
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in 
time-lapse microscopy

Permalink
https://escholarship.org/uc/item/7j5935xr

Journal
Cell Reports Methods, 3(6)

ISSN
2667-2375

Authors
Zargari, Abolfazl
Lodewijk, Gerrald A
Mashhadi, Najmeh
et al.

Publication Date
2023-06-01

DOI
10.1016/j.crmeth.2023.100500
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7j5935xr
https://escholarship.org/uc/item/7j5935xr#author
https://escholarship.org
http://www.cdlib.org/


Article
DeepSea is an efficient de
ep-learning model for
single-cell segmentation and tracking in time-lapse
microscopy
Graphical abstract
Highlights
d DeepSea is a deep-learning model for cell segmentation and

tracking

d DeepSea software is a user-friendly tool for quantitative

analysis of live microscopy

d DeepSea can accurately segment and track different types of

single cells

d DeepSea can be easily trained to segment and track new cell

types
Zargari et al., 2023, Cell Reports Methods 3, 100500
June 26, 2023 ª 2023 The Author(s).
https://doi.org/10.1016/j.crmeth.2023.100500
Authors

Abolfazl Zargari, Gerrald A. Lodewijk,

Najmeh Mashhadi, ..., Angela Brooks,

Lindsay Hinck, S. Ali Shariati

Correspondence
alish@ucsc.edu

In brief

Zargari et al. develop a deep-learning

model to detect individual cells and track

themover time in livemicroscopy images.

The user-friendly DeepSea software

allows researchers to extract quantitative

information about dynamics of cell

biological processes at the single-cell

level.
ll

mailto:alish@ucsc.edu
https://doi.org/10.1016/j.crmeth.2023.100500
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2023.100500&domain=pdf


OPEN ACCESS

ll
Article

DeepSea is an efficient deep-learning model
for single-cell segmentation
and tracking in time-lapse microscopy
Abolfazl Zargari,1 Gerrald A. Lodewijk,2 Najmeh Mashhadi,3 Nathan Cook,2 Celine W. Neudorf,2

Kimiasadat Araghbidikashani,4 Robert Hays,2 Sayaka Kozuki,5,7 Stefany Rubio,5,7 Eva Hrabeta-Robinson,2,6

Angela Brooks,2,6 Lindsay Hinck,5,6,7 and S. Ali Shariati2,6,7,8,*
1Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
2Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
3Department of Computer Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
4Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
5Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
6Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
7Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA, USA
8Lead contact

*Correspondence: alish@ucsc.edu

https://doi.org/10.1016/j.crmeth.2023.100500
MOTIVATION Time-lapse microscopy allows for direct observation of cell biological processes at the sin-
gle-cell level with high temporal resolution. Quantitative analysis of single-cell time-lapse microscopy re-
quires automated segmentation and tracking of individual cells over several days. Precise segmentation
and tracking remain challenging because cells change their shape, divide, and show unpredictable move-
ments. This work is motivated by recent advances in the application of deep-learning models for the anal-
ysis of microscopy images. We present a deep-learning-based model and a user-friendly software, termed
DeepSea, to automate both the segmentation and tracking of individual cells in time-lapse microscopy im-
ages.We showcase the application of our software bymonitoring the size of the stem cells as cells progress
through the cell cycle.
SUMMARY
Time-lapse microscopy is the only method that can directly capture the dynamics and heterogeneity of
fundamental cellular processes at the single-cell level with high temporal resolution. Successful application
of single-cell time-lapse microscopy requires automated segmentation and tracking of hundreds of individ-
ual cells over several time points. However, segmentation and tracking of single cells remain challenging for
the analysis of time-lapse microscopy images, in particular for widely available and non-toxic imaging mo-
dalities such as phase-contrast imaging. This work presents a versatile and trainable deep-learning model,
termed DeepSea, that allows for both segmentation and tracking of single cells in sequences of phase-
contrast live microscopy images with higher precision than existing models. We showcase the application
of DeepSea by analyzing cell size regulation in embryonic stem cells.
INTRODUCTION

Cells frequently adapt their behavior in response to environ-

mental cues to make important fate decisions, such as whether

to divide or not. In addition, individual cells within a clonal popu-

lation and under identical conditions display heterogeneity in

response to environmental cues.1 In recent years, it has become

clear that single-cell-level analysis over time is essential for

revealing the dynamics and heterogeneity of individual cells.2,3
Cell R
This is an open access article under the CC BY-N
Single-cell quantitative live microscopy can directly capture

both dynamics and heterogeneity of cellular decisions by contin-

uous long-term measurements of cellular features.4,5 Widely

available microscopy techniques such as label-free phase-

contrast live microscopy allow for monitoring the dynamics of

morphological features such as the size and shape of the cells.6

The key to the successful application of single-cell live micro-

scopy is the scalable and automated analysis of a large dataset

of images. Typical live-cell imaging of biological features of cells
eports Methods 3, 100500, June 26, 2023 ª 2023 The Author(s). 1
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is a multi-day experiment that produces several gigabytes of im-

ages collected from thousands of cells.4 A major challenge for

quantitative analysis of these images is the difficulty in accurately

defining the borders of a cell, segmenting them, and tracking

them over time. Low signal-to-noise ratio, existing non-cell small

particles in the background, the proximity of cells, and unpre-

dictable movements are among the challenges for software-

based automated image analysis of live single-cell microscopy

data. In addition, cells are non-rigid bodies, and thus tracking

them is more challenging because they can change their shapes

with time. Most critically, they divide into two new daughter cells

during mitosis, which is unique and not comparable with other

phenomena we encounter in conventional object-tracking appli-

cations. Solving single-cell microscopy challenges requires

integrating different disciplines, such as cell biology, image pro-

cessing, and machine learning.

In recent years, deep learning (DL) has outperformed con-

ventional rule-based image processing techniques in tasks

such as object segmentation and object tracking.7–9 Traditional

image segmentation approaches often require experiment-spe-

cific parameter tuning, while DL schemes are adaptive and

trainable. More recently, DL-based image processing methods

have attracted attention among cell biologists and micro-

scopists, for example, to localize single molecules in super-res-

olution microscopy,10 enhance the resolution of fluorescence

microscopy images,11 develop an automated neurite segmen-

tation system using a large 3D anisotropic electron microscopy

image dataset,12 design a model to restore a wide range of

fluorescence microscopy data,13 and train a fast model that re-

focuses 2D fluorescence images onto 3D surfaces within the

sample.14 In particular, DL-based segmentation methods

have greatly facilitated the task of cell body segmentation in mi-

croscopy images.15–18 However, the successful application of

DL-based models for time-lapse microscopy depends on

applying the segmentation and tracking models in one platform

to automate the analysis of a large sequence of images of live

cells.

Here, we developed a versatile and trainable DL model for cell

body segmentation and cell tracking in time-lapse phase-

contrast microscopy images of mammalian cells at the single-

cell level. Using this model, we developed a user-friendly

software tool, termed DeepSea, for automated and quantitative

analysis of phase-contrast microscopy images. We showed that

DeepSea captures dynamics and heterogeneity of cellular fea-

tures such as cell cycle division and cell size in different cell

types. Our analysis of cell size distribution in mouse embryonic

stem cells revealed that despite their short G1 phase of the cell

cycle, embryonic stem cells exhibit cell size control in the G1

phase of the cell cycle.

RESULTS

Designing and training a cell segmentation and tracking
model
First, we created an annotated dataset of phase-contrast live im-

age sequences of three cell types: (1) mouse embryonic stem

cells, (2) bronchial epithelial cells, and (3) mouse C2C12 muscle

progenitor cells. To facilitate manual annotation of the cells, we
2 Cell Reports Methods 3, 100500, June 26, 2023
developed a MATLAB-based software to generate a labeled

training dataset, including pairs of original cell images and corre-

sponding cell ground-truth mask images (our annotation soft-

ware is available at https://deepseas.org/software/). To further

generalize our model, we used image augmentation techniques

to increase the size of our dataset with more variations efficiently

and less expensively. In addition to six conventional image

augmentation techniques with random settings such as crop-

ping, changing the contrast and brightness, blurring, applying

the vertical/horizontal flip, and adding Gaussian noise,19,20 we

proposed and applied a random cell movement method as a

novel image augmentation strategy to generate new cell images

(with their annotated masks) that look more different than the

original existing samples (Figure S1). Next, we used the anno-

tated and augmented dataset of cell images to train our super-

vised DL-based segmentation model called DeepSea to detect

and segment the cell bodies. To design our DeepSea segmenta-

tion model, we were inspired by the UNET model, which has

been successful in different segmentation tasks.21 We made

several innovative changes to make this model more suitable

for single-cell live microscopy. First, we scaled down 2D UNET

to considerably reduce the number of parameters and thus

have a faster model processing large high-resolution images

with less computational and memory costs. To do this, we

modified our model with convolutional residual connections to

increase the depth of the network with fewer extra parame-

ters.22–24 Second, we added an auxiliary edge detection layer

trained on the edge area between touched cells to enhance

the learning algorithm to focus on touching cell edges and thus

improve the segmentation accuracy in hard samples with high-

density touched cell images (Figure S2A). In the training process,

we also used a progressive learning technique (used in progres-

sive general adversarial networks [GANs]25) to help the model

generalize well for different image resolutions and generate large

high-resolution masks that better separate the touching cell

edges (Figure S3). The progressive learning technique makes

themodel first learn coarse-level features and then finer informa-

tion. Table S1 shows how our proposed techniques and modifi-

cations can improve the segmentation scores for simple and

crowded samples as measured by precision.

To be able to visualize the dynamics of cellular behavior over

time, we added cell tracking capability to our DeepSea model.

We trained a DL tracking model to localize and link single cells

from one frame to the next and detect cell divisions (mitosis).

As shown in Figure S2B, we used a baseline architecture

similar to the DeepSea segmentation model. This model ex-

tracts the convolutional information from two consecutive im-

age inputs (segmented cell images of times t-t and t) to localize

and detect the same target single cell or its daughter cells

among the segmented cells in the current frame (time t) by

generating a binary mask (Figures S4 and S5). With this model,

we could monitor multiple cellular phenotypes and several cell

division cycles across the microscopy image sequences to

generate lineage tree structures of cells. To make our model

widely accessible, we developed a DL-based software with a

graphical user interface (Figure S6A) that allows researchers

with no background in machine learning to automate the mea-

surement of cellular features of live microscopy data. We

https://deepseas.org/software/


Figure 1. Segmentation model evaluation on the test set images

(A) Comparing the performance of DeepSea, Cell Pose, StarDist, and 2D-UNET using the standard average precision at different IoU matching thresholds.

(B) Measuring models’ latency (per image) to compare the DeepSea efficiency with the other models.

(C and D) Comparing models’ performance in segmenting easy (sparse cell density) and hard (high cell density) test images using average precision with one

standard error of the mean shown by error bars.

(E) Comparing models’ performance in segmenting different cell types of the DeepSea dataset.
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added manual editing options to DeepSea software to allow re-

searchers to correct our model outputs when needed to bring

all the DeepSea detections to the highest possible accuracy

and, thus, fully track the life cycle of the cells. An interesting

feature of our software is that it also allows researchers to train
a new model with an annotated dataset of any cell type. We

provide step-by-step instructions on how to use our software

and train a model with a new dataset. Our software, instruc-

tions, and cell image datasets are publicly available at https://

deepseas.org/.
Cell Reports Methods 3, 100500, June 26, 2023 3
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Figure 2. Three examples of segmentation outputs

DeepSea output (middle column) compared with the CellPose (right column) for different cell types. DeepSea has higher average precision (AP) compared with

the CellPose model.
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DeepSea performance evaluation
The trained segmentation model fits the exact boundary of the

target cells and labels their pixels with different colors, helping

to determine each cell’s shape and area within the input micro-

scopy image (Figure S2A). To evaluate the performance of our

segmentation model, we compared the model’s predictions

with true manually segmented cell bodies at different thresholds

of the standard intersection over union (IoU) metric on the test

images. Next, we used the standard average precision metric,

which is commonly used in pixel-wise segmentation and object

detection tasks, to compare DeepSea with recently developed

segmentation models. DeepSea was able to outperform existing

state-of-the-art models such as CellPose,15 StarDist,16 and 2D-

UNET21,26 in terms of latency andmean average precision (mAP)

when trained on the same training sets and tested on the same

test sets at all pre-defined IoU thresholds (Figures 1A and 1B).

Notably, we observed close prediction accuracy between im-

ages with a higher density of cells with touching edges (hard
4 Cell Reports Methods 3, 100500, June 26, 2023
cases) and images with a lower density of cells (easy) with an

overall higher precision compared with the CellPose model (Fig-

ures 1C and 1D). Examples of DeepSea’s accuracy in high-den-

sity cell cultures are shown in Figure S6B. In addition, we demon-

strated the generalizability of the DeepSea model performance

with different cell-type test images of our dataset (Figure 1E).

Three examples of the DeepSea and CellPose segmentation

model’s output are compared in Figure 2. Next, we compared

the performance of DeepSea with CellPose in measuring cellular

phenotypes such as cell size. A comparison of cell size distribu-

tion obtained fromDeepSea andCellPose showed that DeepSea

obtains a median cell size that is closer to the median cell size

obtained by manual segmentation (Figure 3). Together, these re-

sults indicate that DeepSea’s segmentation model works

robustly across different densities of cells and different cell types

in our dataset with high precision.

The DeepSea tracking model receives the segmented target

cell image at the previous time point and the segmented cell



Figure 3. Cell size distribution of ground-

truth testdataset comparedwith thedistribu-

tion obtained from DeepSea and CellPose

detections
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image at the current time point to generate a binary mask local-

izing the target cell (or its daughter cells) at the current time point

(Figures S4 and S5). For the tracking model, we evaluated the

model’s performance on the test set by measuring the AP of sin-

gle-cell tracking from one frame to the next frame, as well as

mitosis detections. We matched the binary masks obtained

from the tracking model at time t to the true target cell bodies

(at time t) at different matching thresholds of IoU. While our

model achieved 0.98 ± 0.2 precision (@0.5 IoU threshold) for

tracking single cells, the precision of ourmodel for mitosis detec-

tion was around 0.89 ± 0.3 (@0.5 IoU threshold) (Figures 4A and

4B). Mitosis detection was particularly more challenging for stem

cell images (Figure S7B). We speculated that there might be a

direct relationship between the single-cell and mitosis detection

results and the frame imaging intervals. Thus, we ran an experi-

ment tomeasure the trackingmodel sensitivity to the frame sam-

pling rate. We used the test frame sequences of bronchial
Cell Re
epithelial cells and down-sampled the

frames to make sub-sampling intervals

of 5, 10, and 15 min. The results are

shown in Figure S7C, confirming that the

model precision is sensitive to the

changes in the frame’s time distance. It

shows that the higher sampling rate re-

duces the tracking model failures, espe-

cially for the cells that move and change

quickly over time.

Next, we systematically compared

DeepSea tracking precision with some

existing cell tracking tools (Table S2). As

shown, some of these tools only support

a part of the required process, either sin-

gle-cell tracking27,28 or mitosis detec-

tion,29 and some of them are proposed

to be used for both, like Trackmate.30
Similar to the DeepSea tracking pipeline, they all first need to

detect and segment the cell bodies before starting the cell

tracking process and frame-by-frame cell linking. The segmen-

tation precision of all of them with our cell images is lower than

50%. Thus, we decided to use DeepSea segmentation outputs

as the input for these tracking tools to obtain the best possible

tracking results and compared only cell tracking performance

of these tools. We assessed the tracking model of DeepSea

and other tracking tools in a full cell cycle-tracking task. One

example of DeepSea’s full cell cycle tracking and mitosis detec-

tion is shown in Figure 5. This test uses the trained tracking

model to track and label the target single-cell motion trajectories

across the live-cell microscopy frame sequences frombirth to di-

vision. In this evaluation process, we used MOTA (multi-object

tracking accuracy), which is a widely used metric in multi-object

tracking schemes and measures the precision of localizing ob-

jects over time across the frame sequences (Equation 5). We
Figure 4. Tracking model evaluation on the

test set

We evaluated the model performance using the

standard average precision at different IoU

matching thresholds.

(A) Single-cell tracking precision at different IoU

matching thresholds.

(B) Mitosis detection precision at different IoU

matching thresholds.

ports Methods 3, 100500, June 26, 2023 5



Figure 5. Example of the cell cycle-tracking process

It is obtained by feeding nine consecutive stem cell frames (with a sampling time of 20min) to our trained trackingmodel. Daughter cells are linked to their mother

cells by an underline (in the sixth and seventh frames).
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also included other commonly used tracking metrics such as

IDS (identity switch), MT (mostly tracked), ML (mostly lost), and

Frag (fragmentation) to provide more detailed evaluation

information.7,31,32

Our DeepSea trackingmodel achieved aMOTA value of 0.94 ±

0.2 compared with the Trackmate model, which had a MOTA of

0.29 ± 0.7 (Table S3). In the evaluation process, we used 228 full

ground-truth cell cycle trajectories, each including more than

three consecutive frames. The Trackmate algorithm30 is one of

the widely used cell tracking tools. The main factor for Track-

mate’s overall low MOTA was that it frequently did not detect
6 Cell Reports Methods 3, 100500, June 26, 2023
mitotic events leading to high false positive (FP) and false nega-

tive (FN) labels (Table S3; Equation 5). We also would like to note

that rule-based tools like Trackmate are not trainable to be

rapidly adapted to any specialized dataset.

Cell cycle duration is adjusted based on birth size:
Showcasing the application of the DeepSea
Cells need to grow in size before they can undergo division.

Different cell types maintain a fairly uniform size distribution by

actively controlling their size in the G1 phase of the cell cycle.33

However, the typical G1 control mechanisms of somatic cells are



Figure 6. Showcasing the DeepSea application

Cell size regulation in mouse embryonic stem cells.

(A) Distribution of the cell cycles.

(B) Histogram of birth size ratio of daughter cell pairs.

(C) Comparing the cell cycle duration of the cells born small with those born large.
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altered in mouse embryonic stem cells (mESCs).34,35 mESCs

have an unusually rapid cell division cycle that takes about

10 h to be completed (Figure 6A). The rapid cell cycle of mESCs

is primarily due to an ultrafast G1 phase that is about 2 h

compared with �10 in skin fibroblast cells with daughter cells

born at different sizes (Figures 7A and 7B). An interesting ques-

tion is whether mESCs can employ size control in their rapid G1

phase, just as most somatic cells do.

Using confocal microscopy, we showed that the area of a cell

is closely correlated with the cell volume, making the area a faith-

ful measurement of cell size (Figures 7C and 7D). By measuring

the size of the sister cells at birth, we showed that 42% of divi-

sions resulted in daughter cells of different sizes (Figure 6B).

We hypothesized that smaller-born cells would spend more

time growing compared with their larger sister cells. In support

of this hypothesis, we observed that smaller-born cells increase

their cell cycle duration by about�2 h compared with their larger

sister cells (Figure 6C).

Together, our results show that DeepSea can be applied to

accurately quantify cell biological features of cells, such as cell

size or cell cycle duration. In addition, our findings support the

hypothesis that mESCs can adjust the cell cycle duration based

on birth size, suggesting cell size control through an unknown

molecular mechanism.33 Besides, this shows that DeepSea

can capture cell size distribution that is closer to the ground truth

as determined by manually segmented cells.

DISCUSSION

Here, we introduced DeepSea, an efficient DL model for auto-

mated analysis of time-lapse images of cells. The segmentation

and tracking of cell bodies and sub-cellular organelles from mi-

croscopy images are critical steps for nearly all microscopy-

based biological analysis applications. Although phase-contrast

microscopy is a non-invasive and widely used method for live-

cell imaging, developing automated segmentation and tracking

algorithms remains challenging. Segmentation of phase-contrast

images remains difficult because of the presence of bright light
artifacts such as halo at the edges of the cells and inhomogeneity

in the refractive index producing noisy images. Although not

unique to phase-contrast microscopy, cell tracking has its own

challenges due to the unpredictable nature of cells in their move-

ments over time, the close proximity of cells, and the division of

cells. Here, we leveraged the recent advancement in DL-based

image processing to address some of these challenges.

The lack of a comprehensive, high-quality annotated dataset

of cells prevents the full utilization of DL-basedmodels for micro-

scopy image analysis systems.We generated largemanually an-

notated datasets of time-lapse microscopy images of three cell

types, which are publicly available and can be used for new im-

age analysis models. In addition, we were able to significantly in-

crease the size of annotated data covering more variations by

applying image augmentation techniques, which benefited

from both conventional image augmentation techniques and a

proposed random cell movements method. We expect this

resource to facilitate the future application of DL-based models

for the analysis of microscopy images.

To address the challenge of cell segmentation and tracking,

we built a DL model, termed DeepSea, that can efficiently

segment cell areas in phase-contrast microscopy images. Our

segmentation model was trained on our generated dataset and

achieved an IoU value of 0.90 ± 0.2 at the IoUmatching threshold

of 0.5. We were able to improve on existing segmentation

models by incorporating (1) an auxiliary model trained on where

cell edgesmeet to be able to separate cells that are close to each

other, (2) the addition of the residual blocks to decrease the num-

ber of parameters without sacrificing the accuracy making our

model efficient, and (3) a progressive learning technique to

improve the generalizability of our model for images with

different resolutions. Importantly, we were able to exploit the

DL capabilities to automate the tracking of cells across the

time-lapse microscopy image sequences. Our DeepSea

tracking model was able to track the full cell cycle trajectories

with a MOTA value of 0.94 ± 0.3 obtained from 228 cell cycles.

We also showed that more frequent imaging of microscopy

frames would increase the accuracy of tracking the full cell cycle
Cell Reports Methods 3, 100500, June 26, 2023 7



Figure 7. Stem cell feature analysis

(A) Cell size ratio graph of daughter cell pairs.

(B) Automated measurement of G1 duration using Fucci sensor (Geminin-GFP) that increases its activity as cells enter the S phase.

(C) Cell area versus cell volume measurement using confocal microscopy for each embryonic stem cell.

(D) One example of cell surface measurement, obtained from our confocal microscopy experiment.
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by providingmore information about the cell features right before

cell division.

We showcased the application of DeepSea by investigating

cell size regulation in mESCs across hundreds of cell division cy-

cles. Our cell size analysis revealed that smaller-born mESCs

regulate their size by spending more time growing in the G1

phase of the cell cycle. These findings strongly support the

idea that mESCs actively monitor their size, consistent with the

presence of size control mechanisms in the short G1 phase of

the embryonic cell cycle.

Limitations of the study
We would like to note that our dataset and models are limited to

the phase contrast 2D images of three cell types. However, re-
8 Cell Reports Methods 3, 100500, June 26, 2023
searchers can train our model using their own annotated images

of single cells using DeepSea software training options. A larger

dataset of samples from different cell types and different imaging

modalities would be useful for testing our proposed model’s

generalization, reliability, and robustness. In addition, in our

future work, we will investigate other deep models that have

recently achieved considerable advancement in object detection

and tracking tasks, such as Recurrent Yolo, TrackR-CNN, JDE,

RetinaNet, and CenterPoint,7–9 or merge their architecture

with our current models to improve the results. To reduce

DeepSea’s sensitivity to frame sampling, we will also evaluate

the idea of feedingmore previous frames into the trackingmodel,

including the cell images of t, t-t, t-2t, and t-3t, as one of the

possible solutions.
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Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Cell culture and microscopy

d METHOD DETAILS

B Dataset

B Segmentation model

B Tracking model

B Designed software tools

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

crmeth.2023.100500.
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request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture and microscopy
Mouse ESCs (V6.5) were maintained on 0.1% gelatin-coated cell culture dishes in 2i media (Millipore Sigma, SF016-100) supple-

mentedwith 100U/ml Penicillin-Streptomycin (Thermo Fisher, 15140122). Cells were passaged every 3–4 days using Accutase (Inno-

vate Cell Technologies, AT104) and seeded at a density of 5,000–10,000 cells/cm2. For live imaging, between 5000 and 10,000 cells

were seeded on 35mmdishes with a laminin-coated (Biolamina) 14mmglassmicrowell (MatTek, P35G-1.5-14-C). Cells were imaged

in a chamber at 37C perfused with 5% CO2, a Zeiss AxioVert 200M microscope with an automated stage, and an EC Plan-Neofluar

5x/0.16NA Ph1objective or an A-plan 103/0.25NA Ph1 objective. The same culture condition was used for confocal imaging, except

that 24 h after seeding, the media was replaced with 2mL DMEM-F12 (Thermo Fisher, 11039047) containing 2ul CellTracker Green

CMFDA dye (Thermo Fisher, C2925) and placed back in the incubator for 35 min. Next, 2 ml of CellMask Orange plasma membrane

stain (Thermo Fisher, C10045) was added, and the dish was incubated for another 10 min. Dishes were washed three times with

DMEM-F12, after which 2mL of fresh 2i media was added. Cells were imaged directly after the live-cell staining protocol using

the Zeiss 880 Microscope using a 20x/0.4 N.A. objective and a 1mm interval through the z axis.
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Immortalized human bronchial epithelial (HBEC3kt) cell line homozygous for wildtype U2AF1 at the endogenous locus was ob-

tained as a gift from the laboratory of Harold Varmus (Cancer Biology Section, Cancer Genetics Branch, National Human Genome

Research Institute, Bethesda, United States of America and Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine,

New York, United States of America) and cultured according to Fei et al.36 This host cell line was used for lentiviral transduction and

blasticidin selection to generate a line with stable expression of KRASG12V using a lentiviral plasmid obtained as a gift from the lab-

oratory of John D Minna (Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center)

described in.37 Cells frompassage 11were grown to 80%confluency in Keratinocyte SFM (1X) (Thermo Fisher Scientific, USA) before

being re-seeded as biological duplicates at three densities: 0.3M, 0.2M, and 0.5M cells per well in 6-well plates and allowed to adhere

before live-cell imaging over a 48h time period.

METHOD DETAILS

Dataset
We collected phase-contrast time-lapse microscopy image sequences of three different cell types, including two in-house data-

sets of Mouse Embryonic Stem Cells (MESC, 31 sets, 1074 images) and Bronchial epithelial cells (7 sets, 2010 images) and one

dataset of Mouse C2C12 Muscle Progenitor Cells (7 sets, 540 images) obtained from an external resource with the cell culture

described in.38 Our collected datasets are publicly available at https://deepseas.org/datasets/. Some dataset statistics are shown

in Table S4. We designed an annotation software in MATLAB (https://deepseas.org/software/) to manually create the ground-truth

mask images corresponding to our cell images. We applied an image augmentation scheme to generate a larger dataset with

more variations efficiently and less expensively, aiming to train a more generalized model. In our image augmentation scheme,

in addition to conventional image transformations,19,20 we proposed moving the stem cell bodies by the random vectors of

(q,d) relative to their center points, where q is the direction angle between 0 and 360 and d is the displacement in pixels (Fig-

ure S1). The proposed cell image augmentation method improved the model performance with unseen test images (different mi-

croscopy live imaging sets not used in the training set), confirming that it could less overfit training samples and thus help the

model generalization. For each training image, we applied a pipeline of augmentation functions which were randomly selected

and set.

Segmentation model
As mentioned before, our dataset samples are label-free microscopy images that are usually noisy, low contrast, hard, and high cell

density samples. It is difficult for any existing instance tools (that have not seen these types of images in their training process) to

segment the cell bodies of our test images. The original pre-trained version of StraDist and StarDist models achieved an average

precision of around 43% and 5%, respectively, on our test sets. Figure S7A shows the CellPose and StarDist outputs compared

with the ground truth mask images.

In the instance segmentation task, we proposed and built a 2D deep learning-based model called DeepSea (Figure S2A). To

design our DeepSea segmentation model, we were inspired by the UNET model.21,26 Since we needed a fast segmentation

and tracking model to be used in our DeepSea software, we decided to reduce the number of parameters and make a scaled-

down version of 2D UNET. By reducing the model size, we could feed larger high-resolution images into the model and get

more accurate results39,40 with less computational and memory costs. However, to compensate for the model compression

and also avoid the model from underfitting the training data, we modified the scaled-down 2D-UNET model with the convolutional

residual connections. It has been proved that the residual connections can increase the depth of the network with fewer extra

parameters. They also can accelerate the speed of the training of the deep network, reduce the effect of the vanishing Gradient

Problem, and potentially obtain higher accuracy in network performance.22–24 Our DeepSea segmentation model involves only 1.9

million parameters, which is considerably smaller than typical instance segmentation models such as UNET,26 PSPNET,41 and

SEGNET.42

During the training process, we started training themodel with the low-resolution images 95x128, then increased it to 191x256, and

finished it with 384x512, as described in Figure S3. Our learning algorithm started with the lowest resolution part and then progres-

sively added the other high-resolution blocks until the desired image size and full DeepSea model were achieved. The progressive

learning technique (as used in progressive GANs25) can help the model generalize well for different image resolutions and generate

large-high-resolution masks that better separate the touching cell edges. Also, when adding the higher resolution part to the training

process, our learning algorithm reduces the learning rate of previously trained parts, making the different parts of the model learn

information from different resolutions independently.

The auxiliary edge representations (highlighting the edge area between touching cells) and the auxiliary training loss value

(Equation 2) also encouraged the learning algorithm to spend more computational budget and time to separate the touching cells.

They thus improved the model performance, especially for hard samples where we have high-density touching cells. We also ar-

tificially increased and repeated the hard cell images in our training dataset to make the model see them more during the training

process (almost the same number as non-touching samples). This also helps the learning algorithm balance the loss functions

(Equation 2). To create each touching cell edge mask, we first created a weight map from the ground truth cell masks according

to Equation 1:
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wðxÞ = w0: exp

 
� ðd1ðxÞ+d2ðxÞÞ2

2s2

!
(Equation 1)

where x is pixels in the image, d1 is the distance to the border of the nearest cell, d2 is the distance to the border of the second nearest

cell, and w0 and swere set to 10 and 25, respectively. Then wemake a binary image by replacing all pixel values above a determined

threshold (=1.0) with 1s and setting all other pixels to 0s.

In the training process, we used the early stopping technique to stop trainingwhen the validation score stopped improving.We also

took advantage of batch normalization and dropout techniques to improve themodel’s speed, performance, and stability.43 Besides,

the image augmentation pipeline we designed (Figure S1) could help the model see more variations during the training process and

then process the unseen test samples more confidently. We chose the RMSprop optimization function with the learning rate sched-

uler of the OneCycleLRmethod (LR = 1e-3) to optimize model weights andminimize the proposed loss function (Equation 2). Our loss

function is a linear combination of cross-entropy (CE) loss and Dice loss (DL) functions,44 as well as auxiliary loss functions (EdgeCE

and EdgeDL) for the touching cell edge representations. CE takes care of pixel-wise prediction accuracy, while DL helps the learning

algorithm increase the overlap between true area and predicted area, which is essentially needed where the number of image back-

ground pixels is much higher than foreground pixels (object area pixels).

Loss = CE +DL+EdgeCE +EdgeDL (Equation 2)

In the test phase, we used the IoU index, a value between 0 and 1 and known as the Jaccard index as well45 (Equation 3), to match

the segmentation model predictions to the ground truth annotated masks:

IOU =
Area of overlap between predicted pixels and ground truth pixels

Area of union encompassed by both predicted pixels and ground truth pixels
(Equation 3)

In each test image, we labeled each detected cell body whose IoU index was higher than a pre-defined threshold value as a valid

match and so True Positive (TP) prediction. Also, the ground truth cell bodymaskswith no validmatchwere categorized into the False

Negative (FN) set, and the predictions with no valid ground truth masks were labeled as the False Positive (FP) cases (non-cell ob-

jects). Then using Equation 4, we calculated the average precision (AP) value for each image in the test set, used by the other state-of-

the-art methods in cell body segmentation tasks:15

AP =
TP

TP+FN+FP
(Equation 4)
Tracking model
Our tracking model aimed to localize and link the same target single-cell bodies from one frame to the next and also detect cell di-

visions (mitosis). We used a baseline architecture similar to the DeepSea segmentation model (as a fast and accurate enough archi-

tecture) but with multiple images, two inputs, and one output (Figures S2B, S4, and S5). The first input is the target cell image at the

previous frame (previous time point t-t), the second input is the segmented cell image at the current frame (current time point t), and

the output is a binary mask at the current frame. This model extracts the convolutional information from the input images to localize

and find the target single cell or its daughter cells among the segmented cells on the current frame by generating a binary mask

(Figures S4B and S5B). To increase the accuracy of the tracking model, we limited our search space in x and y coordinates to a small

square with the size of 5 times the target cell size centered at the previous frame target cell’s centroids (Figures S4A and S5A). Since

cells move slowly through space, the cell’s previous location presents a good guess of where themodel should expect to find it in the

current frame. To validate the trackingmodel’s output, we used the IoU (Intersection over Union, Equation 3) as a validation score.We

matched the trackingmodel binarymask to each segmented cell body on the current frame andmeasured the IoU value (Figures S4C

andS5C). In the validation process, if the IoU score of a segmented cell body on the current framewas higher than a pre-specified IoU

matching threshold value (e.g., IoU_thr = 0.5), we labeled it as a positive detection and valid link. Then, we categorized them into true

or false positive detections by comparing themwith ground truth cell labels aiming tomeasure the average precision (APmetric intro-

duced in Equation 4) of the tracking model in tracking the target cell bodies from one frame to the next and detecting cell divisions.

The number of the DeepSea tracking model parameter is only 2.1 million, while the other deep tracking models, such as ROLO,46

DeepSort,47 and TrackRCNN,48 which aremostly used in other object tracking applications, involvemore than 20million parameters,

confirming that we have an efficient model in the tracking process as well. Also, since the number of cell division events is naturally

much fewer than single-cell tracking events, we artificially repeated and increased the cell division events fifty timesmore than single-

cell tracking events in our training set. This helped the model see a balanced number of both single-cell links and cell divisions during

the training process and thus reduced the risk of overfitting the most repeated category. The train optimization function and hyper-

parameters are the same as the segmentation model training process.

To evaluate our tracking model in a continuous cell trajectory tracking process during an entire cell life cycle from birth to division,

we used MOTA (Multiple Object Tracking Accuracy, Equation 5), which is widely used in multi-object tracking challenges.7,31,32 To

our knowledge, this is the first time that this metric has been used to evaluate a cell tracking model performance. We also used other

commonly used tracking metrics, as follows, to give more detailed evaluation information.
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IDS: Identity Switch is the number of times a cell is assigned a new label in its track.

MT: Mostly Tracked is the number of target cells assigned the same label for at least 80% of the video frames.

ML: Mostly Lost is the number of target cells assigned the same label for at most 20% of the video frames.

Frag: Fragmentation is the number of times a cell is lost in a frame but then redetected in a future frame (fragmenting the track).

MOTA = 1 �
P
n

ðFPn+FNn+IDSÞP
n

ðNumberofcellsÞ (Equation 5)

where n is the frame number. A perfect tracking model achieves MOTA = 1.

Designed software tools
We designed two software tools for the Deepsea project, including 1) Manual annotation software and 2) DeepSea cell segmentation

and tracking software. The step-by-step instruction with examples of how to use them is uploaded to the page at https://deepseas.

org/software/. The manual annotation software is a MATLAB-based tool that we designed and used to manually segment and label

the cells of the raw dataset of microscopy images we collected. This tool helped us provide the required ground truth dataset that we

needed for training the cell segmentation and tracking models. It can also be used for manually annotating any other image datasets.

Also, DeepSea software (Figure S6A) is a user-friendly and automated software designed to enable researchers to 1) load and

explore their phase-contrast cell images in a high-contrast display, 2) detect and localize cell bodies using the pre-trained

DeepSea segmentation model, 3) track and label cell lineages across the frame sequences using the pre-trained DeepSea tracking

model, 4) manually correct the DeepSeamodels’ outputs using user-friendly editing options, 5) train a newmodel with a new cell type

dataset if needed, 6) save the results and cell label and feature reports on the local system. It employs our latest trained DeepSea

models in the segmentation and tracking processes.

QUANTIFICATION AND STATISTICAL ANALYSIS

After each successful training of the DeepSea model, we evaluated our model’s segmentation and tracking performance using a set

of test images. To test the reproducibility of our results, we repeated all the experiments with the cross-validation method. We chose

five random sets of training/validation/testing from the generated dataset to report the mean and variance of the performance

metrics.
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