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ABSTRACT OF THE DISSERTATION 
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The sustainability of California agriculture depends on its ability to adapt to 

climate change and to mitigate it. Though field and laboratory experiments provide 

important data to this end, they require time and resources that limit the pace of progress. 

Coupling these data with modeling tools can accelerate agroecological research and 

highlight important directions for more comprehensive in vivo studies. Here, we use a 

combination of field data and modeling tools to better understand resource use, stress 

tolerance, and environmental impacts associated with various products of California 

agriculture. Chapter one evaluates water use dynamics in Sorghum bicolor cv. 

(Photoperiod LS) grown in California’s Imperial Valley (IV) and their implications for 

stress tolerance. Coupling field data with an optimization model, we found sorghum to 

exhibit high heat tolerance at the expense of water use efficiency (WUE). However, the 

extent to which WUE was compromised varied in response to soil water status, 

suggesting sorghum adjusts its water use patterns depending on the type and severity of 

stress present. In chapter two, we assess the environmental impacts associated with 
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biofuel production using IV sorghum as a feedstock. We used field data to parameterize a 

crop model, allowing us to evaluate a wide range of nitrogen (N) management scenarios 

for feedstock production. Crop model output was coupled with life cycle assessment 

models to quantify the well-to-wheel environmental impacts of each production scenario. 

Overall, biofuels from IV sorghum had about 1/3 the global warming potential (GWP) of 

gasoline, but had much greater impacts to local air and water pollution. Efficient use of N 

was an important pathway for mitigating adverse impacts. Using a similar experimental 

framework, chapter three evaluates the GWP of California rice under a range of irrigation 

schedules varying in the severity and frequency of drainage events during the growing 

season. Severe and frequent dry-downs provided the greatest greenhouse gas mitigation 

potential, but showed potential to reduce grain yields, compromising the advantages of 

this practice from a global perspective. Our work highlights the diverse and valuable 

contributions of data-model fusion in preparing California for the conditions and 

demands of twenty-first century agriculture.  
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Introduction 

To maintain food, feed, and fuel production in the twenty-first century, agriculture 

must adapt to changing climate patterns including increased global temperatures and 

higher incidence of drought (Godfray et al., 2010; Lobell et al., 2008a & b). At the same 

time, the agricultural sector is a major contributor to climate change, constituting roughly 

13% of anthropogenic greenhouse gas emissions (GHG) and acting as a major source of 

air and water pollution (IPCC 2014; Bauer et al. 2016). Thus, agricultural production is 

tasked with becoming more sustainable in terms of both tolerating and mitigating climate 

change. The former requires rapid advancements in our understanding of stress tolerance 

and resource use efficiency in major cropping systems while the latter requires 

quantitative assessments of environmental impacts in agriculture. Coupling field data 

with modeling tools better equips us to meet these goals by reducing the temporal and 

financial costs associated with tackling such a large and complex task. The following 

body of work couples field data with modeling tools to assess resource use efficiency and 

environmental impacts in agriculture.  

Models are instrumental in developing and testing scientific theory and, 

increasingly, are used to assess large-scale processes and predict future outcomes 

(Gershenfeld 2011; Frigg & Hartmann 2017). In agriculture, the development of 

advanced modeling systems has enhanced our understanding of yield stability, resource 

use efficiency, and stress tolerance (Hammer et al. 2006; Thorp et al. 2008; Wu et al. 

2013; Buckley & Mott 2013; Msongaleli et al. 2014), as well as the ecological impacts 
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associated with agricultural production   he   i i                    i  e e      

2011). Field trials traditionally used as a means to this end are expensive and 

cumbersome, requiring a great deal of time and resources to evaluate the impact of even a 

limited number of variables. While robust field data are essential to the parameterization 

and validation of models, these models allow rapid exploration of a large number of 

scenarios in silico that would be impractical or cost-prohibitive to explore in vivo 

(Fertitta-Roberts et al. 2017; Lamboni et al. 2009). Knowledge gained from models can, 

in turn, highlight directed avenues for future field research (Trouwborst et al. 2010). 

Understanding model limitations and uncertainty is paramount in interpreting modeled 

outcomes as models are inherently based on assumptions that simplify complex 

biological systems (Sinclair & Seligman 1996; Lobell & Burke 2008; Biernath et al. 

2011). Yet, models can also mitigate uncertainty around field results through sensitivity 

analyses and allowance of spatial and temporal variation in modeled inputs ranging from 

environmental conditions to management choices. Further, models allow us to 

approximate data that is challenging or cost-prohibitive to measure, such as air and water 

pollution associated with agricultural production. Models can also serve as heuristic tools 

when used in combination with field data, allowing us to test a  ode ’s underlying 

assumptions and, therefore, enhance our understanding of the biological principles those 

assumptions reflect (Frigg & Hartmann 2017). Accordingly, coupling field data with 

modeling tools can be an effective and efficient pathway for improving agricultural 

sustainability.  
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We use a variety of models and, often, a combination of models to address 

specific aspects of agricultural sustainability in two study systems: Imperial Valley 

sorghum and northern California rice production. California is an opportune environment 

for assessing agricultural sustainability. Its Mediterranean climate provides high light 

availability and long growing seasons, making California one of the most productive 

agricultural regions in the world (CDFA 2017). However, California is also highly 

susceptible to drought and extreme heat events that threaten its sustained agricultural 

production (Hayhoe et al. 2004; Snyder et al. 2002). Extreme temperatures and limited 

precipitation have been shown to be the primary determinants of reduced yields under 

climate change (Lobell & Field 2007; Lobell, Bonfils, et al. 2008; Schlenker et al. 2010; 

Lesk et al. 2016). Thus, the future of California agriculture relies heavily on improving 

stress tolerance and conserving water resources.  

Chapter one evaluates stress tolerance and water use dynamics in Sorghum 

bicolor g ow  i     ifo  i ’s I pe i l Valley. Sorghum is a C4 grass grown for food, 

feed, and fuel around the globe. It is considered to be one of the five most important 

crops in the world and only stands to increase in popularity under climate change (FAO 

& NRI 1999; Belton & Taylor 2004; Msongaleli et al. 2014). A native of sub-Saharan 

Africa, sorghum is well-adapted to high temperatures and drought (de Wet 1978; Belton 

& Taylor 2004). Its C4 photosynthetic pathway contributes to its high light and water use 

efficiencies (Sage 2004; Ghannoum 2009). C4 photosynthesis increases the efficiency of 

carbon fixation and reduces photorespiratory losses by effectively shuttling CO2 to the 

bundle sheath, where it is fixed in the absence of high oxygen concentrations typical of 
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the mesophyll (Collatz et al. 1992). This mechanism is particularly advantageous at high 

temperatures, which tend to increase the rate of photorespiration. Sufficiently high 

temperatures can also damage photosynthetic machinery within the leaves, leading to 

irreversible and sometimes lethal losses in assimilation potential (Leuning 2002; Medlyn 

et al. 2002). Yet some sorghum cultivars have shown remarkable tolerance to extreme 

temperatures, maintaining high rates of assimilation at temperatures in excess of 45 °C 

(Prasad et al. 2006; Prasad et al. 2008; Djanaguiraman et al. 2014). Other cultivars have 

been shown to favor milder temperatures but, in turn, are particularly tolerant to drought.  

Drought tolerance in sorghum is both behavioral and physiological. Behaviorally, 

sorghum displays isohydric tendencies, meaning plants close their stomata in response to 

declining leaf water potential in order to avoid excessive water loss and adverse 

physiological impacts (Jones 1998). Physiologically, its vascular structure reduces the 

risk of these adverse impacts. It is hypothesized that hydraulic architecture in plants 

reflects a tradeoff between hydraulic safety and efficiency (Tyree & Zimmermann 2002; 

Meinzer et al. 2010), where efficiency refers to the capacity to rapidly transport water 

through the xylem and safety refers to the vulnerability of xylem vessels to cavitation. 

Cavitation occurs when air is pulled into to the xylem, disrupting the water column and 

causing the vessel to fill with air (Sack & Holbrook 2006). The xylem pressure at which 

cavitation is induced varies across species but is generally related to vessel length and 

diameter (Meinzer et al. 2010; Ocheltree et al. 2016). Large xylem vessels, which permit 

efficient transport of water, tend to be more susceptible to cavitation, leaving species with 

large vessels vulnerable to drought stress. However, greater efficiency of water transport 
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generally allows higher rates of assimilation as carbon uptake and water loss are 

inextricably linked (Cowan 1978; Farquhar & Sharkey 1982; Sade et al. 2012). 

Conversely, species with smaller xylem vessel display greater resistance to cavitation. 

This increases drought tolerance but reduces hydraulic conductance and, presumably, 

assimilation potential. However, recent work suggests that C4 grasses are less susceptible 

to safety-efficiency tradeoffs than C3 plants (Ocheltree et al. 2016; Kocacinar & Sage 

2003). While greater resistance to cavitation does appear to constrain hydraulic 

conductance, high light use efficiency and CO2 uptake efficiency in C4 grasses can de-

couple hydraulic capacity from assimilation potential, allowing C4 grasses to exhibit 

hydraulic safety while retaining high assimilation potential (Ocheltree et al. 2016).  

 Although the unique capabilities of C4 plants can reduce carbon-water tradeoffs, 

all plants must balance demands for CO2 uptake with inevitable water loss. Regardless of 

hydraulic structure, stomatal aperture is ultimate what determines this balance (Cowan 

1978; Farquhar & Sharkey 1982). Accordingly, many models of stomatal regulation have 

been posed to describe water use dynamics in plants. As the mechanisms driving stomatal 

regulation are poorly understood, many of these models have been empirically derived or 

based on theoretical optimization (Buckley & Mott 2013). Perhaps the most widely used 

empirical model is the Ball-Berry-Leuning model, in which stomatal conductance is 

d ive   y  he p    ’s de   d fo   O2   d  he    osphe e’s de   d fo  w  e    d is 

constrained by the concentration of CO2  v i    e     he  e f’s s  f ce (Ball et al. 1987; 

Leuning 1995). Traditionally, this model is paired with the classic Farquhar 

photosynthesis model (Farquhar et al. 1980; Farquhar et al. 2001). The simplicity of these 
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models and their accuracy over a wide range of environmental conditions have led to 

their extensive use across ecosystems and scales. However, the Ball-Berry-Leuning 

model fails to account for soil water status, which determines the supply of water 

available for transpiration. Other popular models take an optimization approach to 

describing stomatal regulation, whereby “profits” are maximized by maximizing 

photosynthetic gain and minimizing water loss (Cowan & Farquhar 1977). These models 

tend to include sensitivity to soil water status, but vary in their sensitivity to vapor 

pressure deficit (VPD). However, the greater limitation of optimization models lies in 

their inherent assumption  h    he “cos ” of  osi g w  e  is quantitative. Recent research 

suggests that the cost of losing water is better assessed in terms of the potential 

physiological consequences associated with water loss, which varies across species and 

environments (Wolf et al. 2016).  

In response to this shift in perspective, new optimization models have been 

developed which better incorporate differences in plant physiology and their 

consequences for water use dynamics. The recently published Profit Maximization model 

(PMAX) uses integration of vulnerability curves across plant components to assess 

hydraulic cost in terms of the plant’s proximity to hydraulic failure as opposed to 

quantitative water loss (Sperry, Venturas, et al. 2016). Vulnerability curves describe the 

loss in hydraulic conductance associated with the spread of cavitation throughout the 

xylem as water potential declines (Tyree & Sperry 1988). These curves vary substantially 

across species and generally reflect the degree of isohydry or anisohydry a plant exhibits. 

Isohydric species, which tend to be more susceptible to cavitation, will more readily 
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regulate their stomata to avoid adverse physiological consequences, whereas anisohydric 

species, which are more cavitation resistant, allow their stomata to remain open over a 

larger range of leaf water potentials (Jones 1998; Tardieu & Simonneau 1998; Sade et al. 

2012; Sperry, Wang, et al. 2016). Thus, PMAX can capture much more dynamic stomatal 

behavior than its predecessors. Water supply in PMAX is constrained by soil water status 

and resistance to flow across plant components (i.e. roots, stems, leaves). Resistance to 

flow is determined through inversion of vulnerability curves. As with the Ball-Berry-

Leuning model, PMAX incorporates a Farquhar photosynthesis model sensitive to light 

availability, intercellular concentration of CO2 (ci), and enzyme kinetics, to represent the 

potential for photosynthetic gain (Farquhar et al. 2001). Optimal stomatal conductance in 

PMAX is determined by maximizing the difference between photosynthetic gain and 

hydraulic cost (Wolf et al. 2016; Sperry, Venturas, et al. 2016). 

Although the Profit Maximization model was designed for woody C3 species, the 

underlying assumptions of the model are equally applicable to C4 grasses, given the C3 

photosynthesis model is replaced with a C4 photosynthesis model (Collatz et al. 1992; 

Jenerette et al. 2009). Using an optimization model in conjunction with field data can be 

particularly advantageous in assessing water use dynamics, as measured behavior that 

deviates from the predicted optima suggests alternative controls over water use not 

accounted for by the model. In sorghum, we hypothesized two alternative drivers of 

stomatal regulation not accounted for by PMAX: VPD and air temperature. VPD has 

been shown to generate a feed-forward response to stomatal regulation, whereby high 

vapor pressure deficit, which accelerates water loss, can induce stomatal closure to 



8 
 

conserve water resources (Leuning 1995; Buckley 2005; Buckley & Mott 2013; Sperry, 

Wang, et al. 2016). This response has been observed in some sorghum cultivars, touted 

for their robust drought tolerance (Gholipoor et al. 2010; Choudhary et al. 2013; 

Shekoofa et al. 2014; Riar et al. 2015). However, growing environments with high 

daytime temperatures tend to select against this conservative behavior in response to 

VPD, presumably to facilitate transpirational cooling (Machado & Paulsen 2001; Riar et 

al. 2015). Evaporation and water flow through the leaf reduces leaf temperature, 

effectively de-coupling leaf temperature from air temperature (Farquhar & Sharkey 1982; 

Singh et al. 1985; Singh & Singh 1988; Grantz & Meizner 1990). Accordingly, declining 

stomatal conductance reduces this buffer between leaf and air temperature. When 

temperatures are mild, tight coupling between air and leaf temperatures is not 

problematic, however, lack of transpirational cooling in the face of extreme temperatures 

could threaten irreversible damage to photosynthetic machinery (Farquhar & Sharkey 

1982; Riar et al. 2015). Thus, transpirational cooling may be essential for the survival of 

sorghum cultivars adapted to particularly hot environments.  

O   so gh   c op, g ow  i     ifo  i ’s I pe i   V   ey, w s  eg     y exposed 

to temperatures in excess of 40 °C and experienced varying levels of drought stress 

between irrigation events. Despite this extreme environment, we achieved high biomass 

yields competitive with other highly productive grasses grown in milder climates 

(Oikawa et al. 2015; Fertitta-Roberts et al. 2017). While stress tolerance is universally 

valued in agriculture, it may particularly important for biofuel feedstocks, which are 

increasingly grown on marginal lands to avoid land use competition with food crops 
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(Monti et al. 2009; Schmer et al. 2014; Searchinger & Heimlich 2015). Plant-based 

biofuels are a growing part of our fuel economy, currently constituting the largest source 

of renewable energy worldwide (Hood 2016). However, several concerns have been 

raised regarding the sustainability of plant-based biofuels. In addition to their demands on 

land area, biofuels contribute to local air and water pollution and vary widely in their 

GHG intensity, with some biofuels showing little or no advantage over conventional fuels 

when emissions over the entire life cycle are considered (Brentrup et al. 2004; Luo et al. 

2009; Borrion et al. 2012; Oikawa et al. 2015; Robertson et al. 2008; Ruan et al. 2016). 

The life cycle of a product encompasses all material, energy, and waste flows associated 

with the generation, use, and disposal of that product. When evaluating the global 

warming potential (GWP) of fuel products, it is critically important to consider sources of 

GHGs throughout the life cycle as less comprehensive evaluations can be misleading 

(Adler et al., 2012; Adler et al., 2007; Borrion et al., 2012; Fu et al., 2003). 

In chapter two, we evaluate life cycle environmental impacts associated with 

sorghum bioenergy production in the Imperial Valley using coupled crop and life cycle 

assessment models. Life cycle assessment (LCA) provides a comprehensive, quantitative 

framework for assessing the environmental impacts of a product. This methodology 

entails three primary steps: (1) goal and scope definition, (2) compilation of a life cycle 

inventory, (3) and characterization of environmental impacts (ISO 2006a; ISO 2006b). 

Defining a clear goal for an LCA is helpful in determining the most relevant scope of 

analysis. For instance, when evaluating the environmental impacts associated with food 

crop production, it is both irrelevant and impractical to consider material energy, and 
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waste flows associated with  he “ se”   d “dispos  ” ph ses of  he  ifecyc e  e g  

preparation, consumption, degradation). Conversely, when evaluating the environmental 

impacts of a fuel product, it is important to consider these phases, as fuels are generally 

distributed and combusted in a predictable manner which has important consequences for 

life cycle GWP. The scope of analysis also refers to the system boundaries employed. 

First order system boundaries include only material and energy flows related to 

production and transportation and are rarely employed in LCA because of their limited 

scope. Second order system boundaries are the most common and include all material, 

energy, and waste flows in the life cycle except those associated with infrastructure and 

capital goods (e.g. facilities and machinery) (Borrion et al. 2012; B. A. Linquist et al. 

2012). Third order system boundaries include material, energy, and waste flows 

associated with infrastructure and capital goods, but are challenging to implement as 

determining the fractional contributions of facilities and machinery to the life cycle can 

be difficult.    

Once the goal and scope of an LCA have been defined, a life cycle inventory is 

complied, which details all of the chemical compounds consumed and produced 

throughout the life cycle. Characterization models are then employed to quantify the 

environmental impacts associated with this chemical inventory. These characterization 

models quantify the contributions of  various compounds to each impact category, 

relative to a reference compound. For example, in the case of global warming potential 

(GWP), methane (CH4) is known to be 25 times more potent than CO2 (Paustian et al. 

2006), so we can express the GWP of 1 kg CH4 and 1 kg CO2 as 26 CO2 equivalents 
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(CO2e). The number of impact categories considered, their scope, and the assumptions 

upon which impacts are based varies widely across characterization models (Borrion et 

al. 2012)  We  se  he EPA’s Too  fo   he Red c io    d  h racterization of 

environmental Impacts (TRACI), which characterizes mid-point impacts to nine 

categories pertaining to human health and the environment (Bare et al. 2003). Mid-point 

models characterize impacts along the cause-and-effect chain (e.g. global warming 

potential) but prior to the end point of the chain (e.g. average global temperature 

increasing by 1 °C), making them easier to quantify than end-point impacts (Bare et al. 

2000; Brilhuis-Meijer 2014).  

When the goal of an LCA is to provide a general evaluation of the environmental 

impact of a production system, it is useful to assess these impacts under a variety of 

plausible scenarios. In the case of land-grown biofuels, emissions associated with the 

generation and use of nitrogen (N) fertilizers can be a particularly important determinant 

of life cycle GHGs and other environmental impacts (Borrion et al., 2012; Fazio & 

Monti, 2011; Ruan et al., 2016; von Blottnitz & Curran, 2007). Both the production and 

use of N fertilizers are GHG-intensive, however, efficient use of N can improve crop 

yields. From a global perspective, it is useful to express GWP in terms of yielded product 

(i.e. CO2e kg
-1

), therefore, if the yield benefits of N fertilizer outweigh the emissions 

associated with its production and use, N fertilizers may reduce the GWP of feedstock 

production. Accordingly, assumptions regarding N management during feedstock 

production in the biofuels life cycle can significantly impact GWP (Lamb et al. 2003; 

Boehmel et al. 2008; Schmer et al. 2008; Schmer et al. 2014; Mbonimpa et al. 2016). 
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Assessing the impacts of N management on feedstock production typically requires 

extensive field trials, which can be costly and time consuming. Instead, we coupled a 

smaller field trial with a crop modeling system to simulate the effects of varying N 

management strategies on Imperial Valley sorghum yields across thirty years of historical 

weather scenarios (Fertitta-Roberts et al. 2017).  

We used the Decision Support System for Agrotechnology Transfer (DSSAT) to 

model sorghum production under varying environmental and management conditions 

(Jones et al. 2003). DSSAT hosts a variety of crop simulation models that can be coupled 

with user-defined inputs of soil conditions, meteorological data, and management 

choices. Inputs to the soil module include physical, chemical, and biological attributes. 

The weather module requires daily inputs of minimum and maximum air temperature, 

precipitation, solar radiation, dew point, humidity, and wind. Initial field conditions and 

preparations (e.g. tillage, residue incorporation), planting date and arrangement (e.g. 

planting density, row spacing), agrochemical applications, irrigation scheduling, and 

harvesting processes are defined in the management module. Simulations of crop growth 

and associated changes in soil water, organic matter, and nutrient balances are process-

based and are conducted at hourly to daily time-steps assuming a homogenous land area 

and crop growth. Growth and development is based on general soil-plant-atmosphere 

dynamics and specific genetic information regarding crop physiology, allometry, 

phenological development, and stress tolerance (Jones et al. 2003; White et al. 2013). 

DSSAT has been widely used to rapidly explore the effects of management practices and 

environmental conditions on crop yields (Timsina & Humphreys 2006; Thorp et al. 2008; 
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Wu et al. 2013; Msongaleli et al. 2014; Rosenzweig et al. 2014; Ruan et al. 2016). 

Coupling DSSAT output with life cycle assessment is a promising tool for exploring the 

environmental impacts associated with distinct management regimes (Ruan et al. 2016; 

Fertitta-Roberts et al. 2017). This coupled modeling system can help highlight pathways 

for more sustainable agricultural production.  

As in our sorghum feedstock production system, nitrogen management plays an 

important role in determining the life cycle GWP of most cropping systems (Smith et al. 

2007). Conversely, in rice production, irrigation management tends to dictate life cycle 

GWP. This divergence arises from a shift in soil biogeochemical fluxes driven by the 

flooded conditions in which rice is conventionally grown. Most cereal crops experience 

fluctuations in soil water status, but generally maintain an aerobic soil environment. 

Denitrification of inorganic nitrogen fertilizers during soil drying and rewetting cycles 

can produce large fluxes of nitrous oxide (N2O) (Bouwman 1998; Liang et al. 2015). 

However, N2O production is inhibited by anaerobic conditions induced by continuous 

flooding. This results in N2O fluxes in flooded rice systems that are generally an order of 

magnitude lower than those typical of non-flooded cropping systems (De Klein et al. 

2006). Conversely, anaerobic decomposition of organic matter under flooded conditions 

promotes CH4 production. CH4 can then be oxidized and released to the atmosphere 

through ebullition and plant-mediated transport (Conrad 2002; Lasco et al. 2006; Shao et 

al. 2017).  Although CH4 is a less potent GHG than N2O, CH4 fluxes in flooded rice 

systems tend to be several orders of magnitude greater than N2O fluxes in other cereal 

cropping systems. As a result, total GHG emissions produced during rice cultivation are 
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estimated to be approximately four times those of other major cereal cropping systems 

(B. Linquist et al. 2012). Efforts to reduce the GWP of rice production have largely been 

centered around the practice of alternate wetting and drying (AWD), which entails 

periodic drainage of the field throughout the growing season (Bouman & Tuong 2001; 

Yao et al. 2012; Linquist et al. 2015; LaHue et al. 2016).  

Chapter three explores the GHG mitigation potential of alternate wetting and 

drying in northern California rice from a life cycle perspective using coupled crop and 

LCA models. Periodic drainage during AWD inhibits CH4 emissions by inducing aerobic 

soil conditions. Accordingly, more frequent and severe dry-downs, which increase the 

duration of aerobic soil conditions, should result in greater mitigation of CH4 fluxes (Hou 

et al. 2000). This phenomena is generally supported in the literature, however, a great 

deal of variation persists in both field and modeled measures of the CH4 mitigation 

potential associated with AWD  (Hokazono & Hayashi 2012; Linquist et al. 2015; LaHue 

et al. 2016). Further, as with the dichotomous role of nitrogen in determining the life 

cycle GWP of non-flooded cropping systems, water management can have both 

advantageous and adverse impacts on the GWP of rice systems. While AWD can mitigate 

CH4 production, a growing body of evidence suggests yields may be adversely impacted 

by AWD (Carrijo et al. 2017). Although variation persists across studies, these adverse 

yield impacts tend increase with increasing frequency, and particularly, with increasing 

severity of dry-downs during AWD. Thus, it appears that irrigation scenarios with the 

highest potential for CH4 mitigation also have the highest potential for reducing grain 

yields. From a global perspective, where GWP is best normalized by yield, understanding 
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the magnitude of this tradeoff between CH4 mitigation and yield reduction is critically 

important to gauging the effectiveness of AWD as a GHG-mitigation strategy. LCA is a 

powerful tool for contextualizing these tradeoffs.  

We used field data collected throughout Butte County to parameterize a rice 

model in DSSAT in order to simulate the yield impacts of a range of AWD scenarios 

varying in the severity and frequency of midseason dry-downs. CH4 emissions associated 

with these production management scenarios were modeled with the Peatland Ecosystem 

Photosynthesis, Respiration, and Methane Transport model (PEPRMT). PEPRMT is a 

processed-based model of wetland carbon exchange parameterized with high resolution 

carbon flux data obtained in northern California wetlands (Oikawa et al. 2014; Oikawa et 

al. 2017). Carbon flux dynamics in PEPRMT are sensitive to water table height, substrate 

availability, leaf area, temperature, and light. Associated changes in carbon pools are 

simulated at half hour intervals, providing higher temporal resolution of CH4 flux than 

most field studies can achieve. Acquiring high resolution data in the field requires 

instrumentation and resources that are cost-prohibitive and time-intensive, especially 

when multiple treatments are being evaluated. An alternative field approach up-scales 

measurements taken at daily to weekly intervals. This approach relies on linear 

interpolation between data points to estimate seasonal CH4 flux (Pittelkow et al. 2014; 

Adviento-Borbe et al. 2015; Linquist et al. 2015; LaHue et al. 2016). Previous research 

has shown up-scaling from periodic chamber measurements can fail to capture important 

pulses and lags in response to changing soil water status, leading to large uncertainties in 

seasonal methane flux (Sturtevant et al. 2016; Knox et al. 2016). Robust prediction of 
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carbon flux dynamics at high temporal resolution makes PEPRMT a more suitable and 

practical tool for predicting changes in cumulative CH4 flux under AWD (Oikawa et al. 

2017). Outputs from DSSAT and PEPRMT were inputs to LCAs used to evaluated life 

cycle GWP or continuously flooded and AWD rice production in northern California.  

Modeling tools provide important pathways for evaluating sustainability in 

agriculture across multiple dimensions. As a major agricultural region, California must 

adapt to a changing climate and play its part in helping to mitigate contributions to 

climate change associated with agricultural production. Field data pertaining to these 

goals is vital and invaluable, but must be supplemented and expanded upon with 

modeling tools in order to advance agricultural and ecological science at the rate 

demanded by global change. Here, we couple field data with a variety of modeling 

systems to evaluate stress tolerance and environmental impacts in California sorghum 

and rice.  
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Chapter 1  

 

A tale of two stressors: How stomatal regulation balances heat and drought tolerance in 

sorghum 

 

Cara Fertitta-Roberts, David A. Grantz, Louis S. Santiago, Patricia Y. Oikawa, Liyin 

Liang, G. Darrel Jenerette
  

________________________________________________________________________ 

1.1 Abstract  

Sorghum is a globally important source of food, feed, and fuel that has gained 

increasing attention for its tolerance to extreme environments. Uncovering the 

mechanisms behind stress tolerance requires an understanding of how sorghum regulates 

water use. Here, we combine field data collected in a high temperature, arid environment 

with an optimized model of stomatal regulation to evaluate controls over water use in 

Sorghum bicolor (cv. Photoperiod LS). Water use dynamics were adequately predicted 

by the model when soil water was limiting and temperatures were relatively mild (r
2
 = 

0.71 – 0.78). However, the model predicted only half of transpirative water loss measured 

when daytime temperatures were extreme but soils were well-watered. In measured data, 

higher rates of transpiration were associated with greater leaf cooling (r
2
 = 0.50). 

Analysis of seasonal patterns in water use dynamics using partitioned eddy covariance 

data suggested the model overestimated the effect of soil water potential on transpiration 

(slope = -1.42 and -1.04 for modeled and measured data, respectively) and 
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underestimated the effect of air temperature (slope = 0.33 and 0.67, respectively). Our 

results suggest two pathways govern stress responses in heat-tolerant sorghum: (1) 

avoiding damage to photosynthetic machinery through stomatal opening to allow greater 

transpirational cooling and (2) avoiding xylem cavitation, induced by water stress, 

through stomatal closure. These two opposing controls appear to be balanced by stomatal 

sensitivity to leaf water potential (Pleaf), where transpirational cooling is constrained as 

Pleaf declines and threat of xylem cavitation increases. This dynamic water use strategy 

allows sorghum to achieve a delicate balance between heat and drought tolerance while 

maintaining high rates of productivity. Our results suggest application of PMAX to 

annual crops has great potential, but inclusion of transpirational cooling may be 

necessary to properly account for stomatal regulation in heat-tolerant species.  

1.2 Introduction  

Sorghum is one of the most important global crops, occupying > 40 million ha of 

land area and serving as source of food, feed, and fuel around the world (FAO & NRI 

1999). This versatile grass has garnered increasing attention for its ability to withstand 

extreme temperatures and prolonged drought. These traits make sorghum an ideal 

candidate for increased production under climate change (Bita & Gerats 2013; Singh et 

al. 2014). However, while much emphasis has been placed on identifying varietals with 

the highest drought tolerance (Wright et al. 1983; Triggs et al. 2004; Gholipoor et al. 

2010; Choudhary et al. 2013; Shekoofa et al. 2014), recent work suggests drought 

tolerance in sorghum may come at the expense of heat tolerance (Riar et al. 2015). 
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Enhancing our understanding of water use dynamics and their relation to stress response 

in sorghum is therefore an important pathway for identifying varietals best suited to 

withstand the wide ranging effects of climate change. Stomatal optimization models can 

be useful tools for discerning controls over water use dynamics. We used the Profit 

Maximization model (PMAX) to simulate optimal stomatal behavior based on tradeoffs 

between potential photosynthetic gains and hydraulic costs under variable environmental 

conditions to better understand controls over water use dynamics in sorghum and their 

implications for stress tolerance (Sperry et al. 2016).  

Plant water use dynamics are largely determined by stomatal regulation. As 

stomata open to allow CO2 uptake required for photosynthesis, water is lost through 

transpiration (Cowan 1978; Farquhar & Sharkey 1982). As light availability increases, 

there is greater incentive for the stomata to open to maximize photosynthetic gain. 

Conversely, factors such as declining soil water potential (soil drought) and increasing 

vapor pressure deficit (VPD; atmospheric drought) incentivize down-regulation of 

stomatal conductance in order to reduce transpirational water loss, particularly when soil 

water is limiting (Leuning 1995; Sperry & Love 2015; Sperry et al. 2016b). This 

mechanism has been observed in “stay green” sorghum varietals that show particularly 

high drought tolerance (Gholipoor et al. 2010; Choudhary et al. 2013; Shekoofa et al. 

2014; Riar et al. 2015). Air temperature has received less attention in stomatal control 

models, but there is some evidence to support high temperatures can increase stomatal 

conductance in order to facilitate transpirational cooling (Farquhar & Sharkey 1982; 

Singh et al. 1985; Singh & Singh 1988; Grantz & Meizner 1990).  
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Classic models of stomatal regulation assume plants respond to changes in their 

environment by regulating their stomata to maintain a constant ratio of carbon gain to 

water loss (Cowan & Farquhar 1977; Katul et al. 2010; Medlyn et al. 2011; Prentice et al. 

2014). However, the evolution of a wide spectrum of hydraulic strategies challenges this 

simplistic view stomatal regulation (Wolf et al. 2016). Isohydric species tightly regulate 

stomatal conductance in response to declining leaf water potential (Pleaf), sacrificing 

carbon uptake by reducing stomatal aperture in order to maintain a favorable Pleaf 

throughout the day. Conversely, anisohydric species keep their stomata open in spite of 

declining Pleaf in order to maintain high rates of assimilation throughout the day (Jones 

1998; Tardieu & Simonneau 1998). Each strategy can be advantageous depending on the 

conditions that typify the plant’s environment. Anisohydric species tend to be fairly 

resistant to drought-induced xylem cavitation, which allows them to take greater risks 

and reap greater rewards when conditions are favorable or mildly stressful. However, 

isohydric species, which are often more vulnerable to xylem cavitation, tend to fair better 

under prolonged exposure to stress due to their conservative water use strategy (Sade et 

al. 2012).  

The Profit Maximization model (PMAX) incorporates dynamic stomatal 

responses, associated with the spectrum of isohydric to anisohydric behavior, into the 

framework of a classic stomatal optimization model (Sperry et al. 2016a). Transpirative 

water loss in PMAX is constrained by soil matric potential and cumulative resistance 

across plant components. Resistance to water flow is determined by each component’s 

vulnerability to xylem cavitation in response to declining xylem pressure (Sperry et al. 



 

30 

 

2016a & b). As vessels cavitate, hydraulic conductance is lost and resistance to water 

flow through the plant increases. Thus, for a given set of environmental conditions, 

hydraulic cost can be assessed as the plant’s proximity to hydraulic failure along a 

gradient of increasing stomatal conductance. Photosynthetic carbon gain can be assessed 

by the plant’s proximity to the instantaneous maximum rate of assimilation 

(instantaneous Amax) possible under these environmental conditions along this same 

gradient of increasing stomatal conductance. The optimal rate of stomatal conductance 

maximizes the difference between the photosynthetic gain function and hydraulic cost 

function (Wolf et al. 2016; Sperry et al. 2016). Although PMAX was is designed to 

simulate water use dynamics in woody C3 angiosperms, its basic hydraulic principles can 

be extended to C4 grasses like sorghum. The high efficiency of C4 photosynthesis may 

reduce tradeoffs between assimilation potential and water loss (Ocheltree et al. 2016), 

however, the same fundamental tradeoffs between photosynthetic gain and hydraulic 

costs persist. Accordingly, the primary assumptions of PMAX should hold for sorghum 

and deviations from theoretically optimal behavior may highlight alternative controls 

over water use. Our work also provides a valuable test of PMAX, which has yet to be 

evaluated using field data.  

We coupled diurnal and seasonal measurements of gas exchange, energy balance, 

soil water status, and micrometeorological data with the Profit Maximization model to 

explore the environmental factors that dictate water use patterns in sorghum grown in a 

high temperature, arid environment. We tested the model’s inherent hypothesis that 

stomatal conductance is primarily sensitive to light availability, soil water status, and 
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vulnerability to xylem cavitation. We alternatively hypothesized that VPD and 

temperature may play a role in determining stomatal regulation, with the former down-

regulating stomatal conductance to avoid excessive water loss and associated hydraulic 

costs, and the latter up-regulating stomatal conductance to increase transpirational 

cooling and avoid damage to photosynthetic machinery. Our objectives were (1) to 

identify controls over water use in sorghum in response to different environmental 

stressors and (2) to evaluate the ability of our modified PMAX model to simulate water 

use dynamics in annual C4 species. 

1.3 Materials and Methods 

We evaluated environmental controls over water use dynamics in Sorghum bicolor (cv. 

Photoperiod LS) using extensive field data coupled with an optimized model of stomatal 

regulation (Figure 1.1). Leaf-level data were used to parameterize and validate the Profit 

Maximization model as well as to transform eddy covariance and micrometeorological 

data taken at the canopy-level to better reflect conditions in the canopy rather than above 

the canopy. Diurnal measurement campaigns allowed us to assess stomatal regulation 

under two distinct stressors – heat stress and drought stress – while seasonal 

measurements were used to evaluate controls over midday transpiration rates under a 

wide variety of environmental conditions.  
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Site description 

Field data were collected during the 2012 growing season on a 5.3 ha plot at the 

Desert Research Extension Center in Holtsville, Imperial Valley, CA (32°N 48'42.6", 

115°W 26' 37.5"). This site was characterized by high daytime temperatures, aridity, and 

light intensity (41 °C, 4.6 kPa, 874 W m
-2

 seasonal averages at midday, respectively) and 

infrequent precipitation (20 mm season
-1

) (Oikawa et al. 2015). Soil was classified as 

mildly alkaline deep silty clay (pH 8.1; 42% clay, 41% silt, 16% sand) with 2.34% 

organic matter. Prior to planting, the field was tilled, laser-leveled, and fertilized with 110 

kg N ha
-1

 and 90 kg P2O5 ha
-1

. Sorghum bicolor (cv. Photoperiod LS, Scott Seed, Inc., 

Hereford, TX, US) was planted at a density of 9 individuals m
-2

 on 28 February 2012. 

Early planting afforded by the Imperial Valley’s mild winters permitted three harvests 

throughout the growing season. Nitrogen fertilizer was supplemented at the beginning of 

each growth cycle at a rate of ~ 90 kg N ha
-1

 (Fertitta-Roberts et al. 2017). Each of these 

three growth cycles were characterized by varying environmental conditions, with 

average daily VPD and Tair being lowest during the first growth cycle (February 28 – 

June 4), highest during the second growth cycle (5 June – 14 August), and intermediate 

during the final growth cycle (15 August – 12 November) (Oikawa et al. 2015). Irrigation 

was supplied by furrow flooding based on apparent plant need or when soil VWC < 0.10 

cm
3
 cm

-3
. 
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Canopy gas exchange, micrometeorological data, and soil data 

Extensive methods for collection and processing of canopy gas exchange, 

micrometeorological, and soil water data can be found in Oikawa et al. (2015). We used 

eddy-covariance and micrometeorological systems mounted on a tower in the center of 

the field to measure net ecosystem exchange (NEE) and evapotranspiration (ET) at thirty 

minute intervals throughout the growing season (Baldocchi et al. 1988; Oikawa et al. 

2015). An open path IRGA was used to measure net CO2 and H2O flux (LI-7500 LI-CIR 

Biosciences, Lincoln, NE, USA). The height of these instruments was adjusted 

throughout the season in accordance with canopy height. The up-welling and down-

welling of solar radiation were measured using a four-component net radiation sensor 

(NR01, Hukseflux Thermal Sensors). A Platinum Resistance Temperature and capacitive 

sensor probe (HMP45c, Vaisala, Helsinki, Finland) was used to measure Tair and relative 

humidity, and wind speed was measured with a 3D sonic anemometer (CSAT3, Campbell 

Scientific). We coupled these atmospheric data with measurements of soil VWC at 

corresponding thirty minute intervals using soil moisture probes buried at 2, 8, and 16 cm 

depths adjacent to the tower (CS616, Campbell Scientific). Filtering limits, statistical 

testing, corrections, and gap-filling procedures for these canopy-scale data are detailed in 

Oikawa et al (2015).  
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Diurnal campaigns: leaf water potential, gas exchange, energy balance, and micromet 

We conducted two diurnal campaigns throughout the growing season to assess 

water stress, gas exchange, and energy balance at the leaf-level. Our diurnal campaigns 

took place in mature canopies on 19 July 2012 and 13 October 2012 during our second 

and third growth cycles, respectively. July and October campaigns took place under 

varying environmental conditions (Table 1.2). Our July campaign was executed during an 

extreme heat event, with midday temperatures in the canopy reaching 45 °C and VPD 

exceeding 3.18 kPa. However, the field was recently irrigated, resulting in a relatively 

high soil water potential. In October, soil water potential was low, resulting in moderate 

water stress, but daytime temperatures were nearly 10 °C lower than in July. During each 

campaign, we measured leaf water potential at 1 – 1.5 hour intervals from pre-dawn until 

dusk and leaf gas exchange, energy balance, and micrometeorological conditions at 

similar intervals from roughly 9 am until dusk.  

Table 1.1. Average environmental conditions during our July and October measurement 

campaigns 

    
Variable    (unit) July October 

    
    
Avg Psoil  (MPa) -0.40 -1.02 

Avg PAR  (µmol m
-2

 s
-1

) 639 634 

Min Tair (°C) 34 26 

Max Tair  (°C) 45 37 

Avg VPD  (kPa) 3.18 2.20 

Avg wind  (m s
-1

) 4.65 3.78 
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We measured leaf water potential using a Scholander Pressure Chamber (PMS 

Instrument Company, Albany, OR). At each interval, we measured 6 upper leaves and 6 

lower leaves from the northwest and southeast quadrants of our plot (n = 24 leaves total). 

Only intact, undamaged leaves were selected. Leaves were cut approximately 20 cm from 

the leaf tip and immediately bagged, placed in a cooler, and transported to the lab for 

pressure measurements. Once leaves were acclimated to morning light (~ 9 AM), we 

began coordinated measurements of leaf gas exchange, energy balance, and 

micrometeorological conditions using a Licor-6400 Portable Photosynthesis System (LI-

COR). We selected 6 plants in the middle of the northwest and southeast quadrants of the 

field to make continuous observations. One upper leaf and one lower leaf from each plant 

were tagged for gas exchange measurements. In the event a leaf was damaged during the 

measurement campaign, we selected the nearest neighboring leaf to replace it. 

Measurements were made under 400 ppm CO2 and ambient PAR (photosynthetically 

active radiation) conditions, and logged three times over the course of one minute 

following stabilization.  

 Light and ACi photosynthesis response curves for sorghum were collected in 

August 2012, September 2012, and again in August during the 2013 growing season. 

Curves were obtained with a minimum of three replicates collected in both the northwest 

and southeast quadrants of our plot (n > 6 for each campaign). We used the Li-6400 auto-

program for light and ACi response curves (Figure S1.1). We used Photosynthesis 

Assistant (ver. 1.1; Dundee Scientific, Dundee, UK) to estimate maximum 

photosynthetic rate (Vmax), Michaelis-Menten constants for carboxylation (kc) and 
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oxygenation (ko), and CO2 compensation point (Ѓ) from our light and ACi response data 

(Table 1.2). Due to instrumental constraints on temperature control, we were unable to 

execute curves at the standard 25 °C. Instead, block temperature was maintained at 35 °C. 

We corrected for this using a modified Arrhenius equation for temperature sensitivity of 

photosynthesis (Figure S1.2) (Leuning 2002; Medlyn et al. 2002). 

Leaf to canopy scaling 

 Measurements of leaf area index (LAI) were collected prior to each diurnal 

campaign. Ten meters of row were destructively sampled from each quadrant of the field. 

Leaf area was then measured using an Li3100C area meter (LI-COR), validated with a 

subset of manual measurements. We used LAI (m
2
 leaf m

-2
 ground) to scale leaf level 

data (m
-2

 leaf s
-1

) to the canopy level (m
-2

 ground area s
-1

) for data collected during or 

July and October diurnal campaigns.  

Modeling soil water potential 

PMAX accounts for soil water status in terms of soil water potential (Sperry, 

Venturas, et al. 2016). We used an inverse van Genuchten function to attain estimates of 

soil water potential from VWC measurements collected continuously at our field site 

(Equation 1; Figure S1.3) (van Genuchten 1980). Residual and saturated soil VWC were 

identified from these soil sensor measurements, based on the lowest VWC observed prior 

to field irrigation and the highest VWC observed following an irrigation, respectively. 

Additional van Genuchten parameters were modeled based on plasticity index 

(Majdeddin et al. 2011). Plasticity index was derived from published values reported for 
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El Centro clay soils (Capuzzi & Capuzzi 2016). Using equations from Majdeddin et al. 

(2011), we determined values of 272 cm
-1

 and 1.41for α and n, respectively. These values 

are in good agreement with the average values reported for silty clay loam soils (Tuller & 

Or 2003).  

Equation 1:             
[(

     
      

)
   

  ]

   

 
 

Where     is soil water potential (MPa) at instance i,    is saturated soil VWC (cm
3
 cm

-

3
),    is residual soil VWC (cm

3
 cm

-3
),    is soil VWC (cm3 cm

-3
), and m, n, and α are 

parameters based on soil texture and structure.  

 

Sorghum leaf vulnerability curves & conductance 

We used a leaf vulnerability curve to describe sorghum’s vulnerability to 

cavitation (Figure S1.4). Leaf vulnerability curves were conducted on Sorghum bicolor 

(cv. Delta) grown at the University of California Riverside during the summer of 2017. 

Samples were collected approximately three months after planting, prior to heading but 

following canopy closure. We retrieved samples at dusk, the day prior to initiation of 

measurements. Individual shoots were cut at the base of the stem and immediately 

submerged in water, where they were recut with a sharp blade. Cut stems were kept in 

water overnight in a dark room with a plastic bag placed over the leaves to allow 

rehydration.  
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 Vulnerability curves were obtained using the optical method (Brodribb et al. 

2016; Skelton et al. 2017). This method uses continuous, high resolution imagery of 

leaves coupled with continuous measures of leaf water potential to track cavitation and, 

subsequently, loss in hydraulic conductance, as the plant dries. As vessels cavitate and fill 

with air, the color changes. Processing high resolution images using an image difference 

filter and particle analysis allows measurement of these cavitation events. Assuming a 

fully desiccated specimen exhibits 100% cavitation of vessels, we can then calculate the 

percent loss in conductance associated with each cavitation event. Pairing this data with 

associated water potential measurements produces a leaf vulnerability curve. We selected 

the youngest fully expanded leaf for imaging and the nearest neighboring mature leaf to 

measure leaf water potential. A high resolution film scanner (Epson 800) was used to 

take images of the leaf at 2 minute intervals. Leaves were secured to the scanner with 

cloth tape and a pane of glass to minimize movement and maximize image clarity. 

Images were processed in ImageJ Fiji (Schindelin et al. 2012) with the OSOV toolbox, 

using methods provided by Brodribb et al. (2016). Leaf water potential was measured at 

30 minute intervals with a leaf thermocouple psychrometer (L-51A; Wescor Inc., Logan, 

UT, USA) connected to a water potential datalogger (PSYPRO, Wescor Inc.). 

Maximum leaf conductance (kmax; Table 1.2) was determined using an 

evaporative flux method (Sack & Scoffoni 2012). Samples were cut at the base of the 

stem, immediately re-cut under water, and left to rehydrate overnight. On the day of the 

measurement, individual leaves were cut approximately 20 cm from the leaf tip, under 

water, with a sharp blade. Only fully expanded, healthy leaves were selected. Using 
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plumber’s putty for support and strips of parafilm as sealant, we rolled the base of the 

leaf into a cylinder and secured it to the tubing of our evaporative flux system. As long 

leaf cuttings were acquired, approximately 10 cm of leaf area at the proximal end of the 

leaf remain fully expanded, allowing us to use the standard evaporative flux methods 

(Sack & Scoffoni 2012).  

Table 1.2. Static parameters and dynamic environmental inputs to the Profit 

Maximization model 

  

  

Variable Value Units Description 

    Static 
   

    
Ca 40.00 Pa atmospheric [CO2] 

Oa 2,100 Pa atmospheric [O2] 

Patm 101.30 kPa atmospheric pressure 

c' 0.86 (dimensionless) curvature of the light response curve 

d 0.04 m leaf width, average across manual LAI measurements 

kc 48.00 Pa Michaelis-Menten constant for carboxylation 

ko 46,199 Pa Michaelis-Menten constant for oxygenation 

kmax 36.00 mmol H2O m
-2

 s
-1

 MPa
-1

 maximum leaf hydraulic conductance 

VC [2.75, 4.5] (dimensionless) Weibull [a, b] for leaf vulnerability curves 

vG [272, 1.41] (dimensionless) van Genuchten [α, n] for soil water  retention curve 

Vmax25 56.60 µmol CO2 m
-2

 s
-1

 maximum rate of carboxylation  

Ѓ 0.53 Pa CO2 compensation point 

e 0.98 (dimensionless) emissivity, per Lopez et al. (2011) 

    
Dynamic 

   
    
D 1.1 – 4.4 kPa atmospheric vapor pressure defecit  

Ps 0.38 – 1.1 MPa soil water potential  

PPFD 0 - 1997 µmol photons m
-2

 s
-1

 photon flux density  

Rabs 9 – 563 W m
-2

 absorbed long and short wave radiation 

Ta 29 – 46 °C air temperature 

u 3.6 – 6.2 m s
-1

 wind speed 
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Adjustments to the assimilation model in PMAX 

Assimilation in PMAX is simulated using the Farquhar C3 photosynthesis model 

(Farquhar et al. 2001). As sorghum is a C4 crop, physiological differences between C3 

and C4 physiology were resolved by amending the classic C3 Farquhar model with a 

commonly used modification described in Equation 3 (Collatz et al. 1992; Jenerette et al. 

2009). We fit    by inversion using light response curves data (Figure S1.1). 

Biochemical Amax was acquired from the linear portion of light response curves. We 

assumed the default value of kPEP provided by Collatz et al. (1992).  

Equation 3:           {
   
  
   

} 

Where A is gross assimilation (µmol CO2 m
-2

 s
-1

),   is light-limited A,    is ci-limited A, 

and    is Rubisco-limited A, as described by equations 5, 6, and 7, respectively. 

 

 

Equation 4:              

Where    = effective light use efficiency (mol CO2 mol photons
-1

) 

 

Equation 5:         
           

    
 

Where      is the rate constant of PEP-carboxylation (mol CO2 m
-2

s
-1

), ci is internal 

[CO2] (Pa), Ѓ is the CO2 compensation point (Pa), and      is atmospheric pressure 

(Pa). 

 

Equation 6:              

Where Amax is the maximum carboxylation efficiency of Rubisco 
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PMAX uses a modified Arrhenius equation to describe the temperature sensitivity 

of several parameters in the photosynthesis model (Figure S1.1 & Equation S1). As 

described in the supporting information, we initially modified this equation by removing 

photoinhibition at high temperatures to better describe sorghum’s heat-tolerant nature. 

However, setting photoinhibition to zero generates an exponential increase with 

increasing temperature. As our site frequently saw temperatures > 40 °C, this resulted in 

unrealistically high rates of photosynthesis on hot days. As limited temperature control in 

the field prohibited procurement of the temperature response curves necessary to properly 

parameterize temperature sensitivity functions, we omitted temperature sensitivity 

altogether to avoid unrealistically high assimilation values. Removal of temperature 

sensitivity may over- or underestimate assimilation and results should be interpreted 

accordingly. 
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1.4 Results 

Diurnal leaf water potential 

 

Figure 1.1. Measured and modeled leaf water from July and October measurement 

campaigns. Diurnal patterns of leaf water potential were similar across campaigns in 

measured data but diverged strongly in modeled data.  

 

Despite differences in environmental conditions, leaf water potential showed 

strikingly similar diurnal patterns across campaigns (Figure 1.1). Pre-dawn Pleaf was 

around -0.47 MPa for upper leaves and -0.25 for lower leaves. As plants began 

photosynthesizing, Pleaf dropped to roughly -1.6 and -1.3 MPa for upper and lower leaves, 

respectively. Leaf water potential was relatively stable from noon until about 4pm. In the 

evening, as light levels declined, Pleaf began to recover. This recovery was more notable 

in October due to short day length relative to July. Modeled Pleaf did not reflect this 

uniform pattern across campaigns (Figure 1.3). Although modeled Pleaf was within the 

range of measured Pleaf for October, it was substantially over-estimated (less negative) for 
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July. Evening recovery was also more notable in modeled output, likely due to the 

model’s limitations in sensitivity to time of day and continuity across time points.  

PMAX validation with diurnal gas exchange measurements 

 

Figure 1.2. Fit of modeled data to measured data during our July and October diurnal 

campaigns. Assimilation modeled in PMAX was slightly overestimated, but overall 

showed good fit to measured data. Fit of E and gw was near 1:1 for October data, but 

modeled E and gw were substantially underestimated by the model in July.  

 

 PMAX showed varied ability to predict carbon and water flux dynamics across 

campaigns (Figure 1.2). Overall fit between measured and modeled values for A was 

good (r
2
 = 0.92 in July and 0.91 in October), however, the model tended to over-predict 

assimilation. In July, the model had a tendency to predict biochemical Amax, indicating 

neither carbon uptake nor light limited modeled assimilation. This maximum assimilation 

rate appeared to correspond to a maximal rate of stomatal conductance. However, 

conductance rates predicted by the model in July were roughly 1/3 of measured 
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conductance rates. Further, measured values of conductance showed no evidence of 

reaching a maximum value. Transpiration was similarly under-predicted by the model. 

Both measured and modeled assimilation were lower in October than in July. These 

reduced rates of assimilation were associated with reduced rates of transpiration and 

stomatal conductance. Modeled values of conductance and transpiration in October 

showed good fit to measured values (r
2
 = 0.71 and 0.78, respectively) and generally fell 

along the 1:1 line.  

Water use dynamics & temperature 

We evaluated the interaction between air temperature and water use dynamics in 

sorghum using energy balance and micrometeorological data collected at the leaf-level 

during our diurnal campaigns. Leaf temperature was consistently lower than air 

temperature and the two were increasingly de-coupled at as air temperature peaked 

(Figure 1.3a). Differences between leaf and air temperature, indicative of transpirational 

cooling, were highest during peak heat hours in July and were positively correlated to 

increasing rates of transpiration (Figure 1.3b). No significant relationship was found 

between leaf to air temperature differences and transpiration in October.  
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Figure 1.3. Average diurnal patterns of air and leaf temperature and their relation to 

transpiration. Leaf temperature was cooler than air temperature and the disparity between 

the two was greatest during midday hours. Increasing differences between leaf and air 

temperature were correlated with increasing E in July, but not significantly so in October.  

 

Leaf to tower scaling 

We found good agreement between up-scaled leaf-level gas flux and micromet 

measurements and partitioned canopy-level gas flux and micromet data (Figure 1.2a &b). 

Up-scaled leaf-level assimilation was slightly lower than canopy NEE, which was 

expected as NEE includes heterotrophic respiration (Figure 1.4a). PAR measured above 

the canopy was nearly double that of PAR measured within the canopy (Figure 1.4c). 

Conversely, air temperature was higher in the canopy than above the canopy (Figure 

1.4d). 
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Figure 1.4. Linear regression of A, E, PAR, and Tair measured at the leaf level against 

NEE, ET, PAR, and Tair measured at the canopy level. All variables are expressed on a 

ground area basis. A and E were slightly higher for up-scaled leaf measurements than 

corresponding canopy measurements. PAR in the canopy was approximately half of PAR 

measured above the canopy. Conversely, Tair in the canopy tended to be higher than Tair 

measured above the canopy, particularly in the mornings and evenings, when ambient Tair 

was relatively cool. 
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Seasonal controls over water use  

 

Figure 1.5. Exploring environmental drivers of transpiration (E) at the whole canopy 

scale in measured and modeled data throughout the 2012 growing season. Modeled E was 

approximately half of measured E. In measured data, E increased slightly in response to 

increasing PAR and VPD. Measured E increased more notably with increasing air 

temperature and declined slightly with declining Psoil. Modeled E was more responsive to 

environmental conditions, increasing with increasing PAR, Tair, and, particularly, VPD, 

and decreasing notably with declining Psoil.  
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Using transformed midday canopy-scale data from the 2012 season, we found 

significant relationships between all of the environmental drivers explored and 

transpiration. The strength of these relationships varied for measured and modeled data. 

In both measured and modeled data, transpiration increased by a similar magnitude in 

response to PAR (slope = 0.01 for measured and modeled; Figure 1.5 a – b) and VPD 

(slope = 0.2 and 0.74 for measured and modeled, respectively; Figure 1.c –d). However, 

measured data showed a stronger positive effect of air temperature on transpiration than 

modeled data (slope = 0.67 and 0.33, respectively; Figure 1.5 e – f) and a weaker 

negative relationship between soil water potential and transpiration (-1.04 and-1.44, 

respectively; Figure 1.5g – h).Overall, modeled E was less than half the rate of measured 

E and measured E showed the tightest coupling with Tair (r
2
 = 0.21) while modeled E 

showed the tightest coupling with soil water potential (r
2
 = 0.53).  

1.5 Discussion 

 We sought to determine controls over water use in Sorghum bicolor grown in a 

high temperature, arid agroecosystem. When plants were not under overly stressed, 

maximizing light use efficiency appeared to dictate stomatal aperture. In the presence of 

water stress, threat of cavitation increased and stomatal regulation was evident. These 

mechanisms are more or less in line with the theoretical basis for the Profit Maximization 

model. However, measured conductance rates exceeded those modeled in PMAX when 

daytime temperatures were high, even when assimilation was light-limited. This suggests 

transpirational cooling can play an important role in stomatal regulation under 
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temperature stress. The act of transpirational cooling reduces instantaneous water use 

efficiency, but in turn provides a buffer to heat stress that allows high productivity in the 

face of extreme temperatures. This process appears to be safe-guarded by strong stomatal 

regulation in response to declining leaf water potential, which helps sorghum avoid 

excessive water loss and associated adverse physiological impacts. Together, our results 

suggest controls over water use in heat-tolerant sorghum are dependent on the type and 

severity of stress the plant is exposed to. This dynamic approach to stomatal regulation 

makes heat-tolerant sorghum cultivars particularly well-suited to acclimate to high 

temperatures and more limited water resources anticipated under climate change.  

Performance of the modified PMAX model 

Our modified Profit Maximization model appeared more than adequate for 

describing carbon and water use dynamics in C4 grasses in general. Substituting the 

Farquhar C3 assimilation model for a modified Collatz C4 assimilation model allowed 

fairly accurate predictions of assimilation, and, in the presence of water stress, associated 

rates of transpiration. Our modified PMAX model also excluded temperature sensitivity 

of assimilation and respiration as sorghum has been shown to maintain high 

photosynthetic rates at temperatures exceeding those observed at our field site. While 

modeled A showed good fit to measured A under a wide range of temperatures, 

assimilation was slightly overestimated in the model and this overestimation could be a 

consequence of omitted temperature response. Our findings regarding transpirational 

cooling suggest that photosynthesis in heat-tolerant sorghum is not necessarily insensitive 
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to increasing temperatures, but rather buffered from them through excess transpirative 

water loss (Riar et al. 2015). This would suggest that a temperature response function 

based on leaf temperature vs. the conventionally used air temperature may more 

satisfactorily describe temperature sensitivity in heat-tolerant species. However, further 

research is needed to determine the role of transpirational cooling in the temperature 

sensitivity of photosynthetic and respiratory processes.  

Coupling field data with modeled PMAX output suggested instantaneous Amax 

could be sustained throughout the day during our July campaign at relatively low rates of 

conductance compared to measured values. This supports the idea that water use 

dynamics and gas flux can be, to some extent, de-coupled in carbon-efficient C4 grasses 

(Ocheltree et al. 2016). PMAX assumes stomata never open more than is necessary to 

achieve instantaneous Amax (Sperry et al. 2016). This is evident when instantaneous Amax 

was equal to biochemical Amax, which effectively set a gwmax within the model. 

Subsequently, modeled leaf water potential was higher (less negative) than measured leaf 

water potential in July. Water loss in excess of rates predicted by PMAX appears to be 

attributable to transpirational cooling. This is supported by the fact that the disparity 

between leaf and air temperature increased linearly with increasing transpiration in July. 

In October, no significant relationship was found between transpiration and leaf cooling 

because water stress induced stomatal  closure and limited transpirational cooling.  
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As sensitivity to soil water status is more line with the assumptions of PMAX, modeled 

transpiration, conductance, and leaf water potential for October showed much better fit to 

measured values than July data.  

Evidence of isohydry  

Despite differences in environmental stressors, leaf water potential followed 

strikingly similar patterns throughout the day across diurnal measurement campaigns, 

with midday Pleaf holding relatively constant at a rate just above the threshold at which 

vessels began to cavitate (Figure S1.4). This suggests strong avoidance of cavitation 

through stomatal regulation regardless of the source of abiotic stress. Tight stomatal 

regulation indicated strongly isohydric behavior in sorghum, and this was supported by 

the shape of the Weibull function fitted to our vulnerability curve. Recent work suggests 

that sorghum cultivars adapted to growing environments characterized by high 

temperatures tend to show higher conductance rates than cultivars adapted to mild 

climates because transpirational cooling is favored over water conservation (Riar et al. 

2015). While our data support this idea, they also suggest that sorghum’s isohydric 

behavior safeguards against excessive water loss and associated physiological damages as 

leaf water potential declines throughout the day. Thus heat tolerance via transpirational 

cooling is balanced with water conservation and cavitation avoidance.  
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PMAX was unable to replicate similarities in diurnal leaf water potentials across 

campaigns, largely because it did not account for super-optimal stomatal regulation to 

facilitate transpirational cooling (Farquhar & Sharkey 1982; Singh et al. 1985; Singh & 

Singh 1988; Grantz & Meizner 1990). 

Trends in midday water use dynamics throughout the growing season 

 Our data generally supported the inherent hypotheses of the Profit Maximization 

model but also found strong support for the role of air temperature regulating water use 

dynamics. When midday carbon and water exchange were modeled in PMAX, 

transpiration rates were lower than those partitioned from measurements of canopy water 

flux. The highest rates of measured transpiration appeared to be associated with high light 

levels and high temperatures. As light availability and high midday temperatures often 

coincided, this difference in the magnitude of transpiration is likely the result of 

transpirational cooling not accounted for by the model. Higher sensitivity to temperature 

and lower sensitivity to soil water status in measured data support the idea that sorghum 

up-regulates conductance in the face of heat stress and down-regulates conductance in 

response to water stress. When both stresses are present, a middle of the road approach is 

likely, which would explain the persistence of some relatively low E rates at high 

temperatures and some relatively high E rates at low soil water potentials observed in 

field data.  

In both measured and modeled data, transpiration did not decline with increasing 

VPD, as has been observed in “stay green” sorghum cultivars touted for their high water 
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use efficiency (Gholipoor et al. 2010; Choudhary et al. 2013; Shekoofa et al. 2014; Riar 

et al. 2015). High aridity at our field site increased atmospheric VPD to nearly 5 kPa, yet 

the both measured and modeled E increased linearly with increasing VPD. Recent work 

suggests stomatal sensitivity to VPD is selected against when the growing environment 

regularly reaches 37 °C or higher (Choudhary et al. 2013; Riar et al. 2015) in order to 

facilitate transpirational cooling. Thus “stay green” cultivars likely lack the degree of 

heat tolerance exhibited in cultivars that do not prioritize soil water conservation in the 

presence of atmospheric drought. This may represent an important tradeoff between 

degree of heat tolerance and degree of drought tolerance. However, stomatal regulation in 

response to declining leaf water potential evident in our diurnal data suggest heat-tolerant 

cultivars retain a degree of drought tolerance. When heat stress is dominant, 

transpirational cooling is enhanced to avoid damage to photosynthetic machinery. This 

response has the added benefit of maximizing light use efficiency, thereby retaining high 

rates of productivity in an otherwise inhospitable environment.  

The extent of transpirational cooling appears to be constrained when leaf water 

potentials near the threshold at which cavitation becomes likely. When water stress is 

dominant, leaf water potential drops more rapidly in response to transpiration and 

stomatal regulation kicks in more readily to avoid cavitation. Water use efficiency in 

heat-tolerant sorghum cultivars therefore appears to be strongly dependent on the type 

and severity of abiotic stress the plant faces, with stomatal regulation functioning such 

that damage to both photosynthetic machinery and xylem conduits are avoided whenever 

possible.  
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Synthesis 

Stomatal closure is thought to be a mechanism of resource conservation and stress 

avoidance, however for species adapted to high temperatures, stomatal opening can be an 

equally important pathway for avoiding stress. Our data suggest some sorghum cultivars 

balance their tolerance to heat and drought stress by shifting patterns of stomatal 

regulation based on environmental conditions and leaf water potential. Provided sorghum 

is moderately well-watered during extreme heat events, it should be well poised to 

maintain high rates of productivity in the face of rising global temperatures and more 

erratic precipitation events. While many studies have focused on “stay green” cultivars as 

climate-change ready crops, prioritization of water conservation in response to soil and 

atmospheric drought appears to limit heat-tolerance and reduce overall productivity. Our 

results highlight the importance of transpirational cooling in determining water use 

patterns for sorghum and, likely, other heat-tolerant crops. Our adaptation of the Profit 

Maximization model of stomatal control was able to simulate assimilation rates with 

surprising accuracy. When water stress was dominant, water use dynamics were also well 

predicted by the model. Inclusion of transpirational cooling as a determining factor of 

optimal stomatal aperture, while challenging, would improve the accuracy of Profit 

Maximization to simulate heat-tolerant species. This appears to be the main limitation of 

extending this model to C4 grasses. Understanding water use dynamics in sorghum and 

other major cereal cropping systems is increasingly important as crop production shifts to 

accommodate climate change.  
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1.7 Supporting Information 

 

Figure S1.1 Light and Aci curves obtained throughout the 2012 and 2013 growing 

season. The light response curve shows data for upper leaves only (panel a) while the Aci 

curve (panel b) reflect data collected for both upper and lower leaves.  
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Temperature Sensitivity  

Leunig (2002) provides parameters describing average temperature sensitivity dynamics 

across a wide range of species (Equation S1). However, these average parameters are 

inadequate for describing temperature response dynamics in sorghum, which shows no 

evidence of photosynthetic inhibition at temperatures as high as 46 °C (Prasad et al. 

2006; Prasad et al. 2008; Djanaguiraman et al. 2014). In lieu of adequate temperature 

response data for sorghum, we modified these temperature sensitivity parameters to 

eliminate photoinhibition at high temperatures. This was accomplished by setting    and 

   equal to zero, as has been observed in tobacco, another heat-tolerant annual (Leuning 

2002).  

Equation S1:    
     

     
  

             ⁄           ⁄  

                       ⁄  
 

Where       is max photosynthetic rate (µmol CO2 m
-2

 s
-1

) at instance i,       is max 

photosynthetic rate (µmol CO2 m
-2

 s
-1

) at instance 0,    is activation energy,    is 

deactivation energy,    is an entropy term,   is an ideal gas constant,   = 298.2 °K,    is 

temperature at instance i (°K), and C is defined by Equation 2. 
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Figure S1.2. Adjustments to temperature sensitivity of Vmax and Jmax. Leunig et al. (2002) 

determined mean parameters of activation energy, deactivation energy, and entropy, in 

order to broadly describe temperature sensitivity across species (black line). Tobacco 

(light red dotted line) was found to have an exponentially increasing rate of Vmax and Jmax 

in response to increasing temperatures. We modified the mean parameters described by 

Leunig et al. (2002) to remove deactivation in order to estimate temperature sensitivity in 

sorghum (dark red dotted line). 
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Figure S1.3. Soil water retention was described by a van Genuchten function. Parameters 

α and n were fitted using the plasticity index of silty clay soil and in good agreement with 

previously published values for this soil type. We inverted the van Genuchten function to 

model soil water potential for soil VWC. van Genuchten parameters also served as direct 

inputs to the PMAX model.  
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Leaf vulnerability curve 

 

Figure S1.4. Sorghum leaf vulnerability curves. Experimental data (black dots) were 

obtained using the Optical Method. A Weibull function (solid blue line) was fitted to our 

experimental data using least sun of squares.  

 

Using the optical method, we found no evidence of cavitation until leaf water 

potential surpassed -1.6 MPa. Fifty percent of hydraulic conductance was lost at -2.5 

MPa and 98% was lost at -4.7 MPa. The shape of the fitted Weibull function was 

sigmoidal (c = 4.5) but not particularly severe (b = 2.75) suggesting isohydry. Although 

Weibull functions model smooth transitions in the response of conductivity to leaf water 

potential (Pleaf), measured data showed a more dynamic response. Once leaf water 

potential dropped below -1.7 MPa, cavitation occurred rapidly, inducing a 35% loss in 

conductivity before roughly stabilizing at -2 MPa. At -2.3 MPa, cavitation increased 

slowly but steadily before again stabilizing around -2.6 MPa at 53% loss in conductivity. 
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Full cavitation of the midvein occurred at approximately -2.9 MPa, resulting in a sudden 

jump from 53 to 87% loss in conductivity.  

1.8 References for Supporting Information 
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Chapter 2  

 

Tradeoffs across productivity, GHG intensity, and pollutant loads from second 

generation sorghum bioenergy 

 

Cara Fertitta-Roberts, Sabrina Spatari, David A. Grantz, G. Darrel Jenerette 

________________________________________________________________________ 

2.1 Abstract  

Greenhouse gas (GHG) intensity is frequently used to assess the mitigation potential of 

biofuels, however, failure to quantify other environmental impacts may result in 

unintended consequences, effectively shifting the environmental burden of fuel 

production rather than reducing it. We modeled production of E85, a gasoline/ethanol 

blend, from forage sorghum (Sorghum bicolor cv. Photoperiod LS) grown, processed, 

and consumed in California’s Imperial Valley in order to evaluate the influence of 

nitrogen (N) management on well-to-wheel (WTW) environmental impacts from 

cellulosic ethanol. We simulated 25 N management scenarios varying application rate, 

application method, and N source. Life cycle environmental impacts were characterized 

using the EPA’s criteria for emissions affecting the environment and human health. Our 

results suggest efficient use of N is an important pathway for minimizing WTW 

emissions on an energy yield basis. Simulations in which N was injected had the highest 

nitrogen use efficiency. Even at rates as high as 450 kg N ha
-1

, injected N simulations 

generated a yield response sufficient to outweigh accompanying increases in most N-
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induced emissions on an energy yield basis. Thus, within the biofuel life cycle, tradeoffs 

across productivity, GHG intensity, and pollutant loads may be possible to avoid at 

regional to global scales. However, tradeoffs were seemingly unavoidable when impacts 

from E85 were compared to those of conventional gasoline. The GHG intensity of 

sorghum-derived E85 ranged from 29 – 44 g CO2 eq MJ
-1

, roughly 1/3 to 1/2 that of 

gasoline. Conversely, emissions contributing to local air and water pollution tended to be 

substantially higher in the E85 life cycle. These adverse impacts were strongly influenced 

by N management and could be partially mitigated by efficient application of N 

fertilizers. Together, our results emphasize the importance of minimizing on-farm 

emissions in maximizing both the environmental benefits and profitability of biofuels.  

2.2 Introduction 

Biofuels from cellulosic ethanol have been widely reported to have GHG 

intensities less than half those of conventional fuels (Schmer et al., 2008; CARB, 2009; 

Wang et al., 2011; Adler et al., 2012; van der Weijde et al., 2013; Murphy & Kendall, 

2015; LeDuc et al., 2016). GHG intensity is determined through life cycle assessment 

(LCA) modeling of emissions associated with generation and use of the fuel product. 

Feedstock production is among the most GHG-intensive components of the biofuel life 

cycle (Adler et al., 2012; Adler et al., 2007; Borrion et al., 2012; Fu et al., 2003) and can 

also contribute substantially to non-GHG environmental impacts such as acidification and 

eutrophication of local waterways (Robertson et al. 2008; Wagner & Lewandowski 

2016). Nitrogen fertilizers are strongly linked to both increased crop yield and increased 
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environmental impacts (Borrion et al., 2012; Fazio & Monti, 2011; Ruan et al., 2016; von 

Blottnitz & Curran, 2007). Thus, pursuit of high biomass yields for fuel production may 

occur at the expense of GHG mitigation potential and local air and water pollution. 

Recently, increasing attention has been drawn to non-GHG impacts, as evidence 

accumulates that some air and water pollutant loads from cellulosic fuels can exceed 

those of conventional fuels (da Silva et al., 2014; Diaz-Chavez et al., 2013; Jeswani et al., 

2015; Mbonimpa et al., 2016; Robledo-Abad et al., 2016; Weldu & Assefa, 2016). 

Exploring these tradeoffs is increasingly important as cellulosic ethanol is mandated to 

take on a growing role in meeting the renewable energy demands of the United States 

(EIA, 2016; EPA, 2010).  

LCA is a comprehensive, quantitative method used to evaluate sustainability 

metrics and frequently implemented in the assessment of alternative fuels  Cheru ini et 

al.    9; Guin e et al.      . Methodological variations in LCA are considerable, thus 

the International Organization for Standardization (ISO) guidelines are frequently 

referenced to offer a certain degree of continuity across methods (ISO 2006a; ISO 2006b; 

Cherubini & Strømman 2011). Most biofuel life cycles use a well-to-wheel (WTW) 

scope (Singh et al. 2010; Borrion et al. 2012), which includes processes inherent to 

generation of the fuel product, intermediary processes (e.g. transportation), and fuel 

combustion. System boundaries define the limits of the analysis. Second order system 

boundaries are commonly employed in fuel LCAs (Borrion et al. 2012) and include 

upstream and downstream emissions (i.e. those occurring pre- and post-use of a product, 

respectively) but exclude embodied energy sources such as facilities and machinery.  
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Under a clearly defined scope and system boundary, a life cycle inventory (LCI) 

is complied, which accounts for all of the chemical compounds consumed and emitted 

throughout the life cycle. The resulting chemical inventory is then used to characterize 

environmental impacts  ased on each compound’s projected influence on human health 

and the environment. This is accomplished by expressing each compound in equivalent 

units (eq) of a reference compound. Emissions are then summed and used to describe 

their projected contribution to a specific impact category. For instance, GHG emissions 

are expressed in terms of CO2 eq based on the global warming potential of each 

individual GHG relative to that of CO2. Although biofuel life cycles frequently consider 

only GHG emissions and energy consumption (Hsu et al., 2010; McKechnie et al., 2010; 

Searcy & Flynn, 2008; Spatari et al., 2005; Stephenson et al., 2010; Stichnothe & 

Azapagic, 2009; Zamboni et al., 2011), LCA can be used to explore a diverse range of 

environmental impacts (Bare et al., 2003; Brentrup et al., 2004; Hauschild et al., 2013; 

Jeswani et al., 2015; Mbonimpa et al., 2016; Monti et al. 2009; Sanz Requena et al., 

2011; Sabrina Spatari & MacLean, 2010; Wagner & Lewandowski, 2016). 

The large proportion of WTW emissions attributed to feedstock production 

suggests management choices can play an important role in determining pollutant loads 

from cellulosic fuels. In the case of annual crops, management is likely to play an 

especially important role as they generally sequester less carbon and have higher fertilizer 

demands than perennials (Fazio & Monti, 2011; LeDuc et al., 2016; Monti et al., 2009; 

Somerville et al., 2010; Wang et al., 2012). Increasing nitrogen (N) fertilizer rates have 

been shown to reduce the climate benefits associated with cellulosic fuels by increasing 
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nitrous oxide (N2O) emissions and can adversely impact air and water quality (Brentrup 

et al., 2004; Luo, et al., 2009; Oikawa, 2015a; Robertson et al., 2008; Ruan et al., 2016). 

Despite the impacts of N fertilizers on the environment and the significant variability in 

management practices observed across growers (Baumgart-Getz et al., 2012), biofuel 

LCAs often assume a single scenario for agronomic feedstock production (Spatari et al. 

2005; Sanderson et al. 2006; Adler et al. 2007; Fargione et al. 2010; Spatari et al. 2010; 

Davis et al. 2012; Pourhashem et al. 2013; Jeswani et al. 2015; LeDuc et al. 2016). Some 

field studies have attempted to address this variability by examining alternate 

management scenarios (Lamb et al. 2003; Boehmel et al. 2008; Schmer et al. 2008; 

Schmer et al. 2014; Mbonimpa et al. 2016), however, the lengthy and expensive nature of 

these experiments limits exploration at the field level. Coupling field data with crop 

models allows exploration of a large breadth of management practices in-silico before 

further testing in a field or commercial setting.  

We use a field data-driven crop model coupled with LCA modeling to explore the 

potential impacts of N management choices on biomass yields, GHG intensity, and local 

air and water pollutant loads from sorghum-derived cellulosic ethanol produced in 

California’s Imperial Valley. Sorghum is a heat- and drought-tolerant C4 grass (Tonitto & 

Ricker-Gilbert 2016) that thrives in the high-irradiance environment and long seasons 

afforded  y the Imperial Valley’s mild winters (Oikawa et al. 2015b). These conditions 

can lead to N demands exceeding those of most biofuel crops (Fazio & Monti 2011; 

Schmer et al. 2014; Ruan et al. 2016) or of sorghum grown in other parts of the United 

States (Hao et al. 2014; Haankuku et al. 2014; Bonin et al. 2016). We simulated 
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contrasting N management scenarios for Imperial Valley sorghum as inputs to LCA 

models for sorghum-derived E85 fuel (85% ethanol-15% gasoline, by volume) to 

determine the potential range of WTW emissions associated with different feedstock 

production strategies. We hypothesized that increasing N application rate would mitigate 

environmental impacts on an energy yield basis at low to moderate application rates, 

where yield gains per kg N would be highest, but would amplify impacts at higher 

application rates as yield gains per kg N decline (Tilman et al., 2002). Alternatively, we 

hypothesized that increasing yields may be sufficient to compensate for increased 

emissions from N even at high N application rates if WTW emissions are largely derived 

from non-N sources. Emissions from non-N sources will decline with increasing biomass 

yields as these emissions are fixed and impacts are assessed on the basis of energy yield, 

which increases with biomass yield. As N uptake, and subsequently, yield-response, 

differ based on N source and application method, we simulated variations in both of these 

parameters to gain a more comprehensive understanding of nitrogen use efficiency 

(NUE) dynamics and associated WTW emissions.  

We then investigated how substitution of conventional gasoline with sorghum-

derived E85 may influence environmental impacts from the fuel sector across all nine 

impact categories evaluated by the U.S. Environmental Protection Agency (Bare et al. 

2003). Previous work suggests that GHG intensity will be reduced for cellulosic fuels, 

but emissions contributing to air and water pollution may be higher (von Blottnitz & 

Curran 2007; Borrion et al. 2012; Diaz-Chavez et al. 2013; da Silva et al. 2014; Weldu & 

Assefa 2016; Mbonimpa et al. 2016; Robledo-Abad et al. 2016). Quantifying WTW 
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impacts across N management scenarios and across fuel sources will identify 

opportunities for mitigation of adverse impacts and highlight environmental tradeoffs 

associated with the increased use of biofuels.  

2.3 Materials and Methods 

Three major phases of data collection and analysis were undertaken to address our 

objectives (Figure 2.1). We used a field trial to provide data for parameterization of a 

crop model, which was used to simulate biomass outputs under a range of N management 

scenarios. Crop model outputs were used as LCA inputs for E85 fuel life cycles. A 

separate LCA of conventional gasoline was constructed as a reference scenario.  

 

Figure 2.1. Major phases of data collection and analysis and their respective inputs and 

outputs. Outputs from the field trial were inputs to the crop model (DSSAT) and outputs 

from the crop model were inputs to the life cycle inventories (SimaPro). Lopez et. al 

(2017) provided crop coefficients and historical weather data was obtained from CIMIS. 

Management scenarios varied N application rate (NR), N application method (NM), and N 

source (NS). Downstream emissions were determined using IPCC, EEA, Oikawa, EPA, 

SALCA-P, AgDrift, SAEFL, EMEP, and GREET emission models. 
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Field trial 

Field data from in 2012 and 2014 were obtained from a 5.3 ha plot at the 

University of California’s Desert Research Extension Center in Holtville, Imperial 

Valley, CA (32°N 48'42.6", 115°W 26' 37.5"). The 2013 season was sacrificed to 

eliminate an infestation of barnyard grass (Echinochloa colona). The Imperial Valley is 

characterized as a high-irradiance, arid environment with hot summers, mild winters, and 

infrequent rainfall (Oikawa et al. 2015b). Irrigation has allowed the Imperial Valley to 

become a major food and feed producing region in the United States (CDFA 2015). This 

region is also poised to become hub for bioenergy production, with plans to build the 

state’s first cellulosic ethanol facility there to help meet the competitive renewable energy 

goals set by the state of California (CEC & CARB 2007). 

Our Imperial Valley field site had deep alluvial soil, characterized as mildly 

alkaline, deep silty clay (pH 8.1; 42% clay, 41% silt, 16% sand). Field operations were 

logged by field managers and confirmed during frequent site visits. Following an eight 

month fallow period, the soil was tilled and laser leveled on 14 January 2012. Soil 

nutrient analysis from spatially replicated soil samples taken 30 January 2012 showed 

high initial soil N levels, 186 kg N ha
-1

. A pre-plant fertilizer regime of 90 kg P2O5 ha
-1

 

and 110 kg N ha
-1

 as urea was implemented on 10 February 2012. On 28 February 

Sorghum bicolor (cv. Photoperiod LS, Scott Seed, Inc., Hereford, TX, US) was planted at 

a density of 9 individuals m
-2 

on 76 cm beds. We applied supplemental N at the beginning 

of each growth cycle (80 kg N ha
-1

 on 2 March, 90 kg N ha
-1 

on 18 June, and 105 kg N 
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ha
-1 

on 16 August 2012) as either urea or urea ammonium nitrate (UAN). Irrigation was 

gravity fed via furrow flooding with scheduling based on plant need as assessed by field 

managers or when soil volumetric water content fell below 0.10 cm
3
 cm

-3
. Pesticide 

applications of chlorpyrifos and bromoxynil were applied on 27 March and 30 April 

2012, respectively. Above-ground crop biomass was harvested 3 times throughout the 

2012 growing season (4 June, 14 August, and 12 November) resulting in a total annual 

yield of 54.6 Mg dry weight (DW) ha
-1

 (Table 2.1). Eddy covariance measurements were 

used to assess net ecosystem exchange (NEE) throughout the growing season (Oikawa et. 

al 2015b). 

Table 2.1. Agreement between modeled dry weight yields and actual dry weight yields 

expressed as percent difference (PD) for 2012 and 2014.  

    

Period 
Field Modeled Agreement 

(Mg DW ha
-1

) (PD) 

    
2012 

    
Harvest 1 18.363 18.369 0.03 % 

Harvest 2 19.562 19.833 1.38 % 

Harvest 3 16.437 15.874 -3.48 % 

Annual 54.635 54.076 -1.03 % 

 
2014 

    
Harvest 1 11.584 11.638 0.47 % 

Harvest 2 14.107 12.429 -12.65 % 

Annual 25.691 24.067 -6.53 % 
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In 2014 a pre-plant herbicide regime of glyphosate, s-metolachlor, and atrazine 

was applied shortly after the field was cultivated and leveled. These efforts to reduce 

weed pressures delayed planting in 2014 to 4 April, allowing only 2 growth cycles in that 

year (Table 2.1). Four applications of urea at 90 kg N ha
-1

 were applied throughout the 

2014 growing season, including one pre-plant application on 25 March, two supplemental 

applications during the first growth cycle (14 May and 4 June), and a third supplemental 

application following re-sprouting on 18 July. Eddy co-variance measurements were 

again recorded throughout the growing season, however instrument failure resulted in 

large gaps in our 2014 NEE flux data. Thus, 2012 field data was the primary dataset used 

to parameterize our crop model and served as the basis for our sorghum management 

scenarios. 

Crop modeling: parameters and adjustments 

We used 2012 field data to parameterize the Crop Environment Resource 

Synthesis (CERES) model for grain sorghum in DSSAT (Decision Support System for 

Agrotechnology Transfer v.4.5, Georgia USA; Figure 2.1). DSSAT is a process-based 

crop modeling system that simulates soil processes, weather, and crop growth, allowing 

investigation of a multitude of growing conditions and management choices (Jones et al., 

2003). We first constructed an in silico soil profile representative of our field conditions, 

gap-filled where necessary with DSSAT’s default soil profile for deep silty clay (Table 

S2.2). Historic (30 year) weather data for the site were compiled from nearby 

meteorological stations accessed through the California Irrigation Management 
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Information System (CIMIS; Table S2.2 and accompanying text). Management activities 

simulated logged field practices in 2012.  

Parameterization of the grain sorghum model to simulate our forage sorghum crop 

entailed several steps. We adjusted allocation to vegetative growth based on published 

parameter adjustments for sweet sorghum (Lopez et al. 2017). Sensitivity analyses were 

then used to adjust phenological parameters. We used cumulative net primary 

productivity (NPP) curves from eddy co-variance data and field observations of 

phenological transitions in our parameterization (Figures S1 & S2 with details in 

accompanying text). Lastly, we increased the radiation use efficiency to better simulate 

yield outputs observed in the field (Table 2.1 & Figure S2.2.1). We then modeled the 

2014 growing season according to reported management practices for that year. Although 

eddy covariance data from 2014 was insufficient for cultivar calibration purposes, our 

production model for 2014 also showed reasonably good fit in terms of phenology and 

yield (Table 2.1, Figure S2.2b).  

Although a multi-year dataset is favorable for cultivar calibration, we used 

multiple growth cycles (3 in 2012 and 2 in 2014) to compensate for the limited duration 

of our field experiments. Importantly, as DSSAT does not simulate re-sprouting post-

harvest, each growth cycle was modeled as a distinct planting event. We eliminated the 

first 14 days post-planting for secondary and tertiary growth cycles to better simulate 

aboveground growth following re-sprouting, but the model may inadequately simulate 

root dynamics and consequently underestimate N and water uptake. The extensive 
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parameter adjustments required to simulate a forage sorghum would benefit from future 

field trials to validate the model. Our model relies on several assumptions that were not 

thoroughly validated results should be interpreted accordingly. However, the model 

remains a useful tool for exploring the impacts of N management on WTW 

environmental impacts. 

Crop modeling: scenario analyses 

We simulated 25 management scenarios varying N fertilizer application rate, 

application method, and source to investigate productivity and NUE dynamics (Figure 

2.2). In all scenarios, irrigation was simulated as furrow flooding, applied such that water 

was non-limiting. Our simulated values for N application rate were based on optimal 

rates reported in the literature for forage sorghum (Hallam et al. 2001; Hao et al. 2014; 

Haankuku et al. 2014; Bonin et al. 2016). As most sorghum-producing regions in the U.S. 

have a shorter growing season consisting of only one harvest, we normalized 

recommended N application rates by days in the growing season and extrapolated a rate 

of ~250 kg N ha
-1

 as optimal for our crop. However, we anticipated higher N demands in 

our system than those referenced, as each growth cycle would result in a spike in N 

demands not observed in a single, continuous growing season. Additionally, the high 

irradiance growing environment coupled with the lack of water limitations in our model 

suggested N consumption in our system might exceed those of other sorghum-producing 

regions in the United States. Accordingly, we explored a range of 50 – 450 kg N ha
-1

 

simulated in 100 kg N ha
-1

 increments (Figure 2.2). The dates of each fertilizer 
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application followed our field practices, which were recorded in detailed crop logs from 

2012 field trials. We simulated fertilizer applications as broadcast without incorporation 

or injected at 8 cm depth. Although the latter is recommended, the former is still common 

practice due to its lower costs (Mahler 2001; Jones 2013).  

Management scenarios were simulated over a 30-year period using historical 

weather data (1983 – 2012) to introduce environmental variation (Table S2.3 and 

accompanying text). For all simulations, initial soil N was set to 68 kg N ha
-1

 for the first 

growth cycle, a rate typical of U.S. sorghum fields (Hao et al. 2014). Simulated residual 

N following the first and second harvests for each fertilizer scenario were used as initial 

N levels for the secondary and tertiary growth cycles, respectively.  

 

Figure 2.2. Nitrogen management scenarios imposed in the DSSAT model. We varied 

fertilizer rate from 50 – 450 kg N ha
-1

 in increments of 100 kg N ha
-1

, and simulated 

applications are either broadcast without incorporation or injected at 8 cm depth. Two 

fertilizer types were simulated as broadcast fertilizer treatments (urea and ammonium 

nitrate) and three were simulated as injected (urea, anhydrous ammonia, and urea 

ammonium nitrate solution).  
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Life cycle assessment modeling: scope and system boundaries 

Life cycle inventories (LCI) were constructed using SimaPro v.8 (Pré Consultants 

2013) in compliance with ISO 14040 and 14044 standards (ISO 2006a; ISO 2006b). We 

chose a well-to-wheel (WTW) scope and 1 MJ combusted energy from E85 as the 

functional unit. An energy yield basis was selected as it allows direct comparison across 

energy sources (Borrion et al. 2012). Importantly, expressing emissions on an energy 

yield basis is most useful for assessing regional to global scale impacts and may obscure 

some local impacts. With the exception of select data originating from the Ecoinvent 

database (Wernet et al. 2016) within SimaPro v.8, we used second order system 

boundaries throughout our analyses, considering all relevant material, energy, and waste 

flows except those of embodied energy associated with facilities and machinery (Figure 

2.3). The life cycle consisted of six sub-process modules: feedstock production, 

transportation of biomass from the farm to the conversion facility, conversion of biomass 

to ethanol, transportation of ethanol from the conversion facility to the refinery, blending 

and pumping of E85 fuel, and finally, combustion.  
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Figure 2.3. System boundary for life cycle inventory and life cycle impact assessment 

modeling processes for a WTW scope of sorghum-derived E85 production and use. 

System boundaries included relevant material (M), energy (E), and waste (W) flows of all 

processes and all process inputs (i.e. materials and energy consumed within processes).  

 

E85 life cycle inventories: upstream flows 

Chemical inventories associated with resource inputs were selected from the 

Ecoinvent database within SimaPro using U.S. regional unit process data when available 

and European unit process data otherwise. Feedstock production considered inputs of 

seed, fertilizers, pesticides, and diesel fuel combusted during field operations. Pesticides 

were accounted for by their active ingredients. Fuel inputs were estimated for field 

operations reported in 2012 management logs using average fuel requirement data 
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(Hanna 2005). Field operations reported for 2012 were fairly consistent with typical on-

farm operations, operations reported in the literature, and recommendations of university 

extension programs (Miller & Stroup 2004; Haankuku et al. 2014; Hao et al. 2014; Bonin 

et al. 2016). For biomass and ethanol transport processes we assumed a transport distance 

of 80 km (Grift et al. 2012) by truck. Refinery processes for E85 fuel assumed a blend of 

81% ethanol and 19% distilled petroleum, by weight, and 0.86e
-3

 kWh kg E85
-1

 electricity 

for pumping (Hsu et al. 2010). 

Chemical inputs to the conversion process were based on near-term means of 

Monte-Carlo simulations (Spatari et al. 2010). We assumed a relatively high conversion 

efficiency of 340 l ethanol Mg DW
-1

 under dilute acid pre-treatment based on a 

switchgrass conversion LCI model (Spatari et al. 2010) assuming NREL technology 

using simultaneous saccharification and co-fermentation conversion processes and 

organic Rankine cycle energy recovery processes. The organic Rankine cycle uses excess 

heat from upstream reactions to vaporize organic fluids generated during the conversion 

process. These high-entropy, vaporized fluids are then passed through a turbine, 

generating electricity. The organic vapors can then be condensed back to a liquid phase 

and the cycle can be renewed, minimizing heat waste and maximizing electricity 

recovery (Laser et al. 2009; Bronicki 2016). This results in co-production of electricity 

during cellulosic ethanol conversion.  

Emissions from feedstock conversion are largely dependent on how co-products, 

such as electricity, are allocated in the fuel life cycle (Pimentel & Patzek 2005; Kaufman 
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et al. 2010; Singh et al. 2010; Kendall & Yuan 2013; Murphy & Kendall 2015). We 

allocated electricity generated during conversion using system expansion (i.e. 

displacement) as ISO 14044 standards explicitly support this method (ISO 2006b). 

Electricity co-products were parameterized to the United States Western Grid. Electricity 

generation corresponding to our biomass to ethanol conversion rate was previously 

determined to be 0.70 kWh electricity l ethanol
-1

 (Spatari et al. 2010).  

Emissions from feedstock conversion are also influenced by the assumed biomass 

to ethanol conversion efficiency (Borrion et al. 2012; McKone et al. 2011; Kendall & 

Yuan 2013). As commercial production of cellulosic ethanol is limited, published 

conversion efficiencies remain uncertain (Fargione et al. 2010). Given that commercial 

investment would only be possible with a high ethanol yield, we assumed a conversion 

efficiency of 340 l ethanol Mg DW
-1

. Assuming a high-efficiency conversion rate also 

provides a more liberal estimation of conversion-induced GHG emissions. Low-

efficiency conversion generates lower ethanol yields but higher electricity yields (Spatari 

et al. 2010). Under system expansion, displaced GHG emissions from electricity co-

production are often greater than emissions induced by cellulosic ethanol conversion 

processes (Pimentel & Patzek 2005; Spatari et al. 2010). Therefore, favoring more 

efficient ethanol production lowers the electricity co-product credit and, as a result, 

increases GHG emissions compared to less efficient conversion rates. Conversely, higher 

biomass demands under low-efficiency conversion required to generate the same energy 

outputs as high-efficiency conversion systems may inflate emissions associated with 

feedstock production. To evaluate the influence of conversion efficiency on overall 
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WTW emissions and WTW emissions across N management scenarios, we constructed 

additional LCAs assuming a low conversion efficiency (Figure S2.4 and accompanying 

text).  

E85 life cycle inventories: downstream flows 

Downstream emissions were modeled for fertilizer, pesticide, and fuel inputs in 

all applicable life cycle sub-processes (Table 2.2). Importantly, while DSSAT models 

nitrogen cycling and associated N loss pathways, these outputs reflect the summed 

emissions of multiple N species and were therefore inadequate for our purposes. 

Accordingly, no downstream emissions from crop production were adopted from the 

DSSAT model output. The majority of downstream models selected were tier 1 models, 

as robust regional emissions factors are lacking in the literature. Tier 1 models have high 

uncertainty ranges and results should be interpreted accordingly. Nonetheless, these 

models are designed to be broadly applied and are frequently employed in biofuels life 

cycle inventories (Adler et al. 2007; Burney et al. 2010; Tilman et al. 2011; Pourhashem 

et al. 2013; Schmer et al. 2014; Hudiburg et al. 2016; Zhong et al. 2016). In addition to 

downstream emission models detailed in Table 2.2, we inventoried downstream 

emissions from feedstock conversion based on published values for the most similar 

corresponding conversion scenario (scenario T7 in Spatari et al. 2010).  
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Table 2.2 Downstream emissions modeled for fertilizer, pesticides, and fuel combustion.  

 

In the case of NOx emissions from N fertilizer, we introduced an alternative 

model specifically parameterized to our field site. The Oikawa NOx models are 

empirically derived models of seasonal NOx flux based on the baseline flux observed at 

our field site and the fluxes induced by application of broadcast urea fertilizer or UAN 

fertilizer applied through irrigation (Figure S2.3). As NOx flux at our field site was found 

Input Emission Model Source 

    Fertilizer N2O 
a
, CO2

 b
 IPCC tier 1 (De Klein et al., 2006) 

 NOx  
EEA tier 1 (Hutchings et al., 2016) 

 
Oikawa 

c
 (Oikawa et al., 2015a) 

 
NH3 EPA tier 2 (Battye et al., 1994) 

 
PO4 SALCA-P (Prasuhn, 2006) 

    
Pesticides MCPA, broxymil, chlorpyrifos 

AgDRIFT tier 1  

terrestrial 
d
 

(Teske et al., 2002) 

    Diesel & 

gasoline 
CO2 , CH4 , N2O IPCC tier 1 (Waldron et al., 2006) 

 
Cd, Cr, Cu, Pb, Ni, Se, Zn, NH3, 

SO2, benzene, benzo(a)pryene, 

benzo(a)anthracene, 

benzo(b)flouranthene, chrysene, 

dibenz(a,h)anthracene, flouranthene, 

phenanthrene 

SAEFL tier 1 (SAEFL, 2000) 

 

 

 

 

 

 non-methane VOCs, particulates EMEP tier 1 (Winther et al., 2016) 

     
E85 fuel CO2, CH4, N2O, VOCs, CO, NOx, 

SOx, black carbon, organic carbon, 

particulates 

GREET 2015 
e
 

(Burnham, Wang, & Wu, 

2006) 

        
    a includes direct and indirect N2O emissions 

b CO2 emission model only applicable when N source is urea 
c the Oikawa model was empirically derived based on NOx flux measurements from our field site and was used as an alternative 

  to the generalized EEA model to calculate NOx emissions for urea and UAN fertilizer scenarios 
d AgDRIFT ®; Air Resources Laboratory/NOAA, Research Triangle Park, NC, USA for pesticide deposition assuming fine 

  particle size of applied pesticides, low boom application, and a 15.25 m buffer strip 

e GREET 2015 ©; Agronne National Laboratory, Agronne, IL USA for a flexible fuel vehicle with AR4 global warming 

  potential values (Forster et al., 2007), which are in alignment with the upstream values used for fuel production 
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to be substantially greater than predictions from then widely-used MEGAN emission 

model (Oikawa et al. 2015a) or the EEA model (Figure S2.3), the Oikawa model was 

preferred. However, its specific orientation to broadcasted urea and irrigation-applied 

UAN prohibited its use across the majority of our simulated scenarios. Therefore, we 

assumed the EEA NOx model throughout, but constructed additional LCAs for broadcast 

urea scenarios using the Oikawa NOx model.  

Gasoline life cycle inventory 

We also conducted an LCA for conventional gasoline in order to compare its 

emissions to those from E85 across consistent emission and characterization criteria 

(Figure 2.1). As in our E85 LCAs, this life cycle considered a WTW scope, a functional 

unit of 1 MJ combusted energy, and second order system boundaries. We used a U.S. 

regional unit process inventory of gasoline in the Ecoinvent database in SimaPro for 

emissions related to fuel extraction, processing, and transportation in our gasoline LCI. 

Electricity required for pumping was assumed to be the same for gasoline as for E85. 

Emissions from combustion were modeled using published petroleum emission factors 

(SAEFL 2000; Waldron et al. 2006) from sources consistent with those used in our E85 

life cycles (Table 2.2).  

Life cycle impact assessment: characterization  

Following the construction of life cycle inventories, emissions were characterized 

using the Tool for the Reduction and Assessment of Chemical and Other Environmental 

Impacts (TRACI 2 v. 3.03; Environmental Protection Agency, Washington DC, USA). 
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TRACI characterizes midpoint impacts to the environment and human health (Bare et al. 

2003). Midpoint models characterize the impacts of individual chemical compounds 

along that compound’s cause-and-effect chain but prior to the end point of the chain 

(Bare et al. 2000; Brilhuis-Meijer 2014). For instance if phosphorus is leached into the 

groundwater, it will eventually enter a body of water and, in doing so, increase the 

concentration of phosphorus in that water body. This increased concentration of 

phosphorus is the midpoint of the cause and effect chain of eutrophication. A sufficiently 

high concentration of phosphorus can cause an algal bloom, which may result in fish die-

offs. The loss of fish species would then be an endpoint of the cause and effect chain of 

eutrophication. While end-point impacts are easier to interpret, they also have higher 

uncertainties (Bare et al. 2000). Further midpoint impact assessments are favorable when 

considering tradeoffs across environmental impact categories as endpoint impact 

categories are considerably more broad and may obscure these relationships (Brilhuis-

Meijer 2014).  

Nine impact categories are characterized in TRACI based on their relevance for 

regulatory purposes as appraised by the U.S. Environmental Protection Agency. 

Environmental impacts considered by TRACI are global warming, ozone depletion, 

smog, acidification, eutrophication, and ecotoxicity (aquatic and terrestrial). Impacts to 

human health are assessed in terms of carcinogenics, non carcinogenics, and respiratory 

effects. Equivalent units and midpoint criteria for these impact categories can be found in 

the supporting information (Table S2.2.1). TRACI characterizes emissions contributing 
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to each of these impact categories based on the relative potency of individual chemical 

compound inventoried in the life cycle in contributing to each impact (Bare et al. 2003).  

2.4 Results 

Crop model outputs  

Yield saturation was not observed across the range of N application rates 

simulated in our crop model. Though yield response to N was consistently positive, the 

nature of this response varied considerably across fertilizer application methods, and in 

some instances, fertilizer sources (Figure 2.4). Modeled yields from injected fertilizer 

scenarios varied by < 1% across N sources at any given N application rate. However, 

among broadcast scenarios yields varied by as much as130% across N sources, with 

simulated yields from broadcast ammonium nitrate (AmNi) consistently exceeding those 

of broadcast urea. Simulated yields in broadcast ammonium nitrate scenarios were more 

similar to injected scenarios, with < 18% difference in yields across the N application 

rates simulated. Both injected and broadcast ammonium nitrate simulations were 

characterized by a positive sigmoidal yield response to increasing N inputs (Figure 2.4). 

For instance, simulated yields in injected fertilizer scenarios nearly doubled from 50 to 

150 kg N ha
-1

 but increased by only 15% from 350 to 450 kg N ha
-1

. Broadcast urea 

simulations resulted in a weak but linear yield response to applied nitrogen that also 

declined with increasing N inputs (31% increase from 50 to 150 kg N ha
-1

 and 12% 

increase from 350 to 450 kg N ha
-1

). This subdued response to nitrogen in broadcast urea 

scenarios resulted in maximum simulated yields of 21.8 Mg dry weight ha
-1

. Conversely, 
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maximum simulated yields for broadcast ammonium nitrate and injected fertilizer 

scenarios were 50.4 and 59.2 Mg DW ha
-1

, respectively (Figure 2.4).  

 

Figure 2.4. Simulated yield response to N for broadcast urea and ammonium nitrate 

(AmNi) treatments and injected fertilizer treatments, averaged across fertilizer sources. 

Error bars for broadcast scenarios depict standard deviation across simulated weather 

years while error bars for injected scenarios depict combined standard deviation across 

weather years and fertilizer types. Model parameters were fit in Matlab. All relationships 

had an r
2
 > 0.94 and p < 0.02.  

 

Life cycle assessment: trends in emissions across N management scenarios 

At any given N application rate, WTW emissions were always highest in 

broadcast urea scenarios (Figure 2.5). Emissions tended to be lowest in injected fertilizer 

scenarios. Broadcast ammonium nitrate scenarios had lower emissions contributing to 

acidification, eutrophication, and ecotoxicity than the average emissions from injected 

fertilizer treatments. However, when injected scenarios were parsed by N source, only 
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emissions from injected urea scenarios were higher than those from broadcast ammonium 

nitrate scenarios (Table S2.4).  

 

Figure 2.5. Modeled WTW emissions for sorghum-derived E85 across N management 

scenarios. Emissions from production are shown for broadcast scenarios, separated by 

type, and injected scenarios, averaged across fertilizer types. Emissions from N fertilizers 

are shown by the colored portion of the bar, with color indicating fertilizer rate. The 

remaining emissions from production are shown by the dark grey portion of the bar. 

Emissions from post-production processes (transportation, conversion, blending, 

pumping, and combustion) are shown in white.  

 

Emissions contributing to human health tended to decline or stabilize with 

increasing N application rate, regardless of application method or source (Figure 2.5). 

Emissions contributing to the environment showed a more diverse response to increased 

N application rate. WTW emissions in broadcast urea scenarios almost always increased 

with increasing N inputs. Conversely, WTW emissions in broadcast ammonium nitrate 

and injected scenarios tended to decline or stabilize with increasing N application rate. 
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On an energy yield basis, the most emission-conservative scenarios were injected 

application of anhydrous ammonia at 350 or 450 kg N ha
-1

, with differences in emissions 

across these scenarios varying by < 3% in all cases (Figure 2.5 & Table S2.5). Injected 

UAN at 350 and 450 kg N ha
-1

 followed closely behind. Broadcast urea applied at 450 kg 

N ha
-1

 resulted in the highest WTW emissions per MJ energy in most impact categories 

(Figure 2.5). Emissions contributing to non carcinogenics, respiratory effects, and 

ecotoxicity, however, were highest for broadcast urea applied at 50 kg N ha
-1

. 

Life cycle assessment: emissions contributing to the environment 

 The carbon intensity of sorghum-derived E85 fuel ranged from 29 – 44 g CO2 eq 

MJ
-1 

across simulated feedstock production scenarios (Table S2.5). WTW GHG 

emissions in broadcast urea scenarios were 3 – 18% higher than in corresponding 

broadcast ammonium nitrate scenarios and 7 – 30% higher than in corresponding injected 

scenarios (Figure 2.5a). GHGs increased by 27% and 8% with increasing N application 

rate in broadcast urea and ammonium nitrate scenarios, respectively, and varied by < 5% 

in injected scenarios. WTW emissions contributing to ozone depletion in broadcast urea 

scenarios were 5 – 19% higher than broadcast ammonium nitrate and injected scenarios 

(Figure 2.5b). These emissions were not strongly affected by N application rate at the 

WTW level, increasing or decreasing by < 8% across N application rates depending on 

fertilizer application method and source. Emissions contributing to smog increased by 

16% across N application rates in broadcast urea scenarios, varied by < 3% in ammonium 
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nitrate scenarios, and declined by 9% in injected scenarios before roughly stabilizing at 

250 kg N ha
-1 

(Figure 2.5c).  

 Emissions contributing to acidification tended to increase with increasing N 

application rate regardless of fertilizer strategy (Figure 2.5d). N source, however, was an 

important determinant of emissions contributing to acidification. These emissions 

increased by only 6% across N application rates in broadcast ammonium nitrate 

scenarios, but increased by 93% across the same range in broadcast urea scenarios. 

Impacts to acidification also varied across N sources in injected scenarios, with emissions 

increasing by 28% across N application rates for injected urea, decreasing by 8% for 

injected anhydrous ammonia, and remaining relatively stable across N application rates 

for UAN (Table S2.4).WTW emissions contributing to eutrophication were also strongly 

influenced by fertilizer source and application method (Figure 2.5e). These emissions 

increased by 25% across N application rates in broadcast urea scenarios and decreased by 

a similar magnitude in broadcast ammonium nitrate scenarios. Emissions contributing to 

eutrophication also declined across N application rates in injected scenarios, but the 

magnitude of this response varied from 17 – 33% across N sources (Table S2.4). 

Emissions contributing to ecotoxicity consistently declined with increasing N application 

rate but were not substantially affected by N source or application method at the WTW 

level (Figure 2.5f). 
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Life cycle assessment: emissions contributing to the human health 

 Emissions impacting human health almost always declined with increasing N 

application rate (Figure 2.5g – i). The only exception was carcinogenic emissions in 

broadcast urea scenarios, which were relatively unaffected up to 150 kg N ha
-1

 and 

increased by a modest 5% thereafter (Figure 2.5g). Carcinogenic emissions declined from 

50 to 350 kg N ha
-1

 by 13% in broadcast ammonium nitrate scenarios and by 18 – 29% in 

injected scenarios, but remained relatively stable thereafter. Non carcinogenic emissions 

declined by 25%, 43%, and 49% across N application rates in broadcast urea, broadcast 

ammonium nitrate , and injected scenarios, respectively (Figure 2.5h &Table S2.5). 

Emissions contributing to respiratory effects for these scenarios declined by 8%, 27%, 

and 34%, respectively.  

Life cycle assessment: localized NOx model 

The Oikawa NOx model for broadcast urea resulted in higher NOx emissions than 

the tier 1 EEA model (Figure S2.3). These higher NOx emissions translated to a 12 – 25% 

increase in emissions contributing to acidification, a 2 – 15% increase in emissions 

contributing to eutrophication, and a 7 – 33% increase in emissions contributing to 

respiratory effects (Table 2.3). Emissions contributing to smog were most strongly 

affected by the assumed NOx model, increasing by 17 – 113% across N application rates.  
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Table 2.3. Percent increase in modeled WTW emissions and emissions from E85 relative 

to gasoline assuming the Oikawa NOx model for broadcast urea scenarios in place of the 

EEA tier 1 NOx model.  

 

  

Impact 

Category 

N Application rate (kg N ha
-1

) 

50 150 250 350 450 50 150 250 350 450 

 Increased WTW emissions (%) Increased emissions relative to gasoline (%) 

           

Acidification 12 5 7 14 25 173 274 370 469 585 

Resp. effects 7 4 8 17 33 146 128 133 150 183 

Eutrophication 4 2 4 8 15 1,133 1,211 1,330 1,464 1,634 

Smog 28 17 28 60 113 125 115 146 216 333 
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Life cycle assessment: E85 vs. gasoline 

 

Figure 2.6. Mean percent change in modeled WTW fuel emissions when substituting 

conventional gasoline for E85 fuel from sorghum-derived cellulosic ethanol, determined 

as [(emissions from E85 – emissions from gasoline)/emissions from gasoline] * 100. Error 

bars represent standard deviations in mean percent change in emission across simulated N 

application rates for broadcast urea and ammonium nitrate scenarios and across N 

application rates and N sources for injected scenarios.  

 

Relative to gasoline, sorghum-derived E85 reduced emissions contributing to 

global warming by 47 – 65%, to ecotoxicity by 74 – 79%, to carcinogenics by 92 – 96%, 

and to non-carcinogenics by 97 – 98% (Figure 2.6). However, substitution of gasoline 

with E85 resulted in increased emissions contributing to ozone depletion by 105,050 – 

132,030%, to smog by 49 – 103%, to acidification by 39 – 449%, to eutrophication by 

498 – 1,414%, and to respiratory effects by 31 – 114% assuming the EEA NOx model. 

Scenarios assuming the Oikawa NOx model resulted in higher emissions contributing to 
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smog, acidification, eutrophication, and respiratory effects. These emissions increased by 

as much as 333%, 585%, 1,634%, and 183%, respectively, for E85 compared to gasoline 

(Table 2.3).  

2.5 Discussion: 

Fertilizer management during feedstock production affected most pollutant loads from 

sorghum-derived E85. Increasing N inputs generated higher biomass yields (Figure 2.4) 

but were also a major source of emissions to the environment (Figure 2.5). Fertilizer 

application rate, application method, and source all contributed to emission intensities. 

Broadcast urea simulations resulted in the highest WTW emissions, with increasing N 

application rate tending to increase emissions. Conversely, anhydrous ammonia applied 

at 350 – 450 kg N ha
-1

 via injection resulted in the lowest WTW emissions of all 

scenarios simulated, suggesting the carbon intensity and pollutant loads of cellulosic fuels 

are not necessarily compromised by high N use at regional to global scales. Sorghum-

derived cellulosic ethanol had clear advantages over gasoline in terms of GHG intensity 

and several other impact categories. Emissions contributing to air and water pollution, 

however, tended to be substantially higher for E85 than for gasoline and were often 

heavily influenced by feedstock management (Figure 2.6). Together, our results suggest 

that N management choices strongly influence life cycle tradeoffs between the 

productivity, GHG intensity, and pollutant loads of cellulosic fuels, particularly in terms 

of local air and water pollution. Minimizing on-farm emissions through efficient N 

management should be a priority area for future field research.  
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WTW emissions from E85: N application rate 

Across all impact categories, increasing N contributed to increasing emissions in 

absolute terms. However, assessed on an energy yield basis (MJ
-1

) at the WTW scope, 

higher yields associated with increasing N inputs down-scale these additional emissions 

from N. Higher yields associated with increasing N inputs also down-scale emissions 

from non-N sources incurred during feedstock production (e.g. phosphorus, fuel) on an 

energy yield basis, as lesser quantities of these non-N inputs were required to generate a 

similar volume of E85 when N inputs were increased. Therefore, WTW impacts expressed 

on an energy yield basis only intensified with increasing N rate when the increase in 

emissions associated with additional N exceeded the decrease in emissions resulting from 

the corresponding yield response. Inefficient N uptake in broadcast urea simulations 

resulted in a modest yield response. As a result, corresponding WTW emissions tended to 

worsen with increasing N inputs (Figures 4 & 5). Conversely, in broadcast ammonium 

nitrate and injected fertilizer scenarios, simulated yield increases tended to outweigh 

modeled emission increases on an energy yield basis at N application rates as high as 350 

– 450 kg N ha
-1

. Our hypothesis that increasing N inputs would reduce emissions at 

modest fertilizer rates and increase them at higher N rates was, therefore, largely not 

supported by our simulations even when N constituted a major source of emissions. 

Emissions to several impact categories roughly stabilized at 250 – 350 kg N ha
-1

in 

injected and broadcast ammonium nitrate scenarios, increasing or decreasing by no more 

than 2% at 450 kg N ha
-1

. This suggests that higher N application rates, which would 

elicit an increasingly marginal yield response, would eventually generate higher WTW 
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emissions. However, limited field validation precludes determination of an optimal N 

value for Imperial Valley sorghum.  

Importantly, while expressing emissions on an energy yield basis is appropriate 

for assessing regional to global impacts, it can obscure impacts at the local level. In the 

present study, where emissions are most intensive during feedstock production, local 

impacts may be better characterized on a land area basis. If higher yields achieved with 

increasing N are not concurrent with a commensurate reduction in hectares planted, these 

local impacts will be intensified as N inputs increase, regardless of productivity.  

WTW emissions from E85: N application method and source 

Our analysis revealed lower emissions and higher yields with injection of N-

fertilizers, a win-win for both productivity and sustainability. Low NUE in broadcast urea 

simulations resulted in higher emissions across the board, though some impact categories 

were more strongly affected than others. Previous research has shown surface 

applications of urea results in high volatilization and denitrification losses that curtail 

nitrogen uptake (Linquist et al. 2012; Millar et al. 2014). Ammonium nitrate is less 

susceptible than urea to volatile losses during surface application, but still less efficient 

than injected fertilizer applications, which concentrate nutrients in the root zone (Millar 

et al. 2014). These differences in N accessibility and loss rates were observed across 

fertilizer sources and application methods in our crop model and the influence of these 

factors on simulated N uptake were reflected in WTW life cycles based on their yield 

implications (Figure 2.4). However, downstream emission models largely did not account 
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for these factors. Consequently, WTW emissions from broadcast urea scenarios presented 

here may be underestimated while emissions from injected scenarios may be 

overestimated. Our results may  e similarly skewed  y our model’s ina ility to capture 

the root maturation across growth cycles. In broadcast urea scenarios, where N loss 

primarily occurs through volatilization and uptake occurs in shallow soil layers, 

inadequate root development may not strongly inhibit N uptake. Uptake similarly occurs 

in shallow soil layers when ammonium nitrate is broadcast without incorporation.  

However, in injected scenarios, where N loss primarily occurs through leaching and 

uptake occurs at > 8 cm depth, our model may underestimate N uptake and, 

consequently, NUE. Underestimation of NUE would result in overestimation of WTW 

emissions. Thus, the advantages of injected N fertilizers discussed here may be 

understated.  

In injected scenarios, N source had virtually no impact on yield in our 

simulations, but did appear to influence emissions from several impact categories. 

Differences in emissions contributing to acidification, eutrophication, and carcinogenics 

were the most prominent (Table S2.4) and were all associated with source-specific 

emission factors for NH3 volatilization, which are highest for urea (Battye et al. 1994). 

However, while these emissions factors consider N source, they do not consider N 

application method. Accordingly, modeled NH3 volatilization rates for urea were the 

same for broadcast and injected scenarios and, as a consequence, almost certainly 

overestimate NH3 emissions from injected urea (Mahler 2001; Millar et al. 2014). 
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Similarly, although volatilization rates for anhydrous ammonia and UAN were relatively 

low, these emissions may also be overestimated if emission factors assumed an 

unincorporated application method. Differences in emissions from injected scenarios 

across fertilizer sources should therefore be interpreted with caution. Along these lines, 

we stress the need for more refined emission factors to improve the ability to model 

emission outcomes associated with different fertilizer sources and application methods. 

WTW emissions from E85: GHG intensity  

The GHG intensity of sorghum-derived E85 varied by as much as 33% across N 

management scenarios (Figure 2.5a, Table S2.5). Greenhouse gas emissions were roughly 

divided between emissions from feedstock production and post-feedstock production 

processes, which mitigated the impacts of nitrogen management on overall GHG 

intensity. Low NUE in broadcast urea simulations resulted in a weak yield response that 

was not sufficient to compensate for increased N2O emissions (Figures 4 & 5a). 

Conversely, increased N2O emissions from N fertilizer were largely compensated for by 

increased yields in injected scenarios and, to a lesser extent, in broadcast ammonium 

nitrate scenarios. These results contrast with recent assertions that increased N 

application rate compromises the GHG mitigation benefits of cellulosic fuels (Ruan et al. 

2016). Although GHGs increased with N in broadcast urea scenarios, they were 

minimally affected by N application rate in broadcast ammonium nitrate scenarios and 

tended to decline slightly with increasing N application rate in injected scenarios, at least 

when expressed on an energy yield basis. Our results instead suggest that the effect of N 
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on the GHG intensity of cellulosic fuels hinges on both NUE at baseline N application 

rates and on the degree of change in NUE as N rate increases.  

Greenhouse gas emissions from N fertilizer are dominated by N2O emissions 

(Adler et al. 2007; Fazio & Monti 2011; Shcherbak et al. 2014; Ruan et al. 2016). We 

modeled these emissions using a tier 1 IPCC model, which, while useful for 

benchmarking and comparing with other research, is known to have high uncertainty (De 

Klein et al. 2006; Singh et al. 2010; Wang et al. 2012). This model is largely based on 

applied N and does not distinguish between synthetic N sources, fertilizer application 

method, or soil properties. Given these unresolved limitations, N2O emissions reported 

here may be underestimated in broadcast urea scenarios and overestimated in injected 

fertilizer scenarios. Although a growing body of research suggests an exponential 

relationship between N application rate and N2O emissions (Hoben et al., 2011; 

McSwiney & Robertson, 2005; Ruan et al., 2016; Shcherbak et al., 2014; Liang et al., 

2016) as opposed to the IPCC’s linear relationship, the assumptions of existing 

exponential N2O models do not align with the observed and simulated dynamics in our 

system. These models assume N application rates exceeding ~100 kg N ha
-1

 are 

saturating (McSwiney & Robertson 2005; Hoben et al. 2011; Shcherbak et al. 2014), 

which our field data and crop model suggest is inaccurate for Imperial Valley sorghum 

production. Therefore, these models may vastly overestimate emissions in our system. 

Further, differences in NUE across broadcast and injected treatments would likely result 

in different exponential responses not currently accounted for by existing exponential 
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models. Increasing refinement of these N2O models is an important area for future 

research.  

WTW emissions from E85: air and water pollutant loads 

Emissions contributing to ozone depletion and ecotoxicity were largely derived 

from post-feedstock production processes in the E85 life cycle and therefore not strongly 

affected by N management during feedstock production (Figures 5b and 5f). Nonetheless, 

injected and broadcast ammonium nitrate scenarios retained slight advantages over 

broadcast urea scenarios. Emissions contributing to smog also tended to be dominated by 

post-feedstock production emissions and showed a similarly muted response to N 

management (Figure 2.5c). However, while these emissions were only modestly affected 

using the EEA tier 1 emission model for NOx, emissions from broadcast urea scenarios 

more than doubled from 50 to 450 kg N ha
-1

 when we applied the Oikawa NOx model 

(Figures 6). As this model was derived from NOx fluxes measured at our Imperial Valley 

field site following broadcast application of urea (Figure S2.3), these amplified NOx 

emissions are likely more accurate for our system. Unfortunately, the Oikawa NOx model 

was not parameterized for broadcast ammonium nitrate or injected fertilizer applications, 

which remains a needed research direction.  

The remaining impact categories were at least partially dominated by emissions 

from feedstock production. Emissions contributing to acidification, eutrophication, and 

carcinogenics were the most variable across N management scenarios as they were highly 

sensitive to nitrogen, and subsequently, NUE (Figures 5d, 5e, & 5g). In N-inefficient 
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broadcast urea scenarios, N was an important source of emissions. Conversely, in N-

efficient broadcast ammonium nitrate and injected scenarios, emissions were 

predominantly from non-N sources, allowing a decline in energy yield-scaled emissions 

across N rates corresponding to higher simulated biomass yields. Emissions contributing 

to non carcinogenics and respiratory effects were also largely derived from non-N 

sources and, therefore declined with increasing N across all scenarios (Figures 5h & 5i).  

WTW environmental impacts across fuel sources 

GHG estimates from our LCA of gasoline were roughly 7% lower than those 

reported from other sources (Table S2.5) (Sheehan et al. 2000; CARB 2009); likely due 

to a difference in assumed emissions factors. Even against these conservative estimates, 

the carbon intensity of sorghum-derived cellulosic ethanol was, on average, less than half 

that of gasoline on the basis of WTW GHG emissions (34 and 84 – 95 g CO2 eq MJ
-1

, 

respectively) (Table S2.5). However, when evaluated across multiple impact categories, 

tradeoffs were evident (Figure 2.6). Adverse impacts to local air and water quality tended 

to be more severe and more variable across management scenarios than beneficial 

impacts to global warming, human health, and ecotoxicity. These results highlight the 

importance of feedstock management in determining the environmental impacts of 

cellulosic fuels. Notably, the potential for adverse impacts to smog were strongly 

influenced by our choice of NOx model (Figure 2.6). Other emission potentials may 

similarly be influenced by model specificity, again highlighting the importance of 

developing management-specific regional emission factors.   
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Our results are generally in agreement with those of previous studies considering 

non-GHG emissions. Emissions contributing to acidification and eutrophication in our 

model increased by several orders of magnitude for E85 relative to gasoline, which is 

more or less in agreement with previously reported estimates for cellulosic ethanol-based 

fuels (von Blottnitz & Curran 2007; Bai et al. 2010; Borrion et al. 2012; Jeswani et al. 

2015; Mbonimpa et al. 2016; Robledo-Abad et al. 2016; Weldu & Assefa 2016). 

Importantly, emissions contributing to eutrophication may be overestimated in our model, 

as the SALCA-P model for phosphorus leaching does not account for low percolation 

rates typical of heavy clay soils found in the Imperial Valley (Prasuhn 2006). Still, 

emissions derived from N and post-feedstock production practices comprise > 50% of 

emissions contributing to eutrophication, suggesting eutrophication potential would be 

substantially higher for sorghum-derived E85 than gasoline even in the event that no 

phosphorus was leached during production.  

Emissions contributing to human toxicity have also been previously reported to be 

higher for cellulosic fuels than gasoline (von Blottnitz & Curran 2007; Jeswani et al. 

2015; Mbonimpa et al. 2016; Robledo-Abad et al. 2016; Weldu & Assefa 2016). 

Although human toxicity is not specifically characterized in TRACI, several impacts to 

human health are. Our results show higher contributions to respiratory effects for 

cellulosic ethanol, but lower carcinogenic and non-carcinogenic emissions. Importantly, 

higher emissions contributing to smog and respiratory effects for E85 relative to gasoline 

may present an important tradeoff for bioenergy production in the Imperial Valley, where 

air quality is already greatly compromised (ALA 2016). Declining local air quality may 
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increase incidence of asthma and has been linked to increased mortality in other biofuel-

producing regions (Ashworth et al., 2013; Tsao et al., 2011). While our study shows a 

potential reduction in emissions contributing to air and water pollution with increasing 

injected N inputs on an energy yield basis, recognizing that emissions will increase with 

increasing N inputs on a land area basis is important and may exacerbate these adverse 

local impacts.  

Although water use impacts and land use change were not considered in this 

study, other studies have shown they can pose additional tradeoffs for bioenergy sources 

(Bonsch et al., 2016). For instance, in California, water use for bioenergy can be 100 – 

1000% higher than for gasoline (Fingerman et al. 2010) and land use impacts have been 

estimated to contribute an additional 10 – 340 g CO2 MJ
-1 

to bioenergy lifecycles (Plevin 

et al. 2010). Development and widespread implementation of standardized metrics for 

water and land use impacts is necessary to further evaluate these tradeoffs across 

feedstocks and fuel technologies.  

Synthesis 

Coupled crop-LCA modeling systems are a useful tool for exploring multiple dimensions 

of the biofuels life cycle and highlighting possible pathways for emission reductions and 

paving the way for future field studies. When compared to gasoline, sorghum-derived 

cellulosic ethanol was advantageous in terms of GHG emissions and, generally, impacts 

to human health, but resulted in substantially higher local air and water pollutant loads. It 

is important to recognize the environmental tradeoffs associated with alternative fuels so 
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that adverse impacts can be avoided, or at least mitigated, whenever possible. In 

agreement with previous work, we found efficient application of N fertilizer to reduce 

environmental impacts associated with feedstock production on an energy basis (Schmer 

et al. 2008; Singh et al. 2010). However, we also found that high rates of N can support 

low GHG intensities and pollutant loads from cellulosic fuels on an energy yield basis, so 

long as a sufficient yield-response is elicited. Meeting demands of mandates for 

cellulosic ethanol production (CEC & CARB 2007; EPA 2010) necessitates examination 

of multi-dimensional life cycle impacts of renewable energy production to more 

accurately assess their environmental impacts and to avoid solving one pollution problem 

at the expense of another.   
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2.7 Supporting Information 

Table S2.1. Environmental impact categories evaluated in SimaPro using TRACI 2 v. 

3.03 midpoint characterization (Bare et al. 2003). Emissions that contribute to a particular 

impact category are expressed in terms of equivalence units (eq) based on their 

proportional influence to that impact category relative to that of the referenced unit (e.g. 

CO2 eq).  

 

 

  

   Impact Category 
a
 Unit Midpoint level 

b
 

   
  
Emissions to the environment 

 

Global warming CO 2 eq 
Potential global warming based on chemical's relative forcing and 

lifetime 
c
 

Acidification H 
+
 eq Potential to cause wet and dry acid deposition  

Eutrophication N eq Potential to cause eutrophication 

Ozone depletion CFC 
-11

 eq 
Potential to destroy ozone based on chemical's reactivity and 

lifetime 

Ecotoxicity 2,4-D eq 
Potential of a chemical released into an evaluative environment to 

cause ecological harm 

Smog NOx eq Potential to cause photochemical smog 

Emissions to human health 
 

Carcinogenics benzen eq 
Potential of a chemical released into an evaluative environment to 

cause human cancer effects 

Non carcinogenics toluen eq 
Potential of a chemical released into an evaluative environment to 

cause human non-cancer effects 

Respiratory effects PM 2.5 eq 
Exposure to elevated particulate matter  

< 2.5µm 

   

   
a TRACI additionally characterizes fossil fuel, land use, and water use categories, however these categories are not assessed in 

SimaPro as they are not standardized metrics  

 
b midpoint level criteria was taken verbatim from the EPAs communication of TRACI methods (Bare, Norris, Pennington, & 

Mckone, 2003) to avoid miscommunication of specified midpoints  

 
c global warming potentials are based on a 100-year time horizon 

 1 
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Table S2.2. Primary soil parameters in DSSAT and their assigned values based field 

measurements (measured) when available and default parameters from DSSAT’s deep 

silty loam soil profile (default) otherwise. Values are reported for the uppermost soil 

layer. *Total nitrogen varied across harvests based on residual N levels from the previous 

harvest. 

 

  

Variable Unit Value Source 

    

lower limit cm
3
 cm

-3
 0.228 default 

drained upper limit cm
3
 cm

-3
 0.385 default 

saturate upper limit cm
3
 cm

-3
 0.532 measured 

root growth factor (0 - 1) 1 default 

bulk density g cm
-3

 1.4 measured 

organic carbon % 2.34 measured 

clay particles % 42 measured 

silt particles % 41 measured 

coarse fraction (0 - 1) 0 default 

total nitrogen % 0.13* measured 

pH in water 

 

8.1 measured 

        
 1 
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Weather Data 

We acquired weather data for our site from the California Irrigation Management 

System (CIMIS) Meloland station, located 4.4 miles east of DREC. As data from the 

Meloland weather station was only available from 12 December 1989 to present, records 

from nearby stations were used to build the 30 year weather data set. The Calpatria 

station, located approximately 30 miles northeast of DREC, has recorded weather data 

since 17 July 1983 and the El Centro station, located 11 miles east of DREC, recorded 

data from 8 November 1982 to 27 May 1987 (see supporting information, Figure S2.2). 

Overlapping periods of record between El Centro and Calpatria and Calpatria and 

Meloland were used to standardize the data using following equation:  

PS = (PO – i) * (1/s)  

Where PS = the standardized value of a given weather parameter, PO = the original value 

of a given weather parameter (units varied by parameter), i = y intercept, and s = slope. 

 

Once El Centro data was standardized to Calpatria, Calpatria data was standardized to 

Meloland data following the same method. Finally, El Centro data was standardized to 

Meloland data using the inverse slope and intercept data derived from the regression of 

Calpatria data against Meloland data 
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Table S2.3. Regression statistics for standard linear regressions of overlapping periods of 

weather data Meloland and El Centro and Meloland and Calpatria. Here, 
O
 and 

S
 signify 

the original and standardized regression statistics, respectively.  

 

 

 

 

  

Parameter r
2
 p-value slope 

O
 slope 

S
 intercept 

O
 intercept 

S
 

                                                 El Centro data regressed against Calpatria data 

Evapotranspiration (mm) 0.80 < 0.001 0.95 1.00 0.28 0.00 

Precipitation (mm) 0.34 < 0.001 0.59 0.62 0.11 0.11 

Solar radiation (w m
-2

) 0.96 < 0.001 0.95 1.00 4.89 0.00 

Maximum Tair (°C) 0.98 < 0.001 1.00 1.00 0.09 0.00 

Minimum Tair (°C) 0.96 < 0.001 0.96 1.00 0.07 0.00 

Relative humidity (%) 0.81 < 0.001 0.90 1.00 7.27 0.00 

Dew point (°C) 0.84 < 0.001 0.90 1.00 1.57 -0.68 

Wind run (km) 0.83 < 0.001 0.97 1.00 -3.95 0.00 

                                                Calpatria data regressed against Meloland Data 

Evapotranspiration (mm) 0.93 < 0.001 0.94 1.00 0.18 0.00 

Precipitation (mm) 0.21 < 0.001 0.46 0.35 0.13 0.10 

Solar radiation (w m
-2

) 0.91 < 0.001 0.97 1.00 11.61 0.00 

Maximum Tair (°C) 0.99 < 0.001 0.99 1.00 0.09 0.00 

Minimum Tair (°C) 0.96 < 0.001 1.00 1.00 -1.94 0.00 

Relative humidity (%) 0.68 < 0.001 0.85 1.00 11.59 0.00 

Dew point (°C) 0.89 < 0.001 0.93 1.00 1.23 0.00 

Wind run (km) 0.72 < 0.001 0.63 1.00 57.49 0.00 

       
 1 
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Cultivar Calibration 

Extensive cultivar adjustments were necessary to simulate forage sorghum as only 

grain sorghum cultivars are currently available in the DSSAT database. We first raised 

the heat tolerance (Tmax) to 47 °C, as our crop remained physiologically active at this 

temperature (Oikawa et al. 2015b). We then conducted a sensitivity analysis of all 

sorghum cultivars in the DSSAT database to determine a candidate cultivar for 

modification to a forage sorghum. Out of 51 cultivars, only 3 matured at a rate similar to 

our crop and, among those, only 1 (cultivar MN1500) produced substantial vegetative 

biomass. We then adjusted MN1500 using modified parameters generated to simulate 

sweet sorghum (Lopez et al. 2017) as a starting point for modeling forage sorghum. 

These modifications included an amended program file provided by Lopez et. al, which 

increased shoot allocation as well as modified crop coefficients for reduced allocation to 

the panicle and roots (i.e. G2 from 6.0 to 0.4 and RTPC from 0.25 to 0.16, respectively in 

DSSAT). 
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To calibrate our forage sorghum model, we modeled cumulative net primary 

productivity (NPP) throughout the season, which directly correlates to total biomass 

accumulation, from net ecosystem exchange data (NEE; Figure S2.2.1). We first 

estimated heterotrophic respiration (Rhetero) based on net ecosystem exchange when the 

field was fallow and irrigated. We then calculated NPP by summing NEE and Rhetero. 

Using sensitivity analyses and cross-parameter manipulations we adjusted the parameters 

of Lopez-modified MN1500 by checking model outputs of plant growth and growth 

stages against cumulative NPP and observed phenological events, respectively. The 

resulting changes reduced delay of reproductive maturation on long days (i.e. days where 

photoperiod exceeds critical day length) and increased leaf production (i.e. PHINT from 

49 to 80 and G1 from 1 to 25, respectively in DSSAT).  

Our final modification was to increase radiation use efficiency (RUE) from 3.6 to 

4.1 (Figure S2.2.1). Although this value exceeds sorghum RUEs in the literature (White 

et al. 2015; Narayanan et al. 2013), this modifications provided the necessary 

amplification in productivity without adversely impacting phenology. Yield values 

achieved following this modification aligned well with our observed yields for all 

harvests (Table 2.1). 
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Figure S2.1 Major phases of model modification to simulate forage sorghum. The impact 

of sorghum model adjustment and calibration on simulated vegetative (i.e. aboveground) 

growth (kg dry weight ha
-1

) is reflected in panel (a). Panel (b) shows the agreement 

between cumulative daily NPP (solid black) collected from our field site and the modeled 

total growth (i.e. above and belowground; solid dark green).  

 

Figure S2.2. Modeled phenological transitions across three growth cycles over two years 

(black lines) and field observations of heading events (i.e. where heading occurs in > 

25% of the stand, as assessed visually; red lines). Observations match modeled transitions 

to heading within a window of 10 days.  
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Figure S2.3. Empirical models used to determine annual NOx fluxes induced by 

fertilization events. The EEA model is a tier one NOx model using a single emission 

factor. The Oikawa model for urea is based on field measurements of NOx flux following 

application of broadcast urea fertilizer. These fluxes lasted approximately 20 days before 

returning to base flux levels. The Oikawa model for UAN is based on field measurements 

of NOx flux following application of UAN in irrigation water. These fluxes lasted 

approximately 25 days before returning to base flux levels. Base NOx flux (pre- and post-

fertilizer) for Oikawa NOx models was determined to be 0.0012 (g N m
-2

 day
-1

) (Oikawa 

et al. 2015a). 
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WTW emissions assuming low efficiency conversion 

Low efficiency scenarios (290 l ethanol Mg DW
-1

) assumed ammonia fiber explosion 

pre-treatment based on corn stover conversion using AFEX technology (Kim and Dale 

2004) simultaneous saccharification and co-fermentation conversion processes, and 

Rankine cycle energy recovery processes (Spatari, Bagley, and MacLean 2010) with 1.21 

kWh electricity produced l ethanol
-1

. 

 

 

Figure S2.4. Ratio of WTW emissions under low-efficiency conversion relative to those 

under high-efficiency conversion. Minimum and maximum ratios reflect minimum and 

maximum differences in WTW emissions across modeled N management scenarios, 

respectively. Respiratory effects were the most notably affected, declining under low-

efficiency conversion by as much as 50%. Emissions to global warming and 

carcinogenics also declined in low-efficiency conversion scenarios. Emissions to 

acidification, eutrophication, and ecotoxicity were slightly lower in high-efficiency 

conversion scenarios, while emissions to non carcinogenics, smog, and ozone depletion 

were relatively unaffected.  
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Table S2.4. WTW emissions from injected nitrogen scenarios for impact categories 

which varied by >10% across N sources.  

N scenario Acidification Eutrophication Carcinogenics 

source 
rate 

kg ha
-1

 

mmol H
+
 eq 

MJ
-1

 
mg N eq MJ

-1
 

mg benzen eq 

MJ
-1

 

     

Urea 

50 18.68 60.67 28.52 

150 20.66 52.56 23.84 

250 21.65 50.30 22.40 

350 22.48 49.64 21.82 

450 23.85 50.58 21.87 

     

AnAm 

50 13.34 53.72 27.16 

150 12.44 42.14 21.91 

250 12.19 38.30 20.18 

350 12.11 36.50 19.39 

450 12.23 35.86 19.15 

     

UAN 

50 14.13 55.00 29.38 

150 13.66 44.05 25.33 

250 13.59 40.49 24.12 

350 13.64 38.90 23.69 

450 13.94 38.54 23.97 
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Table S2.5. Well-to-wheel GHGs for conventional and alternative fuel sources, where 

CE denotes E85 fuel from cellulosic ethanol. Emissions from sorghum-derived CE are 

reported based on the range of carbon intensities observed across all N management 

scenarios simulated. All CE emissions shown here include electricity co-products 

allocated via system expansion (i.e. displacement) (CARB 2009; Adler et al. 2012). CE 

from dry milled corn additionally includes a protein co-product credit allocated via 

system expansion.  

  
Fuel source 

GHG 

(g CO2 eq MJ
-1

) 

  

 
 

Gasoline (US) 91
a
 

 
84 

b
 

Gasoline (CA reformulated) 95 
a
 

Natural gas 75 
a
 

CE from sorghum biomass  29 – 44 
b
 

CE from dry milled corn 55 
a
 

CE from corn stover 30 
c
 

CE from sugarcane 20 
a
 

CE from switchgrass 32 
c
 

CE from wheat straw 30 
c
 

  
  a
 (CARB, 2009) 

b
 This study 

c
 (Adler, Dalgleish, & Ellner 2012) 
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Chapter 3  

 

Evaluating the GHG mitigation-potential of alternate wetting and drying in rice through 

life cycle assessment   

 

Cara Fertitta-Roberts, Patricia Y. Oikawa, G. Darrel Jenerette 

________________________________________________________________________ 

3.1 Abstract  

Alternate wetting and drying (AWD), has gained increasing attention as a promising 

strategy for mitigating greenhouse gas emissions (GHG) in flooded rice systems. AWD 

involves periodic drainage of rice paddies in order to inhibit methane (CH4) emissions. 

To date, studies evaluating this practice have been limited in their scope and resolution. 

Our study uses the Peatland Ecosystem Photosynthesis Respiration and Methane 

Transport model (PEPRMT) to simulate high resolution CH4 fluxes and life cycle 

assessment modeling to evaluate the mitigation potential of AWD in California rice 

production from a globally relevant perspective. Rice production was modeled under 

continuous flooding and under five AWD schedules ranging in the severity and frequency 

of dry-downs. Our simulations only resulted in reduced grain yields when dry-downs 

were frequent and/or severe. For these scenarios, adverse yield impacts negated some of 

the benefits of AWD. CH4 flux mitigation under AWD simulated using PEPRMT was 

approximately half that reported from chamber measurements, highlighting the 

importance of high resolution field data to better characterize GHGs from rice systems. 
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Reduced yields and conservative CH4 mitigation in our model lessened the overall 

mitigation potential of AWD. When the entire rice life cycle was considered, mitigation 

of overall global warming potential (GWP) was further reduced by the presence of 

additional GHG sources, which comprised roughly half of life cycle GWP. Our 

simulations resulted in < 11% reductions in GWP kg
-1

 across all AWD scenarios and saw 

an increase in GWP when yields were severely impacted. Together, our results highlight 

the importance of reducing uncertainties in methane emissions and considering a life 

cycle perspective expressed on a yield basis in characterizing the mitigation potential of 

AWD. Using a high resolution CH4 model and life cycle assessment, we found the 

advantages of AWD to be more limited than previously reported. 

3.2 Introduction 

Rice is conventionally grown in flooded fields to control the spread of weeds and 

encourage crop establishment. This seasonal flooding alters soil biogeochemical fluxes, 

resulting in greenhouse gas emissions (GHGs) in rice systems approximately four times 

those of other major cereal cropping systems (Linquist et al. 2012a). This difference in 

GHG-intensity is largely attributed to methane (CH4) fluxes induced by anaerobic soil 

conditions (Wassmann et al. 1998; Linquist et al. 2012). Accordingly, one way to 

mitigate GHG emissions from rice is to introduce aerobic conditions by periodically 

draining the field throughout the growing season. This practice is known as alternate 

wetting and drying (AWD). Using periodic chamber measurements of CH4 flux, some 

studies have suggested AWD may reduce seasonal CH4 emissions by as much as 90% 
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relative to continuous flooding (CF) (Linquist et al. 2015; LaHue et al. 2016). However, 

field trials of AWD reporting CH4 emissions have been limited and rely on extrapolation 

of manual flux measurements to estimate seasonal CH4 efflux. Further, AWD has yet to 

be evaluated from a life cycle perspective in comparison with CF rice. Life cycle 

assessment (LCA) better contextualizes global warming potential (GWP) by considering 

all GHG sources incurred during rice production. If other sources of GHGs are 

significant, mitigation of CH4 emissions will result in lesser mitigation of overall GWP. 

LCA further contextualizes GWP mitigation potential by expressing emissions in terms 

of a desired functional unit, such as yield. A major barrier in implementing AWD is 

concern over the impact to grain yield. If yields are compromised under AWD, its 

mitigation potential may be similarly compromised.  

AWD has been shown to reduce grain yields by 1.8 – 8.7 % on average, however, 

effects of AWD on yield vary substantially across studies (Carrijo et al. 2017). Much of 

this variability has been attributed to differences in the severity, frequency, and timing of 

dry-downs. Yields may be reduced under AWD by acute water stress, reduced nitrogen 

use efficiency as a consequence of increased volatile losses, and increased competitive 

pressure following dry-down periods (Roel et al. 1999; Linquist et al. 2015; LaHue et al. 

2016; Carrijo et al. 2017). Previous work has shown that grain yields tend to decline 

when soil volumetric water content (VWC) is less than saturating (Bouman & Tuong 

2001). However, others have shown yields to be unaffected at as low as 60% saturating 

VWC (Bouman 2007; Kislev & Peterson 1982; Pandey et al. 2014). Timing of dry-downs 

can also be particularly important in reducing nitrogen losses and in avoiding weed 
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establishment during dry periods (Brodt et al. 2014; Carrijo et al. 2017). Allowing 

sufficient time for nutrient absorption prior to initiating a dry-down can reduce nutrient 

loss and subsequent yield reductions (Linquist et al. 2015). Similarly, allowing the rice 

crop to establish until canopy closure prior to introducing dry-down periods can prevent 

the establishment of weeds and subsequent competition for nutrients (LaHue et al. 2016). 

Although more frequent and severe AWD schedules are more likely to induce greater 

stress and compound yield reductions, they are also more likely have greater CH4-

mitigation potential.  

CH4 production is stimulated by anaerobic conditions associated with 

decomposition of organic matter (Conrad 2002). Draining the field periodically during 

the growing season creates aerobic conditions, inhibiting CH4 production. Accordingly, 

more frequent and severe dry-downs should increase CH4 mitigation. The response of 

CH4 to soil oxygenation is opposite that of nitrous oxide (N2O), another potent 

greenhouse gas (Hou et al. 2000). N2O production is stimulated during both drying and 

re-wetting periods (Bouwman 1998). This efflux of N2O emissions could compromise the 

GHG mitigation benefits of AWD, particularly as the GWP of N2O is roughly 68 – 89% 

higher than that of CH4. However, as N2O emissions from rice tend to be several orders 

of magnitude lower than corresponding CH4 emissions, increasing N2O fluxes in AWD 

rice are generally reported to be more-or-less negligible relative to corresponding 

reductions in CH4 fluxes (Yan et al. 2009; B. A. Linquist et al. 2012; Brodt et al. 2014; 

LaHue et al. 2016; Linquist et al. 2016). Still, higher N2O flux means higher losses of soil 

nitrogen, which may contribute to adverse yield impacts.  
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It is important to consider these yield impacts when evaluating the GHG 

mitigation potential of AWD, as declines in grain yield must ultimately be compensated 

for with an increase in rice production elsewhere. LCA is a particularly useful tool for 

evaluating tradeoffs between productivity and GHG emissions derived from multiple 

sources. This quantitative modeling methodology is used to inventory emissions 

occurring throughout the entire life cycle of a product   he   i i e              i  e e  

al. 2011), making it more comprehensive than field measurements alone. In accordance 

with International Organization for Standardization (ISO) guidelines, a life cycle is 

defined by through a clear scope and system boundaries (ISO 2006a; ISO 2006b). The 

scope defines the extent of processes within the life cycle considered, for example cradle-

to-farm gate, cradle-to-mill, or cradle-to-table. System boundaries define the extent to 

which associated material, energy, and waste flows are considered (SAIC 2006). A life 

cycle inventory (LCI) is then complied, which details all material, energy, and waste 

flows of GHGs within the defined scope and system boundaries. This GHG inventory is 

characterized into a GWP based on the warming potential of each individual GHG 

relative to CO2, and expressed in terms of CO2 equivalents (CO2e).  

GHG emissions in rice systems are typically extrapolated from manual chamber 

measurements of gas flux (Pittelkow et al. 2014; Linquist et al. 2015; LaHue et al. 2016). 

While modeling seasonal fluxes from chamber data is common practice, sampling 

scheme and choice of extrapolation method can strongly bias seasonal emissions modeled 

from chamber measurements (Venterea 1991; Sass et al. 2002). Previous work in 

peatlands has shown that CH4 flux can lag behind transitions in water table height by as 
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much as 20 days (Moore & Dalva 1993; Kettunen et al. 1999; Sturtevant et al. 2016). 

Changes in the water table can also lead to large CH4 emission events or pulses which are 

difficult to capture with discontinuous chamber measurements (Knox et al. 2016). As 

most field studies assessing GHGs from rice systems sample at daily intervals only in the 

days prior to and following wetting or drying events (Bossio 1999; Fitzgerald et al. 2000; 

Redeker et al. 2000; McMillan et al. 2007; Adviento-Borbe et al. 2013; Pittelkow et al. 

2013; Pittelkow et al. 2014; Simmonds, Anders, et al. 2015; Linquist et al. 2015; LaHue 

et al. 2016), delayed spikes in CH4 flux may be under-sampled or missed entirely (Knox 

et al. 2016; Sturtevant et al. 2016). Alternatively, IPCC models have been used to 

estimate GHG flux in rice systems. However, these coarse models, based on generic 

emission factors, have been shown to substantially overestimate emissions in CA rice 

systems and underestimate emissions elsewhere (Wang et al. 2010; Thanawong et al. 

2014; Brodt et al. 2014). Further, the IPCC model only distinguishes between 1 and > 1 

mid-season dry down and does not account for dry-down severity, making it relatively 

insensitive to specific AWD schedules (Lasco et al. 2006).  

The recently developed Peatland Ecosystem Photosynthesis Respiration and 

Methane Transport model (PEPRMT) was parameterized for northern California 

peatlands and seasonal wetlands, making it easily adaptable to CA rice systems. 

PEPRMT has great potential for modeling methane flux under AWD as it is sensitive not 

only to factors such as light, temperature, and substrate availability, but also to water 

table height (Oikawa et al. 2017). PEPRMT simulates changes in carbon pools, at half-

hourly intervals, providing high temporal resolution. CH4 production and oxidation are 



 

135 

 

then calculated at daily time steps throughout the season using equations adapted from 

the DAMM model (Davidson et al. 2012; Oikawa et al. 2014; Oikawa et al. 2017). These 

factors make PEPRMT a more refined and sensitive model for predicting CH4 flux in rice 

paddies than infrequent chamber measurement up-scaling or the existing IPCC model.  

Here, we use PEPRMT to assess the GWP of California rice production under CF 

and AWD irrigation from a life cycle perspective. Although California is responsible for 

< 2% of global rice production (CRC 2009), grain yields in the state are twice as high as 

the global average (Brodt et al. 2014). California also imposes some of the strictest 

environmental regulations and offers incentives for GHG-mitigation measures in the form 

of carbon credits (CARB 2014), making it an apt study system for evaluating the GHG-

mitigation potential of AWD. We modeled a typical northern California rice production 

system in Butte County to simulate a range of AWD scenarios. Crop model output was 

coupled with PEPRMT and LCA models to evaluate GHG intensity. We asked how 

AWD, practiced at varying frequencies and severities, would influence the life cycle 

GWP of a typical CA rice production system. We hypothesize the mitigation potential of 

AWD would be constrained by two factors when evaluated at the life cycle perspective: 

the contributions of non-methane GHG sources in the rice life cycle and adverse yield 

impacts resultant form increased nutrient and water stress, particularly when dry-downs 

are more frequent and severe.  



 

136 

 

3.3 Materials and Methods 

Using a coupled modeling approach, we investigated the impacts of AWD on the GWP 

of a typical California rice production system (Figure 3.1). Field data and phenological 

mode s  v i    e  h o gh U ANR’s Ag o omy Rese  ch & I fo m  io   e  e  fo  Rice 

were used to parameterize a rice model in DSSAT (Decision Support System for 

Agrotechnology Transfer v.4.5, Georgia USA). We modeled grain yields for a medium 

grain rice cultivar (M-205) grown in Butte County under six irrigation management 

scenarios run over 30 years. Inputs and outputs of the crop model were coupled with 

downstream emission models to build life cycle inventories in SimaPro v.8 (Pré 

Consultants 2013), which were characterized using TRACI 2.0 (Bare et al. 2003). CH4 

emissions were modeled in PEPRMT (Oikawa et al. 2017) and using an IPCC tier one 

model (Lasco et al. 2006) for comparison. Other downstream GHGs and indirect 

emissions (e.g. NOx, SOx, VOCs) were modeled using IPCC (De Klein et al. 2006), EEA 

(Hutchings et al. 2016), EPA (EPA 2007; EPA 2009), and SAEFL (SAEFL 2000) 

models.  
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Figure 3.1. Overview of methodological processes used to evaluate life cycle impacts of 

CF and AWD rice production strategies.  

 

Rice model parameterization 

We parameterized a CERES rice model in DSSAT to simulate production of rice 

cultivar M-205 in Butte County, which is among the top rice producing counties in 

California in terms of both harvested area and grain yields (CRC 2009). DSSAT is a 

process-based crop modeling system that couples weather, soil, and crop growth modules 

to simulate crop production under a variety of environmental conditions and management 

strategies (Jones et al. 2003). M-205 is a high-yielding medium grain cultivar, that has 

become increasingly popular in mild inland counties like Butte (Jodari et al. 2001; CASS 

2009, Brodt et al 2014). UCANR data was used to parameterize and validate our model 

of M-205. In addition to reporting more than a decade of yield data collected through 
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their Rice Variety Trials, UCANR has developed a Degree Day Model (DDM), which 

predicts phenological transitions based on daily thermal time and cardinal temperatures 

of the selected cultivar, as well as inputs of planting location and date (available at: 

http://rice.ucanr.edu/). We modeled M-205 management in Butte County assuming 

water-seeding at a rate of 161 kg ha
-1

 with an 82% establishment rate (Jodari et al. 2001; 

Espino et al. 2015), continuous flooding at 12.7 cm depth, and 200 kg N ha
-1 

(Greer et al. 

2012; Espino et al. 2015).  

Although Butte County was our focal area, we simulated rice production in all 

major M-205 producing regions available in the DDM in order to maximize our data 

inputs for parameterization of the M-205 cultivar in DSSAT. Weather data for these 

counties were acquired from the California Irrigation Management Information System 

(CIMIS). We generated a soil profile for a mildly acidic, silty clay soil (pH 6.0, 50% 

clay, 35% silt, and 15% sand), as is typical of inland northern California rice paddies 

(Wells 1972; Bossio 1999; Fitzgerald et al. 2000; Reed 2002; Burkett & Conlin 2006; 

Pittelkow et al. 2013; Pittelkow et al. 2014; Simmonds, Li, et al. 2015). Soil organic 

carbon (1.63%), nitrogen content (0.13%), bulk density (0.94 g cm
-3

), extractable 

phosphorus (11.3 mg kg
-1

), and exchangeable potassium (0.08 mmol kg
-1

) were based on 

previously published soil profiles for rice production in Butte and Colusa Counties 

(Bossio 1999; Fitzgerald et al. 2000; Bird et al. 2001; Pittelkow et al. 2013; Pittelkow et 

al. 2014). We assumed rice straw residues from the previous season were incorporated at 

12 cm depth and that these residues were comprised of 0.65% N and 0.43% phosphorus 

(Devevre & Horwath 2000; Bird et al. 2001; Dobermann & Fairhurst 2002).  
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To parameterize our M-205 model, we selected a cultivar with the closest 

phenological dynamics to those predicted by the DDM for M-205 through sensitivity 

analysis. To refine phenological parameters for M-205 in our model, we simulated 

phenological transitions in each county across 12 planting dates, spanning from 20 April 

to 14 June, in 5 day increments in both the DDM and our DSSAT crop model. Crop 

model simulations were run over 30 years, from 1985 – 2014. We then ran cross-

parameter sensitivity analyses to determine the parameters best suited to simulate M-205 

phenology. Fitted parameters resulted in modeled phenological transitions which 

occurred within an average of 5 days of those projected by the DDM across planting 

dates, weather years, and counties (Table S3.1).  

We validated our model using yield data published in 2002 – 2014 UCANR Rice 

Variety Trials (http://rice.ucanr.edu/Reports-Publications/Agronomy_Papers/). These 

trials reported average dry weight yields for M-205 from rice paddies throughout Butte 

County. Accordingly, we maintained the assumption of typical management practices 

used in our phenology calibration. Under this assumption, fit between modeled and 

reported yields were in Butte County were good given our goal of more generalized 

results that were not over-parameterized (r
2
 = 0.56; p < 0.01; Figure 3.3). 
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Rice model scenario analyses 

 We simulated rice production in Butte County over 30 years across one 

continuously flooded scenario and five AWD scenarios (Figure 3.1). Management 

practices were maintained from our initial production model, expect in the case of AWD 

irrigation schedules. AWD irrigation scenarios varied in the severity (M = moderate, S = 

severe) and frequency (1, 2, or 3) of mid-season dry-downs. Moderate AWD schedules 

were characterized by shorter dry-downs which drained soil VWC to 66% of saturated 

VWC, corresponding to the mid-point between field capacity and the permanent wilting 

point. Generally dry-downs within 60% of saturated soi  VW    e co side ed “s fe 

AWD”, i   h   yie ds  e d  o  e mi im   y imp c ed (Bouman 2007; Kislev & Peterson 

1982; Pandey et al. 2014). Severe dry-downs drained soil VWC to 50% of saturated 

VWC, just shy of the permanent wilting point. When feasible, the initial flood in AWD 

schedules was maintained until canopy closure to encourage establishment (Figure S3.1) 

(LaHue et al. 2016). To minimize N losses, we avoided dry-downs until at least two 

weeks after a fertilization event (Linquist et al. 2015).  

Irrigation management scenarios were simulated over 30 historical weather years 

(1985 – 2014) to account for environmental variability. As seasonal (multi-year) DSSAT 

models require irrigation schedules to be maintained on consistent dates across years, we 

imposed filtering criteria during data processing to exclude years in which climatic 

conditions interrupted our imposed AWD cycles. Our filtering criteria required soil VWC 

at the end of each dry-down cycle to be within 10% of the target VWC value (Figure 
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S3.1). Additionally, all irrigation schedules included a pre-harvest dry down at 

approximately 4 weeks prior to harvesting. Soil VWC was required to dry to at least the 

permanent wilting point prior to harvest. Data from non-compliant years were excluded. 

Following filtering, each treatment retained > 15 years of data.  

Life cycle assessment: scope and system boundaries 

LCAs of CA rice production under various irrigation management scenarios were 

constructed in SimaPro in compliance with ISO 14040 and 14044 standards (ISO 2006a; 

ISO 2006b). Emissions were assessed at a cradle-to-mill to scope, which considered all 

inputs to production, transport, drying, and milling of the rice product and associated 

waste products and co-products. This included emissions from residue incorporation and 

off-season flooding. We used second order system boundaries throughout our analyses, 

considering all relevant material, energy, and waste flows. Embodied energy sources 

associated with facilities and machinery were only accounted for in the case of resource 

inputs originating from the Ecoinvent database (Wernet et al. 2016) within SimaPro v.8. 

Emissions were assessed on the basis of 1 kg dried, milled rice. We assumed 90% of rice 

grain was milled to white rice and 10% to brown rice (Brodt et al. 2014).  

Life cycle inventories: upstream flows 

Chemical inventories of resource inputs to our rice production models were 

selected from SimaPro databases. We used U.S. regional unit process data when possible 

and European unit process data when U.S. data was unavailable. Resource inputs to rice 

crop production included rice seed, fertilizers, pesticides, and fuel combusted during 
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farm-operations. Agrochemical applications were based on regimes recommended for CA 

rice production (Table S3.2) (Linquist et al. 2012b; Brodt et al. 2014; Espino et al. 2015; 

UCANR 2016). If pesticide and insecticide quantities were not specified in the literature, 

we assumed application rates corresponded to those recommended by product 

manufacturers. When LCIs for specific agrochemical compounds were not available in 

SimaPro databases, we selected proxies for these chemical compounds or their active 

ingredient(s) (Table S3.2) (Brodt et al. 2014). Fuel inputs of diesel and kerosene were 

estimated based on assumed field operations and associated fuel consumption rates found 

in the literature (Table S3.3) (Downs & Hansen 1998; Hanna 2005; Deliberto & Salassi 

2010; Brodt et al. 2014).  

Following rice crop production, we assumed rice grain was transported to a 

processing facility to be dried and milled. Milling generates co-products of rice hulls and 

bran. We assumed hulls were transported to a bioenergy facility, where they were 

converted to electricity, and bran was transported to a feedlot and used for cattle feed. 

Inputs of energy for transportation, drying, and milling were adapted from Brodt et. al 

(2014) (Table S3.3). Co-products from rice milling were accounted for in our rice LCIs 

via systems expansion (i.e. displacement) in accordance with ISO 14044 standards (ISO 

2006b). Rates of hull and bran production during milling and GHG emissions 

subsequently displaced from the hull-derived electricity and bran substituted for cattle 

feed were also adapted from Brodt et. al (2014).  
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Life cycle inventories: downstream methane 

Annual methane emissions were estimated using the PEPRMT model, a process-

based biogeochemical model that predicts CO2 and CH4 exchange in restored wetlands 

(Oikawa et al. 2017). We parameterized PEPRMT using 3 years of CO2 and CH4 eddy 

covariance data at a rice field in the Sacramento-San Joaquin River Delta, CA, reserving 

2 years of data for model validation (Figure 3.2). We then compared the validated the 

model to soil chamber CH4 flux data from Butte County collected in 2008 – 2009 in a CF 

rice system (Bossio 1999; Fitzgerald et al. 2000; Pittelkow et al. 2013; Pittelkow et al. 

2014; Simmonds et al. 2015). In accordance with conventional rice farming in the region, 

the PEPRMT model assumed the field was flooded from May 10 to Aug 20 at 12.7 cm 

above the soil surface. We assumed rice straw incorporation at 12 cm depth following 

harvest and off-season flooding from 20 October through 20 January to encourage rice 

straw decomposition (Bird et al. 2001; Brodt et al. 2014). Leaf area index (LAI) modeled 

in DSSAT was used as an input to the PEPRMT model. Meteorological model inputs (air 

temperature and radiation) were acquired from CIMIS in Durham. The model followed 

similar emission dynamics as the chamber data, however, consistently estimated CH4 

fluxes lower than those measured with chambers (slope = 1.92, intercept = 0.23, r2 = 

0.59, p < 0.001). We then used the parameterized and validated PEPRMT model to run 

AWD simulations for Butte county. For moderate and severe AWD scenarios, we 

assumed water table height reached 15 cm and 50 cm, respectively, during dry-downs. 

Using CIMIS meteorological data, we ran the model for the 9 years between 1985 – 2015 

during which all irrigation scenarios fit the filtering criteria. Again, LAI from DSSAT 
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was used to run PEPRMT. Mean values for annual CH4 flux across years were used for 

LCAs, as well values one standard deviation above and below the mean.  

 

Figure 3.2. PEPRMT model performance of (panels a & b) CH4 ecosystem exchange 

measurements collected at a rice paddy in the Sacramento-San Joaquin River Delta, CA, 

USA and (panels c & d) soil chamber CH4 flux measurements collected at a rice paddy in 

Butte County, CA, USA. The model was parameterized using 3 years of data (2012 – 

2014) collected in the Delta and validated using 2 years of data from the Delta (2015 – 

2016). Panel a shows daily observed and modeled CH4 ecosystem exchange rates for all 5 

years. Panel b shows model-data agreement based on validation years only (slope = 0.86, 

r
2 

= 0.44 p < 0.001). Cumulative CH4 fluxes predicted with PEPRMT during model 

validation years was similar to observed CH4 exchange (observed cumulative CH4 = 

24.96 g C-CH4 m
-2

; modeled = 29.02 g C-CH4 m
-2

). Panel c shows daily observed and 

modeled CH4 exchange rates are for 1 growing season in a continuously flooded field in 

Butte County. Panel d shows model-data agreement for the entire field season (slope = 

1.92, r
2 

= 0.59 p < 0.001). 
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Life cycle inventories: other downstream flows  

We modeled downstream emissions of N2O using an IPCC tier 1 model (De Klein 

et al. 2006). This model accounts for both direct and indirect emissions of N2O based on 

flood conditions, applied N, residue management, and changes in soil organic matter 

(SOM) content. We modeled N2O fluxes under AWD by scaling seasonal emissions 

predicted with the flooded rice emission factor and the non-flooded crop emission factor 

by the percentage of days the field was flooded and the percentage of days the field was 

dry, respectively. We used the standard tier one emission factors for flooded and non-

flooded systems, as well as their lower uncertainty limits, in order to capture uncertainty 

around N2O. Air pollutants from fertilizer applications classified as indirect GHGs (e.g. 

NOx, SOx, VOCs) were modeled using emission factors published by the European 

Environment Agency (EEA) (Hutchings et al. 2016).  

GHG emissions from use of diesel and kerosene were estimated using IPCC tier 1 

combustion models (Waldron et al. 2006). Published emission factors were used to 

estimate indirect GHGs produced by diesel combustion (SAEFL 2000; Winther et al. 

2016). These emissions were not modeled for kerosene as roughly 99% of kerosene is 

combusted as CO2 and H2O (Waldron et al. 2006). 

Life cycle impact assessment: characterization 

We characterized GWP in rice LCIs using the Tool for the Reduction and 

Assessment of Chemical and other environmental Impacts (TRACI 2 v. 3.03; 

Environmental Protection Agency, Washington DC, USA). TRACI models GWP on a 
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100-year time horizon based on the complied GHG inventories (Bare et al. 2003). A 100-

year time horizon assumes CH4 and N2O are roughly 25 and 298 times more potent than 

CO2, respectively. Characterization then allows expression of the overall warming 

potential on the basis of CO2 equivalents (CO2e) so results may be easily compared 

regardless of the variety and distribution of GHG sources in the life cycle.  

3.4 Results 

Crop model validation 

Modeled yields were with 10% of measured yields and generally followed the 

same patterns as measured yields across years except in 2007 and 2008, when modeled 

yields rose slightly while measured yields declined, and in 2012 when modeled yields 

decreased while measured yields increased. We tested for the source of discrepancies in 

these particular years, but no significant relationships were found between any of the 

weather parameter inputs to DSSAT and modeled yield or in the difference between 

measured and modeled yield.  
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Figure 3.3. Fit between modeled and measured yields across 13 weather years (2002 – 

2014). Panel (a) shows measured (filled markers) and modeled (open markers) yields by 

year. Most years, modeled yields followed the same patterns as measured yields. Panel 

(b) shows average measured yields for Butte county regressed against modeled yields.  

 

Grain yield under AWD 

Simulated yields were only significantly impacted in our most frequent and severe 

AWD scenarios. One-way ANOVA with multiple comparisons showed no significant 

difference between the average grain yields of CF, M1, M2, S1, and S2 scenarios across 

weather years (Figure 3.4a). Only our M3 scenario, which simulated three moderate mid-

season dry-downs, resulted in significantly lower average grain yields than simulated CF 

rice. However, yields varied significantly within treatments across years, which 

minimized significant differences across treatments. As we were more interested in the 

latter, we calculated annual adverse yield impacts by subtracting AWD yields from CF 

yields (Figure 3.4b). One-way ANOVA of adverse yield impacts across years revealed 
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significant yield reductions in both M3 and S2 scenarios, where simulated yields were 23 

± 10% and 10 ± 7% lower than CF yields, respectively.  

 

 

Figure 3.4. Average yields and adverse yield impacts across simulated years. Panel (a) 

shows average yields and standard deviations across weather years for each treatment. 

Here, asterisks denote where average yields across yields are significantly different from 

CF yields. Panel (b) shows average adverse yield impacts and standard deviations across 

weather years, determined as: [(CF yield – AWD yield) / CF yields] * 100. Here, 

asterisks denote where adverse yield impacts in AWD scenarios are significantly 

different from 0 given a 95% confidence interval. In both panels, red bands depict the 

   e me  ,  oxes disp  y  he  5’ h   d 75’ h pe ce  i e   o  d  he me  ,   d  ed do s 

indicate outliers. 

 

Field emissions of CH4 

 Methane emissions simulated in PEPRMT showed a lag in CH4 flux following 

initial flooding and re-flooding events. Both the number and duration of dry-downs 

influenced the magnitude of CH4 spikes following drainage events. Drainage-induced 
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dips in CH4 emission occurred within the dry-down window in severe AWD scenarios 

but persisted beyond the duration of the dry-down for moderate AWD scenarios. Overall, 

dry-downs reduced CH4 emissions, but the response was not always immediate and 

varied in magnitude depending on the timing, severity, and frequency of dry-downs.  

 

Figure 3.5. Daily CH4 flux simulated with PEPRMT across irrigation scenarios. The 

light blue shading indicates days when the field was flooded, while the white area 

indicates days when the field was drained. The grey band shows mean daily CH4 flux 

bounded by one standard deviation above and below the mean.  

 

Annual CH4 emissions modeled in PEPRMT were generally in good agreement 

with those previously reported for CA rice when managed with continuous flooding 

(Table 3.1). However, CH4 fluxes simulated in PEPRMT tended to be much higher for 

AWD managed rice than those reported from chamber studies in the United Sates. 

Annual CH4 emissions modeled in PEPRMT ranged from 88 – 150 kg CH4 ha
-1

 across 

irrigation scenarios (Table 3.1). Relative to CF rice, CH4 emissions simulated in 
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PEPRMT declined by 17, 30, and 46% in M1, M2, and M3 scenarios, respectively. More 

severe dry-downs increased mitigation of CH4 emissions at a given dry-down frequency, 

with S1 and S2 scenarios resulting in 22% and 41% lower annual fluxes than our CF 

scenario. Seasonal CH4 emissions were estimated to be roughly four to five times higher 

across treatments using the IPCC tier one model (Table 3.1).  

Table 3.1. Field emissions of CH4 from CF and AWD rice 

 

GWP across irrigation scenarios 

Cradle-to-mill GWP, expressed on an area basis, was 7 – 22% lower in AWD 

scenarios than in our CF scenario. Emissions declined with increasing frequency (7.2% at 

M1, 11.7% at M2, and 21.5% at M3) and severity (8.3% at S1 and 16.1% at S2) of AWD 

(Table 3.2). On a yield basis, the mitigation benefits of AWD were less straight forward 

(Figure 3.6). While most scenarios showed a decline in GWP kg
-1

, our M3 scenario 

 
Seasonal CH4 Emissions (kg CH4-C ha

-1
) 

 

   
Source CF M1 M2 M3 S1 S2 Study Location 

        Present study (PEPRMNT) 150 125 105 81 117 88 California, US 

Present study (IPCC Tier 1) 739 443 384 384 443 384 California, US 

LaHue et al (2016) 175 
 

75
a
 

   
California, US 

Linquist et al (2015) 105 
  

7
 a
 

 
8

 a
 Arkansas, US 

Brodt et al (2014) 262 
     

California, US 

Pittelkow et al (2013) 152 
     

California, US 

Hokazono & Hayashi (2012) 
  

190
 a
 

   
Japan 

Linquist et al (2012) 133 
     

Global average 

McMillan et al (2007) 252 
     

California, US 

Fitzgerald et al (2000) 203 
     

California, US 

        
a AWD w s c  ssified  s mode   e whe  d y dow s we e wi hi   he “s fe AWD”  h esho d   d  s severe when dried beyond 

this threshold. Actual AWD scheduling varied slightly form the treatments in the present study.   
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increased yield-scaled GWP by 4.2% relative to CF scenarios. The GHG-mitigation 

potential of other AWD strategies varied from 3 – 9%, with one moderate dry-down (M1) 

having to lowest mitigating affects and two moderate dry-downs (M2) having the highest.  

Table 3.2. Land area and yield-scaled GWP in the rice life cycle across scenarios 

 

GWP 
a
 GWP 

a
 

 

(Mg CO2e ha
-1

) (kg CO2e kg
-1

) 

   
   
CF 7.74 (7.0 – 8.5) 1.01 (0.9 – 1.1) 

M1 7.18 (6.5 – 7.9) 0.98 (0.9 – 1.1) 

M2 6.84 ( 6.3 – 7.4) 0.92 (0.8 – 1.0) 

M3 6.08 (5.6 – 6.4) 1.05 (0.8 – 1.1) 

S1 7.10 (6.4 – 7.8) 0.95 (0.9 – 1.0) 

S2 6.50 (5.0 – 7.0) 0.95 (0.8 – 1.0) 

   
   a mean (min – max across sources of uncertainty) 
b mean ± standard deviation  
    

 

When LCAs were modeled assuming yields one standard deviation above and 

below the mean, GWP was reduced by 10 – 12% and increased by 12 – 16%, 

respectively, across scenarios (Figure 3.6a). Yield uncertainty had modest impacts on the 

mitigation potential of M1, M2, and S1 scenarios, where both adverse yield impacts and 

uncertainty around yields were low. However, higher yield uncertainty around our M3 

and S2 scenarios had more notable impacts. In the case of our M3 scenario, GWP ranged 

from 2.1 to 6.9% higher than CF rice when modeled with upper and lower uncertainty 

limits for grain yield, respectively. GHG mitigation potential in our S2 scenario ranged 

from 2.4 to 8.7%, respectively.  
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Figure 3.6. Yield-scaled GWP for CF and AWD rice with uncertainty around four LCI 

inputs. Panel (a) shows variance in GWP assuming mean grain yields and one standard 

deviation above and below the mean for each treatment. Similarly, panel (b) shows GWP 

assuming mean annual CH4 flux and one standard deviation above and below the mean. 

Panel (c) shows LCAs assuming default tier 1 emission factors for N2O and lower 

uncertainty limits for these emission factors. Panel (d) shows GWP assuming no laser 

leveled (solid bar) and with laser leveling (white bar).  

 

Uncertainty around CH4 emission simulated with PEPRMT had a lesser effect on 

overall GWP but a greater effect on the mitigation potential of individual AWD 

scenarios. Assuming one standard deviation above and below mean CH4 emission 

modeled in PEPRMT, GWP varied by 6 – 10% across irrigation scenarios (Figure 3.6b). 

As the frequency and severity of AWD scenarios increased, uncertainty around annual 

CH4 emission declined and, as a result, mitigation potential grew more variable. In the 

most extreme case, the GWP of our M3 scenario ranged from 0.1% to 10% higher than 

CF rice when assuming the upper and lower uncertainty limits for CH4 emissions, 
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respectively. In our M2 and S2 scenarios, mitigation potential of AWD relative to CF 

varied between 7 – 11% and 3 – 8%. Despite higher uncertainty around CH4 emissions, 

the mitigation potential of M1 and S1 scenarios was impacted by < 0.4%. 

In the case of N2O, o  y  he  owe    ce   i  y  imi s fo   he IP  ’s N2O emission 

factors were considered, as N2O modeled with the default emission factor greatly 

exceeded previously published measurements of N2O in rice systems (Table S3.4). 

Assuming these reduced emission factors, GWP declined by 4% in CF rice and as much 

as 9% in AWD scenarios (Figure 3.6c). Increasing frequency and severity of AWD 

resulted in greater reductions in GWP. As a result, the mitigation potential of AWD 

scenarios rose by roughly 1 – 5%. In our M3 scenario, this translated to a GWP 1% lower 

 h    h   of  F  ice, comp  ed  o    WP 4% highe   ss mi g  he IP  ’s def     N2O 

emission factor.  

Among fuel-consumptive processes, laser leveling posed the greatest demands on 

fuel use. For continuously flooded rice and AWD scenarios with similar modeled yields 

(M1, M2, S1), GHG emissions attributed to fuel combustion during leveling contributed 

to < 5% of overall GWP (Figure 3.6d). However, in M3 and S2 scenarios, GHG 

emissions from laser leveling comprised 25 and 11% of GWP, respectively. Assuming no 

leveling, GWP in our M3 scenario was only 2% higher than in CF rice and the mitigation 

potential of our S2 scenario rose from 6 to nearly 9%. The mitigation potential of M1, 

M2, and S1 scenarios also rose when no laser leveling was assumed, but by < 1%.  
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Contributions to rice GWP  

 Methane emissions constituted 88 – 95% of GWP from all field emissions in our 

continuously flooded rice model and 74 – 93% of GWP from field emissions in AWD 

scenarios, where field emission constitute volatile losses of N2O and CH4 resultant from 

soil biogeochemical fluxes during crop production. These field emissions constituted 

only 36 – 51 % of total life cycle GWP, reducing the contribution of CH4 to 27 – 49% of 

total rice GWP. Roughly a quarter of life cycle GWP was derived from fuel combustion 

of diesel and kerosene during rice production and transport (Table S3.5). Upstream 

GHGs from fertilizers and pesticides constituted 14 – 21% and 2 – 4% of GWP, 

respectively. Downstream GHGs from fertilizer were included in field emissions, and 

constitute the vast majority of N2O emissions. The remaining 10 – 15% of GWP was 

derived from drying and milling .  

3.5 Discussion 

Overall, we found AWD to be a moderately effective practice for reducing the 

GWP of California rice. Mitigation of CH4 emissions in AWD scenarios modeled in 

PEPRMT was somewhat modest, and these benefits were further muted through inclusion 

of all GHGs in the rice life cycle. Field emissions of CH4 and N2O comprised less than 

half of life cycle GWP kg grain
-1

, effectively halving the benefits of AWD reported based 

on field emissions alone. Simulated yields were not significantly reduced under AWD 

when dry-downs were moderate or infrequent, but were adversely impacted when dry-

downs where frequent and severe. In these cases, adverse yield impacts negated some or 
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all of the CH4 mitigation benefits of AWD when GWP was evaluated on a yield-scaled 

basis. Together, these factors led to modest benefits from AWD, suggesting the GHG 

mitigation potential of this irrigation strategy may be less than previously reported when 

assessed from a life cycle perspective.  

Life cycle GWP of CF and AWD rice 

Despite the contributions of global rice production to the GHG-footprint of 

agriculture, few LCAs of rice have been conducted (Blengini & Busto 2009; Keatinge et 

al. 2012; Hokazono & Hayashi 2012; Thanawong et al. 2014; Brodt et al. 2014). Of these 

limited assessments, only one was conducted for California rice, which evaluated cradle-

to-mill emissions for medium grain rice under CF (Brodt et al. 2014). Using average field 

emissions of CH4 and N2O aggregated from 8 studies across 6 sites, this study reported a 

GWP of 1.47 kg CO2 eq kg milled rice
-1

. Our study found the GWP of CF rice to be 

lower (~1.01 kg CO2 eq kg milled rice
-1

 at comparable N fertilizer rates), largely due to 

differences in seasonal CH4 emissions (Table 3.1). Other published LCAs of rice are 

based on production systems with substantially lower yields and varying management 

practices, which limits direct comparison of emissions reported on a land area basis (ha
-1

) 

(Blengini & Busto 2009; Keatinge et al. 2012; Hokazono & Hayashi 2012; Thanawong et 

al. 2014). 

 Although no LCA considering both CF and AWD rice have been undertaken, 

several studies have characterized the mitigation potential of AWD based on field 

emissions of CH4 and N2O. Expressed on a land area basis, we saw a more modest 
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decline in GWP under AWD than chamber studies have reported. When GWP was scaled 

by grain yield, the mitigation potential of AWD was further reduced. We found AWD to 

mitigate no more than 9% of GWP kg
-1

 on average, 11% when uncertainty around yield, 

CH4, N2O, and fuel were considered. In our M3 scenario, where simulated yields were 

most adversely impacted, GWP tended to increase relative to CF rice. Three factors 

contributed to the modest response of GWP to alternate wetting and drying in our study: 

adverse yield impacts simulated for some AWD scenarios, the relatively modest response 

of annual CH4 emissions to AWD simulated in PEPRMT, and the cradle-to-mill scope of 

our analysis.  

Yield impacts across scenarios 

AWD did not significantly impact grain yields in our M1, M2, or S1 simulations, 

however, our more frequent and severe schedules resulted in notable yield reductions. 

Relative yield stability in moderate and/or infrequent AWD schedules and moderate yield 

reduction simulated in our S2 scenarios are in relatively good agreement with previously 

reported values (Linquist et al. 2015; Carrijo et al. 2017). However, our M3 scenario 

suffered a much higher yield penalty than those typically reported from field studies 

  de  “s fe” AWD, whe e soi  VW   em i s > 60% above below saturation (Linquist et 

al. 2015; Carrijo et al. 2017). These adverse yield impacts are particularly important as 

they substantially influence yield-scaled GWP. From a global perspective, assessing 

GWP on a yield basis is more appropriate, as declining yields ultimately must be 

compensated for by planting more land area to meet production demands. Although CH4 
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emissions declined by nearly half in our M3 scenario, yield-scaled GWP increased 

relative to CF rice. Notably, M3 yields simulated in our model showed the highest 

variability across weather years and the highest variability in year-by-year adverse yield 

impacts relative to CF simulations, suggesting high yield uncertainty for this scenario. 

However, even when uncertainty around yield was considered, GWP was higher for our 

M3 scenario than for CF rice. These results emphasize the importance of adverse yield 

impacts in determining of the migratory benefits of AWD from a global perspective.  

Simulated field emissions of CH4 and N2O  

CH4 emissions from CF rice modeled with PEPRMT were within the observed 

range for continuously flooded CA rice (Table 3.1), but sparse data exist to characterize 

CH4 emissions typical of AWD rice. When compared with studies reporting CH4 flux for 

CF and AWD treatments, our results showed relatively modest declines in CH4 flux for 

AWD rice. A study of AWD in Arkansas reported a 48% decline in CH4 emissions ha
-1

 

under moderate AWD and 93% decline under severe AWD (Linquist et al. 2015), 

reductions more than double those observed for corresponding scenarios in our study. In 

California rice, moderate AWD with two dry-downs reduced CH4 ha
-1

 by 60% relative to 

CF (LaHue et al. 2016), exactly twice the reduction observed in our M2 scenario. 

Hokazono & Hayashi reported CH4 emissions under one moderate dry-down higher than 

those modeled in our study, but the lack of a CF reference scenario makes it difficult to 

corroborate agreement between this study and our own. CH4 emissions determined using 

the IPCC tier 1 model were roughly 2 – 3 times higher those derived from PEPRMT, but 

did tend to simulate greater emission reductions under AWD. However, this model has 
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been previously shown to overestimate emissions in CA rice systems by two-fold (Brodt 

et al. 2014). Further, the IPCC model assumes emissions decline by 40% with one mid-

season dry down and 48% with > 1 mid-season dry-down without sensitivity to dry-down 

severity (Lasco et al. 2006). Overall, our study suggests much lower CH4 mitigation 

potential than previous studies and the current IPCC model.  

Differences in CH4 mitigation under AWD arise from large uncertainties in 

seasonal CH4 flux modeling. Field studies of AWD have used weekly chamber 

measurements of CH4 flux to extrapolate annual fluxes. Though most studies increase 

their sampling frequency before and after significant management events, such as 

fertilization and drainage, biogeochemical fluxes can be large and transient, like pulses, 

as well as lag in their response to these events, making this sampling scheme insufficient 

for capturing seasonal flux dynamics (Knox et al. 2016; Sturtevant et al. 2016). Seasonal 

fluxes are typically extrapolated using linear interpolation between sampling periods, 

which can fail to adequately capture these pulse dynamics (Pittelkow et al. 2014; 

Adviento-Borbe et al. 2015; Linquist et al. 2015; LaHue et al. 2016). Further, both 

sampling locations and sample size for flux measurements are limited in most studies. 

These chamber measurements effectively provide only a snapshot of activity, which 

varies in both space and time. As CH4 pulses evolve rapidly, these measurements are 

equally likely to capture the beginning or end of a CH4 pulse as they are to capture the 

peak of the pulse (Knox et al. 2016). Accordingly, this method may under- or 

overestimate annual fluxes relative to eddy covariance data, even when fit between 

chamber and eddy covariance measurements is good (Schrier-Uijl et al. 2010). 
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Beyond pulse emissions of CH4 following dry-downs, results from the PEPRMT 

model suggest lags between soil water status and biochemical responses of CH4 

emissions. Lagged responses to dry downs are likely caused by changing redox states in 

the soil. Immediately following a dry down, oxygen re-enters the soil profile allowing 

methanogens to be out-competed. It may take several days for redox conditions to change 

from anaerobic to aerobic, especially if the dry-down is moderate and short-lived. The 

presence of these pulses and lags in CH4 flux response suggest high temporal resolution 

data is required to capture complex flux dynamics. Unfortunately, there is not sufficient 

eddy covariance data to validate the model at high temporal resolution for Butte county 

rice and our modeling comparison with chamber data indicate that the chambers 

measured significantly higher fluxes than estimated using PEPRMT. It is common for 

chamber data to overestimate CH4 and CO2 fluxes. However, parameterization of 

PEPRMT in a rice paddy in the Sacramento Delta showed good fit to eddy covariance 

data for CH4 flux (r
2
 = 0.44). The significant contrast between CH4 mitigation modeled in 

PEPRMT versus that modeled from chamber measurements highlight the need for high 

resolution CH4 flux data to better characterize the mitigation potential of AWD. 

N2O played a much smaller role in determining GWP than CH4, constituting 

roughly 5 – 15% of GWP across scenarios. Nonetheless, these emissions were more 

significant in our assessment than in previous studies of AWD. We calculated N2O fluxes 

using an IPCC tier 1 model, which assumes 1% of all N applied to the soil is lost as N2O 

when the soil is dry and 0.3% is lost when the soil is flooded (De Klein et al. 2006). N2O 

emissions modeled in our study exceeded previously reported values by nearly an order 
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of magnitude (Bossio 1999; Fitzgerald et al. 2000; Redeker et al. 2000; McMillan et al. 

2007; Adviento-Borbe et al. 2013; Pittelkow et al. 2013; Pittelkow et al. 2014; Simmonds 

et al. 2015). Overestimation of N2O emissions in the present study may underestimate the 

advantages of AWD, as N2O emissions increase with increasing frequency and severity 

of AWD. When we assumed the lower uncertainty limit of default IPCC emission factors, 

modeled N2O emissions were more similar to previously reported values. This 

assumption increased mitigation benefits for AWD.  

Scope of analysis: a life cycle perspective 

Together, field emissions of CH4 and N2O constituted less than a half of yield-

scaled GWP in our study. Previous LCAs of rice report higher contributions from field 

emissions, ranging from 62 – 68% of GWP (Blengini & Busto 2009; Brodt et al. 2014; 

Thanawong et al. 2014). Lower contributions of field emissions in our study may be 

attributable to slightly lower CH4 emissions, but are more likely due to differences in 

emissions derived from alternative sources in the life cycle. Non-field emissions 

generated 0.33 – 0.51 CO2 eq kg milled grain
-1

 in our study, compared to 0.45 CO2 eq kg 

milled grain
-1

 in Brodt et al (2014). However, fuel was a larger source of GHGs in our 

study, with fuel consumed during laser leveling accounting for more than half of total 

fuel use (Figure S3.5).  

Omitting fuel consumed during laser leveling increased the mitigation benefits of 

AWD, particularly for our more frequent and severe schedules. Although fuel inputs were 

consistent across irrigation scenarios, M3 and S1 scenarios showed the greatest adverse 
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yield impacts. Therefore, when GWP was assessed on a yield-basis, more fuel was 

required to achieve 1 kg grain for these scenarios. In our uncertainty analysis, reduced 

fuel use had an impact roughly equivalent to that of reduced N2O emissions on life cycle 

GWP, suggesting these lesser acknowledged GHG sources can play an important role in 

determining mitigation benefits of AWD rice. While AWD has been estimated to reduce 

field emissions of CH4 by anywhere from 40 to upwards of 90%, field emissions 

constituted only 1/3 – ½ of total GWP in our study. Thus, when AWD is considered from 

a life cycle perspective, its mitigation potential is less than half that reported from field 

emissions alone. This context is particularly important from a global perspective, where 

milled rice, rather than fresh rice, is the desired commodity on which markets are based. 

Synthesis 

The American Carbon Registry recently made AWD eligible for carbon credits (CARB 

2014), but our results suggest that the benefits of AWD have not been adequately 

assessed. Using high resolution gas flux modeling in a life cycle assessment framework, 

our study revealed more modest mitigation benefits from AWD than have been 

previously reported based on manual chamber measurements of emissions. Life cycle 

assessment is an important tool for evaluating the GWP of rice from a comprehensive and 

globally relevant perspective. Adverse yield impacts, conservative differences in CH4 

emissions across irrigation strategies modeled in PEPRMT, and GHG contributions from 

alternative sources in the rice life cycle drove these modest differences in GWP. Further 

improvements to CH4 emission estimation in rice systems is needed, but our results 
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suggest the mitigation potential of alternate wetting and drying has been overestimated. 

Both high resolution gas flux data and a life cycle perspective are required to ensure 

effective mitigation of GWP in rice systems. 
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3.7 Supporting Information 

Table S3.1. Mean RMSE across counties, of DSSAT and Degree Day model predictions 

of phenological transitions across 12 planting dates and 30 weather years under optimized 

phenological parameters expressed in days after planting (DAP).  

 

 

Table S3.2. RMSE and percent difference of reported and modeled yields, averaged 

across years. 

 

  

Phenological 

transition  

(DAP) 

Planting date   

 
                       20-

Apr 

25-

Apr 

30-

Apr 

05-

May 

10-

May 

15-

May 

20-

May 

25-

May 

30-

May 

04-

Jun 

09-

Jun 

14-

Jun 
Avg 

              
                           

Juvenile to panicle 12.3 9.2 7.6 4.6 3.2 0.7 1.5 1.9 2.1 2.8 2.1 3.9 4.3 

Panicle to heading 7.7 6.1 1.2 2.0 1.1 2.4 4.0 4.1 3.8 5.1 4.6 5.6 4.0 

Heading to maturity 9.7 8.1 4.8 4.0 3.4 3.5 4.0 4.0 4.0 4.7 4.9 5.6 5.1 

              

    All transitions 10.9 8.7 6.4 4.7 3.2 2.2 2.5 2.8 2.8 3.0 2.9 3.7 4.5 

 

 Grain yield (Mg DW ha
-1

) 

Data source 
Butte Colusa Yuba All counties 

Mean (sd) 

     
 Reported yields 

a
 10.50 (0.88) 10.92 (0.91) 10.05 (0.99) 10.49 (0.92) 

 Modeled yields  10.78 (0.74) 10.91 (0.58) 10.89 (0.66) 10.84 (0.68) 

% Difference 2.63% -0.08% 8.07% 3.26% 

      
a Averaged across all reporting locations in each county   
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Figure S3.1. Soil VWC filtering criteria for irrigation schedules. Data are shown for all 

compliant years and both counties. Dotted black lines show the upper and lower limits of 

the applied filtering criteria for mid-season dry downs. Limits were 0.28 – 0.34 and 0.21 

– 0.25 cm
3
 cm

-3
 for mild (M) and severe (S) AWD schedules, respectively. Fertilizer 

events are denoted by grey triangles. Floods were maintained > 14 days post-fertilization. 

Red triangles denote the average date of canopy closure across fertilizer treatments. 

When possible, flooding was maintained until canopy closure. 
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Table S3.2. Assumed agrochemical inputs to rice production  

 

Agrochemical 
Active 

ingredient 

SimaPro LCI 

input 
Base Qnt Add Qnt

 a
 

Details & sources 
(kg ha

-1
) 

Fertilizers 

  Aqua 

  ammonia 
82% N 

ammonia, 

liquid 
40 – 145 kg N ha

-1
 

1 pre-plant application to 100% 

of ha, injected at 10 cm depth 

prior to the initial flood (Espino 

et al., 2015) 

  MAP 
16% N & 

20% P 

mono-

ammonium 

phosphate 

35 kg N ha
-1

 

1 application to 100% of ha, 

broadcast prior to the initial flood 

(Brodt et al., 2014) 

  Potash N/A 
potassium 

chloride 
56 kg K2O ha

-1
 

1 application to 100% of ha, 

broadcast prior to the initial flood 

(Brodt et al., 2014) 

  Zinc sulfate N/A 
zinc mono-

sulfate 
16.82 kg ZnSO4 ha

-1
 

1 application to 50% of ha, 

broadcast prior to the initial flood 

(Espino et al., 2015) 

  Ammonium 

  sulfate 
N/A 

ammonium 

sulfate 
0 – 50 kg N ha

-1
 

0 – 1 application to 100% of ha, 

broadcast aerially mid-season 

(Espino et al., 2015) 

Pesticides & Insecticides 

  Bolero 
84% 

theobencarb 

[thio]carbamate 

compounds 
83 83 

1 – 2 applications to 100% of ha 

(Espino et al., 2015) 

  Warrior 

11.4% 

lambda-

cyhalothrin 

pyretroid 

compounds 
0.12 

 

1 application to 15% of ha and 

one to 5% of ha (Espino et al., 

2015; UCANR, 2016) 

  Copper 

  sulfate 

99% CuS 

pentahydrate 

copper oxide 0.45 
 1 application to 20% of ha, 

assumes 1.01 kg CuS, adjusted 

for each compound by molecular 

weight (Espino et al., 2015) sulfuric acid 0.55 
 

  Regiment 

80% 

bispyribac 

sodium 

benzoic 

compounds 
0.07 0.04 

1 – 2 applications to 100% of ha 

and 1 application to 80% of ha 

(Espino et al., 2015) 

  Tank mix 

70% 

propanil 
propanil

 b
 5.08 

 1 application to 100% of ha, 

assumes 13.45 l ha
-1

 tank mix 

(Espino et al., 2015) 25.2% 

theobencarb 

[thio]carbamate 

compounds 
117  

a For fertilizers, a range of application rates is provided instead of base and additional quantities, as fertilizer inputs of aqua ammonia and 
ammonium sulfate varied across scenarios based on cumulative N rate simulated. For pesticides, additional quantities refer to supplemental 

pesticide applications required for AWD scenarios in which the first dry-down occurs prior to canopy closure. 

b The propanil LCI was modeled based on stoichiometric relationships of compounds required for propanil synthesis. This inventory does not 
account for enzymes required for synthesis, by-products generated during  synthesis, storage materials, or transport to a regional storehouse. 
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Table S3.3. Assumed field and rice processing operations and associated their energy 

inputs  
 

 

Operation 
Energy input  

(L, therm, or kWh ha
-1

) 
Details & sources 

Rice production 

  transport diesel 1.72 agrochemicals & rented equip to field (Brodt et al., 2014) 

  chisel diesel 20.58 chisel plough, twice (Hanna, 2005) 

  disc diesel 18.2 4WD tractor (Brodt et al., 2014) 

  disc diesel 12.16 tandem disc, twice (Hanna, 2005) 

  level diesel 288.85 precision grading (Deliberto & Salassi, 2010) 

  rolled diesel 3.27 rolling cultivator  (Downs & Hansen, 1998) 

  fertilizer app  diesel 5.14 injected, 100% of ha (Hanna, 2005) 

  fertilize app  diesel 1.40 broadcast, 100% of ha (Hanna, 2005) 

  planting kerosene 4.95 water seeding (Brodt et al., 2014) 

  herbicide app  kerosene 1.12 
a
 aerial, grass herbicide to 100% of ha (Brodt et al., 2014) 

  pesticide app kerosene 0.19 aerial, pesticide to 15% of ha (Brodt et al., 2014)  

  pesticide app kerosene 0.90 aerial 20%, pesticide to 20% (Brodt et al., 2014) 

  herbicide app kerosene 1.03 
a
 aerial, grass & broadleaf to 100% (Brodt et al., 2014) 

  herbicide app kerosene 1.12 aerial, clean-up to 100% (Brodt et al., 2014) 

  herbicide app kerosene 1.03 aerial, grass & broadleaf to 80% (Brodt et al., 2014) 

  fertilize app kerosene 2.01 aerial, 50% of ha (Brodt et al., 2014) 

  pesticide app kerosene 0.06 aerial, pesticide to 5% of ha
 
(Brodt et al., 2014) 

  pesticide app kerosene 0.82 aerial, pesticide to 80% of ha (Brodt et al., 2014) 

  harvest diesel 9.35 small grain combine (Downs & Hansen, 1998) 

  mow levees diesel 51.4 flail  mow (Brodt et al., 2014) 

  chop stubble diesel 13.7 utility tractor (Brodt et al., 2014) 

  disc diesel 18.2 4WD tractor (Brodt et al., 2014) 

Rice transport and processing 

  transport diesel 8.23 grain to drying facility (Brodt et al., 2014) 

  drying  natural gas 38.96 heating (Brodt et al., 2014) 

  drying electricity 539.30 heating & mechanical operation (Brodt et al., 2014) 

  milling electricity 315.80 90% white, 10% brown (Brodt et al., 2014) 

  transport diesel 2.86 co-product transport 

    
a Reflects the minimum energy inputs for these operations. In rice management scenarios requiring additional herbicide inputs, these inputs 
were doubled.  
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Table S3.4. Field emissions of N2O from CF and AWD rice 

 

Table S3.5. Percent of cradle-to-mill GWP kg dried grain
-1

 from non-field emissions  

 

Fuel Fertilizer Pest 
Milling & 

Drying 

     CF 21 14 2 12  

M1 23 16 3 11 

M2 24 18 3 13 

M3 27 21 4 10 

S1 23 17 3 13 

S2 25 20 3 15 

      

  

 
Seasonal N2O Emissions (kg N2O ha

-1
) 

 

   
Source CF M1 M2 M3 S1 S2 Study Location 

        Present study (IPCC Tier 1) 1.65 1.90 2.15 2.40 2.03 2.40 California, US 

LaHue et al (2016) 0.10 
 

0.14
a
 

   
California, US 

Linquist et al (2015) 0.01 
  

0.23
 a
 

 
0.51

 a
 Arkansas, US 

Brodt et al (2014) 0.31 
     

California, US 

Pittelkow et al (2013) 0.65 
     

California, US 

Hokazono & Hayashi (2012) 
  

0.95
 a
 

   
Japan 

Linquist et al (2012) 0.44 
     

Global average 

        
a AWD w s c  ssified  s mode   e whe  d y dow s we e wi hi   he “s fe AWD”  h esho d   d  s severe when dried beyond 

this threshold. Actual AWD scheduling varied slightly form the treatments in the present study.   
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