They leveraged this structured representa-

tion to inform their strategy in multiple ways. One way determined the value of staying. The

representation was used to predict future rewards from choosing to stay in a local patch. The

other modulated the value of leaving. Uncertainty over the accuracy of the representation

was used to set the discount factor over future value. These results suggest that in order

to explain foraging as it occurs under naturalistic conditions optimal foraging may need to

provide an account of how the forager learns to acquire accurate and complete knowledge of

the environment, and how they adjust their strategy as their representation is refined with

experience.

In standard economic choice tasks, humans have been shown to act in accordance with ratio-

nal statistical inference of environment structure. Furthermore, by assuming humans must

learn the structure of their environment from experience, seemingly suboptimal behaviors

can be rationalized including prolonged exploration [2], melioration [179], social biases [176],

and overgeneralization [39]. Here, we extend this proposal to decision tasks with sequen-

tial dependencies, which require simultaneous learning and dynamic integration of both the

distribution of immediately available rewards and the underlying contingencies that dictate

future outcomes. This form of relational or category learning has long been associated with

distinct cognitive processes and neural substrates from those thought to underlie reward-

guided decisions [152], including the foraging decisions we investigate here [108]. However, a

network of neural regions overlapping those supporting relational learning are more recently

thought to play a role in deliberative, goal-directed decisions [30, 198].

If foragers are learning a model of the environment and using it to make decisions for reward,
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this suggests that they may be doing something like model-based reinforcement learning

(RL). In related theoretical work, patch leaving problems have been cast as a multi-armed

bandit problem from RL.Which actions are treated as the ”arms” is determined by the nature

of the environment. In environments where the next patch is unknown to the foragers, the

two arms become staying in the current patch and leaving for a new patch. In environments in

which the forager does have control over which patch to travel to next, the arms can become

the individual patches themselves. Casting patch leaving as an RL problem allows for the use

of RL’s optimal solutions as benchmarks for behavior. Application of these optimal solutions

in foraging have been found to capture search patterns [188, 134], choice of lower valued

options [103], and risk aversion [139]. In contrast to this work and our own, Constantino &

Daw [40] found human foragers’ choices to be better explained by a MVT model augmented

with a learning rule than a standard reinforcement learning model. However, importantly,

their task environment was homogeneous and the RL model tested was model-free (temporal-

difference learning). Thus, the difference in results could be attributed to differences in task

environments and class of models considered. A key way our model deviates from a model-

based RL approach is that prospective prediction is only applied in computing the value of

staying while the value of leaving is similar to MVT’s threshold for leaving – albeit discounted

proportionally to the agent’s internal uncertainty over their representation’s accuracy. In

the former respect, our model parallels the framework discussed by Kolling & Akam [107] to

explain humans sensitivity to the gradient of reward rate change during foraging observed by

Wittman et al [206]. Given that computing the optimal exit threshold under a pure model-

based strategy would be highly computationally expensive, Kolling & Akam [107] suggest

pairing model-based patch evaluation with a model-free, MVT-like exit threshold. Under

their proposal, the agent leaves once the local patch’s average predicted reward rate over n

time steps in the future falls below the global reward rate. We build on, formally test, and

extend this proposal by explicitly computing the representational uncertainty at each trial

and adjusting planning horizon accordingly.
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While learning a model of the environment is beneficial, it is also challenging and compu-

tationally costly. With limited experience and computational noise, an inaccurate model of

the environment may be inferred. An inaccurate model, however, can be counteracted by

adapting certain computations. In this way, lowering the temporal discounting factor acts as

a form of regularization or variance reduction [150, 96, 63, 197, 5]. Empirical work has found

humans appear to do something like this in standard intertemporal choice tasks. Gershman

& Bhui [70] found evidence that individuals rationally set their temporal discounting as a

function of the imprecision or uncertainty of their internal representations. Here, we found

that humans while foraging act similarly, overharvesting to a greater extent at points of peak

uncertainty. While temporal discounting has been proposed as a mechanism of overharvest-

ing previously [25, 40, 34], the discounting factor is usually treated as a fixed, subject-level

parameter, inferred from choice. Thus, it provides no mechanism for how the factor is set let

alone dynamically adjusted with experience. In contrast, our model proposes a mechanism

through which the discounting factor is rationally set in response to both the external and

internal environment. To further test the model, future work could examine the model’s

prediction that overharvesting should increase as the environment’s stochasticity (observa-

tion noise) increases. In the current task environment, noise comes from the variance of the

generative decay rate distributions. An additional source of noise could be from the reward

itself. After the decay rate has been applied to the previously received reward, white Gaus-

sian noise could be added to the product. As a result, the distribution of observed decay

rates would have higher variance than the generating decay rate distributions. This reward

generation process should elicit greater uncertainty for the forager than the current reward

generation process, and consequently, greater overharvesting.

Finally, our observation that humans adjust their planning horizons dynamically in response

to state-space uncertainty may have practical applications in multiple fields. In psychia-

try, foraging has been proposed as a translational framework for understanding how altered

decision-making mechanisms contribute to psychiatric disorders [3]. An existing body of
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work has examined how planning and temporal discounting are impacted in a range of disor-

ders from substance use and compulsion disorders [7, 74] to depression [155] to schizophrenia

[92, 43]. This wide range has led some to suggest that these abilities may be a useful trans-

diagnostic symptom and a potential target for treatment [6]. However, it remains unclear

why they are altered in these disorders. Our findings may provide further insight by way

of directing attention towards identifying differences in structure learning and uncertainty

adaptation. How uncertainty is estimated and negotiated has been found to be altered in

several mood and affective disorders [10, 154], theoretical work has suggested that symptoms

of bipolar disorder and schizophrenia may be explained through altered structure learning

[156], and finally, in further support, compulsivity has been empirically associated with im-

paired structure learning [170]. Our model suggests a rationale for why theses phenotypes

co-occur in these disorders. Alternatively, myopic behavior may not reflect differences in

abilities but rather in environment. Individuals diagnosed with these disorders, rather, may

more frequently have to negotiate volatile environments. As a result, their structure learning

and uncertainty estimation are adapted for these environments. Potential treatments, rather

than targeting planning or temporal discounting, could address its possible upstream cause

of uncertainty – increasing the individual’s perceived familiarity with the current context

or increasing their self-perceived ability to act efficaciously in it. Another application could

be in the field of sustainable resource management, where it has recently been shown that,

in common pool resource settings (e.g. waterways, grazing fields, fisheries), the distribution

of individual participants’ planning horizons strongly determines whether resources are sus-

tainably managed [14]. Here, we show that discount factor, set as a rational response to

uncertainty about environmental structure, directly impacts the degree to which an individ-

ual tends to (over)harvest their locally available resources. The present work suggests that

policymakers and institution designers interested in producing sustainable resource man-

agement outcomes should focus on reducing uncertainty – about the contingencies of their

actions, and the distribution of rewards that may result – for individuals directly affected
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by resource availability, thus allowing them to rationally respond with an increased planning

horizon and improved outcomes for all participants.
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Chapter 3

Age-related differences in structure

learning explain differences in

exploration during a patch foraging

task

3.1 Introduction

Childhood and adolescence are characterized as periods of heightened exploration and learn-

ing. However, this exploration can often come at the cost of forsaking immediate reward.

How individuals negotiate the tension between exploration and exploitation varies with

their developmental stage: children and adolescents explore more extensively than adults

[26, 143, 121, 192] but do so in a less strategic way [75, 55, 129, 168, 185]. Past work has

predominantly taken the approach of using reinforcement learning algorithms to quantify de-

velopmental differences in exploration as a function of value learning or action selection. But,
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by solely focusing on the valuation or selection processes, this work has neglected another

potential source of difference — how the environment is internally represented.

The abilities underpinning mental model formation vary in their developmental trajectories.

For instance, statistical learning emerges in infancy [163], while relational inference continues

to be refined into young adulthood [166]. Due to their simplistic structure, conventional

exploration tasks are ill-suited for characterizing how these differences in structure learning

impact exploration. For example, in multi-armed bandit tasks, decision makers repeatedly

choose from a set of options that differ in their probability of yielding reward. While these

tasks do require some degree of structure learning [2], they offer few causal structures that

the decision maker could reasonably entertain. The lack of complexity found in these tasks

sharply contrasts with the rich structure found in natural environments. In response to this,

some have called for the development of tasks that better capture this complexity, and as

such, more accurately reflect the learning and decision contexts faced in the real world [205].

Patch foraging has been proposed as one more “naturalistic” alternative to multi-armed

bandit tasks [132, 3]. Instead of choosing from a repeated set of options, decision makers

decide between staying with a known patch of resources that cannot be returned to once left

and searching for an alternative. In this decision context, understanding the environment’s

structure is critical. Because each patch is only visited once, the decision maker must infer

properties of the current patch by generalizing from past patches. Moreover, without a spe-

cific alternative option in mind, the decision maker is required to estimate the environment’s

overall distribution of rewards to use as a “best guess” for the alternative. Marginal Value

Theorem (MVT; [35]) provides the optimal decision policy within these tasks and the ref-

erence point by which exploration and exploitation are defined with respect to. Under the

assumption of perfect knowledge of the environment, staying with a current patch longer

than optimal is considered over-exploitation, or “overharvesting”, while leaving sooner is

considered exploratory.
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In these patch foraging tasks, adults consistently have been found to overharvest [40, 117,

115, 173, 108]. Similarly, adolescents have also been found to overharvest [89], albeit to a

lesser extent [122]. This prompts the question: if patch foraging tasks more closely mimic real

world decision contexts, why do we consistently behave suboptimally in them? Of relevance

to this question, rewards are homogeneously distributed in standard versions of the task.

This facilitates rapid and effective generalization between patches, thus putting the decision

maker in greater alignment with MVT’s assumption of perfect knowledge of the environment.

However, this simplified structure removes one of the critical features that makes this class

of tasks more naturalistic. Potentially, the appearance of overharvesting in these simplified

environments could reflect the use of decision strategies people tend to use in complex and

uncertain real world environments, strategies that deftly handle this uncertainty and seek

to resolve it. Related work has found that people alter their decision strategies to perceived

changes in the environment, even when these changes are spurious. They attribute this to

the structure of real world environments in which truly random events are rare [208].

In recent work in adults [88], we used a Bayesian structure learning model to demonstrate

that overharvesting could be explained by a mismatch between foragers’ prior expectation

of the environment’s structure and it’s true underlying structure. Using the same compu-

tational model and task, we ask: can developmental differences in exploration, from middle

childhood through young adulthood, be explained by differences in representation? The lit-

erature suggests two competing hypotheses. One one hand, from a very young age, children

are prodigious structure learners, who can quickly extract temporal regularities from their

environment [164]. Under this hypothesis, we would expect to find no age-related differences

in how participants internally represent the environment and this should be accompanied

by a lack of difference in exploration. On the other hand, there is a developmental dissocia-

tion between structure acquisition and its use during decision making. The use of structure

knowledge is known to have a more protracted development [144, 47, 153, 37]. This suggests

that younger participants’ decisions should be guided by simpler representations of the en-
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vironment, leading them to explore more than adults. Here, we sought to arbitrate between

these two hypotheses.

3.2 Methods

3.2.1 Participants

252 participants between the ages of 8 and 25 completed the online study and were included

in all analyses (mean age = 17.11 years, standard deviation age = 5.29, 128 females, 124

males). The target sample size was based on extrapolating from the prior adult study’s

sample size to evenly cover our age range. It well surpasses those used in prior studies ex-

amining value-guided learning and decision making in samples spanning the same age range

[37, 144, 143]. An additional 45 participants completed the study but were excluded. Partic-

ipants were sequentially excluded according to the following criteria: failed the instruction

comprehension check quiz more than two times (n=4), had an average reaction time below

200 milliseconds (n=12), their average planet residence time fell 2 standard deviations above

or below the group average (n=14) or they consistently used an extreme strategy, either fully

depleting more than 75% of visited planets’ gem mines (n=4) or leaving more than 75% of

visited planets immediately after the initial dig (n=11). For completing the study, partici-

pants were compensated with $10 Amazon gift cards. Depending on task performance, they

could also earn a bonus that ranged from $0 to $2.

Our final sample of participants included 70 children (8.08 - 12.94 years; mean age = 10.49,

36 females), 68 adolescents (13.07 - 17.94 years; mean age = 15.47, 35 females), and 114

adults (18 - 25.83 years; mean age = 22.14, 57 females). All participants reported normal or

corrected-to-normal vision and no history of psychiatric or learning disorders.
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Participants were recruited from the Hartley lab’s participant database for which we solicit

sign-ups via Facebook and Instagram ads, local science fairs and events, and fliers on New

York University’s campus. Prior to their participation in an online study, participants’

identity and age were confirmed by the researchers.

3.2.2 Task

Figure 3.1: A. Serial stay-switch task. Across four six-minute blocks, participants mined
for space gems on different planets. On each trial, they had to decide between staying to dig
from a depleting gem mine or incurring a time cost to travel to a new planet. B. Environment
structure. Planets varied in their richness or, more specifically, the rate at which they depleted
with each dig. There were three planet types — poor, neutral, and rich — each with their own
characteristic distribution over depletion rates. C. Environment dynamics. Planets of a similar
type clustered together. A new planet had an 80% probability of being the same type as the prior
planet (“no switch”). However, there was a 20% probability of transitioning or “switching” to a
planet of a different type.

Participants completed a variant of a patch foraging task used in a prior adult study [88].

We adapted the task to be child-friendly by reducing its length, adding more extensive

instructions, and increasing the maximum decision time. Within the task, participants

traveled to different planets to mine for space gems (Fig. 3.1). They were told that the

amount of gems they collected determined their bonus payment. On each planet, participants
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would perform an initial dig yielding a reward generated from a Normal distribution (µ =

100, σ = 5). Then, they decided between staying on the same planet to dig from the

depleting mine or incurring a time cost to travel to a new planet with a replenished mine. If

they decided to stay, a short animation of their avatar digging was shown (3 sec, minus the

decision time for that trial) followed by the gem yield (1.5 sec). If they decided to travel, a

short animation of a rocket ship was displayed (10 sec minus decision time) followed by their

landing and an alien greeting them (5.5 s). The duration of the animations varied according

to the participant’s decision time on trial. This ensured that they could not influence the

environment’s overall reward rate via the rapidity of their responses. If the participant failed

to make a decision in the allotted time, a screen was displayed with a red ‘X’ and a message

urging them to make their decisions more quickly. They were then given the opportunity to

try choosing again. Participants repeated making stay-leave decisions until the conclusion

of the block. Participants completed four blocks lasting 6 minutes each.

Planets in the task environment varied in their quality. They could belong to one of three

types distinguished by their depletion rate per dig. Rich planets depleted the slowest on

average (Beta distributed with parameters α=50, β=12, mean=0.8, sd=0.05), poor planets

the fastest (α=13, β=51, mean=0.2, sd=0.05), and neutral planets fell in between (α=50,

β=50, mean=0.5, sd=0.05). To mimic natural environments, planet quality was correlated

in time. New planets had an 80% likelihood of being the same type as the last planet. The

other 20% of trials were “switch” trials, on which the new planet was equally likely (10%

each) to belong to one of the two remaining types. Critically, neither the environment’s

structure or dynamics were explicitly signaled to participants, requiring them to infer this

information from the sequence of rewards they received. Because we were interested in iden-

tifying potential age-related variation in participants’ representational biases, independent

of any task demands, we structured the task environment such that use of one form of rep-

resentation was not incentivized over the other. In simulation with the structure learning

model defined below, agents using a single planet type representation and those using a
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multi-planet representation earned similar total rewards on average.

3.2.3 Analysis approach

Mixed effects models We used the “lme4” package for R [16] to fit mixed-effects mod-

els to our data. Except where noted, models included participant-level random intercepts

and random slopes across within-participant fixed effects. In constructing our models, we

began with the maximal model in order to minimize Type I error [15]. If the model failed

to converge, we removed interactions between random slopes and then random slopes them-

selves until models converged. We set the number of model iterations to 10,000 and used

the ‘bobyqa’ optimizer. All continuous variables (age, planet number, and reaction time)

were z-scored prior to their inclusion in the models. Age was z-scored across participants

while planet number and reaction times were z-scored within. Reaction times were also log-

transformed. In the results section, we only discuss the results from the regression models

that are relevant to our stated hypotheses. For the remaining results, see the appendix.

Marginal Value Theorem To quantify the extent to which individuals over- or under-

harvested, we compared their planet (patch) resident times to the predictions of Marginal

Value Theorem [35]. An MVT-optimal agent compares the current option’s expected imme-

diate returns (Vstay) to the opportunity cost of choosing to engage with it over an alternative

planet (Vleave)

We take Vstay as the reward expected from digging again on the current planet. The MVT-

optimal forager knows the richness of the planet they are on, and uses the true mean of its

distribution to predict the upcoming depletion.

Vstay = rt ∗ d̂ (3.1)
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d̂ =


0.2 if planet is poor

0.5 if planet is neutral

0.8 if planet is rich

Where rt is the reward received on the last dig, and d̂ is the predicted depletion.

Because the forager is unaware of the quality of the next planet they will encounter, they

estimate the rewards earned from one dig on an alternative planet by taking the global

reward rate of the environment — the total rewards received (rtotal) divided by the total

time (ttotal) spent foraging thus far — and taking the product of it and time required to dig

up rewards (tdig).

Vleave =
rtotal
ttotal

∗ tdig (3.2)

The forager compares these values and chooses greedily, taking the higher valued option.

Structure learning and adaptive discounting model Our model relaxes MVT’s as-

sumption of perfect knowledge of the environment’s structure and dynamics. Doing so

introduces two novel computations into the evaluation process.

Foragers do not know how many planet types there are, which type a given planet belongs

to, nor the types’ associated decay rate distributions. To model how this information could

be rationally inferred, we use a Chinese Restaurant Process [4]. The distinguishing feature

of the CRP is its prior which is composed of two parts: 1. the more planets already assigned

to a type, the more likely that type is and 2. there remains some probability of a new type

being created, proportional to the parameter α. The latter allows for the complexity of the

foragers’ representation to grow as experience in the environment is accumulated.
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P (k) =


nk

N+α
if k is old

α
N+α

if k is new

Where nk is the number of planets assigned to cluster k, α is a clustering parameter, and N

is the total number of planets encountered.

After observing one depletion on a planet, the forager can compute the posterior probability

of a planet belonging to a type:

P (k|D) =
P (D|k)P (k)∑J
j=1 P (D|j)P (j)

(3.3)

Where J is the number of clusters created up until the current planet, D is a vector of all

the depletions observed on the current planet, and all probabilities are conditioned on prior

cluster assignments of planets, p1:N

Computing the posterior probability of a cluster type is computationally intractable. In

order to approximate it, we use a particle filter with 200 particles. Each particle maintains a

hypothetical set of planet type assignments, and how well these assignments explain the data

determines the particle’s weighting during the resampling process which occurs every time

an agent leaves a planet. During resampling, a new particle pool is generated by weighted

sampling with replacement from the old particle pool. Because of the weighting, the particles

that best explain the data are more likely to be represented in the subsequent particle pool.

The forager’s posterior probability over planet types can then be used to predict how much

the gem yield will deplete on the next dig. To estimate this posterior, we use a Monte Carlo

sampling procedure. A particle is sampled with probability proportional to its weights, then

a planet type is sampled proportional to the posterior probability over types given by that

particle, and finally, a decay rate is sampled from the distribution associated with the planet
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type. This procedure is repeated 1000 times and the decay rates are averaged over to produce

the final prediction.

Each planet type’s decay rate distribution is initialized as a Gaussian with µ=0.5 and σ=0.5.

While the true decay rates are Beta distributed, the model assumes observations are normally

distributed to allow for analytic updating with a Normal-Gamma prior.

A MVT-optimal forager does not discount future expected rewards in their computation

of Vleave. This is reasonable under an assumption of perfect knowledge because their ex-

pectations are, by definition, correct. In relaxing this assumption, agents following our

model do not have the same guarantee. The forager can never be fully certain that their

representation accurately reflects the environment. Theoretical work from reinforcement

learning has shown that under this form of uncertainty reducing the planning horizon can

improve agents’ performance [96]. We instantiated this ideal with an adaptive discount fac-

tor, γeffective. Within our task reducing the planning horizon and decreasing the discounting

rate produce indistinguishable behavior. γeffective is thus computed as a sum of an individ-

ual baseline discounting rate (γbase), their current uncertainty (U), and the extent to which

they modulate their discounting based on their uncertainty, (γcoef ). With the same Monte

Carlo sampling procedure used to predict the next dig’s gem yield, we define a multinomial

distribution over the sampled clusters and take the entropy of it to get U.

γeffective =
1

1 + e(−γbase+γcoef∗U)
(3.4)

Action selection is modeled as a drift diffusion process (DDM; [157, 158]). Decisions are

made via the accumulation of noisy information in favor of the considered actions, here, stay

and leave. The value difference between the two actions (scaled by v) determines the rate

at which the accumulated information proceeds toward a fixed decision threshold (a=1).

With the DDM, we can jointly use choices and response times to inform our inference of
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participants’ representation of the environment. Incorporating response times into the esti-

mation of reinforcement learning model parameters has been shown to produce more robust

fits to participant data [11, 62]. The structure-learning component of our model predicts

decision uncertainty should peak at different points in the task depending on participants’

representation, and thus response times can be particularly revealing of decision uncertainty

[32].

We compared two versions of the model: one in which α was fixed at 0 and another in which

α was fixed at 1. We allowed γbase, γcoef and v to be free parameters.

Alternative models We compare our structure learning models to the two primary mod-

els considered in Constantino & Daw [40]. The model that provided the best explanation

of their data was, similar to our structure learning model, based on MVT. Critically, it dif-

fers from ours in its statelessness. Under their model, agents estimate Vstay and Vleave by

averaging over all past experiences.

Vstay = D̄ ∗ rt−1 (3.5)

Where rt−1 is the reward received on the last dig, and D is the predicted depletion, which is

an average over all past depletions.

The global reward rate, central to the computation of Vleave, is learned incrementally through

trial and error. We allow η, the learning rate, to be a free parameter.

Vleave = ρ ∗ tdig

δt =
rt
τt

− ρt

ρt+1 = ρt + (1− (1− η)τt) ∗ δt

(3.6)
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Figure 3.2: A. Structure learning computation. Based on the distribution of depletions
observed on the current planet, the forager must infer the type that the current planet is most
likely to belong to. Simultaneously, the forager must also infer the number of planet types present
in the environment. This higher level inferential process is done according to a Chinese Restaurant
Process. B. Structure learning predictions. The number of planet types the forager infers is
dependent on the concentration parameter, α. Our model predicts distinct patterns of over- and
under-harvesting on the various planet types depending on the number of planet types the forager
infers. Bar heights indicate the agent simulated under the model’s predicted planet residence time
while the dotted lines indicate the MVT-optimal PRT. C. Uncertainty adaptive planning
computation. Foragers adapt their planning horizon with respect to their uncertainty over the
current planet’s underlying type. When uncertain, they shouldn’t plan too far in advance, but
when certain, they should plan further into the future. D. Uncertainty adaptive planning
predictions. If a forager adapts their planning horizon with their internal uncertainty, then their
overharvesting should increase following relatively rare switches in planet type. If they do not
adapt, then their planet residence times should not change in response to switches.
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We also considered a model implementing a temporal-difference (TD) learning algorithm.

TD agents learn a state-action value function, Q which estimates the cumulative future

expected reward for taking an action in a given state. The state was determined by the

reward received on the last dig, and the state space was created by considering the range

of possible rewards the agent could receive (lower bound = 0, upper bound = 135) and

segmenting it into logarithmically spaced bins. To implement this, we took the upper bound

of a bin, bj+1, for bin j, and found its lower bound, bj by taking the difference between

log(bj+1) and log(k̄), the mean decay rate across all planet types. To initialize the Q values,

we set them to the cumulative reward the agent should earn based on the true global reward

rate and their discounting factor, rhoinit
1−γ

. η and γ are free parameters

Vstay = Qt(st, dig)

Vleave = Qt(leave)

Dt−1 ∼ Bernoulli(P (at))

δt = rt−1 + γτt(Dt ∗Qt(st) + (1−Dt) ∗Qt(leave))−Qt(st−1, at−1)

Qt(st−1, at−1) = Qt(st−1, at−1) + η ∗ δt

(3.7)

Departing from Constantino & Daw’s [40]’s original models, we use a drift diffusion model for

action selection in both the MVT and TD models to better equate them with our structure

learning model. As in our model, the difference between Vstay and Vleave determines the drift

rate, with the difference scaled by the free parameter v, and the threshold is fixed across all

trials.

Model fitting For all models, we fit individual participants’ stay-leave decisions and re-

action times choice-by-choice, simulating the DDMs and calculating the analytic likelihood

their choices using the approach and implementation introduced by Drugowitsch [53]. Each

models’ free parameters and bounds are listed in the appendix. We identified the parame-
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ter values that minimized the negative log posterior of participants’ choices using Bayesian

Adaptive Direct Search (BADS, [1]), an optimization algorithm designed to handle stochastic

and computationally expensive functions. To increase the probability of finding the global

minimum, we used 30 different starting positions generated from a Sobol sequence. Quasi-

random search using Sobol sequences has been shown to be more effective than grid search

or random search [21] while being more computationally efficient than Latin hypercube sam-

pling [159]. We took the parameter values that produced the minimum negative log posterior

across all starting points. For our primary model of interest, the structure learning model

with α = 1, we conducted parameter recoverability analyses (see appendix).

Amongst our considered models, the structure learning models’ likelihoods are uniquely

stochastic. This is because its posterior distribution over planet type assignments is approx-

imated. To combat the noise induced by the approximation, we run the cluster assignment

process 1000 times. For each run, we compute the log likelihood of each participant’s choice,

summed over them, and finally, added the log prior to get the log posterior. We marginalized

over the 1000 runs, averaging over the log posteriors and negating it to compute the final

value input to the optimization algorithm.

Model comparison We compared the models’ ability to account for participant choices

using 10-fold cross validation (see appendix for model recovery). For each participant, we

split choices into 10 separate training and test datasets. For each fold, we identified the

model parameters that best explained choices in the training dataset. We then averaged the

final negative log posterior from each fold to compute the model’s final cross-validation score

used for comparison.
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3.3 Results

3.3.1 Model-free analyses

Overharvesting increases with age We first sought to characterize the extent to which

participants aligned with the MVT-optimal policy and how the extent of alignment varied

with age. Using mixed-effects linear regression, we modeled the effect of age on the deviance

of participants’ planet residence time (PRT, quantified as the number of digs completed

on a planet) from the MVT-optimal PRT. Participants showed a general tendency towards

staying longer than optimal, replicating the widely observed phenomena of overharvesting

(β0=0.81, p < .001). This tendency strengthened with age (βage=0.22, p = .045) with

younger participants exploring more and consequently, acting more closely to the MVT-

optimal policy.

Use of structure knowledge strengthens with age Next, we asked which environ-

mental features modulated participants’ overharvesting. Our Bayesian structure-learning

model predicts that a forager’s response to these features depends on how they represent

the environment. Notably, rich planets should produce the most patent response differences

– foragers representing multiple planet types should overharvest while those representing a

single type should underharvest (Fig. 4.1 — model schematic, model predictions). To test

the model’s predictions, we ran a mixed-effects linear regression modeling the influence of

planet richness, planet number, age, and their interactions on participants’ deviance from

MVT optimality. Participants overharvested the most on neutral planets and the least on

poor (Fig. 3.3A; intercept: β=1.29, p < .001; poor planet: β=-0.63, p < .001; rich planet:

β=-0.42, p = .0018). The extent of overharvesting decreased with experience in the environ-

ment, particularly so for rich planets (Fig. 3.3B; planet number: β=-0.24, p < .001; planet

number x poor planet interaction: β=0.066, p = .15; planet number x rich planet interac-
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Figure 3.3: Signatures of Structure Learning. A-B. Planet resident times (PRT) relative to
the MVT-optimal prescribed PRT. Bars indicate the age group mean, error bars indicate the
mean ± the standard error of the mean, and the dotted line indicate the MVT-optimal PRT.
A. Across all age groups, PRTs increased with planet richness. When compared to the MVT-
optimal PRTs, participants overharvested across all planet types but the extent varied across the
types. Neutral planets produced the most overharvesting and poor the least. Uniquely on rich
planets, older participants overharvested to a greater extent than younger participants, aligning
them more closely with the predictions of our structure learning model. There were no age-related
differences on the other two planet types.B. Participants’ in all age groups decreased the extent of
their overharvesting with task experience (early - first two blocks, late - final two blocks). Because
MVT-optimality assumes the forager knows the environment’s true underlying structure, increasing
alignment with MVT is suggestive of structure learning. C. On planet’s in which there was a switch
type, participants’ took longer to respond on choices immediately following the first depletion, the
first observation indicative of whether there was in fact a switch. Participants in all age groups’
showed this decision slowing in response to switches.
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tion: β=-0.26, p < .001). As an MVT optimal agent has full knowledge of the environment,

participants’ increasing compliance with MVT over the course of the task is consistent with

incrementally learning the environment’s underlying structure.

Examining effects of age and its interactions, we found that the signature of having learned

a representation of environmental structure with multiple planet types increased with age.

Uniquely on rich planets, overharvesting increased with age (age: β=0.059, p = .47; age x

poor planet interaction: β=-0.045, p = .39; age x rich planet interaction: β=0.36, p = .0078).

As an additional, implicit measure of structure learning, we examined reaction times follow-

ing switches in planet type. We only considered the second decision made on a planet, as

these decisions directly followed the first observation that informs inference of the planet’s

type. If a participant has learned that there are multiple planet types which cluster together

in time, then they should be surprised when the planet type changes. Thus, if participants

are slower to make their next decision following a change in planet type, this provides ev-

idence of sensitivity to environmental structure. To address this, we modeled the effect

of a planet type switch, planet number, age, and their interactions on reaction time with

participant-level random intercepts and random slopes for the switch regressor. Participants’

reaction times increased following switches, indicating knowledge of the environment’s struc-

ture and dynamics (Fig. 3.3C; switch point: β=0.049, p = .037). While reaction times grew

faster over the course of the task (planet number: β=-0.049, p < .001), reaction time slowing

at switch points did not lessen with task experience (switch x planet number interaction:

β=0.014, p = .55).

In line with prior findings [47], participants’ choices suggested age-related differences in

structure learning while their reaction times indicated no such differences. Participants

across our age range showed similar slowing at switch points (age x switch point interaction:

β = 0.0088, p = .71). Collectively, our results suggest a dissociation between younger partic-

ipants’ knowledge of environmental structure and their choice behavior. Decision slowing at
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switch points suggests an at least implicit awareness that planets differ. Nevertheless, they

do not integrate this knowledge into their decision making, as evidenced by their patterns

of overharvesting.

Figure 3.4: Signatures of Uncertainty Adaptive Planning. If participants were to engage
in uncertainty adaptive planning, then they should shorten their planning horizons when they are
uncertain about the environment, and consequently, stay longer with the current option. Consistent
with this, participants in all age groups increased the extent of their overharvesting following a
relatively rare switch in planet type.

Uncertainty adaptive planning emerges early in development Under our model’s

uncertainty-adaptive planning mechanism, foragers should adjust their planning horizon with

respect to their uncertainty over the environment’s structure (Fig 3.4). If participants adapt

their planning in this way, we would expect their overharvesting to increase at planet type

switch points. To test this, we examined the effect of switch point, planet number, age

and their interactions on deviance from MVT optimality, including participant-level random

intercepts and random slopes for planet number. Indeed, we found that participants over-

harvesting did increase at switch points (switch point: β=0.31, p < .001), and the extent

of this marginally diminished with task experience (switch point x planet number interac-

tion: β=-0.078, p = .065). We did not observe any age-related differences in overharvesting

at switch points (age x switch point interaction: β=-0.0094, p = .81). However, for older

participants, the impact of switch points on their overharvesting diminished with experience

(age x switch point x planet number: β=-0.11, p = .0082), potentially further substantiating

their learning of the environment’s structure and dynamics.
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3.3.2 Model-based analyses

Figure 3.5: Model-based results. A. The proportion of participants in each age group best fit
by a model based on cross-validation score. In all age groups, the structure learning model with α
fixed at 1 provided the best fit for the greatest proportion of participants. However, this model’s
advantage was greatest in the adults. B. To quantify the relative fit of the structure learning
model when α was fixed at 0 versus when it was fixed at 1, we took the difference of their cross
validation scores. A positive value would indicate the participant was better fit by the α = 1 model.
Correlating the difference with age, we found that the extent the α = 1 model better explained a
participant’s choices increased with age (Kendall’s τ=0.18, p < .001).

Model comparison revealed that the α = 1 model provided the best fit for the greatest

proportion of participants in all age groups (children: 49%; adolescents: 53%; adults: 68%).

Notably, however, a smaller proportion of children were best fit by this model. To explore

this further, we took the difference in cross-validation scores between the α = 0 and the

α = 1 models for each participant. A positive value would indicate the the participants’

choices were better described by the α = 1 model. We found that the difference in scores

grew increasingly positive with age (Kendall’s τ = .19, p < .001), further substantiating an

improvement in structure inference with age.

Because the α = 1 model provided the best account of a plurality of participants in each age

group, we next examined how its free parameters varied with age. We found that the baseline

discounting factor decreased with age, γbase (τ=-0.15,p < .001), suggesting that additional
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factors beyond structure learning contributed to younger participant’s more exploratory

tendencies. We also found that the scaling factor applied to drift rate increased with age

(τ=0.20,p < .001). This suggests older participants accumulated decision-relevant informa-

tion more quickly, potentially as a consequence of applying more attentional resources. We

did not find a significant relationship between age and the parameter modulating discounting

with uncertainty, γcoef (tau=0.037,p = 0.38).

3.4 Discussion

Exploration has primarily been studied within cognitive science through the lens of iden-

tifying the algorithms explorers use, and how the use of different algorithms changes from

childhood into adulthood. In this study, we asked if developmental shifts in exploration could

be explained by differences in another potential contributor, structure inference. To address

this question, participants completed a patch foraging task set within a richly structured

environment, affording multiple possible representations to infer and plan over.

Across all age groups, participants adapted their exploration to the richness and volatility

of the environment. Their choice patterns, under our model, were consistent with the pre-

dictions of our structure learning model, which attributes overharvesting to the process of

ascertaining the environment’s structure. Over the course of the task, participants’ deci-

sions became increasingly aligned with MVT-optimality, suggesting that they discovered the

environment’s true generative structure. This was further substantiated by their response

times.

In line with prior work [88], we found that children and adolescents explored more than

adults. This was particularly evident on the richest planets. The predictions of our model

indicate that these differences in exploration stemmed from differences in representation.
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More specifically, older participants’ choices implied use of a more complex, and accurate

representation of the environment. Younger participants’ choices were consistent with use

of a simplistic, single- planet-type representation, although their response times revealed

awareness of different planet types. Taken together, these findings in younger participants

point to a gap between knowledge and its influence on behavior.

In multi-armed bandit settings, prior work has sought to characterize developmental differ-

ences in exploration in terms of changes in algorithm: identifying differences in which decision

variables are maintained (e.g. information’s utility) and how variables are integrated during

action selection (e.g. is information gain or reward gain more important?). Younger deci-

sion makers tend to broadly sample their options, directed by their own uncertainty while

older decision makers strategically constrain their exploration [168, 149], seeking out the

information with the highest future utility [185]. In spite of its lower efficiency, children’s

broad exploration strategies can confer greater flexibility and aid in the discovery of the

environment’s underlying structure [26, 192, 121].

In our patch foraging task, we found that younger participants could leverage uncertainty

to guide their exploration like adults [143, 26]. But, we did not find that this uncertainty-

guided behavior was necessarily coupled with the formation of a veridical representation of

the environment. This could be due to a difference in task structure, and which actions

are uncertainty-resolving within them. In a multi-armed bandit task, a small set of options

with different values are repeatedly sampled from. A broader sampling strategy enables the

learner to detect changes in the highest-valued option over time. In a patch foraging task in

which patches are distinguished by their depletion rate, staying in a patch longer — often

considered as the “exploit” action — can reduce uncertainty. The longer a forager stays in

a patch, the more observations they gather that inform their inference of the patch’s type.

This, in turn, informs inference of the distribution of patch types across the environment.

In such a task, the distinctions between “explore” and “exploit” are not as clear-cut.
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We observed that younger participants relied on more simplistic representations to guide

their exploration. These findings align with prior work demonstrating that structure learning

ability emerges early in development but continues to strengthen and be refined into young

adulthood. Even from infancy, we have the ability to extract temporal regularities to build

structured, hierarchical representations that can be generalized to novel contexts [163, 201].

Conversely, abilities requiring more challenging inferential leaps, such as relational inference

[166] and counterfactual updating [147], show a more protracted developmental trajectory.

Our model casts age-related differences in structure learning not as differences in ability,

but rather as differences in prior experience. Its key parameter, alpha, controls the prior

expectation of encountering a new planet type. If we define environment complexity in terms

of the number of distinct planet types, alpha reflects the prior expectation of complexity.

Given that children and adolescents often have less diverse and varied experiences than

adults, it’s reasonable that they would anticipate environments to be more simply structured.

Similar structure learning models have been used to develop an account of how children come

to understand that others have preferences different from their own [73]. They too model

age-related improvements in understanding as an increase in alpha. Collectively, our results

suggest that across development children construct more complex and flexible models that

they deploy during decision making.

Although younger participants choices’ were consistent with a simplistic, single- planet-

type representation, they demonstrated decisional slowing following sudden, rare changes in

planet richness, suggesting awareness of the environment’s true multi-planet type structure.

Notably, stay-leave decisions rely on using representations to form a prediction of future

outcomes while slowed decision times are a reaction to unexpected change. A growing body

of work has demonstrated a similar developmental dissociation between the acquisition and

use of structure representations. For instance, in a task measuring planning over a mental

model of the environment, children’s choices showed less use of the model while their reaction
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times revealed knowledge of its probabilistic transition structure and even further, they

were able to report this structure when asked [47, 144, 153] In another task, children were

able to acquire the causal structure of the environment, but did not deploy this knowledge

to guide their reinforcement learning computations [37]. Perhaps, while a more complex

representation of the environment can be transiently invoked, only a simpler representation

can be recruited and maintained to guide choice [135].

Effective representations of the environment provide the foundation upon which learning

and decision making algorithms can act. However, the simplicity of environments in tasks

commonly used to study exploration has limited our understanding of the role of structure

inference in shaping individuals’ exploration. By using a patch foraging task set within a

richly structured environment, intended to more closely mimic natural environments, we

have demonstrated how individuals’ prior expectations of environmental structure influence

their current structure inference. These findings pave the way for future research exploring

the complementary roles that algorithms and representations play in shaping how individuals

explore their environments across the lifespan.
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Chapter 4

Interval timing as a computational

pathway from early life adversity to

affective disorders

The contents of this chapter were published in Harhen, N.C., Bornstein A.M. Interval tim-

ing as a computational pathway from early life adversity to affective disorders. Topics in

Cognitive Science (2024).

4.1 Introduction

Across development, brain circuits adapt to reflect the environment’s structure, preferentially

encoding more frequent aspects of the world. The statistics of the early life environment

tune sensory receptive fields, producing non-homogeneous sensitivity to perceptual stimuli

and determining discrimination abilities in adulthood [195, 56]. Early consistency in these

sensory inputs are crucial for the future functionality of involved circuits [119]. Similar
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developmental processes may take place in reward and memory systems, those underlying

associative learning, implying that the consistency or predictability of associations in early

life may shape the acquisition of associations later on [23].

Caregivers are primary contributors to the associative structure infants encounter. Associ-

ations may take the form of a caregiver’s response to an action the infant preforms. These

responses may vary in their valence and predictability. Valence influences whether the infant

will repeat the action preceding the response, while predictability constrains the infant’s

learning to associate the two. Prior work has largely focused on the effect of valence on

later child mental health outcomes [189, 137, 18, 84]. However, recent work has highlighted

how early life unpredictability, or ELU, may also contribute [13]. Research done in animals

has illustrated that offspring exposed to unpredictable caregiver signals show a reduction in

motivation and the experience of pleasure, characteristics of the trans-diagnostic symptom,

anhedonia [28]. Work in humans accords with these findings, showing relationships between

experiences of early life unpredictability, reduced reward anticipation, and symptom severity

in anhedonia, depression, and anxiety [85, 50, 130, 78, 186].

Here, we propose that the study of early-life unpredictability can be understood in part via

its influence on the development of temporal representations (TRs) that serve as basis sets

for associative learning more generally [98, 94]. TRs capture the intuition that the strength

of learned associations is dependent on the time between events [12]. These tuning curves

are similar to those found in sensory areas, but rather than being tuned to visual angle or

auditory pitch, are sensitive to the temporal duration between related events.

We specifically examine how early-life unpredictability can, via its influence on the adapta-

tion of temporal representations, result in an anhedonic phenotype. We extend a principled

computational model of interval timing [124] to simulate how enhanced volatility during an

early period of heightened plasticity can, with minimal assumptions, affect later predictions

of reward during maturity. With this model, we formally demonstrate that early unpre-
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dictability in timing, and adaptation of temporal representations to this timing, can lead

to the development of several defining characteristics of anhedonia – including slowed as-

sociative learning, reduced motivation, and a bias towards learning from negative events –

in the absence of differences in the overall amount of reward. Our results reproduce em-

pirical findings that unpredictability in early life experience can heighten susceptibility to

poor mental health outcomes even after controlling for the childhood environment’s overall

resource availability [77].

While we show that a singular type of adversity can alone produce an anhedonic phenotype,

in the real world, individuals are often subject to multiple adversities. Modeling the nature

of these interactions and their combined effect on learning will be critical for characterizing

the developmental trajectory of psychopathology. As a first step, we model how temporal

unpredictability interacts with the environment’s availability of reward, or richness, to shape

later learning and expectations of reward. Under the common cumulative risk approach to

conceptualizing and measuring early life adversity [61], these two adversities are assumed to

have an additive effect on development: individuals facing both are predicted to have the

most negative outcomes. Our model predicts that unpredictability always has a negative

effect on associative learning, however, contrary to the cumulative risk prediction, this effect

is most pronounced in richer environments. Both unpredictability and an abundance of re-

wards individually alter temporal representations to be more expansive or diffuse, producing

the observed interaction. Our results highlight the potential value of computational psychi-

atric approaches to tackling the heterogeneity of early life adversity and making sense of its

developmental consequences.
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4.2 Isolating the contributions of one form of adversity,

unpredictability

4.2.1 Methods

During the initial phase (“critical period”), agents’ temporal representations were allowed

to adapt to the environment’s temporal statistics. Agents belonged to one of two groups,

early life unpredictability (ELU) or control. The two groups were differentiated by the

distributions their reward timings were sampled from, with the ELU agents’ distribution

having the same mean as the control agents’ but a higher variance. In the second phase

(“post critical period”), both groups received reward at the same time step on each rewarded

trial and, critically, agents’ temporal representations were not allowed to adapt to the novel

environment’s statistics.

The Temporal-Difference Learning Model

Temporal-Difference (TD) models aim to accurately estimate the value of world states, V ,

in terms of the future rewards they predict. Time is explicitly represented in these models

with each time step identifying a world state.

V ∗ = E[
∞∑
k=1

γk−1rt+k] (4.1)

where rt is the reward received at the current time step, and γ is a parameter controlling how

heavily future rewards are discounted. Future rewards are less influential on the estimation

of V when γ is low. A TD agent learns V via an error driven learning rule — the difference,

δt, between the reward received (rt+γVt) and the previously predicted reward (Vt−1) is used

to update the estimate of V at the next time step.
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δt = rt + γVt − Vt−1 (4.2)

Microstimulus Representation of Time

All TD models explicitly represent time, but do so in various ways. Basic TD models use a

complete-serial-compound (CSC) representation in which each time step is treated as inde-

pendent from one another and agents are assumed to have perfect knowledge of when events

occur. This representation prohibits temporal generalization, creating issues in environments

where the time between cue and reward varies. The microstimulus representation addresses

this problem by relaxing its temporal markers [124]. CSC’s discrete markers are replaced

with continuous “microstimuli” which allow for temporal uncertainty to be represented (Fig-

ure 4.1). A stimulus is assumed to leave behind a memory trace that decays with time. The

trace is approximated by a set of Gaussian temporal basis functions uniformly distributed

across the heights of the memory trace. This approximation produces a set of microstimuli

increasing in their peak and width from the time of stimulus onset.

f(y, µ, σ) =
1√
2π

e(−
(y−µ)2

2σ2 ) (4.3)

A time step’s value, Vt, is estimated as the weighted average of the microstimuli.

Vt = wT
t xt =

n∑
i=1

wt(i)xt(i) (4.4)

Vt is compared to the reward received to compute an error term, δt that is used to adjust

the weights on the microstimuli. Adjusting the weights updates the predicted value at the

next time step.

wt+1 = wt + αδtet (4.5)
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α is the learning rate controlling the time window over which experiences are integrated. et

is a vector containing each stimulus’s eligibility traces.

et = γλet + xt (4.6)

Following the stimulus, its eligibility trace decays at a rate determined by γ and λ. γ is a

temporal discounting factor as it was for the TD model with a CSC representation, while λ

controls the time window over which a stimulus can induce learning within a trial. For all

simulations, we use the parameter settings from Ludvig et al, 2008 — α = 0.01, γ = 0.98, λ

= 0.95, n = 50, and σ = 0.08.

Figure 4.1: Stimulus encoding by microstimuli. From left to right, the memory trace
produced by a stimulus is approximated with a set of temporal basis functions, whose centers vary
such that they evenly cover the trace’s possible heights. The decaying nature of the memory trace
produces microstimuli that become shorter and wider the further their center is to the stimulus
onset. The microstimuli are weighted and averaged to estimate the future expected reward following
the stimulus. The weights can be adjusted with experience to support accurate predictions of
reward.

Simulating Development

To model developmental changes in learning, we restrict the updating of microstimuli weights

to the initial period which we treat as a “critical period” during which the temporal represen-

tations are tuned to support accurate estimation of V . This adaptation process is designed

to mimic the observed tuning of sensory receptive fields during analogous sensitive periods of

development [178]. During the second phase (“post critical period”), the weights are frozen,

prohibiting representation adaptation, to simulate adulthood.
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We simulated two groups of agents learning to associate a cue with reward across the two

phases (Figure 4.2). One group of agents, the early life unpredictability (ELU) group expe-

rienced a volatile critical period environment in which the timing of reward was much more

variable than the timing experienced by the control group. Critically, however, the average

timing of reward and the average amount of reward received (i.e. same probability of reward

on each trial) was matched between groups.

On each of the 1000 simulated trials during the critical period, a cue was always presented

at 10 time steps and there was a 75% probability of a reward following it. If a cue was

followed by reward on a trial, the timing of reward was sampled from a normal distribution

with µ = 30 and truncated at 10 and 70 time steps. σ varied between agents. For agents

in the ELU group, σ was sampled from a zero-truncated normal distribution with µhyper,elu

= 10 and σhyper,elu = 3. The control group experienced much less variability, with σ being

sampled from a zero-truncated normal distribution with µhyper,control = 1, σhyper,control = 2.

We varied σ within groups to reflect the variation observed in real life samples, particularly

early life adversity facing ones, and to ensure our results were robust to such variation.

In the second phase, the microstimuli weights were frozen (“post critical period”), allowing

us to directly examine the influence of highly variable early-life experiences. The temporal

statistics of this environment differed from the critical period’s environment in two ways: 1.

The reward was delivered at the same time step each trial for both groups of agents. 2. This

time step was later (50 time steps) than the previous environment’s average time of reward

(30 time steps). By testing ELU agents’ learning in novel environments that are more stable

than the environment they “developed” in, we formalize the Mismatch Hypothesis of Early

Life Adversity and Depression [167]. Under this hypothesis, depression and other mental

illnesses are proposed to be the byproduct of a mismatch between the developmental envi-

ronment to which neural systems are optimized for and the later adulthood environment.

We were particularly interested in characterizing how an agent’s early adaptation to unpre-
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dictability would affect their response to uncertainty in adulthood. Within the simulated

task, uncertainty should rise once the mean time of reward has passed and reward has failed

to be delivered. This is because it becomes unclear whether the reward is delayed or is

omitted altogether on the trial. To produce this circumstance, we moved back the time step

of reward in the novel, post critical period environment to examine how the ELU and control

groups differ in their response to reward and its omission following a period uncertainty. All

agents completed 2 trials. On both trials, the cue arrived at 10 time steps. On one trial,

reward followed the cue at 50 time steps. On the other, reward was omitted. We simulated

agents only on two trials because the weights were no longer updated. Thus, the prediction

error response on every trial of the same time (rewarded vs. omitted) would be identical.

Figure 4.2: Simulated agents learned to associate a cue with reward in two different
environments. The cue was partially reinforced — 75% of the time in the initial environment
and 55% in the second. On rewarded trials, reward was delivered at a variable time step. Agents
belonged to one of two groups, differing in the variability they experienced in the initial environment.
The reward timings experienced by agents in the early life unpredictability (ELU) group were on
average the same as those experienced by the control group. However, in the initial phase (“critical
period”), they experienced more variably timed rewards trial to trial. In the second phase (“post
critical period”), agents’ weights were frozen, and all agents received reward at the same time step.
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Statistical Analyses

Each simulated agent encountered a different sequence of reward timings during the initial

critical period. Thus, a potential concern is that our results are largely driven by a subset

of simulated agents. To assess the reliability of the relationship between prediction error

magnitude and unpredictable experience, we performed a bootstrap analysis across agents

within a group [106, 29]. For each group, we sampled agents with replacement until we

reached the total number of agents, 100. We then computed the test statistic for a two

sample t-test with the selected groups. We repeated this procedure 1,000 times to obtain

a distribution of test statistics across shuffled permutations of the simulated groups. This

re-sampling procedure provides a p-value that is the fraction of test statistic values with a

different sign from the base effect size (the test statistic for the original two groups). We also

computed the Cohen’s d in order to evaluate the size of the difference between simulated

populations. By convention, effect sizes greater than 0.80 are considered “Large”, and thus

reliable [38].

4.2.2 Results

Critical Period

First, we validated that the critical period environment shaped temporal representations

by comparing the groups’ microstimuli weights at the end of the critical period. For each

agent, we computed a temporal imprecision measure by taking a weighted average of the

microstimuli’s standard deviations, with the weights being the same as those used to generate

the value signal. Consistent with our prediction that temporal representations would adapt

to reflect the statistics of their environment, we found that the ELU group relied on more

broadly-tuned temporal representations relative to controls (Figure 4.3; t(198) = 8.43, p <
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.001, Cohen’s d = 1.19).

Figure 4.3: A-B. Positively weighted microstimuli. With experience, the ELU group grew
to more heavily weigh delayed, imprecise microstimuli to account for the frequent delayed rewards.
C. Temporal Imprecision. We computed a summary statistic of temporal representation (TR)
imprecision by taking a weighted average of the standard deviations of the positively weighted
microstimuli at the end of the critical period. ELU agents’ temporal representations were, on
average, more than twice as imprecise as control agents.

Early life unpredictability has been shown to produce slower learning from reward in adult-

hood [22, 50]. We next examined the model’s ability to capture this. As a proxy for learning,

we used a particular pattern of prediction error responses. If a cue has become associated

with reward, then there should be large positive prediction error in response to the cue, a

smaller positive prediction error at the time of reward, and a large negative prediction error

when reward is omitted. To compare prediction errors between groups, we computed, across

time within each trial, the prediction error extremum for each agent. On rewarded trials,

the maximum prediction error magnitude following the cue was taken and on omission trials,

the minimum was taken. We then took the average of these values across trials of the same

type for each participant. We found that, on rewarded trials, the ELU group’s positive pre-

diction errors were larger than the control group’s (Figure 4.4, 4.5; t(198) = 12.59, p < .001,

Cohen’s d = 1.78) but, were less negative on omission trials (t(198) = 6.23, p < .001, Co-

hen’s d = 0.88). Despite both groups experiencing the same amount of reward, the ELU
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group showed slower learning under reinforcement. Collectively, these results demonstrate

how impaired associative learning, as observed in anhedonia, can emerge from experienced

temporal volatility alone during a period of plasticity.

Figure 4.4: An example ELU and control agent’s prediction errors (δ) from individual
trials within the critical period. A cue always occurred at 10 time steps, while the reward’s
timing varied from trial to trial. Temporal variability was determined by which group an agent
belonged to — an ELU agent experienced a much wider distribution of reward times. Reward
elicited a strong positive prediction error from both agents on the first trial. Even very early
on, the control agent demonstrated a positive prediction error in response to the cue, a weak
positive prediction error at the time of reward, and a strong negative prediction error when reward
was omitted, matching the pattern of responses expected for well-learned, consistent contingencies
using this temporal-difference learning rule. This pattern held throughout the 1000 trial critical
period. In contrast, even very late into the critical period, the ELU agent’s prediction errors
continuously moved around in time and were larger in magnitude, a consequence of their more
volatile environment.

Early life unpredictability has also been shown to impair motivation [86], potentially stem-

ming from reduced expectations of reward. Thus, we next compared the groups’ expectations

of future reward, as reflected by their value signals. When averaged across trials, control

agents’ value signals quickly increased in response to the cue (Figure 4.6; mean at 10 time

steps = 0.43, sd = 0.022), gradually rose until the average time of reward (mean at 26 time

steps = 0.71, sd = 0.075) after which the signal rapidly dropped off (mean at 32 time steps

= 0.059, sd = 0.078). ELU agents’ value signals similarly rose in response to the cue but

peaked much earlier (t(198) = −27.75, p < .001, Cohen’s d = −3.92) and fell more gradually

(mean at 32 time steps = 0.29, sd = 0.045, t(198) = 26.34, p < .001, Cohen’s d = 3.73).

Importantly, ELU agents’ expectations of reward were diminished at the time steps right be-
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Figure 4.5: Critical period prediction error signals. Reward elicited larger positive pre-
diction errors in ELU agents while reward omission produced weaker negative prediction errors, a
pattern of responses suggesting ELU agents were slower in learning from reward.

fore when reward as most likely (mean at 26 time steps = 0.48, sd = 0.048, t(198) = −25.87,

p < .001, Cohen’s d = −3.66). These differences could have a particularly significant impact

on decision making which requires deciding not only which option to take but also when to

take it. Diminished expectations of reward should produce slower decision times, a charac-

teristic found in anhedonia [54, 80, 202, 46]. ELU agents also showed greater variability in

their value signals from trial to trial as revealed by taking the standard deviation of the time

steps at which value signals peaked (ELU mean = 10.49; Control mean = 1.50; p < .001,

Cohen’s d = 3.39). This aligns with prior empirical work that found more variable ventral

striatal activity following early life stress [85].

Post Critical Period

To simulate adulthood, in the second phase, we closed the “critical period” by preventing the

updating of the microstimuli weights in the novel environment. Thus, their expectations of

reward are carried over and fixed once the developmental period ends. In this environment,

reward was delivered at a later time step than the average time of reward during the critical

period. This induces an interval of uncertainty during which its unclear whether the reward

is delayed or omitted. We examined how the expectations acquired in an unpredictable

early life environment shape the prediction error response when this uncertainty is resolved.
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Figure 4.6: The value signal, V , averaged over all critical period trials. Individual agents’
value signals are depicted by the thin lines. The thicker lines depict the group averages. Control
agents’ expectations of future reward quickly rose following the cue and steadily increased until the
average time of reward, after which their expectations quickly dropped. ELU agents’ expectations of
reward similarly rose in response to the cue but subsequently decreased at a gradual rate rather than
increasing. Notably, ELU agents had higher expectations of reward at later time steps compared
to controls — a consequence of having experienced more delayed rewards which required relying on
more diffuse, later peaking microstimuli. When aggregated across trials, ELU agents’ expectations
were more spread out. This is both because they relied on more diffuse microstimuli and because
their value signals fluctuated from trial to trial in response to variably timed rewards.

Because ELU agents experienced rewards at more variable time steps, they grew to have a

higher expectation that reward could arrive at later time steps (Figure 4.7A). This affects

their response to the cue and reward. Control agents have a strong positive prediction error

immediately after the cue is presented because they have learned well that the cue predicts

reward (Figure 4.7B). ELU agents instead have a weaker and delayed response to the cue

because of their weaker association between the cue and reward. Control agents experience

a slightly negative prediction error when reward is not delivered at the most expected time

step (Figure 4.7C). But, when reward ultimately arrives at a later time step, they show

a large positive prediction error, a consequence of their low expectations of reward this

late in the trial. ELU agents had relatively higher expectations of reward at the time step

when reward was delivered, thus they showed relatively blunted positive prediction errors

(t(198) = −2.25, p < .001, Cohen’s d = −0.32). The same expectations produced amplified

negative predictions error when reward was omitted (t(198) = −12.29, p < .001, Cohen’s
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d = −1.74). In other words, their higher expectations allowed them to experience greater

disappointment.

Figure 4.7: A. Representative agents’ value signals. The value signal, taken from the end
of the critical period, reflects the individual agent’s expectation of future reward following the cue.
These expectations are “frozen” and determine the agent’s response to reward and its omission. B.
Example prediction error signals for a single rewarded trial. The ELU agent’s expectation
of future reward only begins to rise at 40 time steps whereas the control agent’s rises immediately
at 10 time steps in response to the cue. Accordingly, the ELU agent demonstrates a weaker and
delayed response to the cue. When reward is delivered at 50 time steps instead of its average
previous time, 30 time steps, the control agent shows a more positive prediction error than the
ELU agent. Again, this is a result of their expectations. The control agent does not expect the
reward to arrive this late in the trial, and thus, is surprised when it does. The ELU agent, having
experienced more delayed rewards, is less surprised. C. Example prediction error signals for
a single omission trial. The ELU agent’s greater expectation of reward at later time steps also
produces a larger negative prediction error when reward is omitted.

We next examined how early life unpredictability affected agents’ response to rewards of

varying magnitudes. When given a reward of the same magnitude as those received during

the critical period, control agents responded with larger positive prediction errors (Figure 4.8;

βelu = −0.51, p < .001). As the reward magnitude increases, diverging from those previously

experienced, both groups show increasingly large prediction errors (βmagnitude = 0.55, p <
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.001). The ELU agents do so at a faster rate than control agents, demonstrating larger

prediction errors than controls in response to higher magnitude rewards (βelu∗magnitude =

0.43, p < .001). When coupled with their blunted response to the cue, ELU agents appear

to be hyposensitive to rewards in anticipation but hypersensitive to them in consumption.

This pattern has been observed in a monetary incentive delay task designed to distinguish

between reward anticipation and consumption [27]. More generally, it concords with wide-

spread findings that early life adversity impairs cue-reward learning [50, 191, 22, 49] while

increasing sensitivity to dopamine-releasing drugs [110, 199, 42, 146, 111, 112, 209].

Figure 4.8: Sensitivity to increasing rewards. We varied the magnitude of rewards delivered
during the second phase. As the magnitude of rewards increased, both groups showed larger
positive prediction errors on rewarded trials. ELU agents were more sensitive to changes in reward
magnitude – their prediction errors increased to a great extent in response to larger rewards. At
the lowest reward magnitude, which was the magnitude experienced during the critical period, the
control group experienced larger positive prediction errors than the ELU. This pattern reversed at
larger magnitudes with ELU agents demonstrating hypersensitivity to rewards. Error bars are 95%
bootstrapped confidence intervals.

Prediction error magnitude determines the extent to which an agent learns or updates their

expectations. Because valence asymmetries in learning have been proposed to be clinically

relevant [162, 151, 161], we next compared prediction error magnitude on the rewarded and

omission trials to probe for such asymmetries. We computed an asymmetry index for each

agent as follows:

index =
|PE+| − |PE−|
|PE+|+ |PE−|

(4.7)
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ELU agents’ asymmetry indices were overall negative (Figure 4.9; t(99) = −5.62, p < .001,

Cohen’s d = −0.79) while the control agents’ were positive (t(99) = 8.49, p < .001, Cohen’s

d = 1.20). Because prediction error magnitude enhances learning and memory, this suggests

that negative events would have an outsized influence on ELU agents, making their value

estimates overly pessimistic while control agents’ are overly optimistic [171]. Our model

provides a mechanism through which both of these biases could emerge under minimal as-

sumptions.

Figure 4.9: Learning Asymmetry Indices. The ELU group showed a negativity bias, experi-
encing more extreme prediction errors on the omission trial than the rewarded trial. In contrast, the
control group demonstrated a positivity bias, experiencing larger prediction errors on the rewarded
trial. Error bars are 95% bootstrapped confidence intervals.

4.3 Interactions between multiple forms of adversity

4.3.1 Methods

Critical Period

To examine the interaction between multiple forms of early life adversity — temporal un-

predictability and low reward availability, we additionally manipulated the richness of the

critical period environment and observed its effect on both groups. This allowed us to test
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the assumptions of the cumulative risk conceptualization of early life adversity which as-

sumes an additive effect of adversities on developmental outcomes. We simulated groups

of the ELU and control agents in environments with 25, 55, 75, and 95% probability of

reward. As in previous simulations, the time of reward delivery was sampled from a normal

distribution with µ = 30 time steps and truncated at 10 and 70 time steps, and the distri-

bution’s σ differed between groups — ELU agents’ σ were sampled from a zero-truncated

normal distribution with µhyper,elu = 10 and σhyper,elu = 3 and controls’ were sampled from a

zero-truncated normal distribution with µhyper,control = 1, σhyper,control = 2.

Post Critical Period

In the novel environment during the second phase, the cue was presented at 10 time steps

on each trial. They experienced one rewarded and one omission trial. On the rewarded trial,

reward was delivered at 50 time steps. As before, we only include two trials because the

weights are no longer updated, thus, the response on each trial of the same type would be

identical.

4.3.2 Results

Critical Period

As before, we assume that the smaller positive prediction errors are in response to reward

and the larger negative prediction errors are in response to its omission then the more

strongly an agent has learned to associate a cue with reward. Under this assumption,

both temporal unpredictability and low reward availability were found to slow associative

learning. On rewarded trials, positive prediction errors were larger for ELU agents and

both groups’ prediction errors became weaker with environment richness (Figure 4.10A;
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βelu = 0.057, p < .001, βrich = −0.90, p < .001). On omission trials, negative prediction er-

rors were stronger for control agents and with increasing environment richness (Figure 4.10B;

βelu = −0.022, p = .015, βrich = −0.98, p < .001). The two dimensions interacted, with the

difference between groups increasing as environment richness increased (βelu∗rich = 0.15, p <

.001). In particular, the effects of unpredictability on learning were only observed in richer

environments, with no main effect of group but an interaction effect between group and

richness (βelu = −0.015, p = .11, βelu∗rich = 0.093, p < .001). Taken together, our results re-

veal that the effect of temporal unpredictability is most fully felt when reward is abundant,

a consequence of both dimensions increasing the imprecision of temporal representations

(βelu = 1.04e − 05, p < .0001, βrich = 1.47e − 05, p < .001, βelu∗rich = −1.91e − 07, p = .95).

When rewards are both unpredictably timed and abundant, it increases the range of timings

an agent’s representation must accommodate.

The value signal reveals a similar impact of the environment’s temporal unpredictability and

overall richness on learning. The value signal correspondingly increased as richness increased

(Figure 4.10C; βrich = 0.32, p < .001). Yet, only when the environment is sufficiently rich

can unpredictability exerts its blunting effect on the signal (βelu = 0.0041, p = .52, βelu∗rich =

0.035, p < .001).

Post Critical Period

In the post critical period phase, we found the same complex relationship between the

environment’s temporal unpredictability and richness, in which greater reward availabil-

ity allows unpredictability to exert its influence. Across all environments, control agents

maintained a bias towards learning from reward over its omission as indicated by positive

asymmetry indices (Figure 4.10D; 25% - t(99) = 21.88, p < .001, Cohen’s d = 3.09; 55% -

t(99) = 15.79, p < .001, Cohen’s d = 2.23; 75% - t(99) = 8.49, p < .001, Cohen’s d = 1.20;

95% - t(99) = 8.62, p < .001, Cohen’s d = 1.22). The valence of ELU agents’ biases, in
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Figure 4.10: Varying critical period environment richness to examine the impact of
multiple adversities. A. Critical period prediction errors in response to reward. Positive
prediction error magnitude was modulated by the environment’s richness (probability of reward)
and its temporal unpredictability (ELU vs. Control), with richness attenuating magnitude and
unpredictability amplifying it. B.Critical period prediction errors in response to reward
omission. Negative prediction error magnitude was amplified by richness and attenuated by un-
predictability. This pattern of responding suggest richness supports associative learning while
unpredictability impairs it. C. Value Signal. Mirroring the reward statistics of their environ-
ment, agents’ expectation of future reward increased accordingly with the overall richness of the
environments. Notably, group differences were emphasized by richness. D. Post critical period
asymmetry indices. Control agents demonstrated a consistent positivity bias that diminished
the richer the environment. ELU agents showed a positivity bias only in the poorest environment
and a negativity bias in richer environments. Error bars are 95% bootstrapped confidence intervals.
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contrast, was dependent on the richness of the critical period environment. ELU agents

who experienced the sparsest rewards during the critical period exhibited a positivity bias,

similar to control agents although weaker (Figure 4.10D; 25% - t(99) = 9.098, p < .001

Cohen’s d = 1.28). Those who experienced a less sparse environment showed no bias (55% -

t(99) = −0.46, p = 0.64, Cohen’s d = −0.065), and those who experienced an environment

abundant with rewards exhibited a negativity bias (75% - t(99) = −6.60, p < .001, Cohen’s

d = −0.79; 95% - t(99) = −17.72, p < .001, Cohen’s d = −2.51). This pattern of results

is a byproduct of the reward expectations built up during the critical period. ELU agents

whose representations are adapted for richer environments have a stronger prior expectation

that reward will have a delayed arrival rather than being omitted altogether. Thus, when

reward is omitted on a trial, they experience a particularly large negative prediction error.

Our simulations contradict the predictions that would be made under the cumulative risk

approach which assumes an additive effect of adversities.

4.4 Discussion

Here, we propose a novel computational link between early life unpredictability and the

emergence of anhedonia — the optimization of temporal representations to the early life

environment. By simply assuming that temporal representations are adapted to the statistics

of the early life environment, several behaviors associated with anhedonia emerge — impaired

learning from reinforcement, reduced anticipation of reward, and a greater response to the

omission of events.

These findings are consistent with behavioral outcomes observed in the laboratory and clin-

ical settings. One representative set of such findings is of an asymmetric attentional bias

in anhedonia. If we treat the omission of reward as a negatively valenced event and the

presence of reward as a positive event, this suggests a negative attentional bias in the ELU
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group and positive bias in the controls, reproducing empirical findings [51, 64]. Larger neg-

ative prediction errors may not only affect attention in the moment but also have longer

lasting consequences via memory. Surprising events, like prediction errors, are known to be

more easily retrieved from memory [162, 180]. This provides a mechanism by which singu-

lar negative events can have an outsized influence on expectations and consequently, shape

mood over the longer term [57]. Frequent large negative prediction errors could produce the

persistent negative mood that characterizes anhedonia [50]. We found that the development

of this negativity bias was critically dependent on the overall richness of the environment. To

experience a pronounced negative prediction error when reward was omitted, agents needed

to have a strong expectation that reward would come but a weak expectation of when that

would be. Only in environments rich with variously timed rewards did such expectations

emerge.

Our results contradict the assumptions and predictions of the cumulative risk conceptualiza-

tion of early life adversity [61]. The cumulative risk approach has been crucial in establishing

the robust association between negative events early in life and a wide array of negative

outcomes later in development. However, aggregating over heterogeneous experiences may

obscure the mechanisms linking such experiences to later psychopathology [182, 128]. One

proposed alternative are dimensional models which identify influential features of the early

life environment on development and seek to characterize how these features exert their

influence. Supporting the dimensional approach, recent work has found divergent associa-

tions between measures of threat and deprivation in the early life environment with later

developmental outcomes including amygdala reactivity to threat, aversive learning, cogni-

tive control, and pubertal timing [114, 126, 131, 160, 175, 193, 194]. However, adopters of

these approaches have been criticized for an unprincipled choice of dimensions, particularly

lacking neurobiological grounding [182]. Given the potential relevance of reward systems to

psychopathology, it may be valuable to look at the statistical properties of the environment

known to influence associative learning as potential candidate dimensions.
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Thus far in our interpretation of the results, we’ve treated the cue-paired outcome as re-

ward. However, the model is agnostic to the valence of the outcome — allowing for different

interpretations where the outcome is treated as neutral or aversive. Different valences will

suggest different behavioral phenotypes. Treating the outcome as aversive, like a shock, the

ELU group’s prolonged expectation of a negative outcome’s appearance could be interpreted

as sustained hypervigilance (perhaps akin to a form of “paranoia”), a symptom of anxiety.

Treating the outcome as neutral, impairments in associative learning become more general

impairments in relational learning. This may explain memory deficits and alterations in hip-

pocampal structure in ELU individuals [81, 133] and anhedonia’s associated memory deficits.

Prior work has suggested that anhedonia is characterized not only by the inability to ex-

perience pleasure in the moment but also the inability to recall past and anticipate future

pleasurable experiences [51].

Here, we’ve only considered the mechanism under Pavlovian learning conditions. However,

it also suggests differences in ELU individuals’ instrumental learning and action selection.

The inability to accurately predict the timing of future outcomes diminishes an individual’s

perceived controllability of the environment, which has also been implicated in psychiatric

disorders such as anxiety [24].

Hidden-state inference models capture a similar idea as the microstimulus model at a different

level of analysis [190]. Often, the true state of the world is unknown or hidden and must

be inferred from observations. This inference process is in part driven by prediction errors

[162], and by extension is more difficult in volatile environments. As a result, ELU individuals

may infer fewer states in the world (or, analogously, more states in an environment where

negative prediction errors predominate) and group their experiences accordingly as a result

of this early volatility. We have previously shown that this assumption of reduced sensitivity

with a hidden-state inference model can produce reduced exploration in a foraging task

[88], a behavior found in ELU populations [123], and may also explain why individuals who
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experience early life unpredictability are at higher risk of developing substance use disorders

and relapsing following treatment [87].

Our model is predicated on the assumption that prediction error learning can serve as a

mechanism of environmental adaptation across multiple timescales — within a task and

across development. Embodying an extreme form of sensitive period, adulthood is concep-

tualized as a period in which learning has altogether ceased. Future work could examine

the effect of more realistic, relaxed constraints on learning in adulthood – in which devel-

opmental experience lays the groundwork for the architecture of neural systems which later

adulthood experience can modify and reorganize [66, 102]. Under this scenario, the prior

biases instilled by the developmental environment should have their greatest influence in few

shot or one shot learning experiences. When current experience underdetermines what an

agent should expect or do, past experience should largely influence the conclusion an agent

reaches, with early life experience having a particularly privileged role [82]. Such inductive

biases facilitate learning in environments aligned with these biases and frustrate it in mis-

aligned environments. If the influence of the developmental environment on expectations

and choice is greatest in environments in which the agent has limited experience, this has

implications for when symptoms for disorders like anxiety and substance use disorder should

worsen [172, 31].

Our results highlight the key role time plays in shaping reinforcement learning and conse-

quently its impact on behaviors associated with mental illness. The model’s ability to pro-

duce varied phenotypes from the same computations suggests that the model’s implications

extend beyond anhedonia. Potentially it provides a common origin for a number of psychi-

atric disorders, offering a potential explanation for high co-morbidity rates [95, 104, 113].

Further research is needed to empirically test the model’s behavioral predictions, namely,

for early life unpredictability’s impact on interval timing, and interval timing’s relationship

with psychiatric disorders. Finally, our results offer a demonstration of the value of compu-
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tational modeling to understanding the development of psychopathology. By drawing on a

reinforcement learning framework, we can formalize the changing relationship between the

agent and their environment across development, produce testable predictions of how the

environment shapes the latent computations underlying clinically relevant behaviors, like

learning, and propose mechanistic links between altered computations and the later emer-

gence of psychiatric symptoms.
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Chapter 5

Conclusion

5.0.1 General Discussion

In this dissertation, we reevaluated three classic behavioral biases: over exploitation, over

exploration, and impaired reward learning. By definition, these biases stand at odds with

the predictions of standard optimal learning and decision making models. And yet, many

humans systematically engage in them. In each chapter, rather than question the validity

of human behavior, we questioned the validity of the optimal model’s assumptions. Often

optimal models make simplifying assumptions, either about the nature of the environment

or the agent’s knowledge, to enhance tractability. But by doing so, these models incidentally

eschew a key feature of the learning and decision making problems humans face in the real

world — uncertainty. Our work proposes alternative sets of assumptions aimed at preserving

the forms of uncertainty ever-present in natural environments, and demonstrates how classic

biases emerge from these assumptions. We find that each bias reflects a deft handling

of uncertainty, an ability made possible by learning processes that unfold across multiple

timescales.
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In Chapters 2 and 3, we considered patch foraging, a form of sequential decision making

problem. We investigated instances in which choices deviated from Marginal Value The-

orem’s (MVT) prescribed behavior – ranging from under to over exploration. Implicitly,

MVT assumes the forager possesses perfect knowledge of their environment. However, un-

certainty is ubiquitous in real-world environments, those that decision makers are adapted

to. To ameliorate this mismatch in assumption, we proposed a rational structure learning

and uncertainty-adaptive planning model to augment MVT. Rather than presume perfect

knowledge, our model specifies how a decision maker could learn the structure of their en-

vironment, ultimately progressing towards the MVT optimal policy and make reasonable

decisions even with limited experience. A major assumption underpins our model: people

deploy the sophisticated learning and decision making strategies that they’ve learned work

well in complex real world environments even when faced with much simpler task environ-

ments.

In Chapter 2, our model provided a superior explanation of participants’ overharvesting

relative to MVT and alternative models. In Chapter 3, we applied the same model to under-

standing why exploration is heightened during development. Strikingly, the same structure

inference process that captured adults’ over exploitation also captured children and adoles-

cents’ over exploration. By specifying different structural priors varying in their complexity,

the same model was capable of producing divergent behaviors. Model fitting revealed that

children and adolescents’ exploratory behavior was best explained by a structural prior bi-

ased towards simpler environments. Adults, in contrast, explored less, acting as if they

had a structural prior biased towards complex environments. Potentially, the age-related

differences in structural priors reflect differences in real world experience. Throughout de-

velopment, we gain increasing experience with the complexity, variation, and nuances of the

world. Our model suggests that this has meaningful consequences for how we explore novel

environments: we draw on our experiences in past environments to guide how we mitigate

uncertainty in the present environment.
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In Chapter 4, we aimed to characterize the relationship between early life adversity, in the

form of unpredictability, and impaired reward learning. Prior work has identified early life

unpredictability as a common antecedent to alterations in reward learning and its associated

neural circuitry. Often, these alterations are often cast as “disruptions” or “aberrations,”

but, here, we suggest that they are the result of rational adaptation to an unpredictable en-

vironment. To demonstrate this, we simulated a standard reinforcement learning model un-

dergoing development. We simplified development into two periods — a period of heightened

plasticity followed by a period devoid of it. During the plasticity period, agents’ representa-

tions could flexibly adapt to the structure of the environment. We compared two groups of

simulated agents with different early life environments. During the early period of plasticity,

one group experienced much more unpredictably timed rewards than the other. When plas-

ticity ceased, both groups were placed in a novel environment with predictable rewards. In

the adulthood environment, the unpredictability-exposed group exhibited impaired reward

learning which our model attributes to a discrepancy between the developmental and adult-

hood environments. As in Chapters 2 and 3, our bias of interest emerges from the process

of experience in prior environments shaping behavior in the current environment.

In summary, for each behavior, we examined how the decision problems presented by the

current task environment differed from those encountered in previous environments. This led

us to conclude that all three behaviors occur under greater uncertainty than is assumed by

standard optimal models. For that reason, we advanced rational structure learning models

as more realistic alternatives. Remarkably, these rational learning models successfully re-

produced the observed suboptimal behavior from a minimal set of assumptions. As a result,

there is further justification to reevaluate the suboptimality of these behaviors.

Our approach follows in the tradition of Anderson’s rational analysis [8]. A major con-

tribution of this dissertation has been to expose the brittleness of the objective functions,

or goals, specified by the optimal models. We attribute the brittleness to their underlying
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assumptions. Often, these assumptions are made for mathematical or conceptual simplic-

ity, and are justified by asserting that they do not change the core problem faced by the

agent. However, through recognizing how complex, dynamic, and varied real-world envi-

ronments are, it becomes evident that through this simplification, the decision problem has

been misrepresented.

The ways we act and adapt should mirror the world. Our learning should be robust to un-

certainty, our decision making should aim to resolve it, and, our developmental mechanisms

should support adaptation to a wide array of environmental inputs.

5.0.2 Open Questions and Future Work

Rational models often begin with the assumption that cognitive mechanisms are already

well-adapted to the environment. Yet, in the case of decision making, adaptation is an

ongoing, lifelong process. Our work has examined how rational learning and adaptation

mechanisms unfold and interact across multiple timescales, cooperating to enable rapid and

flexible decision making in new situations. Through modeling these interactions, we widen

the scope of rational approaches. Now, they can be applied to mechanisms that continually

adapt to a range of environments throughout the lifespan. This, in turn, allows us to ask

questions such as: why does the human developmental trajectory take the form it does?

In the following discussion, we sketch out how rational analysis can be applied to the study

of developmental mechanisms by breaking down this broad question into two more specific

ones: how should developmental stages be sequenced, and how long should sensitive periods

of plasticity last? Unique to its application to development, rational analysis requires the

agent to adapt to multiple environments. Even when the external environment remains

constant, the internal environment—such as abilities and learning objectives—will inevitably

change. We examine the empirical research relevant to this issue, its connection to our two
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key questions, and its implications for rational modeling.

How should developmental stages be sequenced?

Each development stage is defined by a unique internal environment, characterized by the

agent’s abilities and learning scope. How do these features determine a stage’s ideal place-

ment within the overall developmental trajectory?

As individuals progress through developmental stages, their abilities mature, allowing them

to process and reason about increasing amounts of environmental input. Theoretical work

in psychology and machine learning suggests that early maturational constraints may con-

fer benefits for learning [58, 183]. Real world environments are highly complex and noisy,

posing a challenging learning context even for adults. However, younger children’s limited

attentional and memory capacities simplify the learning context by reducing the amount of

information they need to process. The gradual lifting of constraints across development cre-

ates a form of curriculum learning, where increasingly difficult problems build upon simpler

ones, which serve as scaffolds [20]. Both theoretical and empirical studies have shown that

such scaffolding accelerates learning and increases the generalizability of the acquired knowl-

edge to new contexts [48, 148, 181, 116]. To apply a rational modeling approach, one could

simulate various developmental curricula, evaluating their learning efficiency and robustness,

and compare the “winning” curricula to the structure of human developmental trajectories.

As learning abilities improve, the scope or expansiveness of learning decreases. From in-

fancy into young adulthood, we shift from constructing broad causal models of the world

[187, 125] to refining models of specific, novel environments [47, 73, 79]. These changes in

learning scope may explain the developmental differences in exploration observed in Chapter

3. Our findings indicate that children and adolescents broadly sample their environments,

while adults deeply focus on specific regions, often overexploiting them, possibly to reduce
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uncertainty. Adults’ strategies may reflect deep exploration, in which options are prioritized

if they offer immediate and future information gains, promoting temporally-extended explo-

ration [145]. Integrating formalizations of exploration with curriculum learning approaches

would allow for developmental change to be defined in terms of learning ability and scope,

overall enriching the modeling of developmental change. Scope adds a critical, yet under-

explored, constraint on the sequencing of stages in curriculum learning. Often, an agent’s

learning scope or objective is assumed to remain constant throughout the learning period.

This has critical implications for a rational analysis of development. Allowing the scope to

vary along with abilities could alter the optimal developmental trajectory.

How long should sensitive periods last?

Across development, individuals vary in their sensitivity to the environment due to system-

atic changes in plasticity. The timing of these sensitive periods is not fixed; their onset and

closure are modulated by environmental cues such as reward deprivation and unpredictability

[33, 69, 210, 68]. In Chapter 4, we opted not to model the relationship between environmen-

tal unpredictability and sensitive period length for mathematical simplicity. However, future

research could formalize this relationship using bounded optimality approaches, which treat

computational limitations as factors equally crucial in shaping the mind as the environment

is [177, 120, 72, 118]. In this application, plasticity is the primary constraint of interest.

Plasticity allows for flexibility and adaptation to the environment but comes at the expense

of efficiency. This reveals another problem a developmental mechanism must optimize for

— determining the optimal duration of plasticity given the trade off between flexibility and

efficiency and the structure of the environment.

Finally, because agents must adapt to multiple environments throughout their lifespan, there

is no guarantee that the childhood and adulthood environments will be similar, let alone the

same. How should developmental mechanisms accommodate this uncertainty [59]? What
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forms of plasticity should be retained into adulthood? To address these developmental

questions through rational analysis, one could draw on meta-learning approaches [142, 65]

to model how agents adapt to a range of environments, balancing flexibility and efficiency

in the face of potential uncertainty. In meta-learning frameworks developed in machine

learning, alter the learning objective. Rather than optimize for performance in a single

environment, performance is optimized across many environments [93, 200]. Changing the

learning objective in this way enhances performance even in environments dissimilar to the

ones agents were originally trained in [97]. Importantly, meta-learning models specify a wide

range of meta-learning objectives [36, 19]. Future work could evaluate how well different

classes of meta-learning objectives capture the empirically observed results of a match or

mismatch between the childhood and adulthood environment.

5.0.3 Summary

The results presented in this dissertation suggest that studying how multi-scale learning and

decision making processes unfold and interact opens up novel opportunities to reexamine

the rationality of certain behaviors. Additionally, it extends the application of rational

frameworks to temporally extended processes, including development. Rational frameworks

excel at unifying and organizing seemingly disjoint bodies of work, offering parsimonious

accounts. Leveraging these tools will enable us to build on an already extensive literature

on cognitive development and offer principles that explain how the mind is shaped by the

numerous environments it encounters across development.
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Appendix A

Supplementary information for

Chapter 3

A.1 Methods

A.1.1 Parameter priors

Priors were beta-distributed with parameters, α = 1.1, β = 1.1. Parameters whose bounds

fell outside of the range between 0 and 1 were transformed to fit between those bounds using

a logistic transformation.

A.1.2 Model recovery

For each model, we simulated data from 200 participants by uniformly drawing parameters

between the bounds defined in Table SA.1. We then fit each simulated participant’s dataset

to all four models. Our models demonstrated good recoverability. The model used to gen-
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Model Parameter Bounds
Structure learning and adaptive discounting α 0 or 1

γbase 0,10
γcoef -1,1
v 0.01,1

Marginal value theorem η 0,1
v 0.01,1

Temporal-difference learning η 0,1
γ 0,1
v 0.01,1

Table A.1: Bounds for parameters in each model.

erate the data was identified as the best-fitting model for the majority (≥ 75%) simulated

participants (Fig A.1A).

Figure A.1: A. Model recovery results The majority of the 200 simulated participants were
best fit by the same model that was used to generate their data. B-D. Parameter recovery
results Correlations between simulated and recovered parameter values for the α = 1 structure
learning model ranged from .50 to .95.

A.1.3 Parameter recovery

To ensure parameters were reliably recoverable from the data, we simulated data from 200

participants using our primary model of interest, the structure learning with α = 1. Param-

eters other than α were uniformly drawn from bounds defined in Table SA.1. We examined

the correlation between the “true” generating parameters, and the parameters our fitting

procedure identified as providing the best account of the data. The strength of the correla-

tion between the “true” simulated parameter value and the recovered parameter value varied.
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According to standardized thresholds for intraclass correlation coefficients (used similarly for

assessing parameter recoverability in (author?) [169]), the discounting parameters, γbase and

γcoef , showed moderate recoverability (Fig A.1BC, γbase: τ=0.53, p < .001; γcoef : τ=0.50,

p < .001) while the parameter the drift rate scaling factor showed high recoverability (Fig

A.1D, τ=0.95, p < .001).

A.2 Results

In the tables that follow, we present the full results from our mixed-effects regression models.

Parameter β p-value
intercept 1.30 < .001
age (z-scored) 0.059 .47
poor galaxy -0.63 < .001
rich galaxy -0.42 .0018
planet number -0.24 < .001
age x poor galaxy -0.045 .39
age x rich galaxy 0.36 .0078
age x planet number -0.060 .24
poor galaxy x planet number 0.067 .15
rich galaxy x planet number -0.26 < .001
age x poor galaxy x planet number 0.017 .71
age x rich galaxy x planet number -0.058 .34

Table A.2: Results from a mixed effects model regressing planet type, planet number, and age
on the difference between the participants’ actual planet residence time and the MVT-optimal
residence time. We did not find any interaction between age, planet number, and richness on
overharvesting.
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Parameter β p-value
intercept -0.0086 0.51
age (z-scored) -0.0022 .87
switch point 0.049 .038
planet number -0.049 < .001
age x switch point 0.0083 .71
age x planet number -0.024 .047
switch point x planet number 0.014 .55
age x switch point x planet number -0.019 .44

Table A.3: Results from a mixed effects model regressing presence of a switch in planet type,
planet number, and age on reaction times (z-scored within participant and log-transformed). We
also did not find any baseline differences in reaction time nor interaction between age, switch point,
and planet number.

Parameter β p-value
intercept 0.71 < .001
age (z-scored) 0.22 .043
switch point 0.31 < .001
planet number -0.31 < .001
age x switch point 0.0094 .81
age x planet number 0.018 .69
switch point x planet number -0.078 .065
age x switch point x planet number -0.11 .0082

Table A.4: Results from a mixed effects model regressing presence of a switch in planet type,
planet number, and age on on the difference between the participants’ actual planet residence time
and the MVT-optimal residence time. In the absence of a switch point, overharvesting similarly
occurred as did its decrease with experience.
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