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Analysis of Intelligent Vehicle Technologies to Improve 
Vulnerable Road Users Safety at Signalized Intersections 

EXECUTIVE SUMMARY 

As advanced vehicle technologies enter transportation systems, e.g., sensor technologies in 
personal vehicles, freight trucks, and other users (e.g., vulnerable road users, VRUs), we have 
more reliable solutions to improve safety of all traffic agents, especially VRUs. Moreover, it is 
reasonable to assume that the incoming 5G Era would help mitigate telecommunication 
challenges for some of these advanced intelligent vehicle technologies (IVTs). Therefore, we 
need to know how these IVTs can improve VRU safety in different environments and conditions 
(e.g., sight distance and traffic flow) at signalized intersections. Moreover, there are technical, 
operational, and financial differences between the various IVTs, and there are limited studies 
about their adoption rate on safety improvement. To address these knowledge gaps, we 
combine aggregate historical crash data analysis and microscopic traffic simulation to examine 
the safety impacts of four IVTs. Most importantly, we develop an empirical microsimulation 
tool to quantify the safety impacts of these IVTs.  

For the statistical analysis on historical aggregate crash data, we study the risk factors on crash 
injury severity for VRU-related crashes at signalized intersections in cities in California. Data 
from the cities with high crash rankings given by the Office of Traffic Safety (OTS) were 
compiled using a five-year statewide dataset from the California Statewide Integrated Traffic 
Records System (SWITRS). Multinomial logit (MNL) models were performed on injury severity, 
and interaction terms with movements preceding collision were also modeled to identify typical 
collision types for crashes involving pedestrians and bicyclists. The differences in factors in the 
scenario models were also analyzed for different VRU-driver movement combinations. The 
research yields three impactful results: 1) The severity of pedestrian accidents in rainy weather 
overall is unlikely to become more serious, and the odds ratios (OR) of the severity of bicycle 
accidents also do not change significantly. Compared to VRU crashes where through traffic 
vehicles were involved, the OR of severe and fatal crashes in right-turn cases decrease, showing 
that turning movements are less likely to be associated with fatal crashes. 2) The OR of severe 
or fatal accidents between pedestrians and bicycles significantly increases at night (with street 
lights) compared to daytime, which means that the lack of light conditions increases the 
probability of a severe VRU crash. 3) In terms of demographics of crash parties, there is a 
significant correlation with males at-fault in accidents with increased severity of VRU injuries, 
and VRU crashes in the high age group are more likely to be fatal. Most importantly, we 
summarize seven critical crash types for the following micro-level traffic safety simulation.  

For the traffic safety simulation part, we mainly complete two tasks, including 1) to amend and 
modify the parameter setting of the junction model of the Simulation of Urban Mobility 
(SUMO) engine to simulate the real-world vision acuity and wireless communication process 
which is essential in IVTs; 2) to implement crash simulation by using the amended parameters 
of ITVs. What is innovative of the simulation tool is that it has taken human and environmental 
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factors in the real world such as visual acuity, weather, and the inevitable wireless 
communication error of the IVTs. The simulation tool is then contributing to the methodology 
of crash simulation by providing a new perspective to simulate crashes in the software which 
was supposed to be accident-free in previous studies. Through the simulation we find that 
Intersection Safety (INS) is empowered to be the most efficient technology to significantly 
reduce average collision counts for passenger cars under all seven collision types of interest. 
Blind Spot Detection (BSD) has the most minimal effects on those types. The safety 
improvement of VRU Beacon Systems (VBS) and Bicycle/Pedestrian to Vehicle Communication 
(BPTV) are between INS and BSD. If we compare different type of collisions, all IVT can reduce 
the collision probability more when the collisions happen as vehicles make turns (left and right). 
In addition, the safety impacts of one of the IVT are also different between passenger cars and 
trucks. VBS, BPTV, and INS are more efficient to reduce collision happening right in front of 
trucks since there are blind spots in front of trucks. In the end, we conduct sensitive analyses of 
sight distance and traffic volume on the safety impacts of four IVT. Results show that under a 
certain threshold of sight distance, IVT can significantly reduce the collision probability and IVT 
can still improve safety under good sight condition if collisions happen in front of vehicles. In 
the sensitivity test for traffic volume, we set four different level of traffic volume, i.e., low, 
medium, high, and extremely high. INS and BPTV can reduce 100% collisions from medium to 
extremely high traffic conditions for most collision types simulated. However, for some collision 
type, INS and BPTV can only reduce around 50% of collision at extremely high traffic volume 
conditions. 

Over, our research develops a novel traffic safety evaluation framework, which is based on 
mirroring real-world vision acuity and IVT implementation. Our simulation results also find the 
best working condition (e.g., sight distance, traffic volume, and intersection shape) for four 
different IVT. The analysis of these technologies can help both public and related stakeholders 
to better understand how different IVT will improve the safety of cyclists and pedestrians under 
various conditions at intersections. Thus, this research will eventually promote the adoption of 
IVT in future transportation scenarios. The research could inform State agencies such as 
Caltrans, and local (metropolitan) planning organizations about how to develop various IVT and 
would have implications for improving the mobility of people and goods.  
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Introduction 

Fatalities from motor vehicle crashes lead all accident deaths in the US, with a great economic 
loss (NHTSA 2018). There were 6,205 pedestrians and 843 bicyclists killed in 2019 and 
approximately 76,000 pedestrians and 49,000 bicyclists injured in motor vehicle crashes on 
public roadways in the U.S. (NHTSA 2017). Moreover, in California, 27.2% (982) of all reported 
crash-related fatalities were VRU (“Pedestrians and Bicyclists” n.d.). In this research, the term 
VRU is used mainly to describe road users unprotected by an outside shield, which mainly 
contain pedestrians and bicyclists. 

Often, crashes involving VRU occur at intersections. There are four main categories factors 
influencing crashes between vehicles and VRU: crash parties’ demographics, drivers’ behavior, 
intersection condition, and weather. Habibovic and Davidsson (2012) used the SafetyNet 
Accident Causation System (SNACS) to create an aggregated causation chart for VRU as well as 
for different intersection types, injury severity levels, and trajectory types. They found that 30% 
of VRU had visual obstructions before the crashes, and many would have benefited from active 
safety systems to avoid misunderstanding the traffic conditions or making inadequate actions. 
Besides crashes at intersections, Robartes and Chen (2017) analyzed general crashes between 
vehicles and cyclists. Among all factors, the intoxication of both drivers and cyclists could hugely 
influence the severity of cyclists’ injuries. Additionally, other factors, such as bicycle and 
automobile speeds, obscured automobile driver vision, vehicle types (SUV, truck, and van), and 
road design, would increase the probability of more severe bicyclist injuries.  

Silla et al. (2017) further quantitatively analyzed the influence of five intelligent transport 
systems in terms of decreasing motor vehicle VRU related crashes. Among all the systems 
examined, Bicycle to Vehicle Communication (B2V) shows the highest impact on safety since it 
can cover all potential accident conditions. They also highlight the importance of technology 
adoption rates as a critical factor for their safety improvement potential. Patil (2016) and Ellen, 
Pace, and Yoon (2015) studied the adaptation of Vehicle to Bicycle (V2B) communication 
technologies in the real world. Their study shows that cyclists are willing to equip their bicycles 
with specific technology considering the potential improvement of personal safety.  

As reflected by the literature, several sensor technologies in personal vehicles, freight trucks, 
and other users (e.g., VRU) could help improve safety. Moreover, it is reasonable to assume 
that the incoming 5G Era would help mitigate telecommunication challenges for some of these 
advanced IVTs. Therefore, we need to know how these IVTs will affect VRUs’ safety in different 
environmental and system conditions (e.g., sight distance and traffic flow) at signalized 
intersections. Moreover, there are technical, operational, and financial differences between the 
various IVTs, and there are limited studies about their adoption rate on safety improvement. To 
address these knowledge gaps, we combine aggregate historical crash data analysis and micro 
transportation simulation to examine the safety impacts of four different IVTs on VRUs’ safety. 
Most importantly, we develop an empirical microsimulation tool to quantify the safety impacts 
of these IVTs on VRUs. The microsimulation tool has taken human and environmental factors in 
the real world such as visual acuity, weather and the inevitable wireless communication error of 
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the IVTs, and is then contributing to the methodology of crash simulation by providing a new 
perspective to simulate crashes in the software which was supposed to be accident-free.  

Literature Review 

This section summarizes current related research from three aspects: 1) studies on IVTs; 2) VRU 
safety analysis at intersections; and 3) traffic simulation as a safety evaluation tool. 

Related Work on IVTs 

Generally, IVTs cover a wide range of technologies based on a variety of origins and innovations 
that require research from different disciplines. Specifically, the IVTs studied in this research 
refer to 1) Blind Spot Detection (BSD), 2) VRU Beacon System (VBS), 3) Bicycle/Pedestrian to 
Vehicle Communication (BPTV), and 4) Intersection Safety (INS). With the consideration of the 
undermentioned four types of IVTs, we can summarize the previous research and studies into 
four aspects, namely vision extension, sensing, communication and inference ability. Table 1 
shows the review of the four IVT and the summary of their corresponding theory, advantages 
and disadvantages from previous research.  

Studies on VRU Safety at Intersections 

In terms of traffic safety evaluation and research at intersections, most of the previous research 
is divided into three categories. The first is to use historical surveys, traffic accident reports and 
other data for macro statistical modeling, such as logit models. The second is to use 
microscopic traffic simulation to study safety measures such as time to collision (TTC) and post 
encroachment time (PET) to evaluate traffic safety at intersections. The third is to invite 
volunteers to conduct driving simulator experiments to obtain measured data for research. 
Table 2 shows the review of these three categories of related work regarding intersection traffic 
safety.  

Traffic Simulation as a Safety Evaluation Tool 

Traffic simulation, as quantitative tools that use complex software whose development can be 
facilitated by considering a multi-agent approach (Doniec et al. 2008), is able to reproduce real 
traffic phenomena using a variety of models, such as car-following models, behavior/mental 
models and other micro level simulation models. As stated in Table 2, the previous research 
and analysis of traffic safety is mostly based on statistical models that use macro level crash 
data. However, the dependence on historical and empirical data limits the ability to consider 
the risks connected with many risky traffic scenarios such as those that would lead to potential 
crashes (Astarita et al. 2021), and could not provide quantitative results that can predict the 
safety trends when new scenarios are set in the future.  

Amid the development and iterations of different traffic simulation software, the burgeoning 
and improvements of different traffic simulation models showcase the essence of maturity of 
simulation models. For one thing, in 1997, Lieberman and Rathi proposed a highway traffic 
simulation model using car-following models, which include differential equations that are 
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obtained empirically. Since then, most of the microscopic simulations that consider each traffic 
agent (vehicle, bicycle and pedestrian) use various car-following models to allow each traffic 
agent to move and cross the intersections in a virtual queue. For another thing, behavioral 
approaches has also emerged to serve as useful models that consider traffic as an emerging 
phenomenon resulting from actions and interactions of the various traffic agents (Doniec et al. 
2008; Heinovski et al. 2019).  

Considering the context of our project, behavioral models plainly manifest the interactions 
between vehicles and VRU in microscopic simulation, which is a preferred approach for the 
project. Kitajima et al. (2019) developed a multi-agent simulation model that combines the use 
of these two approaches. Innovatively, the authors define the driving process as a three-stage 
(perception & recognition, decision making, and action) one and integrate driver diversity and 
error models into the process. This hybrid approach significantly reduces the complexity of a 
scheme of behavioral models only and utilize the traditional car-following models.  

Among the three stages of a driving process, perception and recognition serve as the most 
important part as the results of perception and recognition are the basis of decision making. 
Perceptual range, which has been demonstrated to influence the relative speed of self-motion 
by visual information (Larish and Flach 1990), works as a very important part for vehicle 
perception phase throughout the driving process, and it has different definitions and coverages 
with or without the introduction of IVT. In manual driving scenarios, perceptual range mostly 
count for visual information obtained by a driver, which is called field of view, line of sight and 
visual acuity by some studies (Kitajima et al. 2019; Coeckelbergh et al. 2002; Gattis and Low 
1998; Hussain et al. 2020). Under this scenario, two parameters are critical that determine the 
visual field: distance and angle of view. Studies from Japan suggest that view distance usually 
ranges from 80 to 120 m and view angle ranges from 120 to 160 degrees (Kitajima et al. 2019). 
Gattis and Low (1998) suggest the maximum horizontal head movement to be approximately 
109 degrees, and an individual cannot perceive vehicle movement much beyond 244 m (800 ft) 
or discern detail beyond 427 m (1,400 ft). It is also pointed out that view angle may decrease as 
the driving speed increases, resulting in 120° at 30 km/h and only 45° at 100 km/h (Djamel et al. 
2020). Wu et al. (2013) have studied the rear-view distance and angle regarding blind spots and 
proposed a blind spot detection system defining that the horizontal view angle between the 
cameras and the body of the car is 75.2°, and that the detection zone covers 20 m behind the 
camera and a 4 m width on both sides.  

It is necessary not only to implement the existing results of studies as the basis of our 
simulation model, but also take the effects of IVT on perceptual range into account. Although 
the literature presents the themes of visual acuity in a variety of contexts, this project primarily 
focus on their application to microscopic simulation as well as the effects of IVTs. 
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Table 1. Review of previous research of the four IVT. 

Intelligent vehicle technology Theory Advantage Disadvantage 
Relevant findings from 

experiments 

Blind spot detection 
(BSD) 

Sensing system 
(detection) 

Camera-based 
system 

Image processing & 
object detection (Z., 
Hassan 2020) 

1. Fast and real-time 
detection for optical 
flow processing 
2. Extra safety 
information with 
panoramic camera 
(Z., Hassan 2020) 

1. Insufficient or distorted images 
for object extraction (Z., Hassan 
2020) 
2. Sensitive under bad weather 
conditions (Hyun, Jin, and Lee 
2017) 
3. Requires accurate algorithm (Z., 
Hassan 2020) 

1. Detection rate of 
pedestrians: 77%. 
2. Can reduce 5% of 
light vehicle-cyclist 
accidents and 13% of all 
vehicle-cyclist accidents.  
3. Overreliance by the 
VRU is assumed to apply 
to 0–1% of blind spot 
accidents. 
(Silla, Leden, et al. 2017) 

Radar-based 
system 

Radar detection / 
short distance 
measurement (Z., 
Hassan 2020) 

1. Fast operation 
and short 
processing time (Z., 
Hassan 2020) 
2. Short distance 
measurement (Z., 
Hassan 2020) 
3. Can provide the 
position and velocity 
of the target object 
(Hyun, Jin, and Lee 
2017) 

1. Smaller field of view (Hyun, Jin, 
and Lee 2017) 
2. Unable to detect object type 
(Hyun, Jin, and Lee 2017) 

Inference ability 
(ability to alert 
potential 
collision) 

Vision-based 

Optical flow analysis 
or pattern recognition 
(Hyun, Jin, and Lee 
2017) 

1. Superior angular 
resolution (de La 
Garanderie, 
Abarghouei, and 
Breckon 2018) 
2. Object 
classification  

1. Requires explicit annotated 
training datasets (de La 
Garanderie, Abarghouei, and 
Breckon 2018) 
2. Hard detection at nightime or 
under bad weather condition  
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Intelligent vehicle technology Theory Advantage Disadvantage 
Relevant findings from 

experiments 

Radar-based 

Uses triangular 
waveform to obtain 
relative velocity and 
distance;  
The key boundary 
point is captured;  
System will determine 
objects. (G. Liu, Wang, 
and Zou 2017) 

Accurate detection 
and prediction;  
Does not require 
training datasets  

No object categorization 

Bicycle/Pedestrian 
to vehicle 
communication 
(BPTV)  
and  
intersection safety 
(INS) 

Sensing system 
(detection) 

Radars (RSU-
based) 

Captures a list of 
reflection-points 
(range, velocity, 
angle, etc.) (Milch and 
Behrens 2001) 

Fast reaction and 
processing; 
Long detection 
range;  
Low data rate 
requirement 
(Barnett et al. 2020) 

Radio signal ranging has poorer 
accuracy and resolution. (Barnett 
et al. 2020) 

1. In 30–70% of 
accidents, at least one 
of the parties involved 
has the system switched 
off. 
2. The effectiveness is 
estimated as 50–60%. 
3. A reduction with 0.5% 
of all intersection 
crashes. (Silla, Leden, et 
al. 2017) 
4. 79GHz radar can give 
position accuracy at a 
centimeter level. (W. 
Liu, Muramatsu, and 
Okubo 2018) 
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Intelligent vehicle technology Theory Advantage Disadvantage 
Relevant findings from 

experiments 

GPS 

Collects position info 
(static) w/ position 
devices embedded in 
vehicles and phones, 
provide absolute 
coordinate (W. Liu, 
Muramatsu, and 
Okubo 2018) 

Simple 
implementation; 
Low cost (no 
additional devices 
required). 

Apps and algorithms needed; 
Large positioning error (Jenkins, 
Duggan, and Negri 2017); 
Always-on can be too energy-
intensive (Li et al. 2018) 

GPS was frequently 
accurate to within 3-4 
meters despite an 
average reported error 
of 17.5 meters (Jenkins, 
Duggan, and Negri 
2017). 
GPS error on lateral 
direction is larger than 
that of longitudinal. GPS 
error in distance is 
approximately 10 m 
(Anaya et al. 2014). 

Wireless sensor 
(2.4 GHz)  

Four wireless 
receivers on a single 
vehicle to send and 
receive the signals. 
(Hisaka and Kamijo 
2011) 

    

To achieve e.g., 80% of 
PDR, the distance needs 
to be smaller than 130m 
(resp. 305 m) for low 
speed (resp. high). 
Information exchange 
distance: 39.5, 52.3, and 
72.0 m, at 30, 50, 80 
km/h, respectively. 
(Anaya et al. 2014) 

Tag-based (RSU-
based) 
(Dasanayaka et 
al. 2020) 

Information is 
communicated 
using transmitters 
and receivers via 
RFID. 

Low energy use; 
Can function even in 
the NLOS or bad-
weather situations;  

Communication radius is small; 
Limited information is 
communicated between vehicles 
and VRU 
Lack of data resulting in difficult 
implementation of collision 
avoidance applications 
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Intelligent vehicle technology Theory Advantage Disadvantage 
Relevant findings from 

experiments 

Lidars (RSU-
based) 

Measures distances 
with laser light and 
collects a real-time 
set of reflection 
points 

Lidar typically has 
better lateral 
resolution 
compared to radars; 
Long detection 
range (Barnett et al. 
2020); 
Power saving (Zhao 
et al. 2019) 

Performance degrades in adverse 
weather conditions (Barnett et al. 
2020); 
Needs clustering algorithm 

Approximately an 
accuracy of 95% can be 
reached within 30m 
detection range (in one 
direction) 

Cameras (vision-
based) (RSU-
based) 

Uses image 
identification to 
detect VRU 

 

Limited by the FOV; performance 
degrades sharply when the 
visibility is occluded by other 
obstacles (W. Liu, Muramatsu, and 
Okubo 2018). 
Requires much more processing 
and computing power; expensive; 
night vision problem (high ISO); 
cannot cover a much wider 
detection range (Zhao et al. 2019). 
High data rates required for 
sharing raw sensor data (Zheng et 
al. 2020). 
Rely heavily on the quality of 
training datasets (Barnett et al. 
2020). 
Works poorly in dim lighting 

  

On-board 
camera 

Embedded cameras 
on vehicle can detect 
VRU and its 
movement 

1. Cover larger areas 
than fixed cameras. 
2. Low cost 

Need more sophisticated 
algorithms to reach similar 
performance 
Can only detect the environment 
around the vehicle 

The detection overlap 
rate ranges from 81.5% 
to 90.7%, with an 
average overlap rate of 
86.9%. (Ke et al. 2017) 
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Intelligent vehicle technology Theory Advantage Disadvantage 
Relevant findings from 

experiments 

Communication 
system 

DSRC (5.9GHz 
band with 
75MHz 
spectrum)  

Able to share 
position, speed and 
direction of VRU 
which are collected by 
the sensing system. 
(Yoon, Pace, and 
Ellen, n.d.; Jenkins, 
Duggan, and Negri 
2017) 

Mature 
communication 
technology w/ high 
penetration rate; 
Higher PDR, more 
efficient than WiFi 
(Fitah et al. 2018) 

High latency time;  
Cannot support high transmission 
rate 

Detection of bicyclists 
using DSRC 
communication appears 
to be easier than relying 
only on sensor-based 
detection techniques 
(Patil 2016b); 
The average deviation 
between the radar 
measurements and the 
700MHz communication 
data is about 7.5 m. (W. 
Liu, Muramatsu, and 
Okubo 2018) 

WiFi 
communication 
(2.4 / 5 / 5.8 
GHz) 

 

Mature 
communication 
technology w/ high 
penetration rate; 

If the signal is blocked by the 
human body, the communications 
distance would be significantly 
shorter. 
High latency time; 
Performance deteriorates w/ the 
increase of traffic (Fitah et al. 
2018) 

The average delay of 
the IEEE 802.11p is 
lower than the delay of 
the IEEE 802.11a in 
highway and residential 
scenarios. (Fitah et al. 
2018) 

4G LTE / 5G 
mmWave 

 

Higher 
communication 
speed; 
Can transmit real-
time data with high 
resolution (Zheng et 
al. 2020) 

Low penetration rates; 
Requires dense BS deployment 

A dense BS deployment, 
with an average 
distance between BSs of 
50 m, and heavy traffic 
conditions were 
considered, most of the 
points in the map are 
above 1 Gbps. (Zheng et 
al. 2020) 
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Intelligent vehicle technology Theory Advantage Disadvantage 
Relevant findings from 

experiments 

Inference ability 
(ability to alert 
potential 
collision) 

Collision point 
estimation 

Calculates the 
projected space 
coordination of 
collision point based 
on trajectories of 
both entities.  

Simple to 
implement 

Does not consider the impact of 
speed range 

  

Surrogate 
measures 
estimation 

Uses TTC, PET, etc. to 
predict the underlying 
collision and triggers 
alert when the 
indicator is under a 
preset threshold.  

Widely adopted 
method;  
Ensures safety 
against from 
potential conflicts to 
fatal crashes by 
setting different 
thresholds 

Straight line movement 
assumption 

  

Probability of 
collision 

Calculates collision 
probability by using 
trajectories and the 
collision speed range 
and the speed 
distribution model of 
vehicles.  

An improved 
version of 
surrogate-
measures-based 
algorithms;  
Considers VRU 
movement 
uncertainty 

Ambiguous threshold which is 
unable to ensure safety 
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Intelligent vehicle technology Theory Advantage Disadvantage 
Relevant findings from 

experiments 

VRU beacon system (VBS) 
Bluetooth 
beacons 

Beacons are 
transmitted every 100 
m. (Dhondge et al. 
2014) 

Has a range of 
transmission of at 
least 40 meters;  
Suitable for high-
speed roads. 
(Barnett et al. 2020) 

Higher transmission rates lead to 
high channel burden which may 
lead to false or missing detection.  
 
(“Performance and Channel Load 
Evaluation for Contextual 
Pedestrian-to-Vehicle 
Transmissions | Proceedings of the 
First ACM International Workshop 
on Smart, Autonomous, and 
Connected Vehicular Systems and 
Services” n.d.) 

The road exposure of 
cyclists is expected to 
increase by 0.8–1.8% 
with use of VBS.  
The range for the Aps 
(access points) is ~50 m 
(Silla, Leden, et al. 
2017); 
With WiFiHonk a VRU 
can be safely alerted of 
a collision in a timely 
manner even for high 
speeds (60 mph) 
(Dhondge et al. 2014); 
The standard deviation 
for position error has to 
be smaller than 0.4m 
(Bachmann, Morold, 
and David 2020); 
Approach using 
Bluetooth 
demonstrated the use 
of RSSI localization with 
a particle filter, resulting 
in a measurement error 
of 0.427±0.229m 
(Barnett et al. 2020). 



 

 12 

Table 2. Review of related work regarding VRU and traffic safety at intersections 

Researchers 
Purpose and/or 

Research Question 
Data and/or Methods Results, Conclusions Limitations Comments 

Robartes and Donna 
Chen 2018 

Purpose: Designed, 
distributed, and 
analyzed a bicycle 
safety and attitude 
survey, to 
characterize the state 
of bicycling conditions 
in Virginia and reveal 
factors that impact 
bicycling safety.  

This research is one 
attempt to address 
gaps in bicycle data in 
sources such as police 
crash reports. 

Methods: A survey was developed 
and deployed to enhance the quality 
and quantity of available bicycle 
safety data in Virginia.  

An MNL modeling was then 
performed. The survey captures a 
variety of data through questions on 
travel history, safety, past bicycle 
crashes, and demographics, bicyclist 
attitudes and perceptions of safety 
as well as bicycle crash histories of 
respondents.  

A total of 686 survey responses were 
recorded, only 459 people (66.9%) 
completed the survey. Weights were 
utilized to better represent the 
bicycling community in Virginia.  

Results: Very high levels of under-
reporting of bicycle crashes, with 
only 12% of the crashes recorded in 
this survey reported to police. Lack 
of knowledge concerning bicycle 
laws is associated with lower levels 
of cycling confidence. 

Count model results predict that 
bicyclists who stop completely at 
traffic signals are 40% less likely to 
be involved in crashes compared to 
counterparts who sometimes stop 
at signals.  

Conclusions: Among crashes 
experienced by survey respondents, 
12% of the crashes were reported 
to the police.  

Among bicycle crashes involving 
automobiles, 66% of minor injury 
crashes and 19% of severe injury 
crashes were not reported.  

This result underscores the 
importance of education of bicycle 
laws in building cycling confidence, 
and thereby potentially 
encouraging more people to start 
biking.  

Limitations: The 
survey sample may be 
biased toward highly 
active bicyclists who 
are generally more 
confident riders.  

Lacks a strategy for 
locating and 
contacting more 
casual riders to get a 
more balanced survey 
sample 

Comments: 
Modeling results 
provide findings to 
support local 
policymaking and 
legislation. Discloses 
the underreported 
VRU accidents and 
how Helmet use, 
stopping completely 
at intersection and 
light/reflective use 
might affect VRU 
crash rates at 
intersections. The 
exact parameters 
are not robust since 
the survey involves 
biased sample.  
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Researchers 
Purpose and/or 

Research Question 
Data and/or Methods Results, Conclusions Limitations Comments 

Silla, Rämä, et al. 
2017 

Purpose: ITS needs to 
specifically address 
VRU as an integrated 
element of the traffic 
system.  

Presents a 
quantitative safety 
impact assessment of 
five systems that 
were estimated to 
have high potential to 
improve the safety of 
cyclists: BSD, B2V, 
INS, PCDS + EBR and 
VBS. 

Data: The CARE database was 
chosen for the analysis due to it 
covering accidents on a European-
wide level. Some were taken from 
the national statistics. The countries 
were grouped in three clusters 
based on the prevalent safety 
situation in each country. Average 
value imputation was performed to 
replace the missing values on 
background variables, such as road 
type and weather condition.  

Method: 1) system description of 
anticipated driver/VRU reactions; 2) 
description of behavior and safety 
effects; 3) estimate of effects by 
different mechanisms, in terms of % 
increase/decrease of relevant 
accidents. Stepwise safety 
assessments among both internal 
and external experts were made 
with the output of an estimate of 
effectiveness (low, medium and 
high). 4) A separate mobility 
assessment study under the 
framework of Johnasson’s study; 5) 
Estimation of the penetration rates 
for the systems; 6) Estimation of 
accident trends for each cluster; and 
7) Calculation of effects, which were 
applied to the EU-28 road accident 
data.  

Results: The current best detection 
rate of pedestrians in the blind spot 
of vehicles is 77%. For cyclists, no 
figure has been found.  

The main results of the assessment 
showed that all investigated 
systems affect cyclist safety in a 
positive way by preventing fatalities 
and injuries.  

The estimates considering full 
penetration showed that the 
highest effects could be obtained 
by the implementation of 
Pedestrian and PCDS + EBR and 
B2V, whereas VBS had the lowest 
effect.  

B2V was estimated to have a 
relatively high impact on safety, 
due to the fact that it potentially 
addresses all accidents. The other 
three systems INS, BSD and VBS 
also show a significant potential to 
improve the safety of cyclists. Their 
effects are lower because they 
target specific situations (INS, BSD) 
or are limited in their effectiveness 
(VBS).  

Limitations: Data 
uncertainty related to 
a) estimates of safety 
effects (they depend 
on the results of 
expert questionnaire 
and findings from the 
literature), b) accident 
data (for some 
systems we have 
better data for 
accident types the 
system aims to 
prevent than for some 
others), c) estimated 
accident trends, and 
d) estimated 
penetration rates.  

The results in this 
paper concern only 
fatalities because of 
under reporting data.  

Comment: The 
database used in 
the research has the 
problem of 
underreporting, 
which makes the 
subjects of follow-
up research biased 
from accidents to 
fatalities. The 
relative estimate 
obtained by 
Stepwise 
assessment is also 
lower than the 
actual situation. 
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Researchers 
Purpose and/or 

Research Question 
Data and/or Methods Results, Conclusions Limitations Comments 

Robartes and Chen 
2017 

Purpose: to identify 
the factors which 
contribute to injury 
severity of bicyclists 
in bicycle-automobile 
crashes 

Data: Virginia police crash reports 
between 2010 and 2014. 3545 
(96.4%) of the original VA DMV 
dataset are single automobile and 
bike crashes. 

Method: The authors preferred an 
ordered probit (OP) model. Actually, 
both MNL and OP models were 
considered, but the OP specification 
yields a better model fit. The 
response variable is the injury 
severity of the bicyclist in the crash.  

Results: The speed at which the 
bicycle was traveling at the time of 
the crash affects the injury severity 
levels. 

Biking while inebriated doubles the 
probability of severe injury for the 
cyclist.  

Drunk drivers increase the fatality 
risk for cyclists more than any other 
factor studied.  

Divided and one-way roads to be 
safer for bicyclists, indicating that 
bike lanes can reduce conflict 
between automobiles and 
bicyclists.  

Roadway characteristics to be 
detrimental to the likelihood of 
severe injuries.  

Limitations: This 
method introduces 
some subjectivity into 
the bicycle speed 
data.  

No injury, no apparent 
injury and 
minor/possible injury 
crashes are 
underrepresented in 
the distribution of 
crashes. 

Some specific 
variables, such as the 
injury severity of the 
bicyclist allow for bias 
and subjectivity.  

Approximately one-
third of the cases 
were incorrectly 
coded.  

Comment: The 
dataset used in the 
research has strong 
subjectivity, which 
has a great 
influence on the 
estimated 
parameters of the 
Ordered Probit 
model, and should 
be biased. We can 
only roughly accept 
the signs of the 
parameters, but the 
specific numbers 
should not be used 
in our simulations. 
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Researchers 
Purpose and/or 

Research Question 
Data and/or Methods Results, Conclusions Limitations Comments 

Habibovic and 
Davidsson 2012 

Purpose: To develop 
a thorough 
understanding of 
crash causation 
mechanism. To 
identify crash 
causation 
mechanisms from the 
perspective of the 
VRU, and to explore 
the implications of 
these mechanisms for 
the development of 
active safety systems. 

Data: The in-depth crash data were 
collected by multidisciplinary teams 
in the European project SafetyNet 
(Björkman et al., 2008) in the time 
period 2005–2008. The total data set 
consists of 995 crashes, 180 of 
which are car-to-VRU crashes.  

The data collect age, gender, and 
injury severity level of the 
pedestrians and bicyclists, along with 
the crash distribution according to 
weather conditions, light conditions, 
posted speed limits, and intersection 
type.  

Method: Presents the most common 
causation patterns identified from 
various aggregations of the 56 
individual causation charts. Common 
is here defined as an element (a 
critical event, a contributing factor, 
or a link) that occurs more than five 
times. When comparing the 
aggregated charts, the element 
occurrence frequencies that exceed 
15% are highlighted. 

Results: the most common critical 
events: inadequate timing 
(premature action, no action and 
late action), distance, duration.  

Common contributing factor to 
precede the critical events: Faulty 
diagnosis, Inadequate plan, 
Observation missed.  

Visual obstructions were more 
frequent for bicyclists than 
pedestrians.  

Does not seem these two groups of 
VRU need separate treatment 
when it comes to active safety 
system development. 

Limitations: The 
limited number of 
cases, which makes 
generalization 
difficult.  

Lack of geographical 
representation.  

Comment: This 
paper fails to deliver 
consolidate results 
based on a large 
enough sample size. 
It does not 
incorporate the IVT 
in the causation 
study.  
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Researchers 
Purpose and/or 

Research Question 
Data and/or Methods Results, Conclusions Limitations Comments 

Mohsen Kamrani, 
Behram Wali, Asad J. 
Khattak, 2017 

Purpose: This paper 
focuses on developing 
an analytic 
methodology to 
examine 
instantaneous driving 
behaviors at 
intersections and 
their variability, and 
explores how 
variability in driving 
can be mapped to 
historical safety 
outcomes such as 
crashes at specific 
locations 

The nature of 
extreme 
instantaneous driving 
behavior at 
intersections can be 
correlated with their 
crash history.  

Data: the 2-month connected-
vehicle data from the SPMD (). The 
SPMD collects BSMs that describe a 
vehicle’s position and motion, its 
component status, and other 
relevant travel information.  

Data on 5 years of crashes (2011 to 
2015) along with geometric factors 
and flows were extracted and linked 
to the LBV for each intersection. 

Method: First, the connected-vehicle 
data consisting of geocodes and 
longitudinal acceleration were 
cleaned. Crash data along with 
geometric elements (road design, 
AADT, intersection type, etc.) were 
collected on 116 intersections in Ann 
Arbor.  

To calculate LBV, the authors 
intended to use longitudinal and 
lateral accelerations. Uses 
coefficient of variation (CV) for 
quantifying the fluctuations in 
longitudinal acceleration and 
deceleration at each intersection. 
Poisson models, Poisson–gamma 
models (negative binomial), or both, 
are estimated depending on the 
mean and variance of crash data.  

Result: the volatility of deceleration 
regardless of speed range is 
positively associated with crash 
frequency. Volatility at lower 
speeds is more a significant factor 
as compared with volatility at 
higher speeds.  

On average a 1% increase in CV_DH 
is associated with a 0.11 increase in 
crash frequency for all intersections 
and a 0.089 increase in crash 
frequency for signalized 
intersections. 

A one-log unit increase in major 
road AADT is associated with 2.69-, 
6.57-, and 1.82-unit increases in 
crash frequency for all 
intersections, signalized 
intersections, and unsignalized 
intersections, respectively.  

Limitations: the study 
could not incorporate 
lateral acceleration 
and deceleration in 
the estimate of 
intersection-specific 
volatility.  

Uses one month’s 
data were used to 
explain 5-year average 
crashes.  

Comment: Does not 
provide technical 
solution or 
mappings for 
interactions 
between vehicles 
and VRU, and does 
not have focuses on 
VRU related 
crashes.  
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Researchers 
Purpose and/or 

Research Question 
Data and/or Methods Results, Conclusions Limitations Comments 

Yue et al. 2020 

Purpose: to 
investigate the 
influences variation, 
in vehicle-to-
pedestrian crashes, 
regarding driver 
response and safety 
benefits in different 
pre-crash scenarios.  

Data: the data was collected by the 
National Advanced Driving Simulator 
(NADS MiniSim). (three screens 
driving simulator) 

Method:  

1) Driving scenario design three 
experimental scenarios based 
on two factors: failure to 
recognize ped’s crossing 
intention, and failure to observe 
ped due to obstructed sight of 
view. In each scenario, the 
scenario objects were 
configured according to speeds 
and positions of the pedestrian 
and car, the position and type of 
obstruction, roadway features 
such as number of lanes and 
speed limit, etc. 

2) Within-subjects experiments 
warning type (without/with P2V 
warning) was made as the 
within variable. Each participant 
was tested for all three 
scenarios.  

within-subjects repeated 
measurement analysis of variance 
(ANOVA) analysis. A correlated 
errors model was developed by 
adding a random effect from 
individual drivers.  

Result:  

1) the P2V warning was released 
4s before the pedestrian 
entered the collision zone - the 
average brake reaction time 
was reduced from 1.0 s to 
0.025 s (averaged from three 
scenarios) 

2) the P2V warning interacted 
with age, and it reduced brake 
reaction time more 
significantly for young drivers 
(1.04 s) than working-aged 
drivers (0.77 s), and it reduced 
brake reaction time more for 
drivers that had a 
crash/citation experience 
within the past five years (1.13 
s) than for those who didn’t 
(0.97 s) 

3) mean deceleration increased 
more significantly for females 
(-5.59 m/s2) than males (-4.51 
m/s2), and it increased more 
significantly for drivers who 
had a crash/citation in past five 
years (-5.83 m/s2) than those 
who didn’t (-4.39 m/s2) 

4) warning increased significantly 
for non-experienced drivers by 
1.98 m/s2 

the collision rate was reduced by 
87.11%, 77.94% and 88.56% in the 
three scenarios 

Limitation: only 
considered three 
scenarios regarding 
peds and didn’t cover 
other types of pre-
crash conditions.  

Did not specify 
scenarios involving 
time of day, vehicle 
type and 
intersections.  

The pedestrian 
trajectory was 
simplified in this study 
by using a fixed 
trajectory path.  

Comment: useful 
findings for setting 
up parameters in 
P2V communication 
traffic simulation.  
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Researchers 
Purpose and/or 

Research Question 
Data and/or Methods Results, Conclusions Limitations Comments 

Heinovski et al. 2019 

Purpose: details a 
methodology to 
record real bicycle 
mobility traces in a 
safe and controlled 
fashion.  

Employs Virtual 
Reality (VR) 
technology to let 
participants ride a 
real bicycle through a 
simulated 3D scenario 
featuring intersecting 
roads and cycleways 
with or without 
signage and/or 
blocking their Line-of-
Sight (LOS). -> to 
investigate the impact 
of wireless warning 
systems on road user 
safety.  

Virtual Cycling Environment:  
- open source (http://www.ccs-

labs.org/software/vce/)  
- cyclists ride a virtual bicycle in a 

3D virtual reality environment 
by interacting with a physical 
bicycle on a training stand 

- Foreign traffic (cars) and 
wireless networking are 
provided by the specialized 
simulators SUMO and Veins 
(Vehicles in Network Simulation)  

- the virtual bicycle can be 
synchronized with Veins in real-
time, which in turn provides 
ambient traffic (then rendered 
into the environment of the 
virtual bicycle) and network 
communication simulation. 

Experiments based on scenarios:  
- consists of a central intersection 

of 4 orthogonal road legs, with 
specific settings on each 
lane/corner of the intersection.  

- 10 cyclists, each cyclist repeated 

each of the 3 scenarios 3 times 
for a total of 9 traces per cyclist.  

- Recorded traces as input for the 
simulation study.  

Collision detection: By modeling 
each vehicle as a polygon, 
constructed from its width and 
length, it is possible to detect 
colliding vehicles by using separating 
axis theorem  

Results: If we use 1 Hz beaconing, 
the awareness time increases to 
2942 ms and 4291 ms for the car 
and the bicycle, respectively. 

Two different beaconing rates: 
When changing the beaconing 
frequency to 10 Hz, we see an 
increase in the warning time by 470 
ms and 289 ms (median) for the car 
and the bicycle, respectively.  

10 Hz frequency and Car-to-bicycle 
is the setting of best performance 
(longest TTC) 

Limitation: There are 
no interactive studies 
in combination with 
V2X communication.  

Comment: Good 
example of SUMO 
and Veins 
simulation for us to 
follow, but it 
requires physical 
equipment and 
recruitment.  

http://www.ccs-labs.org/software/vce/
http://www.ccs-labs.org/software/vce/
https://gamedevelopment.tutsplus.com/tutorials/collision-detection-using-the-separating-axis-theorem--gamedev-169
https://gamedevelopment.tutsplus.com/tutorials/collision-detection-using-the-separating-axis-theorem--gamedev-169
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Researchers 
Purpose and/or 

Research Question 
Data and/or Methods Results, Conclusions Limitations Comments 

Ouni and Belloumi 
2018 

Purpose: The paper 
describes the spatio-
temporal pattern of 
VRU collisions 
according to temporal 
scale such as (a.m. vs 
p.m. rush hours VRU 
collisions, working 
days vs non-working 
days VRU collisions, 
daytime vs nighttime 
VRU collisions) and to 
develop a multinomial 
logit model in order 
to study the 
contribution  of 
several variables to 
VRU collisions 
severity. 

Data: The data used here cover 13 
years from January 1, 2001, to 
December 31, 2013, (1) Collisions 
data obtained from NOITDSRS in 
Tunisia, (2) Highways data obtained 
from ministry of equipment, housing 
and territorial development 
(MEHTD) in Tunisia 

Method:  
1) Exploratory study: (Ripley’s K-

function coupled with KDE 
approach) analyze the spatial 
concentration of road crashes 
by identifying areas of spatial 
concentration of crashes.  

2) a multinomial logit model (dep: 
injury severity) was applied in 
order to study the contribution 
of several variables to VRU 
injury severity.  

Results: male VRU are associated 
with an increased risk of fatal 
accident ((OR = 1.52; 95%CI [0.15–
0.69])) compared to female VRU. 

compared to other road functional 
class, crashes occurring in national 
highway have a higher proportion 
of serious injury ((OR = 2.94; 95%CI 
[0.34–1.78])) 

The average visibility was also 
found to be significant in the 
serious injury function and 
estimated to be associated with 
higher VRU injury severity ((OR = 
1.33; 95%CI [0.21–0.55])) relative to 
clear visibility as reference 
category. 

The fine weather condition is a 
significant factor in the injury 
severity model and estimated to be 
associated with higher VRU injury 
severity relative to foggy weather 
as reference category.  

Limitations: restricted 
to Center-East regions 
in Tunisia.  

Subjectivity of crash 
report data 

additional 
investigation is 
required between hot 
spots-based crash 
counts and a variety of 
geometric 
characteristics, 
roadway 
characteristics, traffic 
flow characteristics 
and spatial features 
along these sections. 

 

Alshehri, Eustace, and 
Hovey 2020 

Purpose: to 
determine factors 
that contribute 
significantly to the 
crash severity of 
intersection-related 
crashes involving 
motor vehicles and 
VRU 

Data: Traffic crash data for three 
years, from January 1, 2013, through 
December 31, 2015, were obtained 
from the Ohio Department of Public 
Safety (ODPS).  

Method: binary logistic regression 
(dep: Crash Severity).  

Stepwise logistic procedure to select 
variables 

Results: Out of fifteen predictor 
variables that were tested in the 
model, only five were selected by 
the stepwise procedure. 

Five significant variables at the 90% 
confidence level tested in the 
current study are VRU-related, road 
contour, light condition, gender, 
and unit in error. 

Limitation: The same 
subjectivity issue as 
mentioned. Did not 
discuss speed-related 
variables.  
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Researchers 
Purpose and/or 

Research Question 
Data and/or Methods Results, Conclusions Limitations Comments 

Wu, Ardiansyah, and 
Ye 2018 

Purpose: This study 
seeks to develop a 
generalized 
evaluation scheme 
that can be used not 
only to assess the 
effectiveness of IMA 
on improving traffic 
safety at intersections 
but to facilitate 
comparisons across 
similar studies. 

Method: The proposed evaluation 
scheme utilizes the concepts of 
traffic conflict in terms of time-to 
collision (TTC) as a crash surrogate. 
This approach avoids the issue of 
having insufficient crash frequency 
data for system evaluation. A 
relative risk (a/(a+b))/(c/(c+d)) is 
calculated for comparing the risk of 
with/without using the IMA.  

Testing: (See the appendix) This 
study applied the proposed 
evaluation scheme and reported the 
effectiveness of IMA on improving 
traffic safety in a field operation test 
(FOT). Seven test scenarios were 
conducted at 4 intersections, and a 
total of 40 participants were 
recruited to use the IMA for 6 
months.  

Results: It was estimated that IMA 
users have 26% fewer conflicts with 
TTC less than 5 s and have 15% 
fewer conflicts with TTC less than 4 
s. However, the results vary across 
different sites and different 
definitions of conflicts in terms of 
TTC.  

Limitations: Limited 
study time period and 
number of 
intersections 

Driver heterogeneity: 
the effects of driver 
attributes on the 
effectiveness of IMA 
are not reported in 
this study 

Driver adaptation 

Interaction between 
human factors, design 
of the IMA, and 

roadway attributes: 

Comment: The 
paper provides a 
novel way to test 
the effectiveness of 
a new IVT.  

https://www.tandfonline.com/doi/suppl/10.1080/15389588.2017.1363891?scroll=top
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Researchers 
Purpose and/or 

Research Question 
Data and/or Methods Results, Conclusions Limitations Comments 

Wang et al. 2019 

Purpose: To propose 
a multivariate copula 
ordered probit 
approach to model 
the four crash 
indicators – injury 
severity, crash type, 
vehicle damage and 
driver error – to 
identify the factors 
contributing to 
intersection crash 
consequences and 
explore the potential 
correlations among 
them using different 
copula formulation 
and parameterization 
strategies. 

Data: 2016–2017 intersection crash 
data collected from the Connecticut 
Crash Data Repository (CTCDR) and 
only two-vehicle crashes were 
considered. 20,917 intersection 
crashes were used.  

Method:  
1) Ordered probit model 
2) Multivariate copula model 

To identify the best model, four 
copula methodologies including the 
Frank, Clayton, Joe and Gumble 
copula models were tested and 
compared in this study. 

Factors are divided into four groups: 
driver characteristics, highway and 
traffic characteristics, environmental 
characteristics, and vehicle 
characteristics.  

Results:  
1) the injury severity, crash type, 

vehicle damage and driver 
error are significantly 
correlated due to the common 
observed and unobserved 
factors, and their correlation 
varies among different crashes. 

2) The model estimation results 
identify twelve important 
factors contributing to the 
crash consequences among 
them.  

3) The dependencies among the 
four indicators caused by the 
common unobserved factors 
are all positive for the crashes 
that occurred at stop-
controlled intersections and 
four-leg intersections and the 
crashes with involved drivers 
younger than 25. 

Limitation: 
- Subjectivity 
- The copula model 

results contain 
some variables 
that are 
counterintuitive 
to the findings, 
such as the 
effects of adverse 
weather 
conditions on 
injury severity.  

Comment: Good 
practice of 
statistical modeling, 
with an 
understandable and 
easy-to-follow 
framework.  

Results in table 3 
are not 
transplantable 
directly.  



 

 22 

Researchers 
Purpose and/or 

Research Question 
Data and/or Methods Results, Conclusions Limitations Comments 

Munira, Sener, and 
Dai 2020 

Purpose: the paper 
develops a 
multivariate spatial 
Poisson-lognormal 
model in a Bayesian 
framework to 
examine the 
significant factors 
influencing the 
different severity 
pedestrian crashes at 
409 signalized 
intersections in the 
Austin area. 

Data and method:  
1) Crash data: The traffic crash 

data were taken from TxDOT’s 
Crash Records Information 
System (CRIS) (TxDOT, 2016b). 
The data obtained included the 
disaggregated crash data for all 
locations within the study area, 
collected over 8 years (2011–
2018).  

2) Pedestrian exposure data: 
Short-duration count data from 
the City of Austin Transportation 
Department, and continuous 
count data from Eco-Counter. - 
a direct demand model was 
developed to estimate 
pedestrian volume in all crash 
locations based on the available 
count data.  

3) Multivariate spatial Poisson-
lognormal model: independent 
variables correlation check -> 
variable selection including 
different combinations -> final 
model 

Results: 
- The relative risk of a fatal crash 

for pedestrians at signalized 
intersections increased by 
around 10 % with an increase 
of one standard deviation in 
the speed limit. 

- The relative risk of 
incapacitating injury crashes 
and non-incapacitating injury 
crashes increased by 3.4 % and 
2.4 %, respectively, with an 
increase of one standard 
deviation of traffic volume (in 
1000 vehicles per day). 

- - the presence of a bus stop 
decreased (by 31 %) the risk of 
incapacitating injury crashes 
but increased (by 32 %) the risk 
of non-incapacitating injury 
crashes for pedestrians.  

Limitation:  
- the aggregation 

does not capture 
the temporal 
variations of the 
explanatory 
variables. 

Comment: No 
sidewalk data 
available in CA, hard 
to follow the 
procedure. But the 
results are worth 
references.  
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Researchers 
Purpose and/or 

Research Question 
Data and/or Methods Results, Conclusions Limitations Comments 

Montella et al. 2020 

Purpose: the paper 
aims at developing 
and validating a 
procedure to rank 
unsignalized urban 
intersections for 
safety improvement 
based on the 
evaluation of risk 
factors by road safety 
inspections.  

High risk 
intersections, where 
safety measures that 
can reduce crash 
frequency do exist, 
can be identified and 
ranked by the SI. 

Safety Index (SI) procedure 
- SI = Exposure × Risk Index 

(related to vehicles and peds) 
- Incorporating 10 safety issues 

with 23 detailed safety issues 
(see Table 1 for details) 

Data for validation: Crash data were 
obtained from the FDOT Crash 
Analysis Reporting System for the 
period 2011-2014. A sample of 
eighty-nine urban intersections 
located in Orange County was used. 
AADT volumes were provided.  

Method: 1) empirical Bayes (EB) 
method is used for identifying sites 
as hotspots/ hazardous road 
locations / high-risk locations / 
accident-prone locations / black 
spots / priority investigation 
locations. 2) The procedure was 
tested by comparison of the SI 
scores and the EB safety estimates. 
3) the procedure was tested also by 
comparison of the SI scores and PFI.  

Results: The correlation between 
the SI scores and the EB estimates 
was highly significant both for 
vehicles (R2=0.66) and pedestrians 
(R2=0.58) as well as for the total 
crashes (R2=0.68). 

The results from the Spearman's 
rank-correlation analysis provided 
further validation for the SI 
indicating that ranking from the SI 
and the EB estimates agree at the 
99.9% confidence level for vehicles 
(ρs=0.78), pedestrians (ρs=0.93), 
and total (ρs=0.93). 

Limitation: Could be 
extended with 
reference to other 
network elements.  

Comment: good 
method to follow, 
but it requires 
pedestrian counts 
estimation, which 
brings uncertainty 
for modeling.  
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Researchers 
Purpose and/or 

Research Question 
Data and/or Methods Results, Conclusions Limitations Comments 

Hasani et al. 2019 

Purpose: This study 
aims to estimate 
pedestrian and 
bicyclist exposure and 
identify signalized 
intersections with 
highest risk for 
walking and bicycling 
within the city of San 
Diego.  

Method:  
1) Identifying the intersections for 

short-term video data 
collection.  

2) Developing a vision-based 
intersection monitoring system 
to automatically detect, track, 
and count pedestrians and 
bicyclists.  

3) Converting short-term counts to 
long-term counts collected at 
the selected intersections.  

4) Conducting exposure modeling 
and risk quantification for 
walking and bicycling at 
signalized intersections.  

Data:  
- A total of 1522 signalized 

intersection was identified. 
- Short-term video data were 

collected by National Data and 
Surveying Services (NDS).  

- For every intersection, 
demographic characteristics, 
socioeconomic, and built 
environment variables were 
obtained by buffer analysis in 
ArcGIS. 

crash data involving pedestrians and 
bicyclists were obtained from the 
Statewide Integrated Traffic Records 
System (SWITRS).  

Quantified Risk 

𝑄𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑅𝑖𝑠𝑘 =
𝐶 𝑥 𝑁𝑘

𝐴𝐴𝐷𝑃 (𝐴𝐴𝐷𝐵)𝑥 𝐷
 

𝐶 =  ∑ 𝑁𝑠

𝑠

 𝑥 𝐶𝑠 

Highlights: Exposure analysis 
identified transportation network, 
population, traffic generator, and 
land use variables as statistically 
significant in estimating pedestrian 
and bicyclist volume. 

Limitation: 
Requires video 
surveillance data for 
analysis. 

Cluster method hard 
to follow.  

Small sample size.  
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Analysis Methods 

To accomplish the objective of this project, there are two parts of experiments: aggregate 
statistical analysis and micro level traffic simulation. First, we analyze the features mainly 
causing crashes between VRU and vehicles at intersections. Based on the statistical regression, 
we summarize the features and influence of different IVT. Second, after the statistical analysis 
and IVT summary, we conduct a microsimulation analysis to study the influences of different 
IVT on typical crashes. In the second part analysis, i.e., traffic simulation, we quantify the safety 
improvements for VRU based on different penetration scenarios. 

Historical Crash Data Modeling 

Multinomial Logit (MNL) modeling with interaction terms 

As mentioned before, the crash severity is specified to be one of four discrete categories. With 
these levels, we perform multinomial logit (MNL) regression model to analyze the factors 
contributing to crash severity, which is the most common technique used to identify the 
relation between the dependent and independent variables.  

The response variable is the injury severity of the crash, represented by the following four 
categories: fatal (level 1), severe injury (level 2), visible injury (level 3), and complaint of injury 
(level 4). The crash location information, roadway, environment, and vehicles’, drivers’ and 
VRU’ characteristics are included in the model as independent variables.  

The MNL, as a form of generalized linear model, nominates one of the response categories of 
the response variable as a reference level, and calculates log-odds for all other categories 
relative to the reference level. Complaint of injury was selected as the reference level in the 
model of this paper. In the MNL model, we assume that the log-odds of each response follow a 
linear model, which is shown in Equation (1):  

 𝜂𝑖𝑗 =𝑙𝑜𝑔 𝑙𝑜𝑔 
𝜋𝑖𝑗

𝜋𝑖𝐽
 = 𝛼𝑗 + 𝑥𝑖

′𝛽𝑗  (1) 

where 𝜋𝑖𝑗/𝜋𝑖𝐽  is the odds ratio (OR) that an observation 𝑖 falls in category 𝑗 as opposed to the 

reference level 𝐽, 𝛼𝑗 is a constant term, and 𝛽𝑗  is a vector of regression coefficients, for 𝑗 =

1,2, … , 𝐽 − 1. The probabilities of the MNL model can be written as  

 𝑝𝑖𝑗 =
𝑒𝑥𝑝 (𝜂𝑖𝑗) 

∑ 𝑒𝑥𝑝 (𝜂𝑖𝑘)
𝐽
𝑘=1

 
 (2) 

Note that Equation (2) will automatically yield probabilities that add up to one for each 
observation. Also, the variables will be selected based on the result of the adjusted pseudo R-
squared of the MNL model.  

In addition, analyzing the interaction terms of the MNL model helps to find critical crash 
scenarios that have a higher crash risk to VRU. The scenarios may have different crash 
characteristics in relation to the VRU, vehicle and environment, which may result from different 
underlying factors. We can expect that the coefficients of some variables are significant in some 
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scenarios, but not necessarily significant in other scenarios. Therefore, we perform MNL 
regression models on the movements preceding collision and the corresponding interaction 
terms, which are considered movement combinations for VRU and vehicles.  

Having the estimation of interaction effects available, the MNL models could provide the 
estimated coefficients for the combinations of some independent variables, for example the 
movements of VRU and vehicle preceding the collision. In such cases, the coefficients represent 
the log of OR of the collision severity for a specific combination of movements. Considering the 
crash data, we will assess drivers’ behaviors to build the basis for the simulation efforts. 
Behaviors include, but are not limited to, running a stop sign/red light, or sudden lane-change. 
We will also use the historic crash data to characterize intersection design characteristics that 
where different accidents happen. Finally, we will develop several key scenarios for the 
simulation combining intersection design, behaviors, crash odds, technology characteristics, 
weather, and other system conditions. These scenarios will be implemented in a simulation 
platform to examine which IVT will be most efficient in a specific scenario. 

Case study and data description 

Lubricating the ultimate step of microscopic simulation for this project, the California historical 
crash data, collected from cities’ traffic safety statistics, help understanding the underlying 
factors influencing the crash rates involving VRU. In preparation for the macroscopic traffic 
safety factor analysis based on a regression modeling method, which is described in the 
following section, it is naturally salient to select cities with high VRU safety concerns as 
“hotspots” for research.  

The case study city selection incorporates the existing research results from the 2018 Office of 
Traffic Safety (OTS) Crash Rankings, which are based on the Empirical Bayesian Ranking 
Method. It adds weights to different crash statistical categories including observed crash 
counts, population and daily vehicle miles traveled (DVMT). In addition, the OTS crash rankings 
include different types of crash with larger percentages of total victims and areas of focus for 
the OTS grant program. In conjunction with the research context, two types of crash rankings 
are focused on, namely pedestrians and bicyclists. The OTS rankings also divide the cities into 
seven groups by population. Studied by Clark and Cushing (2004), population density of city is 
associated with number of VRU victims for the reason that higher population might contribute 
to higher exposure of VRU traffic and thus more crashes might happen.  

Without selecting all the cities ranging from hundreds to millions of populations, selecting 
safety hotspots where high-frequency VRU-involved crashes take place each year facilitates the 
process of understanding VRU safety factors and thus creating meaningful and effective 
scenarios for traffic simulation. Therefore, cities selected as cases for study is taken on priority 
preceding the data collection and analysis. 
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Figure 1. Relation between number of crash victims and population. 

 

Figure 2. Relation between number of crash victims per 10k population and population 
density. 

To quantitatively investigate the inference, we study the relation between population and 
number of crash victims. From Figure 1, we can see that the number of people and the number 
of crash victims is not typically linear, but the number of crash victims increases faster as the 
population increases. Moreover, we can see from Figure 2 that the positive correlation 
between the number of victims per 10k population and the population density gradually 
weakens or even does not exist as the population decreases starting group E. The inference can 
be validated by the two figures, concluding that cities in population groups from A to D are 
more of our research interest. So, we collect cities with top OTS pedestrian/bicyclist crash 
ranking from group A (populations over 250,000) to group D (populations 25,001-50,000), 
which are shown in Table 3. Hence, seven of the cities are selected as cases for study and their 
corresponding historical crash data will be collected and analyzed in the following section, 
namely San Francisco, Oakland, Berkeley, Santa Monica, Davis, West Hollywood and East Palo 
Alto.  
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Table 3. Top 3 cities with highest OTS crash rankings from different population groups. 

Group Ranking Type of Crash 

Bicyclist Pedestrian 

Group A – 15 cities, 
populations over 
250,000 

1 San Francisco Oakland 

2 Long Beach Long Beach 

3 Sacramento San Francisco 

Group B – 58 cities, 
population 100,001-
250,000 

1 Berkeley Berkeley 

2 Huntington Beach El Cajon 

3 El Monte Pasadena 

Group C – 106 cities, 
population 50,001-
100,000 

1 Davis Santa Monica 

2 Palo Alto Santa Cruz 

3 Santa Monica Merced 

Group D – 94 cities, 
population 25,001-
50,000 

1 East Palo Alto West Hollywood 

2 Menlo Park Eureka 

3 San Luis Obispo Beverly Hills 

The Safe Transportation Research and Education Center (SafeTREC)1 at the University of 
California, Berkeley, develops the Transportation Injury Mapping System (TIMS)2 to provide a 
quick, easy and free access to California crash data provided by the Statewide Integrated Traffic 
Records System (SWITRS). We collect five-year-long crash data with 23,832 observations in 
total, which are from 01/01/2014 to 12/31/2018, from the 20 cities selected as cases for study 
in the state of California. The crash data includes bicyclist and pedestrian collisions with 
vehicles resulting in injuries across four types of crash severity: fatal, severe injury, visible injury 
and complaint of injury. The data consists of three tables including collision dataset, involved 
“parties” dataset, and victims dataset. In particular, we use the “collision” and “parties” 
datasets that contain enough information for modeling. The rows in the crash data are built 
based on each case of a crash and includes information such as weather, road surface, road 
condition, control device and lighting. The “parties” dataset includes information specific to 
each vehicle or VRU such as age and sex. To perform a party-by-party analysis, we attach the 
datasets of each crash to every pair of VRU and vehicle that involved in a specific collision. The 
task has been accomplished using a python script. For example, Figure 3 shows the distribution 
of crashes in San Francisco 

 

1 https://safetrec.berkeley.edu/  
2 https://tims.berkeley.edu/about.php  

https://safetrec.berkeley.edu/
https://tims.berkeley.edu/about.php
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Figure 3. Distribution of crashes in San Francisco by TIMS. 

The variables are selected based on the empirical results from existing literatures and records 
with missing data are dropped. After the data merging and cleaning process, 12,683 pedestrian-
involved crash cases and 11,149 bicyclist-involved crash cases are selected and used in the 
following modeling. The crashes are all two-party collisions at signalized intersections involving 
vehicles and VRUs, which means that one party in a specific collision is driver and the other one 
is either bicyclist or pedestrian. Other types of crashes, such as single-vehicle collisions and 
multiple-party collisions are not considered in the study. 

Microscopic Traffic Simulation 

IVTs enhance safe driving by extending driver’s perception of incoming conflicts, especially at 
intersections where drivers deal with multiple movement at the same time. In this section, we 
evaluate the effectiveness of IVT on enhancing VRU’s safety at intersections. Specifically, our 
methodology can be split into four parts: 

1) Define the microscopic factors in driving behavior that lead to crashes;  
2) Summarize the literatures and categorize different types of IVT to study;  
3) Implement the imperfect driving behaviors and IVT in micro-simulation; and 
4) Conduct sensitivity analysis to estimate the IVT performance with different influence 

factors. 

Limitations in perception of drivers and VRU 

The existing intersection control systems in use, either two-way/four-way stop control or traffic 
signal control, are all designed to be collision-free, which simply assume that all the traffic 
participants can predict the incoming conflicts and follow the rules of system design. Except for 
the rare cases where traffic violations are committed deliberately, most accidents occur due to 
the limitations in the perception of drivers and VRU. Typically, the perception without driving 
assistance is purely vision-based. In this study, we specify the visual limitations in two aspects: 
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1) driver’s and VRU’s blind spot, defined with visual acuity; 2) driver’s and VRU’s random 
inattention. 

Visual acuity 

It is commonly acknowledged that vision-based perception of drivers or VRU are not all-
rounded. Among the literatures modeling and testing for the field of view, we summarize the 
three key parameters to describe the perceptual limits. Objects beyond the limit is regarded as 
invisible in this study. In the simulation tool, the visual acuity parameters can include two parts: 
1) generic part: the VRU and drivers share the same basic visual acuity decided by the 
environmental factors (e.g., weather and light conditions); and 2) individual part: the basic 
visual acuity is adjusted by the individual characteristics such as age, vision, clothing (e.g., 
reflective clothing can be seen more clearly at night) and light using (high-beam or low-beam). 
The two parts of parameters can then provide different parameters of reaction for each of the 
individuals in simulation.  

• Front-view distance, subject to lighting and weather. For instance, front-view distance 
under daylight and clear weather is 224 m, while that in foggy weather is less than 100 
m. On streets with poor light conditions, the average view distance at night is 108 m 
when only low beams are used. Using high beams and pedestrians wearing bright 
clothes will increase the average view distance to 228 m, which is close to the view 
distance during the day. Conversely, when the low beam is used and there is a car in the 
opposite direction, the average view distance is only 82 m. 

• Front-view angle, which decreases with driving speed. The reference values of view 
angle with corresponding speed value are listed in Table 4. For the speed values in 
between, the front-view angle value can be estimated by interpolation. 

Rear-view angle, covered by the left and right rearview mirror. The areas within rearview mirror 
coverage on both sides are regarded as visible. The remaining areas between rear-view angle 
and 90° are randomly inspected. For instance, Kedowide et al. find that only 83.0% of the 
drivers perform blind spot checks in an experiment (Kedowide, Gouin-Vallerand, and Vallieres 
2014). 

Table 4. One-side ideal view angles at different driving speeds. 

Speed (mph) One-Side Reference View Angle (degree) 

18 60 

50 30 

60 22.5 

80 15 

The fields of vision and blind spots applied in this study are illustrated in Figure 4 and Figure 5, 
where parameters are listed. The space around the vehicle is split into three types. The 100% 
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visible areas are remarked in blue; the randomly visible areas are remarked in red; the rest are 
considered as 100% invisible. We also differentiate the blind spots definition between 
passenger car and truck. Comparing Figure 4 and Figure 5, we see two major differences of 
trucks from passenger cars: 

• Blind spot in the front. Because of the high sitting position of truck driver, the objects 
that are very close to the truck in the front may not be observed directly. For passenger 
car, there is no blind spot in front. 

• Differentiated left and right rear-view angle. The passenger car has equal rear-view 
angles left and right 21.8°. The left rear-view mirror is deliberately enhanced for truck, 
which expend the left rear-view angle to 75.2°. 

 

Figure 4. Peripheral vision in visual acuity when driving without IVT (passenger car) 
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Figure 5. Peripheral vision in visual acuity when driving without IVT (truck) 

Moreover, we also specify the visual acuity of VRU. Due to the low progress speed of VRU, the 
speed dependent front-view angle is not relevant. Based on the results from a natural study in 
(Hammoud 2008), we set the front-view distance to 50m and the front-view angle to 120°. No 
rear-view angle is set up for VRU. 

Driver’s random inattention 

Besides the blind spots that have been deterministically defined on the 2D plane, driver’s 
random inattention is also a major source leading to crashes. This term describes the 
generalized imperfect driving behavior without specific causal factors. In the driving process, 
drivers may be distracted from time to time such that they don’t react to the conflicting objects 
at all. In macro-level analysis, this behavior is usually represented as greater reaction time. 
However, the micro-simulation deploys constant time step which implies that the decision 
update gap is unchangeable within the simulation run. Therefore, we set up a probability value 
in simulation which allows passenger car or truck to be totally blind randomly in some 
simulation time steps. Such behavior can be mitigated with IVT warning messages. 

Definition of IVT 

Various IVT have been developed to actively compensate the human’s limited perception. 
Although great efforts have been made on optimizing detection accuracy and communication 
latency, no study compare the technologies from the mechanism’s aspect. In this study, we 
select four typical technologies for comparison, which covers almost all the current active 
safety technologies. Because we focus on the effectiveness with respect to system structure, it 
is reasonable to assume the communication infrastructure and software all work in optimal 
states. 
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Blind Spot Detection (BSD) 

BSD is the typical sensor-based system equipped in vehicle, which directly targets the vehicle’s 
blind spot. It is widely used to avoid collisions in vehicle’s lane change process. As is shown in 
Figure 6 and Figure 7, the sensors construct a rectangle area in blue which overlaps the blind 
spot areas in red. Specially for truck in Figure 7, a BSD detection area covers the blind spot in 
the front. Any objects that appear in the BSD detection area will trigger the warning alarm., 
which can reduce the driver’s reaction time by 34.3% on average (Chang et al. 2009). In other 
words, it can significantly mitigate driver’s inattention if necessary. BSD doesn’t require the 
VRU to have any devices equipped for protection. Its short detection distance, on the other 
hand, may show its effectiveness in crash avoidance with VRU only when the vehicle is in slow 
movement and conducting left/right turn. 

 

Figure 6. Blind spot detection area provided by BSD for a passenger car. 
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Figure 7. Blind spot detection area provided by BSD for a truck. 

VRU Beacon System (VBS) 

VBS is a one-way wireless-communication-based system. As shown in Figure 8, it requires the 
VRU to carry a device as message sender; and the vehicle to carry a receiver onboard. When a 
pedestrian or a bicycle approach the intersection, the device will beacon the location and 
heading to all the vehicles around. The vehicles who carry the receiver will then predict the 
VRU’s trajectory and check if they have risk to crash. If so, a warning alarm is to be triggered 
such that the driver can slow down in advance.  

In this system, VRU is always a sender; and vehicle is always a receiver, which grant VRU with 
higher priority but cannot alarm even if a VRU violates the intersection control rules. It can 
undermine the highway capacity and put vehicles to the vulnerable position. On the other 
hand, VBS can use Bluetooth which supports the VRU to communicate with vehicles within 100 
m. This range may be enough in urban areas with typical vehicle speeds up to 35mph. Also, 
since the Bluetooth has been widely used in smartphone, this technology can be utilized to 
protect the disabled at the intersection. 
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Figure 8. Illustration of VBS system. 

Bicycle/Pedestrian to Vehicle Communication (BPTV) 

BPTV is a two-way wireless-communication-based system. In addition to the VRU-to-vehicle 
communication process that has been covered in VBS, BPTV enables vehicle to send message to 
VRU. This requires both vehicle and VRU to be sender and receiver at the same time (see Figure 
9). The two-way communication also makes possible of alarming VRU to stop in advance. 
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Figure 9. Illustration of BPTV system. 

Although introducing 5G to BPTV system can expand communication range to 400 m, the 
recognition accuracy hindered by prediction algorithms may not get improved. For example, 
Lidar has a recognition rate of 97.1% for vehicles within a range of 25-40m (Zhao et al. 2019), 
and a recognition rate of 79.3% for pedestrians within a range of 50m (K. Liu, Wang, and Wang 
2019). In that case, predicting a conflict beyond 100m may not facilitate safe driving. 

Intersection Safety (INS) 

Both VBS and BPTV are decentralized V2V systems, where vehicles and VRU communicate 
directly. In this context, unless all the vehicles and VRU are equipped with wireless 
communication devices, there is no guarantee that following the warning message can be safe, 
since there are always some objects that cannot be detected by the system. As a centralized V2I 
system shown in Figure 10, INS needs to collect the real-time data of all the vehicles and VRU 
around the intersection. Thus, the safety guidance provided by INS performs more consistent 
and reliable. 
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Figure 10. Illustration of INS system. 

On the other hand, it is expected that building up and running the INS system is super costly. To 
realize the full coverage of traffic objects detection and recognition, the INS system must 
integrate multiple surveillance technologies, e.g., wireless probes, sensors, and cameras. This 
will impose high cost to the system construction. Meanwhile, the centralized communication 
pattern makes INS system highly responsible for incidents. Any incidents occurring will be 
imputed to the failure of INS system. 

Summary 

The major characters of the four IVT are listed in Table 5. In general, BSD is the most mature 
technology to diminish blind spot areas, while its benefit to VRU safety is also limited compared 
with the other three IVTs that have inter-device communication. VBS is a viable approach to 
help VRU at the cost of traffic throughput reduction. In contrast, BPTV and INS exhibit the most 
promising performance. BPTV can suffer from stability issues when the market penetration is 
low, while INS has the highest construction and operational costs. 
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Table 5. Summary of technical differences across the four IVT. 

Features 
IVT 

BSD VBS BPTV INS 

Communication 
approach 

Vision / 
Sensor 

Wireless one-way Wireless two-way 
Vision/Wireless/Sens

or 

Require 
trajectory 
prediction 
algorithm 

No Yes Yes Yes 

VRU-equipped 
device 

None Sender Sender & Receiver 
Receiver 

(Sender is optional) 

Vehicle-
equipped device 

Sensor Receiver Sender & Receiver 
Receiver 

(Sender is optional) 

Vehicle’s 
warning 
message 
triggered 

VRU in BSD 
detection 
range 

• Vehicle receives 
beacon signal 
from VRU 

• VRU’s trajectory 
be predicted to 
conflict with 
vehicle 

• Emergency brake 
required for 
vehicle to avoid 
collision 

• Vehicle receives 
beacon signal 
from VRU 

• VRU’s trajectory 
be predicted to 
conflict with 
vehicle 

• Emergency brake 
required for 
vehicle to avoid 
collision 

• Vehicle receives 
beacon signal 
from VRU 

• VRU’s trajectory 
be predicted to 
conflict with 
vehicle 

• Emergency brake 
required for 
vehicle to avoid 
collision 

VRU’s warning 
message 
triggered 

NA NA 

• VRU receive 
beacon signal 
from vehicle 

• Vehicle’s 
trajectory be 
predicted to 
conflict with VRU 

• VRU’s gap to 
collision is small 
enough 

• VRU receive 
beacon signal 
from vehicle 

• Vehicle’s 
trajectory be 
predicted to 
conflict with VRU 

• VRU’s gap to 
collision is small 
enough 
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Implementation in SUMO 

We implement the simulation scenarios above in SUMO, an open-source, highly portable, 
microscopic, and continuous traffic simulation package designed to handle large road networks. 
A basic SUMO model consists of a variety of objects, including: 

• Network components (e.g., edge, lane, junction), which define the spatial topology and 
connectivity of highway infrastructure. These objects are static in the simulation run. 

• Traffic participants (e.g., vehicle, bike, person), which encapsulate the real-time state 
variables of moving objects in the simulation run (e.g., position, speed). In each simulation 
time step, these state variables are updated. 

The driving behavior models, which describe the interactive movements of traffic participants, 
are implemented in SUMO to prevent collisions, including: 

• Car-following models, which regulate the rear-end interactions between leader and 
follower. 

• Lane-changing models, which regulate the lateral movement of vehicles. 

• Junction-control models, which define the strategies of scheduling passage of traffic 
participants at intersections. 

The existing junction-control models are collision-free under the assumption of perfect 
knowledge, which means each object in simulation can perceive all the incoming foes. To 
represent the driver's sporadic inability of identifying conflicts and IVT compensation effects, 
we insert the filtering logic into the current junction-control model in SUMO source code (see 
Figure 11). The resultant collisions are output using the SSM module for comparison. 

 

Figure 11. Logic flow charts of junction control and filtering modification. 

Logic process of SUMO junction-control model 

The junction-control model is the module that arranges the interactions between vehicles and 
VRU. In each simulation step, it is preceded by each traffic object that is approaching the 
junction and returning 1) whether the ego vehicle or VRU should pass or brake; and 2) What 
maximum speed is safe to follow the junction control rule and prevent collision. To apply the 
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right-of-way decision to all the approaching vehicles and VRU in the many-to-many lane 
context, SUMO introduces a structure of right-of-way (ROW) matrix, as shown in Figure 12. 
Detailed control logic about the SUMO junction-control model that governs vehicle dynamics 
are introduced in this document (Krajzewicz and Erdmann 2013). 

 

Figure 12. Passage decision making using a right-of-way matrix (Krajzewicz and Erdmann 
2013). 

The decision process is executed between one “ego” object and one “foe” object. Based on the 
different states of “ego” and “foe”, we split the right-of-way decision process into two types. 

1) Stop bar passage decision. This process is implemented to “ego” objects that have not 
yet entered the junction and all the “foe” objects who will pass the junction in the 
future simulation steps. If a potential collision is detected or the stop bar is in red traffic 
light, then the “ego” object will stop before the stop bar and calculate accordingly the 
safe speed, denoted as 𝑣𝑠𝑎𝑓𝑒

1 . Otherwise, with no conflict perceived, the “ego” object 

will select the safe speed as the lane speed limit. This process can also be interpreted as 
scheduling the time window for each vehicle, which is the core of junction-control logic. 

2) Conflict prevention decision. This process is implemented to every one of “ego” objects, 
either in the normal lane or inside the junction, and the “foe” objects inside the 
junction. Because the objects that have already entered the junction always have higher 
priority to the object outside the junction for passage, the “ego” objects that have not 

entered will have no choice but brake, with safe speed 𝑣𝑠𝑎𝑓𝑒
2  calculated. For the “ego” 

objects that are also inside the junction, a similar ROW matrix is calculated, which 
assigns the right of way to the object passing the conflict point earlier. This process 
enables the emergency braking to happen, which is usually the case when IVT take 
effect. 

After the two logic processes, the final safe speed is determined by taking the minimum value 

of 𝑣𝑠𝑎𝑓𝑒
1  and 𝑣𝑠𝑎𝑓𝑒

2 . 
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Filter implementation 

We design and implement two filters to realize the junction-control with imperfect knowledge. 
The filters are inserted before the right-of-way decision process above. When the filters take 
effect, the “foe” object will be ignored by “ego” object. 

1) Visual perception filter. This filter is designed for modeling the driver’s perception limit, 
especially in the scenarios without IVT equipment. From this filter, the “foe” object is 
excluded from the right-of-way decision process either when it is in the blind spot of 
“ego” object or when the “ego” is distracted. 

2) IVT perception filter. As a compensation of driver’s visual inability, the filter may exclude 
fewer objects, which allows the “foe” objects visually excluded to be covered and 
triggered by IVT. This filter is designed specifically based on the characters of IVT. For 
instance, the BSD technology has no prediction process and will trigger the warning 
immediately after some objects are covered in the camera range. We assume these 
“foe” objects become visible to the driver. In contrast, the other advanced technologies 
including VBS, BPTV and INS will trigger the warnings only if the “foe” object is detected, 
predicted to have collision, and urgent enough to meet with the alarm trigger 
thresholds. 

The two filters are run parallelly and return the set of visible “foe” objects separately, which are 
joint as the whole set to input to the right-of-way decision process. 

Uncertainty Parameters in SUMO 

Besides the deterministic factors that cause safety issues, we further explore the random 
factors in our simulation-based assessment. In the visual perception filter, we utilize a junction-
control model parameter “ignore foe probability” to address the driver’s random distraction 
behavior as an additive to the blind spot definition. Moreover, we introduce three parameters 
into the VBS/BPTV/INS scenarios in the IVT perception filter: 1) wireless communication error; 
2) collision prediction error; 3) alarm triggering thresholds. Following a variety of literature, the 
values of these parameters are selected as illustrated below. 

The relation between ignore probability and driver’s inattention 

When the driver is driving without IVT assistance, he may be distracted or not paying attention, 
which can be internalized as Ignore Foe Probability in SUMO. Kedowide, Gouin-Vallerand, and 
Vallieres (2014) conducted a field test on 60 test participants to characterize driver brake 
perception-reaction times at the onset of an amber phase actuation at a high-speed signalized 
intersection approach. Results show that the percentage of participants with reaction times 
more than 1.0 sec, which is the TTC threshold of a critical collision event, is approximately 94% 
(Kedowide, Gouin-Vallerand, and Vallieres 2014). It means that 94% of drivers can react 
properly to the critical event when a VRU is perceived. Therefore, we consider setting the 
ignore foe probability in SUMO to 0.06 in the context of driving without IVT.  
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VBS/BPTV/INS communication accuracy 

In technologies involving communication between vehicles and VRU, the success rate of 
communication transmissions can also be internalized, which is regarded as communication 
error (CE) in this project. For example, packet delivery rate (PDR) can be considered as an 
evaluation index for CE of VBS/BPTV system using dedicated short-range communication 
(DSRC). Kedowide et al., (2014) also conducted an experiment to compare the PDR 
performances of DSRC and LTE technologies. As Figure 13, the previous results suggest that the 
PDR for DSCR at LOS condition can be as high as 92.4% at the distance of 50 m, 90.3% at 150 m 
and only 70.3% at 400 m. In SUMO simulation, we incorporate the results and internalize them 
as communication errors that are based on the distance between the vehicle and the VRU. The 
distance-based communication error is also adapted to a curve based on the research of 
Kedowide et al. (2014).  

 

Figure 13. Relation between packet delivery rate (PDR) and communication distance. 

The implementation of BPTV communication efficacy can be divided into two parts: i) PDR in 
order to evaluate the effectiveness of DSRC communication on the vehicle side; and ii) DSRC 
communication effectiveness of DSRC on the VRU side. The two sides can be viewed as two 
independent probabilities when being applied in the simulation. In terms of VRU and vehicle 
communication, the parameters required by INS are consistent with BPTV.  

When the CE parameter is applied to VBS and BPTV, the difference lies in the object of the 
parameter. In the VBS scenario, the VRU acts as the signal transmitter, and the vehicle-
mounted equipment or the smartphone of the driver acts as the signal receiver, and the only 
object of CE is the vehicle. However, in the scenario of BPTV, there is a two-way 
communication, which means that the vehicle works as a signal receiver as well as a sender, 
and vice versa for the VRU. However, the two-way communication occurs at the same time and 
consist of two independent events of communications. Therefore, the CE parameter can utilize 
the same distance-based curve as VBS when BPTV is active in the simulation scenarios.  
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BSD/VBS/BPTV/INS VRU conflict prediction accuracy 

The mechanisms of VRU prediction are different for BSD and the latter three technologies. 
Existing BSD mostly relies on the recognition work of camera and/or radar, so prediction error 
can be externalized as the recognition accuracy of the BSD system for objects that exist in the 
blind zone. Hammoud (2008) suggests that the radar-based BSD system can reach accuracies of 
98.38% and 98.34% under daytime and nighttime conditions, respectively. Also, Djamel et al. 
(2020) suggest that vision-based BSD systems have the detection accuracy of 91.11% with a 41-
vehicle sample. Therefore, we consider setting the VRU prediction error in SUMO to 0.09 under 
the BSD scenario.  

Apart from the communication successful rate with respect to the three IVT, their detection 
accuracies on VRU are also important parts when internalizing the VRU path prediction error. In 
actual scenarios, VBS, BPTV and INS all require VRU or vehicle movement data (e.g., GPS data) 
from specific devices or smartphones such as location, speed, direction of movement, for short-
term trajectory prediction, which is based on successful communication. By predicting the 
short-term trajectory, the IVT system can detect potential conflicts and thus issue a warning to 
driver and/or VRU.  

Various machine learning methods are used to utilize the short-term paths of both vehicles and 
VRU to predict whether a potential collision point exists. Chang et al. (2009) propose a 
predictive method using mobile phone to collect GPS data from 14 participants. The prediction 
part was made by a decision tree created from the movement patterns. The results show that 
the approach achieved 80% accuracy in destination prediction and only 60% in 1-step 
prediction. K. Liu, Wang, and Wang (2019) present a method to predict pedestrian’s next move 
by applying a mixed Markov–Chain Model (MMM) and by comparing the results against a 
Hidden Markon Model (HMM) and a Markov Model. The authors used 10 datasets generated 
by a simulator creating data from 1,337 pedestrians. The prediction rates reach up to 73.5%. 
Krajzewicz and Erdmann (2013) developed two neural networks for this work, leveraging 
information such as GPS, heading, and velocity. The results showed that the dead reckoning 
method makes 98% accurate predictions when the prediction time is less than 0.5 s but makes 
large prediction errors when the prediction time is more than 0.5 s. Therefore, we assume in 
the project that the prediction error of VRU path increases as the prediction time increases. We 
assume that within 0.5s of prediction time, the prediction accuracy of VRU path can reach 95%. 
Outside of 0.5s, the prediction accuracy decreases with the increase of time. 

As for INS, since it has a second perception mechanism, which is sensor detection, we can 
expect INS to have a higher recognition accuracy rate than BPTV. According to Rothenbücher et 
al. (2016), the Lidar/camera sensor achieves on average 99.16% detection accuracy for 
pedestrian detection.  

Safety warning message/alarm triggering  

The safety warning messages, or alarms to vehicles help drivers reduce their reaction times to 
step on brake earlier to avoid potential collisions with VRU, and therefore the safety of VRU at 
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intersections can be improved. This feature serves as important components in VBS/BPTV/INS 
technologies, except for BSD. The methods of warning triggering vary in previous research. 
Chang et al. (2009) propose a collision warning predicted framework that provides connected 
automated vehicle and alert driver when time to collision (TTC) is within specified thresholds. 
Besides, among the most popular safe stopping distance-based indicators such as TTC and PET, 
Deceleration Rate to Avoid Collision (DRAC) is also an effective indicator, which simplifies the 
process of calculating critical TTC/PET thresholds, directly indicates potential collision in SUMO 
and thus escalates the speed of SUMO simulation. It is defined as the minimum rate at which a 
vehicle must decelerate to avoid a possible traffic conflict. In the context of this study, potential 
conflict scenarios are considered when the DRAC exceeds a threshold braking value of 70% of 
the maximum braking deceleration rates for different types of vehicles and VRU.  

Figure 14 shows the illustration of the simulation parameter structure, which is applied to 
modify the default ROW junction model, making traffic collisions possible in SUMO simulations. 

 

Figure 14. The simulation parameter structure in the modified ROW junction model. 
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Results and Discussion 

Macroscopic: Crash Severity Modeling Results 

A series of human/behavioral and environmental factors, which are commonly considered to 
have an impact on the crash severity, were analyzed using MNL models. All the independent 
variables from the crash data were input with category exclusion done based on the sample 
selection criteria. However, based on the original results, the p-values of some of the variables 
are larger than 0.1, which means that these variables are found to be insignificant and hence 
are removed from the list of significant variables.  

Table 6 shows the results of the MNL models for both pedestrian- and bicyclist-involved 
crashes. All the estimated coefficients, which are log of odds ratios (OR) for the selected 
variables represent the effect of the variables on the specific fatal/injury level compared with 
the complaint of injury level. In addition to the coefficients of the selected variables in the MNL 
models, we estimate the coefficients of the interaction terms of different movements 
preceding collision. In general, these influencing factors can be divided into five categories: 
weather, road type, lighting, vehicle type and human characteristics, which are summarized as 
follows. 
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Table 6. Results of MNL regression models. 

Diagnostics of MNL Models 

 Pedestrian Model Bicyclist Model 

Number of Observations 12,683 11,149 

Residual Deviance 9813.299 7742.598 

AIC 10047.3 7958.598 
 

Independent Variables Dependent Variable: Collision Severity 
Ref. level: Injury (Complaint of Pain) 

Pedestrian Model Bicyclist Model 

Coef. & t-value Coef. & t-value 

Injury 
(Other 
Visible) 

Injury 
(Severe) 

Fatal Injury 
(Other 
Visible) 

Injury 
(Severe) 

Fatal 

Constant -0.619*** -1.814*** -3.258*** -0.386* -2.108*** -2.288** 

(0.17) (0.27) (0.51) (0.22) (0.41) (0.93) 

Weather  
Ref.: (A) Clear 

(B) Cloudy -0.104 -0.226 0.226 -0.076 0.138 -0.501 

(0.09) (0.16) (0.26) (0.10) (0.18) (0.75) 
(C) Rainy -0.469*** -0.443*** -0.285 -0.062 -0.251 0.582 

(0.12) (0.17) (0.31) (0.19) (0.41) (1.06) 

State Highway Indicator  
Ref.: (N) No 

(Y) Yes 0.367*** 0.506*** 1.377*** 0.194* 0.082 -0.465 

(0.12) (0.17) (0.25) (0.12) (0.24) (1.03) 

Lighting 
Ref.: (A) Daytime 

(B) Dusk - Dawn -0.203 0.059 0.329 -0.401*** -0.343 0.949 

(0.14) (0.22) (0.42) (0.13) (0.30) (0.65) 
(C) Dark - Street Lights -0.076 0.575*** 1.057*** -0.208*** 0.237* -0.22 

(0.06) (0.09) (0.18) (0.07) (0.13) (0.48) 

(D) Dark - No Street Lights -0.015 0.951*** 1.012* -0.391 -0.068 -7.828 

(0.24) (0.28) (0.56) (0.32) (0.63) (104.33) 

(E) Dark - Street Lights Not 
Functioning 

0.583 1.046 1.319 - - - 

(0.62) (0.76) (1.15) - - - 
Truck Accident 
Ref.: (N) No 

(Y) Yes 0.145 0.18 1.642*** 0.379 1.051*** 2.232*** 

(0.28) (0.41) (0.45) (0.26) (0.40) (0.81) 
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Independent Variables Dependent Variable: Collision Severity 
Ref. level: Injury (Complaint of Pain) 

Pedestrian Model Bicyclist Model 

Coef. & t-value Coef. & t-value 

Injury 
(Other 
Visible) 

Injury 
(Severe) 

Fatal Injury 
(Other 
Visible) 

Injury 
(Severe) 

Fatal 

PCF Violation Category  
Ref.: (00) Unknown 

(01) Driving or Bicycling Under the 
Influence of Alcohol or Drug 

0.344 2.016*** 2.529*** 1.449*** 2.371*** 2.356* 
(0.42) (0.47) (0.85) (0.53) (0.70) (1.43) 

(03) Unsafe Speed -0.1 0.632* 1.25 0.217 0.29 -0.541 

(0.25) (0.38) (0.77) (0.19) (0.41) (1.11) 

(04) Following Too Closely - - - -0.245 -0.979 -9.636*** 

- - - (0.33) (1.08) (0.01) 

(05) Wrong Side of Road 0.638 1.549** 2.402* -0.540*** -0.246 -0.928 
(0.56) (0.71) (1.28) (0.17) (0.37) (0.93) 

(06) Improper Passing 0.138 0.796 -8.855*** -0.023 -0.409 13.168*** 

(0.38) (0.56) (0.00) (0.23) (0.58) (0.00) 

(07) Unsafe Lane Change - - - 0.126 0.189 12.748*** 

- - - (0.24) (0.53) (0.00) 

(08) Improper Turning -0.114 -0.179 -0.666 0.054 0.133 -2.174* 
(0.25) (0.44) (1.20) (0.17) (0.37) (1.31) 

(09) Automobile Right of Way 0.043 -0.306 0.805 -0.027 0.272 -1.797 

(0.27) (0.50) (0.80) (0.16) (0.36) (1.11) 

(10) Pedestrian Right of Way -0.096 -0.039 0.201 -0.29 -0.229 -9.445*** 

(0.20) (0.33) (0.67) (0.27) (0.69) (0.01) 

(11) Pedestrian Violation -0.023 0.298 0.208 0.016 0.351 0.645 

(0.21) (0.33) (0.64) (0.30) (0.64) (1.35) 

(12) Traffic Signals and Signs -0.244 -0.225 0.622 -0.148 0.824** 0.318 

(0.25) (0.44) (0.85) (0.17) (0.35) (0.85) 

(14) Lights - - - -0.066 0.012 -8.149 

- - - (0.41) (0.84) (106.04) 
(17) Other Hazardous Violation -0.41 -0.109 10.194*** 0.16 0.296 -1.408 

(0.35) (0.57) (0.00) (0.18) (0.40) (1.32) 

(18) Other than Driver (or Pedestrian) 1.095** 1.158* 1.899** 0.297 -0.158 -8.158 

(0.44) (0.64) (0.90) (0.40) (1.07) (112.21) 

(21) Unsafe Starting or Backing -0.103 -0.397 -0.997 -0.209 -0.335 10.777*** 
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Independent Variables Dependent Variable: Collision Severity 
Ref. level: Injury (Complaint of Pain) 

Pedestrian Model Bicyclist Model 

Coef. & t-value Coef. & t-value 

Injury 
(Other 
Visible) 

Injury 
(Severe) 

Fatal Injury 
(Other 
Visible) 

Injury 
(Severe) 

Fatal 

(0.24) (0.43) (1.19) (0.27) (0.69) (0.00) 
(22) Pedestrian or “Other” Under the 
Influence of Alcohol or Drug 

0.247 0.299 -8.648 -0.348 -0.483 -8.958*** 

(0.38) (0.62) (107.80) (0.43) (1.09) (0.01) 

VRU At Fault 
Ref.: (N) No 

(Y) Yes 0.763*** 0.775** 0.722 0.405*** 0.319 0.688 

(0.22) (0.35) (0.65) (0.16) (0.31) (0.85) 

Driver At Fault 
Ref.: (N) No 

(Y) Yes 0.282 0.069 -0.598 0.279* -0.004 -0.204 

(0.20) (0.33) (0.65) (0.16) (0.32) (0.95) 
VRU Sex 
Ref.: (F) Female 

(M) Male 0.300*** 0.275*** 0.420** 0.196*** 0.184 0.368 

(0.05) (0.08) (0.17) (0.06) (0.13) (0.50) 

Driver Sex 
Ref.: (F) Female 

(M) Male -0.110** 0.159* 0.372** -0.021 0.078 0.757* 

(0.06) (0.09) (0.19) (0.05) (0.11) (0.42) 

VRU Age Group 
Ref.: (A) Silent 

(B) Baby Boomer -0.413*** -0.725*** -1.076*** -0.058 -0.416 -1.807*** 

(0.10) (0.13) (0.20) (0.19) (0.29) (0.51) 
(C) Gen X -0.495*** -0.776*** -2.041*** -0.228 -0.865*** -2.835*** 

(0.10) (0.14) (0.26) (0.18) (0.30) (0.61) 

(D) Millennials -0.436*** -1.103*** -3.070*** -0.112 -0.824*** -2.837*** 

(0.10) (0.14) (0.32) (0.18) (0.29) (0.53) 

(E) Gen Z -0.172* -1.286*** -3.221*** 0.151 -1.133*** 19.379*** 

(0.10) (0.16) (0.44) (0.18) (0.31) 0.00 

Driver Age Group 
Ref.: (A) Silent 

(B) Baby Boomer 0.1 0.006 0.658** 0.094 0.05 -0.437 

(0.08) (0.13) (0.28) (0.09) (0.19) (0.60) 

(C) Gen X 0.09 0.024 0.244 0.229*** 0.278 -0.107 

(0.08) (0.14) (0.31) (0.09) (0.19) (0.59) 

(D) Millennials 0.158* 0.165 0.341 0.078 0.158 -0.288 
(0.08) (0.13) (0.30) (0.09) (0.19) (0.58) 

(E) Gen Z 0.336*** 0.536*** 0.968** 0.309** 0.636*** -0.461 

(0.13) (0.19) (0.39) (0.12) (0.24) (1.12) 

Note: *p<0.1; **p<0.05; ***p<0.01 
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From the results, the impacting factors of VRU safety at intersections are discussed as follows. 

Weather  

In terms of pedestrian accidents, compared to clear weather, the OR of visible injury and severe 
collisions under rainy weather conditions decreases by 37.4% and 35.7%, respectively, 
compared to level 4 (no injury) pedestrian collisions. In terms of bicycle accidents, it is not 
found that the weather variable has significant estimated coefficients on the severity of crashes 
involving bicyclists. It is naturally assumed that rainy weather increases the severity of traffic 
accidents, but this may not be the case for collisions between vehicles and pedestrians at 
intersections, as negative but significant coefficients are found in the MNL model. However, it is 
clear that light conditions could affect pedestrian injury severity in good weather conditions 
(Table 6), but no evidence was found to associate pedestrian injury severity with adverse 
weather conditions (Table 6). The impact of weather changes on the severity of the accident 
can be multifaceted, which is reflected in vehicle speed, road surface, traffic volume and 
exposure, etc. Since weather is not found to significantly impact the injury severity of bicyclist 
accidents, we can hypothesize that the differences in bicyclist exposure in different weather 
conditions lead to statistically insignificant results. We can also assume that VRU traffic volume 
may have different distributions under different weather conditions. The exposure of bicycles in 
sunny weather could be higher.  

State highway 

The model results show that the OR for fatal and severe collisions is 4.0 and 1.7 times as high as 
that for level 4 collisions. Also, for level 3 visible injuries, the coefficients of the pedestrian 
model and the bicycle model are also significant, at 0.367 and 0.194, which means that their OR 
are 1.4 and 1.2 times, respectively. Compared to urban streets, state highways usually have 
lower bicycle and pedestrian traffic, but typically higher vehicle speeds of up to 65 mph or 
higher, whereas the speed limits for urban streets are often 35 to 40 mph. Therefore, for state 
highways, when a VRU crash occurs, it is much more likely to become severe, with VRU injuries.  

Lighting  

For pedestrian collisions, the model results show that the OR of fatal and severe crashes are 2.9 
and 1.8 times respectively as high as that of level 4 crashes when the light condition is dark with 
streetlights. Moreover, the OR of fatal and severe crashes are 2.7 and 2.6 times, respectively, 
when it is dark with no streetlights. For bicyclist collisions, we also found that the OR of visible 
injury decreases by 18.6% while that of severe injury increases by 26.7%. We infer that lack of 
light at night is one of the factors leading to increased crash severity. Although streetlights are 
installed at some intersections, the visual acuity of drivers may not be high enough, resulting in 
a serious collision, reflected by the similar coefficients for streetlights and no streetlights in the 
dark. 
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Truck involved 

The OR of fatal accidents for both pedestrian and bicyclist increase by 4.2 and 8.3 times more 
than those of level 4 accidents when a truck is involved in collisions, showing that trucks are an 
important factor in the increase in severity of VRU accidents, although these truck accidents 
account for less than 5% of the total sample of five years. This influence can be mainly analyzed 
for two aspects. For one thing, large trucks have larger blind spot areas than cars and SUVs at 
close range or when turning, and there is also a difference in inner wheels, which makes it 
difficult to perceive pedestrians and bicycles nearby. Also, even if truck drivers are aware of the 
dangers, trucks usually have a longer braking distance, making for a higher relative speed of the 
vehicle at the moment of collision, which increases the severity of the accident.  

VRU and vehicle characteristics 

The VRU and the driver’s fault, gender, age and other personal characteristics all have different 
effects on the severity of the accident. If the VRU involved in the collision is at fault, the OR of 
severe and visible injury accidents for the pedestrian will increase by 117.3% and 114.5%, 
respectively, and this finding has the same effect on visible injury accidents for bicyclists, where 
the OR increases by 49.8%. Traffic violations placing one party at fault can cause serious 
crashes. In many cases, pedestrian violations, such as running a red light, can easily increase the 
severity of the accident if the pedestrian is not observed, or if the vehicle does not react in time 
(Table 4).  

The model results also show that the OR in fatal/severe/visible injury pedestrian collisions 
involving male pedestrians are much higher than that of level 4, and the OR of a fatal bicycle 
collision involving male vehicle drivers is also higher than level 4. We can infer that male traffic 
agents may have over-optimistic decisions and aggressive actions in encountering potential 
conflicts, leading to an increase in collision severity. In addition, compared with the reference 
level, which is a silent age group, the OR of severe or fatal collisions in the other age groups for 
both pedestrian and bicycles drop by at least 70%, and the magnitude of the negative 
coefficients gradually increase as the average age of the group decreases. We can infer that age 
is an important factor affecting the severity of VRU accidents, and higher ages—65 and higher-- 
will be more correlated to severe and fatal accidents for both pedestrians and bicyclists. 

Through modeling and analyzing the influencing factors of the severity of VRU-related 
collisions, we can summarize the above environmental factors, characteristics of traffic agents, 
traffic volume and other factors that may increase the severity of the accident, to establish a 
typical scenario for subsequent traffic simulation processes. 

Typical Crash Movement Combination 

Table 7 provides the estimated coefficients for the combinations of these movements, where 
the coefficients represent the log of OR of the collision severity for a specific combination of 
movements. From the results of the two MNL regression models, we can summarize the factors 
associated to the severity of VRU-related collisions at intersections (explained in the 
aforementioned paragraphs) and can extract typical collision movement combinations through 
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the coefficients of the interaction term. When considering the typical crash combinations, we 
assume that pedestrians can walk in both directions in pedestrian lanes, while bicycles are 
required to travel in the same direction as the flow of vehicle traffic. 
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Table 7. Estimated coefficients and t values for different combinations of movements preceding collisions. Note: these estimates 
are in a continued showcase of the MNL model results shown in Table 6. 

Independent Variables Dependent Variable: Collision Severity 
Ref. level: Injury (Complaint of Pain) 

Pedestrian Model Bicyclist Model 

Coef. & t-value Obs. 
Count 

Coef. & t-value Obs. Count 

Injury (Other 
Visible) 

Injury 
(Severe) 

Fatal Injury (Other 
Visible) 

Injury (Severe) Fatal  

Constant -0.722** -1.946*** -19.486*** 7461 -0.753* -2.139*** -32.120*** 6604 

-0.296 -0.478 -0.278 -0.429 -0.747 -0.262 

VRU's 
Movement 
Preceding 
Collision 
Ref.: (A) 
Stopped 

(B) Proceeding 
Straight 

-0.259 -0.315 -5.955*** 3888 0.624 -0.779 -1.597*** 5145 
(0.41) (0.67) (0.34) (0.45) (0.83) (0.22) 

(D) Making Right 
Turn 

- - - - 1.669* -13.428*** -1.960*** 140 

- - - (0.94) (0.32) 0.00  

(E) Making Left 
Turn 

- - - - -15.754*** -11.77 2.612*** 340 

- - - (0.31) (19.50) (0.40) 

(F) Making U-
Turn 

- - - - 16.756*** -11.065*** -0.945*** 15 
- - - (0.32) 0.00  0.00  

(Q) Traveling 
Wrong Way 

- - - - 
 

-0.545 -13.093*** 0.827*** 276 
  - - - (0.78) (0.48) (0.26) 

Driver's 
Movement 
Preceding 
Collision 
Ref.: (A) 
Stopped 

(B) Proceeding 
Straight 

0.722** 1.172** 17.986*** 3250 0.984** 0.453 9.296*** 2698 

(0.31) (0.49) (0.30) (0.50) (0.89) (0.21) 

(D) Making Right 
Turn 

0.214 -0.052 17.018*** 1045 0.635 -0.061 8.602*** 1488 
(0.33) (0.55) (0.39) (0.65) (1.29) (0.29) 

(E) Making Left 
Turn 

0.297 0.117 16.938*** 2397 1.329** -0.059 10.765*** 1237 

(0.31) (0.51) (0.34) (0.60) (1.29) (0.29) 

(F) Making U-
Turn 

-16.647*** -12.643*** -4.167*** 18 18.454*** -5.308*** -7.528*** 76 

(0.55) 0.00  0.00  (0.14) (0.54) 0.00  
(G) Backing -0.346 -0.267 -1.913*** 287 0.754 -11.677*** -5.198*** 61 

(0.39) (0.62) 0.00  (1.48) (0.35) 0.00  

(H) Slowing / 
Stopping 

-0.377 0.847 -1.250*** 60 0.748 -10.393*** 7.310*** 49 

(0.87) (0.95) 0.00  (1.48) (0.43) (0.40) 

(J) Changing 
Lanes 

0.719 -13.267*** 18.791*** 18 10.586*** -0.192 -2.338*** 76 

(1.04) (0.62) (1.04) (0.15) (0.41) 0.00  

(K) Parking 
Maneuver 

-0.531 -16.961*** -4.149*** 27 0.517*** 0.042 -3.519*** 62 

(0.86) (0.75) 0.00  (0.16) (0.55) 0.00  
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Independent Variables Dependent Variable: Collision Severity 
Ref. level: Injury (Complaint of Pain) 

Pedestrian Model Bicyclist Model 

Coef. & t-value Obs. 
Count 

Coef. & t-value Obs. Count 

Injury (Other 
Visible) 

Injury 
(Severe) 

Fatal Injury (Other 
Visible) 

Injury (Severe) Fatal  

(L) Entering 
Traffic 

-0.067 -13.985*** 17.089*** 90 18.466*** -1.769*** 7.293*** 177 

(0.62) (0.36) (0.90) (0.38) (0.45) 0.00  
(P) Merging - - - - 

 
-14.175*** -11.687 -1.875*** 25 

  - - - (0.48) (58.67) 0.00  

Interaction Terms of Movement Preceding Collision 

Movement of 
VRU 

Movement of 
Driver 

Pedestrian Model Bicyclist Model 

Coef. & t-value Obs. 
Count 

Coef. & t-value Obs. Count 

Injury (Other 
Visible) 

Injury 
(Severe) 

Fatal Injury (Other 
Visible) 

Injury (Severe) Fatal  

(B) Proceeding 
Straight 

(B) Proceeding 
Straight 

0.037 -0.121 4.707*** 1451 -0.928* 0.711 20.553*** 1828 

(0.42) (0.68) (0.38) (0.52) (0.97) (0.21) 

(D) Making 
Right Turn 

(B) Proceeding 
Straight 

- - - - -1.628 13.594*** -2.759*** 81 

- - - (1.00) (0.32) 0.00  

(E) Making 
Left Turn 

(B) Proceeding 
Straight 

- - - - 15.649*** 11.805 -7.156*** 279 
- - - (0.38) (19.50) 0.00  

(Q) Traveling 
Wrong Way 

(B) Proceeding 
Straight 

- - - - 0.502 13.044*** 19.164*** 83 

- - - (0.85) (0.69) (0.26) 

(B) Proceeding 
Straight 

(D) Making Right 
Turn 

-0.181 -0.426 3.007*** 654 -0.603 0.351 19.373*** 1235 

(0.44) (0.75) (0.70) (0.66) (1.35) (0.29) 

(D) Making 
Right Turn 

(D) Making Right 
Turn 

- - - - -1.551 -7.700*** 0.968*** 28 

- - - (1.12) 0.00  0.00  

(E) Making 
Left Turn 

(D) Making Right 
Turn 

- - - - 15.990*** -14.217*** -3.034*** 17 

- - - (0.61) 0.00  0.00  

(Q) Traveling 
Wrong Way 

(D) Making Right 
Turn 

- - - - 0.171 11.709*** -6.775*** 118 

- - - (0.94) (1.08) 0.00  
(B) Proceeding 
Straight 

(E) Making Left 
Turn 

0.06 -0.285 3.876*** 1503 -1.143* 1.017 17.422*** 1110 

(0.42) (0.70) (0.47) (0.61) (1.35) (0.29) 

(E) Making 
Left Turn 

(E) Making Left 
Turn 

- - - - 14.080*** 12.022 -5.606*** 31 

- - - (0.56) (19.52) 0.00  

- - - - -0.253 12.988*** -3.217*** 19 
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Independent Variables Dependent Variable: Collision Severity 
Ref. level: Injury (Complaint of Pain) 

Pedestrian Model Bicyclist Model 

Coef. & t-value Obs. 
Count 

Coef. & t-value Obs. Count 

Injury (Other 
Visible) 

Injury 
(Severe) 

Fatal Injury (Other 
Visible) 

Injury (Severe) Fatal  

(Q) Traveling 
Wrong Way 

(E) Making Left 
Turn 

- - - (1.00) (1.22) 0.00  

(B) Proceeding 
Straight 

(F) Making U-
Turn 

- - - - -18.819*** 4.512*** -6.268*** 67 

- - - (0.14) (0.54) 0.00  

(B) Proceeding 
Straight 

(G) Backing 0.295 -1.069 2.791*** 101 -0.785 12.398*** -5.593*** 53 

(0.53) (1.06) 0.00  (1.51) (0.35) 0.00  

(B) Proceeding 
Straight 

(H) Slowing / 
Stopping 

0.26 -12.823*** 1.109*** 20 -0.182 11.606*** -5.830*** 30 

(1.05) (0.00) 0.00  (1.53) (0.43) 0.00  
(B) Proceeding 
Straight 

(J) Changing 
Lanes 

- - - - -9.717*** 0.759* -2.499*** 67 

- - - (0.15) (0.41) 0.00  

(B) Proceeding 
Straight 

(K) Parking 
Maneuver 

- - - - 0.517*** 0.042 -3.519*** 60 

- - - (0.16) (0.55) 0.00  

(B) Proceeding 
Straight 

(L) Entering 
Traffic 

0.712 14.588*** 5.308*** 41 -18.521*** 1.811*** 5.543*** 134 

(0.75) (0.36) (1.18) (0.40) (0.56) 0.00  
(Q) Traveling 
Wrong Way 

(L) Entering 
Traffic 

- - - - -17.813*** 13.956*** 2.038*** 33 

- - - (0.64) (0.80) 0.00  

(B) Proceeding 
Straight 

(P) Merging - - - - 14.911*** -11.981*** -0.567*** 17 

- - - (0.56) (0.00) 0.00  

Note: *p<0.1; **p<0.05; ***p<0.01 



 

 55 

Table 8 enumerates and illustrates the seven typical collision types with different movements 
preceding collision for VRU and vehicle, accounting for the most VRU-related crashes (52.1% for 
pedestrian crashes and 77.9% for bicyclist crashes). Type 1-4 are intersection VRU collisions 
related to pedestrians, and type 5-7 are VRU collisions related to bicyclists. As illustrated by the 
scenario diagrams, first of all, type 1 and type 5 are similar collision types where thru traffic 
vehicles have potential collisions with perpendicular VRU flow coming from the near-side 
crosswalk/bike crossing. Likewise, type 2 and type 6 are similar collision types where thru traffic 
vehicles have collisions with perpendicular VRU flow coming from the far-side crosswalk/bike 
crossing. Moreover, type 3 and type 7 are collision types where right-turn vehicles have 
collisions with parallel pedestrian and bike flow in the same direction, respectively. Lastly, type 
4 is the type where left-turn vehicles have collisions with parallel pedestrian flow in the same 
direction. However, since left-turn vehicles can observe oncoming bicyclists going straight in 
the near lane, the collision chance between them is limited and we do not include a collision 
type where left-turn vehicles have collisions with oncoming bicycles going straight. We can see 
from both tables that type 1, 2, 5, and 6 collisions comprise most of the collision movements 
recorded by the historical crash data, which means that those collision types are of more 
research interest in the following sub-sections. 

Table 8. Combinations of movements preceding collisions. 

Scenario No. VRU Flow Vehicle Flow Scenario Diagram 

Type 1 

Near-side 
ped 

(Proceeding 
Straight) 

Thru 
(Proceeding 

Straight) 

 

Type 2 
Far-side ped 
(Proceeding 

Straight) 

Thru 
(Proceeding 

Straight) 
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Scenario No. VRU Flow Vehicle Flow Scenario Diagram 

Type 3 
Parallel ped 
(Proceeding 

Straight) 

Right-turn 
(Making 

Right Turn) 

 

Type 4 
Parallel ped 
(Proceeding 

Straight) 

Left-turn 
(Making Left 

Turn) 

 

Type 5 

Near-side 
bike 

(Proceeding 
Straight) 

Thru 
(Proceeding 

Straight) 

 

Type 6 
Far-side bike 
(Proceeding 

Straight) 

Thru 
(Proceeding 

Straight) 
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Scenario No. VRU Flow Vehicle Flow Scenario Diagram 

Type 7 
Parallel bike 
(Proceeding 

Straight) 

Right-turn 
(Making 

Right Turn) 

 

Note “near-side” and “far-side” mean that the VRU flow is perpendicular to the vehicle traffic flow and exists at 
the near-side and far-side crosswalk/bike crossing, respectively. 

Micro Level Traffic Simulation Results 

The simulation of the four technologies is implemented by SUMO with modified internal 
junction model. The vehicles, including passenger cars and trucks, are equipped with SSM 
device and thus the conflicts with VRU in a single execution of simulation can be recorded and 
exported based on selected TTC thresholds. To be more specific, if the TTC value for a conflict 
between a vehicle and a VRU is smaller than 1.5 seconds (pre-specified in the previous studies), 
we count this conflict as a collision. 

It is important that the randomness of simulation results should be properly addressed and 
ideally eliminated. To do this, we introduce different random seeds whenever a simulation is 
initialized. For each of the scenarios, we simulate the seven collision types individually as a 
single 12-hour simulation for five iterative times. The average collision count over the five 
iterative times is regarded as the result shown in the following figures. For example, the seven 
collision types are simulated under no IVT condition, and five iterative simulations are run 
within each of the types. Hence, there will be a total of 35 times of simulation executions for no 
IVT condition, generating the average counts of collisions for specific vehicle types (passenger 
cars and trucks).  

Evaluation of Technology Penetration 

We assess the impact of the penetration level of the various IVT. Four different penetration 
rates (PR) (25%, 50%, 75% and 100% adoptions) are simulated across the four IVT, where 
driving without IVT condition can be viewed as 0% PR condition. In each of the simulation 
settings, the generation of vehicles will proceed randomly, which means the arrival distribution 
of VRU and vehicles equipped with and without IVT is random. In the following sub-sections, 
results of the four IVT and two sensitivity tests on sight distance and traffic volume are 
described and discussed.  
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IVT simulation 

We collect collision count results for both passenger car- and truck-related collisions in 
simulation and arrange them by the four IVT (namely BSD, VBS, BPTV and INS), the four PR (0%, 
25%, 50%, 75% and 100%), as well as the seven collision types. For consistency, we assume that 
the wireless communication errors do not change by visual acuity and environments, which 
however may change in the real world due to dense buildings and high usage volume.  

 

a) Passenger cars 

 

b) Trucks 

Note: PC=passenger cars; TR=trucks; PR=penetration rate.  

Figure 15. Average collision counts versus PR under four IVT conditions. 

Figure 15 shows the average collision counts over seven collision types by passenger cars and 
trucks. We display the results, which are the average collision counts over five iterative times of 
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12-hour simulation, in seven separate line plots corresponding to the seven collision types. 
Among the line plots, the vertical axes represent the collision counts and the horizontal axes 
represent the five PR adopted, whereas four lines in different colors are drawn within each of 
the line plots with respect to an IVT of interest.  

Type 1 and 2 are the crossing collision types where thru traffic vehicles have potential collisions 
with perpendicular pedestrian flows. Similarly, type 5 and 6 are related to perpendicular bike 
flows. For type 1 collisions, besides low collision counts which are below 0.5 collision per hour 
(cph) for passenger cars, no obvious changes in collision counts are found as the PR of any of 
the IVT increases. However, the average collision counts for trucks reduce by 87.5%, 85.9%, and 
even 100% as BSD, VBS and BPTV/INS are fully adopted, respectively. For type 2 collisions, the 
average collision count for passenger cars under BPTV and INS conditions drop to below 0.2 cph 
as the PR increase to 100%. Likewise, the reductions for trucks on 100% PR of the four IVT are 
67.9%, 70.6%, 100% and 100%, respectively. For type 5 collisions, the reduction rates of 
average collision counts for passenger cars are 13.6%, 45.2%, 60.5% and 55.8% as four IVT are 
fully adopted orderly. The reduction rates for truck collisions are also similar, as collisions 
cannot be 100% eliminated by IVT. This situation is the same on type 6 collisions, where full 
BPTV can reduce average counts of collisions by 75.5% and 64.9% for passenger cars and trucks.  

Type 3, 4 and 7 are the crossing collision types where turning vehicles collide with oncoming 
VRU going straight. For type 3 passenger-car collisions, 100% adoption of VBS, BPTV and INS 
can reduce the average collision counts by 65.6%, 99.3% and 99.1%, respectively, while BSD 
seems not to reduce type 3 collisions. Besides the similar safety improvement effects of VBS, 
BPTV and INS on truck collisions, BSD can reduce 64.0% of truck collisions. For type 4 collisions, 
the reduction rates on passenger-car collisions by the four 100% IVT are 43.9%, 84.0%, 96.7% 
and 98.9%, respectively. Similar reduction rates exist on truck collisions. Reduction on 
passenger-car collision counts of type 4 and type 7 is different from those of type 3. Although 
similar reduction pattern persists, the average collision counts cannot be eliminated as 100% 
INS is deployed, returning 75.5% and 36.0% of reduction rates for passenger cars and trucks, 
respectively.  

From Figure 15, there are three major findings as are summarized below. Firstly, it seems no 
IVT can significantly reduce type 1 VRU collisions, as no direct evidence can be found in the 
simulation. The reason may be that the probability of type 1 collisions at 0% PR is already very 
low, and thus no obvious trends of safety improvement can be observed when adopting IVT. In 
addition, due to the complexity of the inherent simulation mechanism of SUMO, the reasons 
why 0% PR does not collide can be diverse. We speculate that one of the reasons may be that in 
the case of Type 1, the vehicle driver has a good view, and enough sight distance and 
pedestrians can stop immediately with a deceleration of 9.8m/s2 (Rothenbücher et al. 2016), 
thus avoiding most collisions. This also explains why the type 5 has higher collision counts, 
because bicycle has a lower deceleration compared to a pedestrian in our simulation settings. 
Secondly, in the collision scenarios of type 3, 4, and 7, BSD has the worst effect on car collision 
reduction among the four technologies, while INS and BPTV can reduce most of the collisions at 
100% PR. However, even if all VBS technology is adopted, only 40-60% of collision accidents can 
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be avoided. This may indicate that in our simulation settings, BPTV and INS can avoid most VRU 
accidents by virtue of their two-way communication advantages. Lastly, we want to focus on 
the low PR situation and compare the differences between the four IVT, and we found that for 
type 2-7 collisions, INS can have the best collision reduction effect under the condition of 25% 
PR, and the reduction is at least 35% or more. This finding shows that compared to BPTV, INS 
can achieve a better collision reduction effect because it has a central sensing module to detect 
objectives near an intersection, which is not dependent on either vehicles or VRU are equipped 
with specific technologies. 

Sensitivity test I: sight distance  

Supplementary to the four IVT, we test the sight distance in different value settings under no 
IVT condition and other four IVT. As is suggested by the previous MNL modeling results that 
lighting and weather, which can result in low sight distance naturally, can be factors affecting 
the severity of VRU collisions, we put the sight distance into interest. Since the simulation of 
the four IVT is based on the condition of good sight distance at daytime, we set the sight 
distance as a variable for sensitivity testing, where we can simulate the situation of poor sight 
distance at night as well. The sight distance in the sensitivity test is divided into eight groups, 
which are 10m, 15m, 20m, 25m, 30m, 40m, 50m, 100m, 150m and 200m. Also, the average 
collision counts are obtained by averaging the results of five iterative times of 12-hour 
simulation in SUMO.  

 

Note: PC=passenger cars; TR=trucks.  

Figure 16. Average collision counts versus sight distance under five IVT adoption conditions. 

Figure 16 shows the average collision counts for both passenger cars and trucks under different 
settings of sight distance. In each of the line plots, the horizontal axis represents sight distance, 
and the vertical axis represents average collision count across the five IVT adoption conditions. 
The influence of sight distance on collision types 1, 2, 5, and 6 is similar. In the absence of IVT 
(driving without IVT), when the sight distance is less than 30 m, the average collision counts will 
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increase significantly to over 60 cph. For these four types of collisions, the data points of BSD 
are almost the same as those of no IVT condition, and it can be considered that it does not help 
to improve the safety of VRU. In contrast, VBS, BPTV and INS can significantly reduce the 
collision counts in the conditions of sight distance below 30 m, due to their features of human-
vehicle communication. Therefore, these three technologies can well improve the VRU traffic 
safety under low sight distance conditions for the four types of collisions. As for type 3, 4, and 
7, the turning collisions, we found that the situation is more complicated.  

The impact threshold of sight distance on collision count under no IVT condition is 
approximately 20 m, which is lower than the threshold for the aforementioned collision types. 
Also, BSD has a moderate effect on reducing collision count for type 4 left-turn collisions, while 
it does not show any effect on improving safety for right-turn collisions. Overall, all collision 
types begin to stabilize after the sight distance exceeds 30 m, while most of the collision types 
still have over 50 collision counts. When BPTV/INS is 100% adopted, we can see that at the 10m 
sight distance, the average collision counts of most collision types have significant drops, and 
the maximum drop is 99.9% of type 4. As the sight distance increases, the collision counts are 
basically stable below 5 (except for type 5), which means that INS can improve the VRU safety 
regardless of sight distance.  

Sensitivity test II: traffic volume  

Another sensitivity test needed to be implemented in our project is regarding traffic volume of 
VRU and vehicles, because the traffic volume settings in the previous simulations are arbitrary 
in order to simulate collisions in the baseline (no IVT) condition. However, in the real world, 
how do we choose the best IVT in terms of safety improvement and cost of installation under 
different traffic volume conditions? It is important for the simulation to answer such a question. 
In this sensitivity test, four different levels of traffic volume conditions are specified in Table 9.  

Table 9. Settings of traffic volumes for both VRU and vehicles in sensitivity test II (unit: 
veh/h). 

Collision 
types 

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 

VRU 
traffic 
volume 

200; 400; 
600;800 

200; 400; 
600;800 

200; 400; 
600;800 

200; 400; 
600;800 

100; 200; 
300; 400 

100; 200; 
300; 400 

100; 200; 
300; 400 

Passenger 
car traffic 
volume 

200; 400; 
600; 800 

200; 400; 
600; 800 

100; 200; 
300; 400 

100; 200; 
300; 400 

200; 400; 
600; 800 

200; 400; 
600; 800 

100; 200; 
300; 400 

Truck 
traffic 
volume 

20; 40; 
60; 80 

20; 40; 
60; 80 

10; 20; 
30; 40 

10; 20; 
30; 40 

20; 40; 
60; 80 

20; 40; 
60; 80 

10; 20; 
30; 40 

Note: four values in each of the cells represent four traffic volume levels, namely low, medium, high and extremely 
high.  
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Note: PC=passenger cars; TR=trucks; extra_high= extremely high traffic volume condition. 

Figure 17. Average collision counts versus four traffic volume level conditions. 

Figure 17 shows the average collision counts over the four levels of traffic volume settings 
under five different IVT adoption conditions. Results suggest that regardless of IVT, the average 
collision counts are almost zero in the low traffic condition, but then increase significantly as 
the traffic volume increases. Among them, the collision types related to the thru-traffic vehicles 
have higher collision counts in high-volume scenarios. Horizontally comparing the impact of the 
four IVT on the reduction of the collision count under different scenarios, we find that BSD has 
the most moderate effect of collision reduction on all collision types under the four traffic 
conditions, while it has certain effect of collision reduction on type 3, 4 and 7. BPTV and INS 
were the most effective techniques for reducing collision counts among the four IVT, which 
have anticipated effects under high traffic volume scenarios with the ability to eliminate most 
collisions when they are 100% adopted. Also, it cannot be ignored that these two IVT cannot 
eliminate collisions in extreme high traffic scenarios, but can only reduce them to low levels. 
We speculate that the ultimate reason is that, among types with large relative speeds at the 
time of collision (i.e., type 1, 2, 5, and 6), even the INS cannot handle communication in time to 
give the conflicting parties enough time to take actions.  

Conclusion 

In order to know how different IVT will affect VRU’ safety in different environmental and 
system conditions (e.g., sight distance and traffic volume) at signalized intersections, we 
combine aggregate historical crash data analysis and micro transportation simulation to 
examine the safety impacts of four different IVT. Most importantly, we develop an empirical 
microsimulation tool to quantify the safety Impacts of these IVT on VRU.  

In the statistical analysis on the historical crash data, this study identifies key factors for injury 
severity for VRU-related crashes at signalized intersections in California cities. MNL models are 
performed on the injury severity variable. The regression results show that: 1) the severity of 
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pedestrian accidents (not divided by movement scenarios) in rainy weather is unlikely to 
increase, and the OR of the severity of bicycle accidents does not change significantly. 
Compared to pedestrian accidents where vehicles go straight, and only the OR of visible injury 
is reduced, in right-turn accidents the OR of severe and fatal accidents in is significantly 
reduced. 2) the model results show that the OR of severe or fatal accidents between 
pedestrians and bicycles is significantly positive when the accident is at night but with 
streetlights compared to daytime, which means that a lack of light increases the possibility of 
severe accidents for pedestrians and bicycles. 3) in terms of demographics, the results show 
that male and at-fault attributes are the main factors that increase the severity of VRU 
accidents, and VRU accidents in the high age group are more likely to be fatal. Most 
importantly, we model the interaction terms of movement combinations preceding collision to 
propose the seven typical collision types for both pedestrians and bicyclists, which supports the 
micro simulation part. 

In terms of the micro traffic simulation in SUMO, we extract four major findings from the 
results of average collision counts that come from five iterative 12-hour simulations, including: 
1) INS is empowered to be the most efficient technology to significantly reduce average 
collision counts for passenger cars under type 3, 4 and 7 (turning movements) collisions; 2) BSD 
has the most minimal effects on those types, with the least reductions on average collision 
counts observed; 3) All IVT can help improve truck-related VRU crash safety for pedestrians 
(type 1-4); and 4) BPTV and INS can reach 100% collision reduction while BSD and VBS have less 
significant effects. Also, two sensitivity tests are performed regarding sight distance and traffic 
flow. For the sensitivity test I, "distance threshold" where the average collision count does not 
decrease as sight distance increases exists for most collision types except for type 3, and thru-
traffic collision types (1, 2, 5 and 6) have higher distance threshold than turning collision types. 
INS and BPTV have significant collision reduction effects in low sight distance conditions. For 
the sensitivity test II, INS and BPTV can reduce 100% collisions from medium to extremely high 
traffic conditions for type 1-4 and 7. In type 5 and 6, INS and BPTV can only reduce around 50% 
of collision at extremely high traffic conditions. 

Overall, our research develops a novel traffic safety evaluation framework, which is based on 
mirroring real-world vision acuity and IVT implementation. Our simulation results also find the 
best working condition (e.g., sight distance, traffic volume, and intersection shape) for four 
different IVT. The analysis of these technologies can help both public and related stakeholders 
to better understand how different IVT will improve the safety of cyclists and pedestrians under 
various conditions at intersections. The research could inform state agencies such as Caltrans, 
and local (metropolitan) planning organizations about how to develop various IVT and would 
have implications for improving the mobility of people and goods.   
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Data Summary 

Products of Research  

The data used in this project for macroscopic statistical modeling include the following:  

1) OTS crash ranking data 

The California Office of Traffic Safety (OTS) provides a crash ranking dataset which were 
developed so that individual cities could compare their traffic safety statistics to those 
of other cities with similar-sized populations. The OTS crash rankings are based on the 
Empirical Bayesian Ranking Method, which adds weights to different crash statistical 
categories including observed crash counts, population and daily vehicle miles traveled. 
In addition, the OTS crash rankings include different types of crashes with larger 
percentages of total victims and areas of focus for the OTS grant program. In 
conjunction with the research context, two types of crash rankings are focused on: 
pedestrians and bicyclists. The original OTS crash rankings for all incorporated cities in 
California can be accessed at https://www.ots.ca.gov/media-and-research/crash-
rankings-results/. 

2) SWITRS crash data 

The Transportation Injury Mapping System (TIMS) provides quick, easy, and free access 
to California crash data provided by the Statewide Integrated Traffic Records System 
(SWITRS). The crash data includes bicycle and pedestrian collisions with vehicles 
resulting in injuries from 2014 to 2018. This crash database also provides detailed 
accident reports including information on casualties, vehicle mode, accident reason, 
accident location, and road condition. From this crash information, we selected crashes 
between vehicles and VRUs at signalized intersections, which is the scope of this study. 
TIMS can be accessed at https://tims.berkeley.edu/. 

Data Format and Content  

The database used in the project contains two parts: OTS crash rankings and crash data:  

• OTS crash rankings: The dataset was created in python using web-scraping technique. 
The rankings are provided in .csv format.   

• Historical crash data: The crash data were accessed from SWITRS. The data for each city 
selected from OTS crash rankings are stored in three separate files: Collisions.csv, 
Parties.csv, and Victims.csv.  

Data Access and Sharing  

The data used for this project is publicly available at https://doi.org/10.25338/B8234N, and no 
commitment is required from the companies. However, use of the data will follow the 
restrictions of the corresponding agencies. The modification to the SUMO (traffic simulation 
software) source code are also available at https://doi.org/10.25338/B8234N—to replicate this 
study, users will need to download and run the modified code. 

https://www.ots.ca.gov/media-and-research/crash-rankings-results/
https://www.ots.ca.gov/media-and-research/crash-rankings-results/
https://tims.berkeley.edu/
https://doi.org/10.25338/B8234N
https://doi.org/10.25338/B8234N
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Reuse and Redistribution  

All Principal Investigators and the project research team have the right to manage the data. The 
OTS crash ranking data and the historical crash data in California are publicly accessible; users 
should refer to the original URLs (see Products of Research, above). Users of the modified 
SUMO source code should use the following suggested citation: 

Xiao, Ivan Runhua; Qian, Xiaodong (2022), Analysis of intelligent vehicle technologies to 
improve vulnerable road users safety at signalized intersections, Dryad, Dataset, 
https://doi.org/10.25338/B8234N  

https://doi.org/10.25338/B8234N
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