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ABSTRACT OF THE DISSERTATION

Using Network Models to Relate Local Interactions with Global Topology:
Applications to Protein Interactions and Emergent Multi-Body Structures

By

Elizabeth M. Diessner

Doctor of Philosophy in Chemistry

University of California, Irvine, 2024

Professor Carter T. Butts, Chair

Local interactions within and between proteins (or interacting objects in general) inherently

determine the resulting global structure, whether that be a monomeric protein structure,

a dimer or multimer, or a larger aggregate consisting of tens to thousands of proteins.

For proteins, structure is canonically partitioned into four levels: primary, which describes

the sequence of residues that make up the protein; secondary, the α-helices and β-sheets

that result from hydrogen-bonding interactions between residues; tertiary, which describes

(somewhat arbitrarily defined) domains of clustered secondary structures that are typically

held together with salt-bridges; and finally, quaternary structures composed of multiple

proteins interacting via hydrogen-bonding or other polar interactions. Variants are proteins

with point mutations, or mutations occurring to a small number (typically one) of the amino

acids in the primary structure. Point mutations can alter the higher-order structure and

dynamics of the protein, and thus how it responds to its environment, making it susceptible

to evolutionary forces that dampen or put emphasis on a given variant. Such changes in

structure and dynamics can range from subtle deformations to changes in the way the protein

folds, inhibiting function. Mutations that are favored by evolution provide information about

how the protein’s relationship with its environment affects its function and applies pressure

to the adaptative evolution of the protein. The effects of mutations on protein structure,

xvi



function, and interactions are explored in chapters two and three of this text. To contrast,

the fourth chapter takes a generalized approach by delving into the range of emergent multi-

body structures that can arise from slight changes in environmental or structural parameters

while remaining agnostic to any specific features of a single protein sequence.
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Chapter 1

Introduction

1.1 Analysis of (Mpro) Variants

Chapter 2 describes analysis of the SARS-CoV-2 main protease (Mpro), in which the effects of

point mutations (observed in 1253 variants collected from all reported clinical samples during

the first year of the COVID-19 global pandemic) was studied. Protein structure networks

(PSNs) were used to characterize changes in global cohesion - as well as cohesion of the

domains - of the monomer and dimer structures of Mpro. Network analysis revealed significant

trends towards less cohesive structures in all cases except the domain II of the dimer, which

was observed to maintain similar levels of cohesion across all variants. This observation was

made despite a lack of significant change in torsion angles of residue side-chains, as well

as trends towards increasingly large and more hydrophobic residues. This combination of

observations indicate that the protein’s adaptation forgoes more stable internal interactions

between residues within domains I and III, perhaps because they are not needed to maintain

the structure necessary for functional dynamics in the thermodynamic environment of the

human host. Domain II, however, saw the largest number of conserved residues (those

1



that are not mutated in any variant in this sample), most of which are polar and aromatic,

suggesting the internal residue interactions of domain II are vital to maintaining the structure

and functional dynamics of the Mprodimer.

In the case of Mpro, statistical analysis of mutations points out the obvious by stating which

residues stay or go. However, supplementing that data with calculations using PSNs allows

the story of Mpro’s evolution in human hosts to be rebuilt by aggregating the data provided

by each variant regarding local interactions. Using the initial wild type (WT) variant as an

anchor for the distribution of variants, these analyses allowed comparison of the movement

of the total variant distribution relative to WT, which ultimately highlighted the importance

of residue interactions occurring in domain II for function and dynamics of the dimer.

The following two chapters move beyond residue interactions within a protein that accom-

modate dimer formation, and instead focus on the interactions between multiple proteins

that form large structured and unstructured aggregates.

1.2 Simulations of a γD-Crystallin Cataract Variant

γD-Crystallin (γ-Dc) is a structural protein of the eye lens that has evolved to maintain its

structure for the span of a human lifetime without unfolding. However, unfolding events

continue to occur naturally due to e.g., collisions or structural damage caused by expo-

sure to sunlight, and as chaperone proteins such as the α-crystallins are depleted aggre-

gation increases and cataracts form. The γ-Dc variant W42R is known to unfold more

readily[172, 209], increasing the opportunity for longer-lasting interactions that can lead to

aggregation and subsequent cataract formation. Chapter 3 reports on analyses of unstruc-

tured γ-Dc aggregates done using Network Hamiltonian Models (NHMs) that were generated

from equilibrium distributions of simulated aggregation of both the WT and W42R variant,
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performed by Wong, et al.[209] NHMs provide a framework for inputting a set of network

terms that describe local topological properties of the system, providing a model that can be

used in a regression to return coefficients describing the relative influence of local topologies

on the overall structure of the system. Using this model, the results of atomistic simulations

of aggregation were recapitulated using minimal information about the patterns of contacts

between individual proteins, where contacts are defined using a cutoff distance that was

determined by Wong, et al.[209]

Due to the reduced amount of information needed to simulate the aggregates (only an ad-

jacency matrix is needed) the system size can be scaled from the original 375 monomers of

the atomistic simulations up to 10,000 monomers per simulation. The ability to scale the

system by orders of magnitude not only allows simulation of systems that can be more easily

corroborated by experimental data, but also allowed the effects of system size on the re-

sulting structural and topological properties of the aggregates to be assessed. Such analyses

give insight into hidden biases in simulation studies that arise from system size effects that

were previously immeasurable when confined to using the more complex and costly all-atom

simulations.

1.3 Phases of Structured Aggregation

The framework of NHMs allows for exploration of the effects of specific topological forces on

the resulting multi-body aggregate structures. In Chapter 4, phases of fibrillar aggregates,

a type of structured aggregate that is commonly observed from aggregation of intrinsically

disordered peptides (IDPs), were mapped by varying the values of the coefficients on a

minimal set of network terms that were included in the Network Hamiltonian. Without

reference to a specific protein, these phases can be understood to be the result of slight

changes to environmental parameters in which the aggregate was formed. Such parameters
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include those that affect local thermodynamics, such as pH, salinity, hydrophobicity, and

pressure, as well as parameters describing differences in protein structures, such as sequence

or specific electrostatic interactions between proteins. Environmental parameters are implicit

in the model, only appearing in their effect on the energy of each interaction (as reflected

in the network term coefficients), or as part of the unmodeled degrees of freedom that are

represented by the reference measure.

This model revealed an intrinsic dependence of global topologies on the baseline edge coef-

ficient value, a parameter that defines the energetic cost of adding or removing any edge,

regardless of the local topology. In addition, the relationships among network terms that

describe similar topological features was observed to directly influence the location of phase

boundaries, and were defined using simple linear equations. System size effects were also ana-

lyzed in this study, and, in contrast with the results found in Chapter 3, show no dependence

of structured aggregate formation on system size.

The protein-agnostic perspective in Chapter 4 highlights the importance of considering en-

vironmental effects when performing simulation studies of protein interactions, as slight

changes to thermodynamic properties of the system can have measurable effects on the re-

sulting structures that are being studied. This echos the findings in Chapter 3 based on

the slight change of a single point mutation. Chapters 3 and 4 also bring to light the need

to consider biases in simulations that arise from system size effects. Chapter 2 drives the

point that single point-mutations can have far-reaching effects on protein interactions and

functions, while utilizing the effects of evolutionary pressures on protein adaptation. In all,

these studies detail the sensitive relationship between multi-body protein interactions and

the environment in which they occur.
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Chapter 2

Mutation Effects on Structure and

Dynamics:

Adaptive Evolution of the

SARS-CoV-2 Main Protease

2.1 Abstract

The main protease of SARS-CoV-2 (Mpro) plays a critical role in viral replication; although

it is relatively conserved, Mpro has nevertheless evolved over the course of the COVID-19

pandemic. Here, we examine phenotypic changes in clinically observed variants of Mpro, rela-

tive to the originally reported wild-type (WT) enzyme. Using atomistic molecular dynamics

simulations, we examine effects of mutation on protein structure and dynamics. In addition

to basic structural properties such as variation in surface area and torsion angles, we use

protein structure networks (PSNs) and active site networks (ASNs) to evaluate functionally
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relevant characters related to global cohesion and active site constraint. Substitution anal-

ysis shows a continuing trend toward more hydrophobic residues that is dependent on the

location of the residue in primary, secondary, tertiary, and quaternary structure. Phyloge-

netic analysis provides additional evidence for the impact of selective pressure on mutation

of Mpro. Overall, these analyses suggest evolutionary adaptation of Mpro toward more hy-

drophobicity and a less-constrained active site in response to the selective pressures of a

novel host environment.

2.2 Introduction

The SARS-CoV-2 main protease (Mpro), also referred to as non-structural protein 5 (nsp5)

or 3-chymotrypsin-like cysteine protease (3CLpro), is a vital component of the coronavirus

replication machinery [7]. During replication, the host ribosomes translate the SARS-CoV-2

non-structural proteins (nsps, i.e., enzymes) as a long polyprotein; this must then be cleaved

into individual proteins to complete the expression and maturation process. In SARS-CoV

and SARS-CoV-2, this cleavage function is performed by two proteases: the papain-like

protease (PLpro), and Mpro [230, 184]. The first three cleavage sites, corresponding to the

release of nsp1-nsp3, are cleaved by PLpro, with the remaining 11 cleavage sites handled

by Mpro, including those needed to release Mpro itself [154, 215]. Mpro is thus necessary

for maturation of the bulk of the proteins comprising the SARS-CoV-2 replicase [75]. Mpro

also targets several proteins in the host cell, including key components of the cytokine and

inflammatory responses [75, 127].

Mpro itself is a cysteine protease, in which hydrolysis is performed by a catalytic dyad com-

posed of a neutral (protonated) cysteine (C145) and a histidine (H41); this mechanism is

strongly conserved among coronaviruses [7, 8, 199]. Mpro’s active conformation is a homod-

imer [7], although limited activity of Mpro monomers has been reported [179]. Despite its
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Figure 2.1: Monomer and dimer conformations of the wild-type SARS-CoV-2 main protease
(Mpro), based on respective atomistic molecular dynamics simulations of the free monomer
(left) and dimer (right); MD simulations were based on the 6Y2E PDB crystal structure
of Mpro [225], as described in the Methods section. Note the three domains (highlighted,
left); the active site straddles the cleft between domains I and II, and faces away from the
dimerization interface.

greatly reduced activity, molecular modeling suggests that the monomer is likely to be stable

under physiological conditions, with a conformation that is similar to its conformation in

the active homodimer [53]. Monomer and dimer structures, labeled by domain, are shown

in Figure 2.1.

SARS-CoV-2 is believed to have transferred to the human population from zoonotic origin

[211, 9], and shares particular similarity with a number of bat coronaviruses [189]. While

mutations to the infamous spike protein capture the attention of the public [36], other

coronavirus proteins are also subject to evolutionary change, either due to neutral drift or

as an adaptive response to environmental pressure. When adapting to a new host organism,

selection pressure may be imposed by differences in the internal environment of host cells.

For instance, bats experience a larger range of body temperatures compared with humans

[181, 158], including periods of activity at very high temperature [122, 54]. Differences in host

body temperatures impose different thermodynamic and kinetic constraints on the structure
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and activity of viral proteins within cells, which is a known factor limiting inter-species virus

transmission [124, 123] as well as tissue tropism within a single host [197, 175].

As shown in studies of extremophilic organisms, the stability and catalytic efficiency of en-

zymes is dependent on their thermal environments [26, 125]. Proteins in organisms that reg-

ularly experience high temperatures require stronger and more extensive interactions among

residues, such as disulfide bonds and salt bridges to maintain stability [107, 97, 74], whereas

proteins in low-temperature regimes require greater internal flexibility to facilitate catalysis

[188]. The large and abrupt fluctuations in body temperature of bats are representative of

frequent thermodynamic changes that put different kinds of stress on proteins, which may

require particular structural responses to maintain structure and activity [188].

Beyond structural effects, mutations may also affect dynamics. Changes to local structure

near the active site are particularly relevant, since such changes can affect both protein-

substrate interactions and catalysis. Stronger side-chain interactions within the active site,

for instance, may increase constraint on the dynamics of the catalytic residues. At the

same time, long-range effects of residue substitution are known [213, 13], suggesting that

functionally relevant mutations may occur throughout the protein, as already observed for

HIV protease [139] and SARS-CoV Mpro [15].

For SARS-CoV-2 Mpro, then, selection for successful replication in a novel host environment

is likely to favor systematic changes in protein structure and dynamics, which in turn will fa-

vor specific patterns of substitution. Such patterns may or may not be evident from sequence

alone, because many different mutations may lead to similar physical properties; however, if

present, selection pressure should manifest as consistent differences between structural and

dynamic properties of WT Mpro versus ecologically successful mutants. By contrast, func-

tionally critical properties that must be conserved between human and prior hosts would be

expected to remain similar for both WT and successful variants, and properties under neutral

drift would be expected to show variation with no systematic change from WT. Examination
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of structure and dynamics across a large range of ecologically successful mutants compared

to WT thus provides evidence regarding adaptation by Mpro to its new environment. Early

studies have suggested that some Mpro variants do differ from WT in structure and dynamics

[176, 134, 53], motivating a systematic comparative analysis.

In this study, we identify evidence of selective pressure on the evolutionary adaptation of

Mpro by analyzing results from molecular dynamics simulations and network analysis of all

1253 clinically identified variants of Mpro that were reported to the GISAID database over

the first year of the COVID-19 pandemic (i.e., before February 25, 2021). Focusing on clin-

ically observed variants allows us to work with mutations that were both functional and

ecologically successful, in that they could successfully infect human hosts “in the wild.”

To distinguish between effects arising directly from changes to the structure of the Mpro

monomer and those emerging only in the dimeric state, we examine models of both the

functional dimer and the free monomer in solution. Trends in physical properties of vari-

ants relative to WT are assessed using multiple techniques. Relative Solvent Accessibility

(RSA) is used to calculate total surface area, providing preliminary information on the effect

of mutation on global structure. Internal changes to structure are further investigated by

analysis of Protein Structure Networks (PSNs) to observe changes in internal residue in-

teraction rates. The effects of substitutions on local dynamics are observed by comparing

variation in torsion angles - extracted from dynamic simulation trajectories - between and

within variants. Active Site Networks (ASNs) of each variant are constructed to measure

local constraint on the active site. Finally, we investigate trends in the physical properties

of amino acid substitutions, and explore the ways the location of certain substitutions - or

lack thereof - contribute to a response to selective pressure that may be guiding the adaptive

evolution of Mpro.

The results of the following analyses provide a rich context for understanding the physical

adaptation of Mpro, and suggest a number of targets for experimental investigation, which will
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be required to probe the impact of the observed mutations on catalytic activity and kinetic

parameters. Compared with WT, variants are observed on average to have more solvent-

accessible surface area (SASA), indicating either an increase in size of surface residues or

a loosening of internal structure. In the monomeric state, Mpro is observed to have lower

cohesion overall, contributing to the loosening of the structure, while the dimeric state

conserves internal interactions in domain 2. Backbone torsion angles are generally similar

between the monomeric and dimeric states, with mutations having the greatest impact on the

backbone structure of residues in domain 2 of both states. The two active sites of the dimeric

state trend towards less constraint on the catalytic residues, but the monomeric state shows

no definite trend, despite the similar effects of mutation on the structure of the monomeric

and dimeric states. The substitutions themselves generally trend towards more hydrophobic

residues, with certain frequently occurring mutations near the active site showing a trend

toward more hydrophilic residues. Frequently observed mutations, including some located

near the active site, have occurred in several unique branches, indicating a possible benefit

to Mpro function that is supported by selective pressure on the enzyme.

2.3 Methods

2.3.1 Sequence Preprocessing

Human-derived SARS-CoV-2 full genome sequences were retrieved from the GISAID EpiCoV

database [103] on February 25, 2021 at 10:15 AM (PST). These were filtered for size and

quality; those with <1 percent N content and lengths within +/-3 percent of the length of a

designated WT sequence (RefSeq: NC 045512.2 [210]) (29,006 bp–30,800 bp inclusive) were

retained for further processing. High-quality sequences were filtered for valid Mpro sequences,

and then again for modellable Mpro sequences. For our purposes, “valid” sequences refer to
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those with no frameshifts, deletions, insertions, Ns, or non-standard IUPAC nucleotides

(those other than A, C, U, G); “modellable” sequences are valid Mpro sequences with no

non-synonymous mutations that result in either changes to the active site (H41 or C145)

or premature stop codons, as the true functionality and/or translated structures of these

variants are currently unknown. These Mpro sequences were located in and extracted from

full genomes by using six 15-nucleotide keys, derived from the NC 045512.2 reference Mpro

sequence (loc: 10,055–10,972). All sequence preprocessing was done using custom scripts in

Python (v3.7.6) [196].

2.3.2 Alignments

All full genome alignments were performed using suggested MAFFT (v7.471) [101] protocols

for SARS-CoV-2 (https://mafft.cbrc.jp/alignment/software/closelyrelatedviralgenomes.html).

Full genomes were aligned to a WT reference (NC 045512.2), using the options “–auto”

and “addfragments”; in order to retain site information for phylogenetic analysis, the “–

keeplength” option was not used.

2.3.3 Clustering and Phylogenetic Tree

A phylogenetic tree was constructed for aligned full genomes that contained non-WT, modellable

Mpro variants using FastTree (v2.1.11 SSE3) [149, 150] with OpenMP [55] (FastTreeMP); the

“-fastest” option was used. This included 70,246 full genomes with non-synonymous Mpro

mutations (considered “variants”) and 34,909 full genomes with synonymous Mpro mutations

(same protein sequence as WT). One WT full genome reference, (NC 045512.2) was also in-

cluded. Visualizations were generated in R (v4.0.4) [156] using ggtree [214], ape [143], ggplot2

[204], treeio[201], tidyverse [205], ggtreeExtra [214], aplot [220], data.table [60], svglite [206].
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2.3.4 Molecular Modelling of WT and Variant Structures

Monomer and dimer conformations of variant structures were predicted with MODELLER

9.23 [202] using the PDB structure 6Y2E [225] as the WT template. All structures underwent

three rounds of annealing and MD refinement using “slow” optimization. The protonation

states were corrected for the predicted cell environment using PROPKA 3.1 [140]. The

corrected structures were minimized and equilibriated in explicit solvent. MD trajectories

were then simulated from the corrected structures using NAMD [147] with a CHARMM36

[86] force field and TIP3P water at 310 K under periodic boundary conditions for a water

box with a 10 Å margin in an NpT ensemble. Solvated models were energy-minimized for

10,000 iterations, then simulated once for 10 ps to make water box size adjustments (for PME

calculations), and once more for a 10ns trajectory with sampled conformations saved every 20

ps. Temperature control was maintained via Langevin dynamics with a damping coefficient

of 1/ps, and pressure control was performed via a Nose-Hoover Langevin [69] piston set

at 1 atm. Visualizations and other static analyses are based on the final conformations

from each trajectory, with full trajectories used for dynamic analyses. Visualizations were

performed using VMD [87]. Solvent accessible surface area calculations were performed using

the dssp.pdb function in the bio3d library in R [76].

2.3.5 Network Analysis

All frames from each respective simulated trajectory were individually translated into PSNs

using scripts written using the statnet, Rpdb, and bio3d libraries in R [83, 29, 178, 76].

Vertices for each network follow the convention established by Benson and Daggett[19] -

atoms are grouped into chemical moieties, each of which is represented by a node. Each

residue is thus represented by a collection of nodes, and an edge (tie) is formed between

two nodes when there exist respective atoms associated with each node that lie within a
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threshold distance of each other in the selected frame. The distance cutoff used here is 1.1

times the sum of the respective van der Waals radii of the two atoms. An ASN [62] was

constructed for the active site of each variant structure by inducing a subgraph comprised of

the nodes representing Cys 145, His 41, and all adjacent vertices from the respective PSN.

PSNs and ASNs were calculated for all frames from each trajectory, all of which were used

in the reported analyses.

Analyses of the PSNs used degree k-cores [169] to characterize the cohesion of each monomer

and dimer chain, with the core number of each node (i.e., the highest k such that the

node belongs to the kth core) being employed as a measure of local cohesion. Mean core

numbers for vertices within each domain, and for the protein as a whole, were used to

assess cohesion; all quantities were computed within each frame, with trajectory averages

used as for structural comparison. Autocorrelation-corrected bootstrap standard errors were

calculated to control for within-trajectory temporal autocorrelation in the trajectory means,

and variant values were treated as significantly different from WT if they differed by more

than two standard errors. Calculations were done using the sna library in R [30]. Analyses

of ASNs included calculations of degree, triangle degree, core number, and connectivity, each

averaged over the active site. Here, degree refers to the number of ties a particular node

has - i.e. the total number of contacts. Triangle degree refers to the number of triangles

containing a particular vertex, and core number for these analyses was assessed within-ASN

(as opposed to core number within the broader PSN). Connectivity was measured using the

log of the number of indirect paths between the two active site residues. Together, degree,

triangle degree, core number, and connectivity give an indication of the freedom of movement

within the active site. This gives an approximation of an active site state, which can be used

to distinguish active site conformations which are more “open” or “closed.” Quantitatively,

we assess this via a constraint score, which is the score of each network on the first principal

component of the combined and standardized degree, triangle degree, core number, and

connectivity measures.
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2.4 Results and Discussion

2.4.1 Variants Tend Toward Less Compact Mpro Structure

Surface area increases, but more so in the monomer than the dimer. Overall, the

most common effect of mutations on the monomer conformation is to increase the surface

area of the enzyme, as shown in Figure 2.2, with 46.3% of variants with increased surface

area (p-value = 0.01 using an exact binomial test), 53.1% with no change (p-value = 0.03),

and 0.6% with decreased surface area (p-value <2.2x10−16). This could be a side effect of

bulkier residues, or the result of a decrease in internal interactions. Alternatively, bulky

and hydrophobic residue substitutions in the interior could cause the structure to expand

outward to accommodate the larger side-chains.

The increase in surface area of the monomer is less pronounced in the dimeric conformation:

although we do see a net tendency towards SASA increase (28.4% increased, 7.4% decreased,

and 64.6% stay the same, p-values <2.2x10−16 using an exact binomial test), fewer variants

show significant differences, and the location of WT within the distribution is less skewed.

This suggests that surface enlargement occurs disproportionately within the dimerization

interface, resulting in a total surface area that is more conserved upon dimerization. That

said, we still observe a significant bias towards higher-SASA dimers, which is consistent with

selection favoring a somewhat looser, enlarged protein surface.

Global cohesion is lower in the majority of variants, except for domain 2 in

the dimeric state. Looking at the impact of substitution on cohesion within free Mpro

monomers, we see a consistent pattern of structural “loosening” relative to WT, with 78.5%

of variants showing significantly lower levels of cohesion, versus 0.3% showing higher levels

(p-value <2x10−16 using an exact binomial test). PSNs measuring internal interaction rates

between moieties show a decrease in internal cohesion in all domains of the monomer (Fig.

14



Figure 2.2: Total mean SASA distribution of the monomer, dimer, and each dimer chain,
across variants. WT value is in green; trajectories significantly higher than WT are shown
in blue, lower in red (black values do not differ significantly from WT). Substantially more
variants show increased SASA versus WT than decreased SASA. This is particularly true for
free monomers, suggesting that mutations act in part through modifications to interfacial
surface that is buried in the dimer.
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Figure 2.3: Mean cohesion of variants in the monomeric conformation, in decreasing order.
WT is highlighted in green. Variants with mean cohesion scores significantly greater than
WT are colored blue, and those significantly less than WT are colored red. A horizontal line
through the distribution marks the grand mean. The majority of variants show less cohesion
both for the monomer as a whole, and in each domain.

2.3), with a slightly reduced degree of loosening in domain 2. This suggests selection for

increased flexibility at the level of individual proteins, possibly as a result of the more

moderate thermal environment of the human host.

Is this monomer-level change retained upon dimerization? Fig. 2.4 shows that this pattern of

reduced cohesion is largely preserved, with looser structures seen in entire dimerized chains,

as well as internally within domains 1 and 3. Domain 2, however, shows a rather differ-

ent pattern, with no clear evolutionary trend: indeed, a substantial fraction (33.1% in the

high-cohesion chain and 13.6% in the low-cohesion chain, p-values <2x10−16 using an exact

binomial test) actually show enhanced cohesion versus WT. The presence of diversification

(with some variants higher, others lower, and relatively few remaining similar) is compatible

with the notion that domain 2 within the dimeric state is not being actively selected with

respect to cohesion, and is subject to neutral drift. It is interesting to observe in this regard
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Figure 2.4: Mean cohesion values for of all variants in the dimeric state. The same plot style
and color scheme are used as in Figure 2.3. To break homodimer symmetry, chains were
labeled for analysis based on the observed mean cohesion score (left higher, right lower).

that we do see a cohesion-reducing trend for domain 2 in the monomer, and thus that the

apparent direction of evolution is different for the components of active Mpro versus the active

dimeric state itself; one plausible explanation is that the monomeric loosening within domain

2 arises as a side effect of overall selection for a less cohesive protein, but that interactions in

the dimer interface do not preserve this property for that region in the dimeric state. Either

way, we find no evidence that Mpro is being selected for a looser domain 2 structure in the

dimer.

Local structural changes due to mutations show similar effects for free and dimer-

ized monomers, despite cohesion differences. To assess local changes in backbone

structure due to residue substitution, we compute the (angular) mean and variance for each

backbone torsion angle in each trajectory for both free monomers and dimers. Using this,

we compare the variance in angles within trajectory versus across trajectories, allowing us to

determine the extent to which local structure differs across variants above and beyond natu-

ral variations due to protein dynamics. Figure 2.5 shows the log-ratio of the between-variant

versus within-variant angular variance, plotted by residue. High log-ratio values (blue areas)

show substantial sensitivity to mutations, while low log-ratio values (red areas) show little
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Figure 2.5: Comparison of monomer and dimer structures, with coloring corresponding to
the log-ratio of between-chain variance and within-chain variance. Blue color shows higher
between-chain variance, red shows higher within-chain variance. Free monomer and dimeric
monomer structures are overlaid; both show very similar patterns of change in backbone
torsion angles.

structural change relative to normal fluctuations due to protein dynamics. We see here that

the bulk of the mutation effects are in or adjacent to domain 2, with domain 3 showing

particularly low levels of sensitivity to observed substitutions. Taking these results in the

context of the above findings regarding cohesion, we conclude that the cohesion changes

seen in domains 1 and 3 are not due primarily to local deformation of the backbone in these

regions of the protein, but more plausibly to a combination of side chain interactions and

interactions with domain 2 residues (which do show greater change in torsion angle). Local

deformation in domain 2 may thus be less important for the impact it has on domain 2 itself

(which, as seen above, is inconsistent), versus its effect on the network of contacts in the

neighboring domains (which both show consistent patterns of change).

Figure 2.5 also reveals that the pattern of backbone structure change in the free monomer

is extremely similar to what is observed in the dimerized monomer, indicating that local

18



structural changes are not strongly affected by dimerization. The immediate impact of

mutation on local (backbone) structure thus depends only on interactions that are internal

to the Mpro monomer itself, and are not related to interactions across the dimerization

interface.

2.4.2 Mutations Increase Active Site Flexibility in the Active Dimer

State

Mutations increase active site flexibility in the dimer, but not the free monomer.

If mutations were selected to increase function of free monomers, the local structure around

the active site of the monomer would be expected to show systematic change. This is not

the case. As shown in Figure 2.6, constraint on the active site of the monomer does not

trend in any direction; the presence of a large number of variants with either significantly

higher (23.7%) or lower (11.2%) constraint levels suggests drift rather than conservation (p-

values <2.2x10−16 using an exact binomial test). By contrast, we see evidence of systematic

selection for lower levels of active site constraint (looser structure) in the dimeric state. Not

only are the grand means across variants lower for dimer active sites, but the majority (59.7%

in higher scoring chain, 69.1% in lower scoring chain, p-values <7.5x10−12, <2.2x10−16,

respectively using an exact binomial test) of variants have mean constraint scores that are

significantly below WT. The presence of large differences in the dimer vs. monomer sites

indicates that active site loosening is not driven by local structural changes to the monomer

itself, but instead emerges from interaction between monomers in the dimer.

The decrease in constraint of the dimer active sites supports the hypothesis that the enzyme

is increasing flexibility to adapt to the cellular environment of the human host. The differ-

ence between the changes in the properties of the dimer versus free monomer sites further

sheds light on the dramatically higher activity of Mpro in the dimeric state: although earlier
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Figure 2.6: Mean ASN constraint scores by variant trajectory, for free monomeric and dimeric
states; to break symmetry, dimeric active sites labeled based on mean constraint for analysis
(middle high, bottom low). WT values indicated in green, grand mean indicted by horizontal
line. Blue values are significantly more constrained than WT, red values are significantly less,
black values not significant. Dimer active sites show reduced constraint for most variants,
with no trend for the free monomer.
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work [53] has shown that monomeric active site conformations do not differ markedly from

dimeric ones, dimerization clearly shifts the equilibrium distribution of conformational states.

Selection in this case appears to be operating on this shift, rather than on the underlying

distribution, resulting in a pattern of changes that is selective for dimers while apparently

neutral for free monomers.

2.4.3 Amino Acid Substitutions Favor Increased Size and Hy-

drophobicity

In general, substitutions increase hydrophobicity. Out of the 306 residues of the

mature Mpro sequence, 269 have been substituted in at least one variant. To analyze the

trends in properties of the substituted amino acids a substitution network was created by

forming an adjacency matrix of substitutions. The rows and columns of the matrix were

labeled with the 20 unique amino acids, and values in the matrix represented the frequency

of each substitution occurring in the set of 1253 variants. This resulted in the network

shown in Figure 2.7. Nodes represent unique amino acids, and edges represent the frequency

of respective substitution. Substituted amino acids tend to be more hydrophobic and massive

than their predecessors.

The large number of substitutions between certain residues, such as L→ F , K → R, G→ S,

and A→ V indicate that these substitutions are highly favorable. These four substitutions

are all examples of an exchange for a bulkier residue, and in the case of G → S, a more

hydrophilic residue. In the cases of L → F and K → R, the substituted residues are able

to form more complex intermolecular interactions, with a wider range of pi-stacking and

cation-pi interactions available compared to the starting residues.

Frequent substitutions near the active site are either similar in hydrophobicity

or more hydrophilic, while those in domain 2 are more hydrophobic. Figure 2.8
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Figure 2.7: Substitution network showing the trends in residue substitutions. Nodes rep-
resent unique amino acids, with directed edges in the direction of the substitution. Edges
are weighted by the number of substitutions observed, with darkened edges for substitutions
which occurred more than 20 times. Nodes are colored by the corresponding hydrophobicity
of the amino acid.

shows the frequencies of variants containing a substitution at a particular residue. The three

most common substitutions among variants, L89F, K90R, and G15S, all occur in domain 1,

and are all substitutions for bulkier residues. The decrease in cohesion of domain 1 could be

caused by an increase in solvent interactions due, in part, to these three substitutions.

The first rug in Fig. 2.8 is the mean change in hydrophobicity, and shows a greater occurrence

of hydrophobic substitutions in domain 2 than in either other domain. This also coincides

with residues being more buried, as shown in the second rug by the darker blue coloring.

An increase in the hydrophobicity of buried residues in domain 2 could be a response to a

decreasing hydrophobic effect required to maintain the cohesion needed for certain dynamics

resulting from internal interactions occurring between the dimer interface and the active site.

While there are some structural changes upon dimerization in domain 2 due to substitutions,

as seen in Fig. 2.5, those substitutions tend to be for more hydrophobic residues that

are participating in the dimer interface. Increasing hydrophobicity at the dimer interface
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Figure 2.8: Frequency of substitutions along the main protease sequence. Colors indicate
change in hydrophobicity resulting from the substitution, ranging from decreased hydropho-
bicity (blue) to increased hydrophobicity (red). A rectangular moving average of mean
hydrophobicity change is shown below the bar plot using the same color scale. A rectangular
moving average of the mean RSA of residues in the dimer conformation is shown at the
bottom of the plot; darker values correspond to a more buried residue.
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Figure 2.9: Locations of persistent substitutions in a single chain of the main protease
structure are shown by the respective amino acid vdW representation colored according to
hydrophobicity, as well as the catalytic C145 and H41.

would result in increased contact between the two chains due to the hydrophobic effect.

Additionally, the location of more hydrophilic substitutions in regions where the chain is

transitioning from the interior to the surface would cause a decrease in cohesion as those

residues have stronger solvent interactions. Such regions are found in all three domains.

Persistent substitutions - those that occur most frequently - are shown in their location on one

chain of the dimer in Figure 2.9. The most frequent substitution, L89F, is located between

the folded β-sheets of domain 1. The substitution with a bulkier residue, phenylalanine,

would push the β-sheets apart, reducing the cohesion of domain 1 and pulling the catalytic

His41 back towards the β-fold. This change in structure of domain 1 would affect interactions

between residues 43-50 and residues 186-190 on the unstructured loop between domains 2

and 3. There may also be some effect on the domain 1 residues near the N-terminus.
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The substitution K90R would be expected behave similarly to L89F. However, this residue

is facing out from the surface of the protein, and the substitution to arginine from lysine

increases the number of potential hydrogen bonds that can be formed with the solvent in

addition to increasing the bulk of the side chain. This may cause the domain 1 β-fold to be

pulled open from the outside, instead of pushed from the inside. Variants with the K90R

substitutions may see less effect on the interactions between residues 43-50 and 186-190, and

more impact on the cohesion of domain 2 due to interactions between residues 97-105 in the

unstructured loop between domains 1 and 2. The substitutions of G15S and G71S occur

much closer to the dimer interface. Glycine and serine are both highly flexible residues, so

the substitution at these locations may not have an appreciable effect on local structure.

However, the polar nature of serine may cause it to respond to dynamics of other residues.

For instance, a serine at residue 15 or 71 may interact with the polar hydroxyl group on Y154

of the opposite dimer chain, which would cause some correlation between the dynamics of

domain 1 of one chain and domain 2 of the opposite chain.

P108 and P132 together form the ends of a loop that extends through domain 2 to interact

at the dimer interface, forming a large part of the dimer interface. The location of the P108S

and P132S substitutions may optimize their effect due to their connections with the dimer

interface and proximity to the active site. Persistent mutations that are more hydrophilic

are located away from the dimer interface, or else function to maintain the location of the

interface by becoming less susceptible to the hydrophobic effect. These mutations are all

located in domain 1, yet have limited impact on the active site except when in the dimer

conformation. The more hydrophobic of the persistent mutations are located in domain

2, and have an influence on interaction at the dimer interface, while also having limited

impact on the active site. The increasing hydrophobicity due to substitutions in domain 2

contributes to the conserved cohesion of the domain, as well as the increased influence of the

dimer interface on local structure.
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Figure 2.10: Conserved residues visualized in VMD using beads in their location on the
dimer structure. Residues with a “halo” have an aromatic side-chain (Tyr, Phe, Hse). Blue
are polar (Tyr, Asn, Gln, Ser, Hse, Gly), yellow are nonpolar (Phe, Cys, Ala, Leu, Pro).
Acidic residues (Asp, Glu) are colored red.

Conserved residues are concentrated in domain 2, and tend to be polar. Substi-

tutions in domain 2 for more hydrophobic residues may help to maintain the cohesion of the

structure, as well as the dynamics resulting from interactions between the dimer interface

and active site. Conserved residues may facilitate those dynamics to such an extent that

any substitution that disrupts those interactions would inhibit function of the protein. This

hypothesis is supported by the pattern of conserved residues in the dimer structure, shown

in Figure 2.10.

Conserved residues in domain 2, located between the dimer interface and the active site,

tend to be aromatic polar and nonpolar residues. Nonpolar residues that are conserved

in domains 1 and 3 are by contrast non-aromatic. Acidic residues that are conserved are

concentrated at the dimer interface near the N-termini, as well as on domain 2 at the active

site. Polar residues other than Gly are concentrated around the active site, and at the dimer

interface near the C-termini.
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Figure 2.11: Phylogenetic tree (topology only) generated using all available full genomes from
1,253 Mpro variants as of February 25, 2021, including variants with multiple non-synonymous
mutations, and one WT reference sequence [211]. The five most common mutations are
indicated by colored lines: purple - G71S, pink - G15S, orange - K90R, blue - P108S, red -
L89F.

2.4.4 Relationships between Variants

Clustering in phylogenetic tree shows independent occurrence of frequent mu-

tations, supporting the selective pressure hypothesis. Frequent mutation is a form

of adaptation in viruses [182], but while many rare variants exist in the population through

luck, those that are observed in large numbers may be evidence of selective pressure [59].

Clustering patterns (Figure 2.11) have shown several large groups of recurring variants across

disconnected lineages, supporting the hypothesis that this variation in sequence space may

have also led to functional differences.

The most numerous mutations within the sample are, in increasing order: G71S, G15S,
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K90R, P108S, and L89F. These five were all present in a previous dataset from April, 2020

[53], though their prevalence in certain SARS-CoV-2 lineages were not necessarily as pro-

nounced. Notably, G15S and K90R, which once dominated datasets over one year ago,

have since been overtaken by L89F. Despite differences in raw counts, all five of these long-

established mutations inhabit their own evolutionarily distinct clusters within the phyloge-

netic tree, often mimicking the large subtrees we saw in April, 2020 that were indicative

of separate evolutionary events. Additionally, highly prolific mutations, including these

five, have continued to remain viable in the population, co-occurring with secondary non-

synonymous mutations that may impart their own structural or functional differences. For

example, there are now 202 unique L89F variants (201 with at least one other amino acid

mutation); in terms of mutational space, this means that nearly 1/6 of our unique variant

dataset contains an L89F mutation. Although there is some overlap with other prominent

mutations, much of that space is also taken up by G71S (36 variants), P108S (46 variants),

G15S (74 variants), and K90R (97 variants).

Whole genome phylogenies are a useful tool in the study of viral evolution, but phylogenetic

inferences should be made with the understanding that complex evolutionary dynamics are

inherently difficult to capture. While neutral drift and selective mechanisms vie for control

of genotypic diversity [126], factors like sequencing errors and sampling bias can disrupt at-

tempts to accurately quantify their effects [71, 131]. The study of SARS-CoV-2 in particular

is further complicated by large numbers of sequences with low sequence variation [131], mak-

ing it difficult to draw meaningful conclusions from phylogenetic analyses alone. Because of

regional variation in sequencing rates and pandemic policy, it is difficult to know if the rise

of certain variants is truly due to fitness, as is often suspected. However, the trends observed

here in total surface area, cohesion, torsion angle variance, and active site constraint speak

to adaptations resulting from selective pressure, and reinforce evidence to that end observed

in Mpro’s phylogeny.
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2.5 Conclusion

Taken together, our analyses suggest that the SARS-CoV-2 main protease is evolving in

response to selective pressure, possibly brought by the difference in cellular environments of

bats and humans. The resulting adaptations are observed to affect the global structure and

active site dynamics of the dimer conformation differently than the free monomer, despite

having similar impacts on the local backbone structure of both states; in the case of active

site constraint, the observed pattern of change vs. wild type is seen only in the dimeric

state, and thus emerges from interactions between monomers. Adaptations tend to conserve

interactions at the dimer interface and in domain 2, while allowing the rest of the protein,

including the active site, to become more flexible in the dimeric state. The locations and

properties of frequently occurring substitutions, as well as that of conserved residues, help

elucidate the relationship between structure, dynamics, and function of Mpro as it is revealed

by the process of selective adaptation.

As with any computational study, a major function of this work is to suggest targets for

experimental investigation. Our findings suggest both general trends to be tested, and vari-

ants predicted to have extremal properties (relative to the ensemble); both tests of these

hypothesized trends and examination of the relationship between the structural characteris-

tics considered here and catalytic function would both shed light on Mpro evolution and help

guide future computational studies. We also note that a number of other nsps (including the

papain-like protease, PLpro [135]) are also highly conserved within the beta-coronaviruses

[40], suggesting mutation rates low enough to make computational studies like this one pos-

sible for such systems. Comparative analysis of changes seen across SARS-CoV-2 nsps in

response to human host adaptation could provide deeper insights into ways in which evolu-

tionary processes influence the molecular machines that carry out viral replication.
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Chapter 3

Network Hamiltonian Models for

Unstructured Protein Aggregates,

w/Application to γD-Crystallin

3.1 Abstract

Network Hamiltonian models (NHMs) are a framework for topological coarse-graining of

protein-protein interactions, in which each node corresponds to a protein, and edges are

drawn between nodes representing proteins that are non-covalently bound. Here, this frame-

work is applied to aggregates of γD-crystallin, a structural protein of the eye lens implicated

in cataract disease. The NHMs in this study are generated from atomistic simulations of

equilibrium distributions of wild-type and the cataract-causing variant W42R in solution,

performed by Wong, E. K.; Prytkova, V.; Freites, J. A.; Butts, C. T.; Tobias, D. J. Molecular

Mechanism of Aggregation of the Cataract-Related γD-Crystallin W42R Variant from Mul-

tiscale Atomistic Simulations. Biochemistry 2019, 58 (35), 3691-3699. Network models are
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shown to successfully reproduce the aggregate size and structure observed in the atomistic

simulation, and provide information about the transient protein-protein interactions therein.

The system size is scaled from the original 375 monomers to a system of 10000 monomers,

revealing a lowering of the upper tail of the aggregate size distribution of the W42R variant.

Extrapolation to higher and lower concentrations is also performed. These results provide an

example of the utility of NHMs for coarse-grained simulation of protein systems, as well as

their ability to scale to large system sizes and high concentrations, reducing computational

costs while retaining topological information about the system.

3.2 Introduction

Protein aggregation is implicated in a wide range of diseases, including Alzheimer’s, Parkin-

son’s, type II diabetes, and cataract[161, 47]. Aggregation can occur in a variety of biological

environments, and in systems varying from intrinsically disordered proteins (IDPs) to pro-

teins whose function depends on maintaining the stability of their native structure over the

length of a human life-time (e.g., the structural crystallins of the human eye lens). The

structures of the aggregates that result from this diverse set of proteins also vary, from the

highly ordered amyloid fibrils associated with Alzheimers[137], to the amorphous aggregates

of crystallin that form cataracts[95].

Molecular simulations of protein aggregation are important tools, along with experimental

measurement, for probing the mechanics and interactions between proteins that lead to the

formation of aggregates[148, 133]. Monte Carlo (MC) simulations in particular have been

used for studies of aggregation[44, 45]. In regards to proteins, the convention is to simulate

protein-protein interactions between rigid-body proteins with a single conformation[116, 119].

To introduce some conformational flexibility, Wong, et al,[209] studied the aggregation of

γD-crystallin (γ-Dc) using the multiconformation Monte Carlo (mcMC) algorithm[151, 121],
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which employs a library of structures using conformations of the γ-Dc protein generated

using single-protein and two-protein MD simulation trajectories. MC trial moves then are

chosen among rigid-body translations, rotations, and conformation changes from the library

of γ-Dc structures.

However, these simulations are still limited by the computational cost of modeling each

conformation as part of an all-atom simulation. Coarse-graining these models in turn allows

for simulation of longer time-scales, as well as increased complexity in terms of the number of

molecules being observed in one simulation[133]. A wide range of coarse-graining approaches

have been proposed for studying protein structure, dynamics, and interaction[138].

Alternatively, models aimed at protein-protein interaction sometimes take a more radical

approach. For instance, patchy sphere models represent an entire protein as a single sphere,

with “patches” on the sphere surface that have unique interactions properties [226]. Patchy

particles have been used for simulating self-assembly [226, 207], as well as protein phase

behavior such as in the case of γ-Dc[155, 102, 5, 115].

While all of the above schemes work by modeling the physics of aggregate objects (chains,

beads, etc.) within an explicit, Euclidean space, it is also possible to treat molecular systems

topologically, representing systems in terms of patterns of interactions among sub-units. For

instance, Benson and Daggett[19] represent proteins as graphs whose nodes represent chem-

ical moieties, and whose edges represent spatially defined contacts; this representation has

been used for e.g. comparative analysis of conformational ensembles [53] or protein classes

[194]. Further coarsening can be employed to represent entire residues with a single node,

which has been used for e.g. identification of active sites [6], studying transient structure

in IDPs [78], and analysis of protein dynamics [176]. While most applications of topological

coarse-graining have been descriptive, it is also possible to directly model protein structure

and/or interaction via its graph representation (see e.g. [217, 78, 79, 218]). We employ this

latter strategy in the context of modeling protein aggregation.
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In prior work, topological coarse-graining has been used to model the formation of amyloid

fibrils, by defining a free energy landscape (and a corresponding kinetic model) on the set

of possible aggregate structures [79, 222]. Aggregates in this approach are represented by

aggregation graphs, where each node corresponds to a protein monomer, and edges join nodes

whose respective proteins are non-covalently bound. Models of this type have been able to

recapitulate the topology of experimentally determined fibril structures, while being efficient

enough to simulate entire aggregation processes (from monomers to mature fibrils) in minutes

on consumer hardware. This high degree of computational efficiency is obtained by implicitly

integrating over spatial degrees of freedom, working only with binding and unbinding events;

this allows both fibril topology and the structure of intermediate and transition states to

be probed, for much larger systems and at longer timescales than would be accessible to

conventional approaches. The specific approach employed for such models (here referred to

as network Hamiltonian models (NHM)) borrows from a large body of computational and

statistical theory on exponential family models of random graphs, originally developed to

model social networks (see e.g. [92, 120, 168]).

While network Hamiltonian models have been used to model the structure of highly ordered

aggregates, they have not to date been used to capture disordered aggregates of the type

involved in cataract disease. Here, we consider a case involving unstructured aggregates,

specifically transient aggregation states of γ-Dc as observed in atomistic simulations under

physiologically relevant conditions by Wong, et al[209]. We show that a low-dimensional

NHM can reproduce the topological structure of aggregates from both WT and W42R γ-Dc.

We also show how these models can be used to produce equilibrium draws from much larger

systems, facilitating the scaling-up of more detailed simulations to the bulk regime; as we

show, this provides both confirmation in this case that many aspects of the small-scale model

generalize to large systems, and insights into a specific system size effect in γ-Dc simulations

with hundreds of monomers or fewer.
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3.2.1 Interaction and Aggregation in γ-Dc

γ-Dc is a structural protein in the human eye lens that is composed of two double-Greek key

domains[170]. γ-Dc is expressed in the fiber cells of the eye lens, along with other crystallins

from the α, β and γ families, during embryonic development[24]. In order to ensure the

transparency of the lens required for sight, other organelles such as the nucleus and rybosomes

are removed from the fiber cells as the eye matures, leaving differential concentrations of the

water soluble crystallins in each cell. The crystallins must maintain short-range interactions

with each other to minimize light scattering while at high concentration (exceeding 400 g/L

in humans), resulting in a dense liquid with transient local interactions among monomers[57].

The high structural stability and weak interaction propensity among structural crystallins,

along with the presence of α-crystallins to act as holdase chaperones for unfolded β and

γ-crystallins prevent irreversible aggregation from occurring between WT γ-Dc for much of

a human life-time[63]. However, as the number of α-crystallins available to chaperone β

and γ-crystallins decreases with time, cataract are more likely to form. These cataract are

the result of aggregation of (in this case) γ-Dc monomers, arising from e.g. damage from

attack by reactive oxygen species (e.g., hydroxyl radicals generated from UV exposure) or

from random interactions occurring when hydrophobic surfaces are exposed due to natural

fluctuations away from the native state of γ-Dc[170].

In the case of the congenital cataract-causing γ-Dc variant W42R, the point-mutation of a

buried tryptophan residue in the N-terminal domain (NTD) results in the protein possessing

a locally stable conformation that exposes the hydrophobic surfaces of the NTD, making

W42R more susceptible to NTD-NTD interactions with other monomers[172, 209]. Other-

wise, similar structures are found in both crystals and solution for both the WT and W42R

variant[96]. We exploit this similarity between the WT and W42R variant structures in the

process of coarse-graining - the functional difference between the two structures can be ap-
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proximated in terms of their rates of aggregation-forming interactions with other monomers,

which we recapitulate using network Hamiltonian models.

3.2.2 Network Hamiltonian Models and Aggregation Graphs

An aggregation graph, G = (V,E), is a network whose vertices (V ) represent protein monomers,

and whose edges (E) are drawn between pairs of monomers that are non-covalently bound

[79]. An aggregation graph can be seen as a form of topological coarse-graining [61], which

flexibly and succinctly represents the structure of connections among proteins while abstract-

ing away other aspects of structure; aggregation graphs have been employed in prior work

to model the structure and kinetics of amyloid fibrils [78, 222, 221], and related topolog-

ical representations have also been used to study structure and dynamics in both folded

[53, 34, 27, 163] and intrinsically disordered [78, 61] protein systems.

While the aggregation graphs of amyloid fibrils are highly ordered, this is not true of all

aggregates; indeed, here we are specifically interested in unstructured aggregates. Fig. 3.1

shows an aggregation graph derived from atomistic simulations of γ-Dc fromWong, et al[209],

indicating the relationship between individual monomers and the resulting topology. While

such aggregates are highly disordered, they nevertheless have numerous statistical regulari-

ties, which may be used both to gain insights into the aggregation process and model their

formation.

Following Grazioli, et al[78], we may model the equilibrium behavior of G via a network

Hamiltonian that operates on the topological degrees of freedom of the system (i.e., the

patterns of bound interactions among protein monomers). Specifically, in equilibrium we
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Figure 3.1: Example of an aggregation graph of the type studied here. Individual γ-
Dc monomers are considered adjacent when they have respective domains whose centers
of mass are within 31Å of each other in the atomistic model(see Methods). 2D graph repre-
sentation shows underlying topology of the aggregate, without regard to spatial positions of
the monomers.

model the probability of observing some specific graph microstate g as

Pr(G = g|ϕ, T ) = exp [−H(g)/(kBT )]h(g)/Z(ϕ, T ) (3.1)

= exp
[
−
(
ϕT t(g) + kBTte(g)

)
/(kBT )

−te(g) logN − logZ(ϕ, T )]

, (3.2)

where H is the graph or network Hamiltonian, expressed in terms of topological degrees of

freedom t and energy parameters ϕ; N is the particle number; h(g) is a reference measure

accounting for the entropic contribution of unmodeled degrees of freedom; Z is the partition

function; and T is the temperature. te, in particular, counts the edges of G. Here, we

use the contact-formation measure h(g) = N−te(g), and the bond vibration term (kBTte(g))

suggested by Grazioli et al. [78], which correct for (respectively) spatial limitations on

edge formation and motional degrees of freedom that are coupled to the graph topology.

Models based on Eq. 3.1 have been shown to be able to reproduce the structure of amyloid
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fibrils,[79, 222] and can be extended to reproduce fibrillization kinetics. Here, we adapt these

to the unstructured case.

Inference and model selection. In practice, we do not know a priori which topological

degrees of freedom will prove critical for our system of interest, nor do we know ϕ - rather, we

observe random equilibrium draws from G, and seek to infer a Hamiltonian that reproduces

the distribution of aggregation graphs. To this end, it is useful to observe that the model of

Eq. 3.1 is equivalent to an exponential family random graph model (ERGM), a widely studied

formalism for network modeling in the social and statistical sciences (see, e.g., [168, 120]).

The ERGM parameterization of the model of Eq. 3.1 is given by

Pr(G = g|θ) = exp
[
θT t(g) + log h(g)− logZ(θ)

]
,

where t, h, and Z are as before, and θ is a real vector of model parameters. Model selection

and inference for ERGMs are well-studied [168], allowing us to infer θ and t (and hence H)

from the realized aggregation graphs. Specifically, we obtain ϕ from θ under the family of

Eq. 3.2 via

−H(g)/(kBT ) + log h(g) = θT t(g)

−ϕT t(g)/(kBT )− te(g)− te logN = θT t(g)

⇒ ϕe = −kBT (θe + 1 + logN), ϕs ̸=e = −kBTθs ̸=e. (3.3)

Given a proposed set of model terms (i.e., choice of t), we perform parametric inference for

θ using the pooled maximum likelihood (MLE) method of Yin and Butts[218], from which

we can then infer ϕ using the relations of Eq. 3.3. As our goal here is to reproduce the

distribution of aggregate sizes - corresponding to component sizes in the aggregation graph

representation - we perform model selection by finding a term set that optimizes fit to the
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observed component distribution. Specifically, we first posit a set of candidate terms based

on prior work and first principles, and then select models sequentially by minimizing dis-

tance between the simulated component size distribution under the model and the observed

distribution (L2 norm of the log relative distribution). (See Methods for details.)

Model terms. The terms in H reflect multi-body interactions, as reflected in the topolog-

ical degrees of freedom of the aggregation graph. A large body of work exists on such terms

in an ERGM context, including derivation from dependence constraints (i.e., Hammersley-

Clifford [21]) [70, 144], corrections for diminishing marginal effects [183], and consequences

for equilibrium behavior [82, 31, 167, 33]. In the context of aggregation graphs, work on

amyloid fibrils [79] has identified a number of terms that may be useful for capturing protein

aggregation states per se; these include the null shared partner statistics (NSPs) and edge-

wise shared partner statistics (ESPs) [90], as well as cycle and star statistics. In the case of

γ-Dc, the highly skewed distribution of aggregate sizes also suggests terms specifically related

to component sizes. These include monomer and dimer counts, as well as terms reflecting

general tendencies that enhance or inhibit the formation of large aggregates. Specifically, we

here introduce a term for this last effect based on non-central moments of the component

size distribution. This term, which we refer to as compsizesum, has the form

tC(g) =
N∑
i=1

S(g)ii
γ, (3.4)

where S(g)i is the count of components of size i within g, and γ is a fixed parameter governing

the behavior of the statistic. We observe that γ = 1 simply returns the number of vertices,

and is hence uninteresting; however, γ = 2 yields the sum of squared component sizes, and

thus influences the variance of the component size distribution. Mechanistically, we also

observe that the change in tC associated with merging two components of sizes a and b is

equal to 2ab, and thus tC directly reflects the impact of component size on the favorability
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of coalescence or dissolution: when the associated ϕ parameter is negative, this implies that

contacts between larger aggregates are increasingly favored, while a positive ϕ indicates that

such mergers become increasingly unfavorable as aggregate size increases.

For our analyses, we employ a subset of computationally scalable terms with relevance to

the unstructured case; as we show, these terms are sufficient to produce models that can

reproduce the observed distribution of γ-Dc aggregate sizes, along with other topological

properties. The terms used are the following. The edge count (edges) parameterizes the

base dissolution energy of a single edge [79], and is included in all models. The tendency to

form extended versus “kinked” linear structures is influenced by open two-paths, as captured

by null (i.e., unbonded) pairs bound to a single shared partner, or NSP(1)s. Biases towards

monomers and dimers are plausible, and captured by counts of the same (i.e., components

of size 1 or 2, respectively). Closed triadic structures can be extremely stable, motivating

consideration of counts of bound pairs (edges) with one (ESP(1)s) or two (ESP(2)s) shared

partners. Higher-ordered edgewise shared partners must be handled carefully, as forces favor-

ing excessively high shared partner counts easily lead to sharp transitions to extremely dense

solid states that are not realistic for this system [187, 81]; we thus employ the geometrically

weighted edgewise shared partner (GWESP) statistic for higher-order triadic closure effects

[183, 88], which constrains contributions of high-order ESPs to have geometrically declining

marginal effects. The structures represented by these terms are represented schematically in

Fig. 3.2.

Although all of these terms were considered in model evaluation, not all were ultimately

selected for the final model. Our model selection procedure is described below.
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Figure 3.2: Schematic representation of candidate model terms for the γ-Dc network Hamil-
tonian. Black lines indicate edges that must be present in the specified configuration, while
red dotted lines indicate edges that must not be present. Blue outline indicates terms selected
in the final γ-Dc model. See text for details.

3.3 Methods

3.3.1 Atomistic Simulation and Network Generation

Wong et al. [209] performed atomistic simulation of equilibrium distributions of WT and

W42R γ-Dc using multi-conformation Monte Carlo (mcMC) methods [151]; here, we use

the network representation of aggregates generated from this study. mcMC simulations

were performed for N = 375 proteins at 310K and 200g/K under periodic boundary con-

ditions, using conformation libraries obtained from explicit solvent MD simulations under

the CHARMM36 forcefield [23] in TIP3P water [98]. From these simulations, 14,000 and

16,000 frames were obtained for WT and W42R (respectively). Further details regarding

the original simulation study can be found in Wong, et al[209].

Wong et al. [209] define aggregation graphs from the atomistic γ-Dc simulations as follows.

Each vertex is associated with a single protein monomer, with one graph per frame; within

a given network, two vertices are tied if they have respective domains whose centers of mass
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are within 31Å of each other. (This cutoff reflects the distance required for direct contact, as

revealed by analysis of domain-domain radial distribution functions across simulation frames;

see Wong et al. [209], figure S3.) This resulted in 14,000 WT and 16,000 W42R aggregation

graphs, which are employed for our present analysis. Network visualization and analysis was

performed using the statnet library [83] for the R statistical computing system [157], with

the network [29] and sna [30] libraries used to compute descriptives and graphical layouts.

3.3.2 Component/Aggregate Size Distribution Estimation and Com-

parison

Component sizes for all networks were computed using the sna library. The component size

distribution (the probability distribution for the size of a randomly chosen component) was

estimated using a non-parametric Bayesian procedure, as follows. For an arbitrary graph

of order N , the component size Z has support on ZN = (1, . . . , N). We model this as

Z ∼ Categorical(ψ), where ψi = Pr(Z = i). We place a minimally informative Jeffreys prior

on ψ, leading to p(ψ) = Dirichlet(0.5), where the latter is the homogeneous N-dimensional

Dirichlet distribution with concentration parameter 0.5. Given multiple observations of Z,

z = (z1, . . . , Zm), the corresponding posterior distribution is p(ψ|Z = z) = Dirichlet(S + 0.5),

where Si =
∑m

j=1 I(zj = i) is the observed count of components having size i. (This is an

example of the well-known Dirichlet-multinomial model [73].) Other posterior quantities

are then easily calculated from the properties of the Dirichlet distribution; in particular,

Eψi = (Si + 0.5)/(m+N/2), and the posterior marginals of ψi are given by ψi ∼ Beta(Si +

0.5,m− Si + (N − 1)/2).

For model selection (as discussed below), we seek to compare the component size distri-

butions arising from the network Hamiltonian model to the component size distributions

obtained from atomistic simulations. Because we are particularly interested in tail events
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(i.e., the distribution of relatively rare, large aggregates), we use the L2 norm of the logged

relative distribution [84] as our measure of discrepancy between distributions. I.e., given

fixed distributions f, g over component sizes ZN , our discrepancy measure is

D(f, g) = ∥ log f/g∥ =
N∑
i=1

(log f(i)− log g(i))2 , (3.5)

where the informal notation f/g denotes the relative distribution over ZN . In our case, we are

interested in D(fobs, fsim), where fobs is the observed or target component distribution and

fsim is the (simulated) distribution from our network model. However, neither distribution

is known exactly. Thus, we instead minimize the posterior quantity ED(fobs, fsim)|zobs, zsim,

where fobs ∼ Dirichlet(Sobs + 0.5) and fsim ∼ Dirichlet(Ssim + 0.5) (with Sobs and Ssim

the respective component count distributions from the atomistic and network Hamiltonian

simulations, respectively). Although this has no closed form solution, we can calculate it

straightforwardly by Monte Carlo quadrature [99], exploiting the ease of taking draws from

the Dirichlet distribution. (Note that our choice of prior ensures thatD(fobs, fsim) has a finite

expectation.) This approach allows us to automatically account for posterior uncertainty in

component size distributions when making comparisons.

3.3.3 Model Selection and Parameter Estimation

Models were fit by maximum likelihood estimation (MLE), using the pooling method of Yin

and Butts [218]; estimation was performed using the ergm package [91], version 4.1.2, using

the stochastic approximation method with respective base burn-in and thinning intervals

of 5 × 104 and 2 × 104. For each candidate model, separate pooled MLEs were obtained

for the respective collections of WT and W42R networks. Selection of the GWESP decay

parameter was performed by grid search. Change statistics for the dimer count and summed

component size terms were implemented via the ergm.userterms library [89].
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Model Terms Error (∥ log (fobs/fsim) ∥) Rel. Gain
edges NSP(1) GWESP(decay=α) compsizesum(power=2) ESP(1) WT W42R Total

TRUE FALSE FALSE FALSE FALSE 0.67 1.17 1.84 –
TRUE TRUE FALSE FALSE FALSE 0.37 0.68 1.05 43%
TRUE TRUE TRUE FALSE FALSE 0.29 0.26 0.55 27%
TRUE TRUE TRUE TRUE FALSE 0.24 0.17 0.41 8%
TRUE TRUE TRUE TRUE TRUE 0.24 0.15 0.38 2%

Table 3.1: Selected models for γ-Dc aggregates, by selection stage. Columns 1–5 indicate
included terms; terms selected by steepest descent, and no other terms were found to improve
fit. Error for observed (fobs) versus model-predicted (fsim) aggregate size distributions given
for WT, W42R, and combined cases. Relative gain shows fraction of total error reduction
versus the baseline (edge-only) model.

Models were chosen by forward selection, with the objective being minimization of the total

expected L2 norm of the log relative distribution of the observed versus model-generated

component distributions for WT and W42R. Specifically, for each fitted model we generate

5000 graph draws by Markov Chain Monte Carlo (MCMC) using the ergm library (N2

respective burn-in and thinning iterations for each trajectory, Tie-No-Tie sampler), obtaining

the estimated posterior distribution of component sizes as described above.This was used to

obtain ED(fobs, fsim)|zobs, zsim as described above for both WT and W42R, and the sum

of the respective expected errors was taken as the figure of merit for the specified model.

Terms were chosen to minimize this total error. Model search began with the base null

model (edge-only); at each iteration, each currently non-incorporated term was added one

at a time, and the addition providing the greatest total error reduction was kept for the

next iteration. Model selection terminated when no term improved fit to the component size

distribution. Table 3.1 shows the complete model selection trace, along with the errors at

each step. In addition to the terms selected for the final model, terms for monomer count,

dimer count, and ESP(2) counts were also evaluated; these were not found to improve fit

to the component distributions, and were not selected. Parameter estimates (MLEs) and

standard errors for the final models are shown in Table 3.2.

43



3.3.4 Extrapolative Simulation

Extrapolative simulation was performed by MCMC using the ergm library, using the default

Tie-No-Tie sampler. Systematic pilot simulations using the final fitted models (not shown)

indicated that, for graphs of order N , burn-in and thinning parameters of 250N provided

good convergence and mixing properties over a wide size range (with mixing improving

with size). These settings were hence employed for all extrapolative simulations. Model

parameters in ERGM (i.e., θ) space for the extrapolated models were obtained from the ϕ

representation of Eq.3.1, with N adjustments as specified. Component size distributions and

other metrics for the extrapolated network simulations were computed as described for the

other simulations.

To extrapolate across concentration, it is necessary to add an additional adjustment to

Eq. 3.2, to account for changes in the effective collision rate. Following Eq. 14 of Butts[32],

the first-order effect on the aggregation graph distribution of changing from baseline con-

centration C to extrapolated concentration C ′ is to shift the reference measure by a factor

of (C
′

C
)te(g); this leads to the distribution

Pr(G = g|ϕ, T ) = exp
[
−
(
ϕT t(g) + kBTte(g)

)
/(kBT )

−te(g)
(
logN − log

C ′

C

)
− logZ(ϕ, T )

]
.

Intuitively, multiplying the concentration by a factor α has the effect of shifting the edge

parameter (in its θ representation) by logα, which is easily implemented. Thus, increasing

the concentration will tend to increase the expected number of contacts per monomer, while

decreasing concentration will reduce it. The net impact of concentration changes on the

aggregation graph depends, however, on the full model. To examine the potential impact

of concentration on aggregation in the γ-Dc models, we simulate 1000 graph draws for a

large system (N = 10000) at concentrations of 100, 200, 300, and 400 g/L (with the original
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model having been calibrated based on mcMC simulations at 200 g/L).

3.3.5 Geometry Imputation

Although the aggregation graph is purely topological (i.e., it contains only information on

bound interactions among monomers, and is not spatially explicit), we here perform an

approximate geometry imputation to examine possible trends in aggregate shape driven by

the underlying topology. Specifically, we map the topology of realized aggregates to a three-

dimensional structure that is compatible with monomer size and bound interactions, and

that conforms to a very simple but physically plausible model. Specifically, we proceed

as follows. Given an aggregation graph, g, we first segment the aggregation graph into

connected components (i.e., distinct aggregates) g(1), . . . , g(m). (Component segmentation

and other analyses performed using the sna [30] package.) For each component, g(i), three-

dimensional coordinates are then assigned by a two-phase process. First, we employ a

modified three-dimensional Kamada-Kawai[100] algorithm (KK) to obtain an initial layout,

using the square root of the geodesic distance between vertices, scaled by twice the monomer

radius, as the objective. The KK procedure attempts to find an assignment of coordinates

to the vertex set that minimizes the sum of squared errors between the Euclidean distances

among vertex coordinates and a target distance matrix; here, our choice of distance target

approximates the expected distance under a random polymer model. Given the initial layout,

we refine it to correct for overlapping vertices, ensure that bonded vertices are in contact,

and to prevent non-bonded vertices from being in contact. This is done via a simulated

annealing procedure, minimizing a simple objective given by

∑
{j,k}

[Erep(2r/djk)
12 + Ebond g

(i)
jk (2r − djk)

2],
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where Erep = 1 and Ebond = 10 are parameters governing repulsion and bonded interaction

(respectively), r is the effective monomer radius, djk is the Euclidean distance between the

coordinates of vertices j and k, g
(i)
jk = 1 if j is bound to k (else 0), and the sum is over all

vertex pairs within the component. (Procedure implemented using Rcpp[64].) The resulting

coordinates reflect a plausible low-energy conformation for the aggregate, assuming that

interactions among monomers are not angularly restricted beyond constraints induced by

crowding and bound interactions. For an effective monomer radius, the geometric mean of

their projected monomer lengths along their respective principle gyration axes were used;

these were computed using the bio3d package[76], based on PDB structures 1HK0[17] and

4GR7[96]. The resulting radii were 19.55Å for WT, and 20.05Å for W42R.

To probe possible relationships between geometry and size (in the sense of numbers of

monomers per aggregate), we simulate 100 aggregation graph realizations from our esti-

mated models for WT and W42R, extrapolating to a system with N = 104 monomers.

Coordinates were obtained for each aggregate in each graph, using the above procedure. For

each aggregate, the radius of gyration was computed (approximating each monomer by a

sphere of its effective radius), and was scaled by the monomer radius of gyration to obtain

the dimensionless statistic Rg/rg (where rg is the monomer radius of gyration). Using the

above structures and libraries, the monomer rg values were calculated to be 16.63Å for WT

and 16.72Å for W42R. We also examine geometry using an elongation factor, defined here

as L1/L3, where Li is the width of the aggregate when projected along its ith principal axis

of gyration. Intuitively, an elongation factor of 1 indicates a spherical aggregate, with higher

values indicating greater departures from sphericity. Likewise, Rg/rg would be expected to

scale as N (1/3) as N becomes large, for spherical aggregates.
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3.4 Results

3.4.1 Topology of γ-Dc Aggregates

γ-Dc WT, W42R aggregates have skewed size distributions, with truncated up-

per tails. Fig. 3.3 (top right) shows posterior means and 95% intervals for the aggregate

size distributions; we observe monotone distributions in both cases, with sizes that scale as

approximately 1/n2 for small aggregates. Size frequency in WT begins to drop off rapidly

beyond approximately 10 monomers, with aggregates greater than 100 monomers being ex-

tremely rare. By contrast, W42R shows a much longer upper tail, with sizes becoming

truncated only near the 200-250 range. Although this truncation point is still considerably

smaller than the system size (375 monomers), it would be reasonable to suspect that it could

be a finite-system artifact; as we show below, however, this does not appear to be the case.

Larger γ-Dc aggregates are dendritic, with locally kinked structure. Fig. 3.3 (bot-

tom) shows two representative topological γ-Dc aggregation graphs for WT and W42R (each

selected by having the minimum discrepancy versus the overall component distribution), with

vertices colored by component size. As can be seen, complex components found in either

variant are relatively “loose,” with extensive tree-like structures marked by continuous and

occasionally branching paths, combined with local “kinks” resulting from triangulation. Al-

though triangles are common relative to the sparsity of the graph, we see an absence of both

large cliques and the highly regular linear structures seen in fibril formation. Qualitatively,

WT and W42R appear to produce very similar types of aggregates (net of size); there are,

however, statistical differences between them, as we show below.
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Figure 3.3: Aggregate sizes and topologies, from atomistic simulations by Wong et al. (2019).
Top left: structures of WT (PDB 1HK0 [17]
) and W42R (PDB 4GR7 [198]) monomers, with residue W42 highlighted. Trp to Arg
substitution disrupts the N-terminal domain, increasing exposed hydrophobic surface area.
Top right: WT and W42R size distributions are similar for small aggregates, but W42R
produces more large structures. Bottom: Representative examples of WT and W42R ag-
gregation graphs illustrate typical differences in topology; vertex colors indicate component
size, from red (free monomers) to blue (largest components).

48



3.4.2 Network Hamiltonian Modeling of γ-Dc Aggregates

Model parameters reveal topological drivers of aggregate structure. Examination

of reduction in prediction error for the component size distribution as a function of model

terms (Table 3.1) shows that the key drivers of aggregate structure (in descending order

of importance) are: the suppression of closed, chain-like structures (as evidenced by the

positive NSP(1) energies (Table 3.2)); enhanced triadic closure (negative GWESP energies);

and suppression of mergers between large aggregates (positive compsizesum energies). We

also see an additional minor ESP(1) correction, which adjusts the closure pattern generated

by GWESP but does not change the qualitative tendency towards local triangulation.

Quantitatively, we note that the base dissociation energy for a bond between two otherwise

isolated monomers is low; although all such energies for coarse-grained models are necessarily

approximate, we observe an effective net dissociation energy for such bonds of approximately

1 kcal/mol for WT, and 1.8 kcal/mol for W42R. To give some context for the nature of the

interactions, this is roughly comparable to a weak hydrogen bond. While this may seem low,

it is compatible with the observation that γ-Dc is overwhelmingly monomeric, and higher-

order interactions are generally transient. As another point of comparison, Mills-Henry et

al.[129] estimate the free energy of the γ-Dc domain interface - which would be expected to

be a much stronger interaction than transient interactions between otherwise independent

monomers - at approximately 4 kcal/mol. We observe that dissociation energies for W42R

start off roughly 80% higher than WT, reflecting a greater net propensity for interaction.

While the qualitative behaviors of the WT andW42R energy functions are similar, we see fur-

ther quantitative differences between the two. Extended conformations are less favorable for

W42R than WT (as seen from the higher NSP(1) energy), though this must also be weighed

against the higher baseline propensity of W42R to form contacts. Combining the ESP(1) and

GWESP terms to examine the net energies associated with ESP(k) configurations, we find
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WT W42R

Term θ̂ Std. Err. ϕ̂ (kcal/mol) θ̂ Std. Err. ϕ̂ (kcal/mol)
edges -5.2546 0.0061 -1.0302 -3.9911 0.0066 -1.8085

NSP(1) -0.2163 0.0034 0.1332 -0.4036 0.0025 0.2486
GWESP(α) 1.2855 0.0132 -0.7919 1.1983 0.0090 -0.7382

α 0.5 0.3
compsizesum(power=2) -0.0016 0.0001 0.0010 -0.0003 0.0000 0.0002

ESP(1) -0.1165 0.0144 0.0718 -0.2197 0.0098 0.1353

Table 3.2: Estimated model coefficients for γ-Dc aggregate models; θ specifies ERGM form
at simulated temperature and N , ϕ indicates equivalent Hamiltonian representation. All
coefficients significant at p < 1× 10−4; apparent zero standard errors indicate SE ¡ 1× 10−4.

that ESP(1)s are overall much more favored in WT than W42R (-0.32 vs. 0.05 kcal/mol),

and while this gap closes somewhat for ESP(2)s, it is still higher (-0.59 vs. -0.38 kcal/mol).

This gap gradually narrows for higher order ESPs (-0.69 vs. -0.48 kcal/mol for ESP(3)s,

and -0.74 vs. -0.56 kcal/mol for ESP(4)s), though it is still present. This suggests that,

prima facie, triadic closure in WT is driven more by the additional stability of triangulated

structures, while the combination of enhanced interaction and instability/unfavorability of

extended structures plays a larger role in W42R. Finally, while the compsizesum energy

appears fairly small at first blush, we see that it is about an order of magnitude larger for

WT and W42R. To put this term in perspective, it is helpful to consider the minimum

component size such that a merger of two such components would produce a change in the

compsizesum energy that exactly offsets the energy of a single baseline edge. For WT, this

size is approximately 22 monomers, versus approximately 67 for W42R. Thus, self-inhibition

is much weaker for the mutant than for wild type, plausibly playing a significant role in the

ability of the latter to form larger components. Moreover, since the change in energy scales

with the product of component sizes, we would expect to see growth in medium to large

WT aggregates to be much more dependent upon incorporation of monomers of very small

oligomers than W42R. This may provide more viable pathways to the formation of larger

aggregates in the latter, with corresponding impact on aggregation kinetics.
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Network Hamiltonian models recapitulate aggregate size and structure. Fig. 3.4

shows predicted properties of aggregates from the network Hamiltonian models (based on

MCMC simulation), versus the observed aggregation graphs. Despite the simplicity of the

network models, we find that they do an excellent job of recapitulating both large-scale

structure (component size distributions) and local structure (degree and ESP distributions)

for both mutant and WT. In particular, both models recapitulate the 1/n2 small-aggregate

scaling, and differences in tail weight. It should be noted that the ESP and degree statistics

match well not only on means, but also on variances (as shown by 95% simulation intervals),

demonstrating that they recapitulate variability in aggregate structure across realizations as

well as overall tendencies.

3.4.3 Extrapolative Simulation of γ-Dc Aggregates

Larger systems at constant concentration yield similar aggregate sizes. An obvi-

ous concern when simulating aggregation processes using atomistic methods is that we are

restricted to relatively small system sizes; this both restricts the upper tail of the aggrega-

tion size distribution and creates artificial dependence in aggregate sizes. The latter arises

from exhaustion: if, e.g., a system contains an aggregate of size M , then it must be the

case that only N −M monomers remain to form other aggregates. It is thus impossible to

observe interactions among multiple aggregates of size > N/2, and every large aggregate is

necessarily surrounded by much smaller aggregates (a condition that need not occur in bulk).

While the truncation effect can only artificially reduce aggregate sizes, this last effect could

either enhance or suppress the formation of larger aggregates (depending on the favorability

of interactions between aggregates as a function of size).

In general, it is thus hard to know how system size effects will impact aggregate size, unless

the maximum observed size is small compared to the number of monomers in the system.
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Figure 3.4: Model adequacy checks for the network Hamiltonian models. Top panels compare
observed (black) to simulated (colored) aggregate size distributions (center line indicates pos-
terior mean, shaded area 95% posterior intervals). Bottom panels compare observed (black)
versus simulated (colored) distributions of local structural properties, specifically degree
and edgewise shared partner counts; dots indicate means, whiskers indicate 95% intervals.
For both WT and W42R, the selected models successfully approximate the behavior of the
atomistic simulations.
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Figure 3.5: Predicted aggregate size distributions, by system size and variant. Center lines
indicate posterior means; shaded areas indicate 95% posterior intervals. While distributions
remain similar, maximum aggregate sizes decline more sharply when system sizes become
large compared to the size of the largest aggregates.

Here, however, the relative computational efficiency of the network Hamiltonian models al-

lows us to simulate draws from much larger systems than are accessible via mcMC, permitting

us to directly observe the impact of increasing system size on aggregation. In particular, we

here take draws from systems as large as 104 monomers, an increase of almost two orders of

magnitude from our base case of N = 375.

Figure 3.5 shows the resulting posterior means and 95% intervals for aggregate size distribu-

tions, by variant and system size. Overall, we find that the size distributions seen in smaller

systems remain similar as one approaches the bulk limit. We do not, in particular, see evi-

dence of truncation effects (particularly for the W42R variant, where they might have been

expected), suggesting that observed sizes are in fact due to the self-limiting properties of

aggregate assembly and disassembly, and not to a lack of available monomers. Interestingly,

we in fact see some sharpening and lowering of the upper tail of the size distribution as sys-

tem size increases. This may result from mid-sized and smaller components competing with

large components to recruit small components (since mergers become increasingly unfavor-
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Figure 3.6: Predicted aggregate size distributions, by concentration and variant, at N =
104. Center lines indicate posterior means; shaded areas indicate 95% posterior intervals.
Increased concentration favors growth of larger aggregates, particularly increasing the large-
aggregate population in W42R.

able with size), “starving” large components of monomers that they might otherwise recruit

for further growth. Such competition is limited in the small-N case by the exhaustion mech-

anism described above, thus potentially allowing some components to grow slightly larger

than would be possible in a bulk system. By being able to evaluate systems that are much

larger than the largest components, we thus get a more realistic picture of bulk behavior.

Increasing concentration increases aggregate size. Probing the high-concentration

regime is another challenge for conventional Monte Carlo simulation methods, as close pack-

ing of proteins makes it difficult to propose moves without an extremely high clash (and hence

rejection) rate. A potential asset of network Hamiltonian models is the ability to explore po-

tential effects of concentration by simulating aggregation graphs from concentration-adjusted

models, which do not suffer from this difficulty. For γ-Dc, Figure 3.6 shows posterior means

and 95% intervals for aggregate size distributions, based on simulations with N = 104 and

concentrations of 100, 200, 300, and 400 g/L (with 200 g/L being the concentration of the
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original system to which the models were fit). As expected, increasing concentration increases

the mean aggregate size for both WT and W42R, although we do not observe a marked in-

crease in the size of the very largest aggregates obtained for concentrations above 200 g/L.

We do, however, see large aggregates occurring with higher frequency, particularly for W42R

(where we see a marked flattening of the frequency distribution above ≈50 monomers at 400

g/L). We also see a larger mean shift for W42R versus WT, with the mean aggregate size at

400 g/L being 67% higher than the size at 200 g/L for WT (13.5 vs. 8.1) and 84% higher

for W42R (33.8 vs. 18.3). Although reduced concentration lowers aggregate size, this is

also more notable for WT than W42R (mean size 5.5 versus 10.1, with a marked difference

in the size of the largest aggregates). These results suggest that, beyond simply forming a

small number of distinctively large aggregates, W42R at high concentration sustains larger

populations of medium-to-large transient aggregates, which may place more monomers in

locally crowded settings in which transient conformational changes (e.g., partial unfolding)

potentially lead to irreversible aggregation.

Larger aggregates may be more compact, but slightly oblate. Although our ap-

proach does not directly predict the three-dimensional structure of γ-Dc aggregates, the

aggregation graph may provide evidence regarding likely conformations. Using the pro-

cedure described above, we examine imputed geometric properties for all aggregates from

samples of 100 draws from the WT and W42R models (respectively), with a system size

of N = 104 monomers. Figure 3.7 shows the resulting relationships of scaled radius of gy-

ration and elongation factors with aggregate size. While there is some deviation for small

aggregates, medium to large aggregates (10 or more monomers) are predicted to have have

nearly spherical Rg scaling; a linear fit of the log Rg/rg ratios to log sizes for aggregates

above this minimum lead to estimated scaling of Rg/rg ∝ N0.333±0.002 for WT (with N here

being the aggregate size), and Rg/rg ∝ N0.313±0.001 for W42R. The elongation metric shows a

slight deviation from spherical behavior, with large aggregates (100 or more monomers) tend-
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Figure 3.7: (A) Projected aggregate Rg over monomer radius of gyration (rg) by aggregate
size. For large aggregates (≥ 10 monomers), scaling is close to N1/3, though slightly below for
W42R. (B) Elongation factor (largest axis over shortest axis) by aggregate size; smoothing
splines shown to indicate mean behavior. Larger aggregates approach a limiting elongation
factor of approximately 1.2.

ing towards an average of approximately 1.2 (i.e., the longest axis being 20% longer than

the shortest). Although the Rg scaling coefficients are significantly different (z = 15.52,

p ≪ 0.0001), we would caution against drawing strong interpretations from such a small

difference from a highly simplified geometric model. We would, however, suggest that the

analysis shows that the topology of the aggregates does not constrain them to be far from

spherical, nor does it constrain WT and W42R to produce aggregates that differ greatly

in overall shape. Although tentative, the predicted trend in obliquity would seem to be a

fruitful target for experimental examination.
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3.5 Conclusion

Here we employed Exponential-family Random Graph Models to fit network Hamiltonian

models to atomistic simulations of WT and W42R γ-Dc, allowing us to identify topological

degrees of freedom that govern the formation of unstructured aggregates. The transient

nature of the protein-protein interactions in the resulting models reflect the properties of the

original mcMC simulation[209], and are thus distinct from the highly durable intermolecular

interactions seen in fibril formation. However, these transient interactions plausibly provide

opportunities for damaged or partially unfolded γ-Dc to form longer-lived structures[171] (or,

likewise to support more subtle surface interactions that have also been argued to promote

aggregation[25]) and may hence provide insights into the process of cataract initiation. In

keeping with this view, we see that the cataract-prone W42R mutant behaves in a manner

much more conducive to structure formation, both in terms of the favorability of overall

interaction and the tendency to form lower energy triadic structures. Given atomistic models

or experimental data on durable aggregates, the same strategies followed here can also be

used to model them.

Combining network analysis with mcMC simulations also offers the possibility of examining

the relationships between conformational states and structural position within the aggrega-

tion graph. We did not pursue this avenue here, because preliminary examination of of the

conformational states suggested that they did not show enough variation for such an analysis

to be fruitful. However, in systems with greater variation in monomeric states, this approach

would seem to be a useful direction. In particular, while our analysis implicitly marginalizes

over monomeric states (their impacts on aggregation being indirectly reflected via the terms

of the network Hamiltonian), it may in some cases be possible impute states from simulated

aggregation graphs, by training a model to predict the former from the latter using mcMC

draws. This too would seem to be a useful direction for further work.
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The scalability of network Hamiltonian models allows simulation of large systems, providing

additional information on the impact of the system size on aggregation. For WT γ-Dc, the

component size distribution did not change substantially from what was seen in the smaller,

atomistic simulation, while the W42R variant system sees a decrease in observations of the

largest aggregates (lighter upper tail) as system size increases. Our results suggest that

this may arise from competition between mid-sized and large aggregates for monomers to

incorporate, a phenomenon that is artificially suppressed in small simulations. Extrapolation

to higher concentrations does show an increased population of large aggregates, particularly

for W42R. Although we cannot directly determine geometry from these simulations, we can

approximate it using simple spatial models. Applying that approach here suggests that we

cannot immediately constrain the aggregates to being non-spheroidal in solution, though

there is some evidence of obliquity. Better models for moving from topology to geometry for

aggregation graphs (as has been explored at the atomistic scale for residue-level networks[61])

could further refine such predictions, and would be particularly valuable for providing better

targets for e.g. light scattering experiments.

One interesting observation from the present models is the apparent self-limiting behavior

of growing γ-Dc aggregates. This appears necessary to reproduce the results of the mcMC

models, which even for W42R do not show aggregates that approach the limit of the system

size (N = 375), and which manifests within the network Hamiltonian model by an inhibition

for mergers between large aggregates. Such self-limiting behavior could be compatible with

the formation of spherical structure, if more favorable attachment sites end up being buried

as the aggregate grows, and one could conjecture that such a mechanism, if present, helps

prevent pathological aggregation in the eye lens. However, we also reiterate that some

modes of aggregation were not accessible to the mcMC model (e.g., those based on partial

unfolding or refolding of monomers or disulfide bond formation[171, 172]), and thus are not

incorporated here; we therefore view this prediction as tentative. Formally, we observe that

the essentially quadratic penalty for component mergers used in the models fitted here may
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be too sharp in some settings, and a softer function may be needed. Investigations with

underlying models based on a wider range of systems would be fruitful in clarifying this

issue.

Network Hamiltonian models provide a flexible framework for describing interactions between

proteins and the resulting structures, whether transient in nature as in the case of the present

study, or the more durable structure of amyloid fibrils. Combined with experimental data

or atomistic models, network Hamiltonian models can be used to extrapolate simulations of

systems that are orders of magnitude larger than atomistic models, providing a convenient

method for examining the underlying structure of large protein aggregates. Additionally,

given the ability of network Hamiltonian models to determine distributions of aggregate sizes,

these models may provide insight into the transient interactions which guide phenomena such

as liquid-liquid phase separation and phase transitions.
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Chapter 4

Production of Distinct Fibrillar,

Oligomeric, and Other Aggregation

States from Network Models of

Multi-body Interaction

4.1 Abstract

Protein aggregation can produce a wide range of states, ranging from fibrillar structures

and oligomers to unstructured and semi-structured gel phases. Recent work has shown that

many of these states can be recapitulated by relatively simple, topological models specified

in terms of multi-body interaction energies, providing a direct connection between aggre-

gate intermolecular forces and aggregation products. Here, we examine a low-dimensional

network Hamiltonian model (NHM) based on four types of multi-body interactions, previ-

ously shown to be sufficient to reproduce two common types of amyloid fibril structures. We
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characterize the phase behavior of this NHM family, demonstrating the range of aggregation

states possible with this set of interactions. As we show, fibrils arise from a balance between

elongation-inducing and contact-inhibiting forces, existing in a regime bounded by gel-like

and disaggregated phases; complex oligomers (including annular oligomers resembling those

thought to be toxic species in Alzheimer’s disease) also form distinct phases in this regime,

controlled in part by closure-inducing forces. We show that phase structure is largely inde-

pendent of system size, allowing generalization to macroscopic systems, and provide evidence

of a rich structure of minor oligomeric phases that can arise from appropriate conditions.

4.2 Introduction

Protein aggregation is a fundamental biophysical process, implicated in both functional and

disease procesess. Among the most striking - and important - classes of protein aggregates

are fibrils. Fibrils are highly structured peptide aggregates consisting of repeated patterns

of interactions between protein monomers and oligomers. Fibrils are implicated in a wide

variety of chronic diseases [185, 113, 208], while also having some functional roles [180].

Empirically, the repeating interactions that form fibril structures have been shown to be

sensitive to a wide range of factors, including peptide sequence [20, 141, 42, 117, 152, 166,

173], oligomer shape [111, 80, 192, 16, 223], concentration [3, 228], electrostatic interactions

[56, 111, 228, 174], the presence of lipids [108], changes in temperature or pressure [112,

162, 109, 191], and other environmental factors [66, 67, 229, 51, 28, 48, 50]. In many cases,

the same protein or peptide is polymorphic, forming multiple distinct fibril structures with

only slight changes to experimental parameters [229, 192, 174, 2], and even within the same

sample [200, 228, 50, 193]. The multiple structures of polymorphic sequences have been

shown to be related to variations in disease[193, 145, 118, 128, 185]. Understanding how the

patterns of interactions between monomers differ could thus lead to a better understanding
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of the processes behind aggregation-related diseases.

The repetitive structure of fibrils is analogous to a 1-dimensional crystal structure (Fig. 4.1),

with (for amyloid fibrils) a cross-β structure binding monomers along the fibril length [153,

164, 200, 52], and variations of a “steric zipper” forming a cohesive core [164, 65]. Many

fibrils are formed by conserved dimeric building blocks [50], which can take a variety of

conformations that then go on to influence the structures of oligomeric states to which they

self-assemble [203, 192, 16]. As this implies, fibrils are only one of many possible protein

aggregation states, others including complex oligomeric forms, gel-like phases, and sparse

but largely unstructured aggregates. These phases are also of significant interest, with e.g.

annular oligomers hypothesized to be toxic species in Alzheimer’s and Parkinson’s Diseases

[38, 39, 41] and unstructured aggregates playing a central role in cataract [11, 14, 49]. In

addition, combined phases of fibrillar and non-fibrillar aggregates have been observed in

experimental settings [51] and may hold insight into the transition from disordered to ordered

structure [72, 68]. Prediction of mixtures of aggregation states based on the variety of

sensitive intermolecular interactions is thus a formidable challenge.

While intermolecular interactions are intrinsically governed by atomistic effects, these effects

ultimately combine to produce the global structure of the aggregate. Taking a topological

perspective, a minimal set of descriptors can be used to describe the basis for local interac-

tions between monomers. Besides the interaction that exists between every pair of monomers,

the local interaction that is observed in all aggregates of three or more monomers is the se-

quential chain of interacting monomers. Regardless of other environmental or structural

parameters, one may take any aggregate and draw some line between interacting monomers

that follows a series of monomers, with the minimum count of three monomers describing

a locally elongated chain. In cases where the line does not include every monomer in the

aggregate (without doubling back), monomers not included in the sequence may be consid-

ered branches. In cases where the monomer at the end of a series or branch of monomers
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is also interacting with the initial monomer of a series or branch, a loop or cycle is formed.

These four local topologies, pair-wise interactions, series, branches, and cycles, can thus be

described by topological network terms, such as those used in a Network Hamiltonian Model

(NHM).

Network models of aggregation have recently emerged as a scalable solution for modeling pro-

tein aggregation [79, 58], characterizing the aggregation system in terms of its topology (i.e.,

bound interactions among protein monomers) and describing its behavior in terms of multi-

body forces enhancing or inhibiting bound interactions found in local structure. NHMs, in

particular, describe aggregating elements in terms of an energy function based on the topol-

ogy of the system state (along with corrections for motional degrees of freedom), providing

a statistical mechanical picture based interactions between peptides in a system that is not

a priori assumed to form fibrils. This strength of NHMs, the ability to model larger systems

of peptides that may form multiple aggregate phases within a single system, allows these

models to produce results similar to those found by other coarse grain (CG) phenomeno-

logical models of monomer aggregation as well as provide estimates for the behavior of a

larger system of fibrils, such as in systems explored by larger CG models[142, 219, 85, 51].

NHMs have been shown to be able to recapitulate the so-far observed classes of amyloid fibril

topologies [79] as well as properties of cataract-associated aggregates [58]; kinetic extensions

of NHMs have been shown to recapitulate experimentally observed stages in fibril formation

[222], and finer-grained, residue-level NHMs have also been used to examine the behavior of

intrinsically disordered proteins [78] and conformational variation across crystal structures

of globular proteins [77]. Adapted from models originally developed to study social networks

[92, 104], NHMs are also able to leverage a large body of computational and statistical work,

greatly facilitating their use. Monte Carlo simulations from the equilibrium states of even

fairly large NHMs (e.g., 102 − 104 monomers) can often be easily performed on standard

computing hardware, making them a very accessible tool for studying protein aggregation.
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Predictions made by NHMs provide insight to the redistribution of intermolecular interac-

tions that may result from differences in environmental conditions or peptide sequence. This

can be used to inform a more targeted approach when using more fine-grained methods, such

as molecular dynamics (MD) simulations or DFT calculations, to study specific inter- or in-

tramolecular interactions that are suspected to play an integral role the formation of a given

aggregate. MD simulations – arguably the theoretical workhorse of molecular biophysics –

provide a method of exploring the atomistic interactions behind protein aggregation, espe-

cially in the case of proteins and peptides whose structure is difficult to elucidate due to

low solubility or other factors [110]. MD is useful for exploring atomistic details, but can be

difficult to scale to the large system sizes (hundreds or thousands of protein monomers) and

time scales (hours to years) needed to capture the formation of fibrils and other complex

aggregates [165, 227, 160, 79, 46]. Other coarse-grained (CG) models exist as alternatives

to MD that simplify the aggregation system, trading atomistic detail for scalability (and, to

the extent that the coarsened units are non-specific, generality). Molecular CG models may

also appear to gloss over a large amount of useful information, but, as noted e.g. by [132],

“In order to simulate the aggregation process itself, from monomers to large aggregates, one

must be willing to sacrifice atomistic details and invoke coarse-grained models.” There are

many classes of CG models (see [132] for a more detailed review) at varying levels of coarse-

ness. The most conservative are “systematic” CG models that map all-atom simulations to

a CG representation [94, 159, 130, 43, 37], as well as relative entropy methods[177]. “Phe-

nomenological” methods, such as the off-lattice[210, 35] and on-lattice[136, 114, 1] models,

aim to probe the interaction space and determine the energetic parameters that can mimic

the aggregation of different amino acid compositions by representing residues with as few as

one bead per residue. The coarsest CG models typically represent the entire peptide as a

single object, such as a rod[195], a stick[93], a tube[12], or a cuboid model [224], and take

advantage of the simplicity of the model to scale simulations toward larger numbers of pep-

tides aggregating into fibrils, using averaged interaction potentials to mimic intermolecular
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interactions. These molecular models are, however, biased by the shape chosen to represent

fibril monomers, which has an effect on the interactions between monomers. This is not the

case with NHMs, which focus exclusively on the interactions themselves, allowing for greater

generalizability and application.

Here, we employ a NHM to examine the universe of aggregation states that can be created

from a Hamiltonian based on small number of simple multi-body interactions, characterizing

the resulting phase structure in terms of the balance between different topological forces

that favor or disfavor aggregation. Prior work has shown the minimal four-term model (de-

scribing pair-wise interactions, series, branches, and cycles) to be sufficient to reproduce the

frequently observed 1-ribbon and 2-ribbon fibril topologies [79, 222]. In this work, we also

show that this model is capable of producing a wide range of other aggregation states, includ-

ing oligomeric and gel-like phases. We find that the most important phase boundaries can

be rationalized in terms of competing forces governing branching, elongation, and cycliza-

tion, providing a high-level view of the conditions that favor formation of fibrils versus other

aggregates in equilibrium. We also show the presence of regimes containing large numbers

of distinct oligomeric phases, suggesting fairly sensitive dependence on the balance of inter-

molecular forces under certain conditions. Because our model is directly specified in terms

of the most basic intermolecular interactions, our findings should be broadly applicable to

any fibril-forming system.

4.3 Methods

4.3.1 Modeling of Aggregation States

Following [79], we define protein aggregation states via aggregation graphs. An aggregation

graph, G = (V,E), is an undirected graph on a set of N protein monomers, V , whose edges
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{i, j} ∈ E represent pairs of monomers that are bound to one another. Examples are shown

in Figure 4.1. The equilibrium state of the aggregation graph is specified by the NHM

probability distribution

Pr(G = g|H, T ) = exp[−H(g)/(kBT )− logZ(H, T )]h(g) (4.1)

where g ∈ G is a realized state of g (out of the ensemble of possible states, G), H is the

network Hamiltonian, Z =
∑

g′∈G exp[−H(g′)/(kBT )]h(g′) is the partition function, T is

the temperature, kB is Boltzmann’s constant, and h is a reference measure accounting for

entropic effects of unmodeled degrees of freedom. This framework exploits the fact that

motional degrees of freedom are largely time-scale separated from the (much slower) process

of bond formation and dissolution, making it feasible to account for them indirectly by their

average effects. While a kinetic extension of this model has been proposed [222], we here focus

on equilibrium states. H is parameterized in terms of a set of topological degrees of freedom,

t, that are real-valued functions of the aggregation graph; i.e., we take H(G) = ϕ⊺t(G), with

t : G → Rp and energy parameters ϕ ∈ Rp indicating the potential per unit change in the

corresponding elements of t. Defining the dimensionless parameter θ = −ϕ/(kBT ) leads to

the alternative parameterization Pr(G = g) ∝ exp[θ⊺t(g)]h(g), a form which is known as an

exponential family random graph model (ERGM) [168]; a considerable body of work exists

on specification and simulation for models in ERGM form, which we leverage below.

As noted, H is specified by the choice of degrees of freedom (or statistics), t. Here we

use a four-parameter family shown to produce 1-ribbon and 2-ribbon fibril structures [222],

containing sufficient statistics (in ERGM terminology) te (the edge count), tnsp1 (the count

of NSP(1) configurations), tnsp2 (the count of NSP(2) configurations), and t2s (the count of

2-star configurations). These are defined as follows. te is the count of edges in the graph (i.e.,

the number of bound interactions among monomers). A null shared k-partner (NSP(k)) is a

conformation involving two non-adjacent vertices i, j having exactly k partners in common.

66



Figure 4.1: Examples of possible network representations of fibril structures found in the
PDB. A) Dimer network structure of a single dimer block from PDB structure 7Q4M[216]. B)
‘1-ribbon’ network structure super-imposed over PDB structure 2MXU[212]. C) ‘2-ribbon’
super-imposed over the PDB structure 7Q4M.

tnsp1 is thus the count of pairs of unbound monomers that are jointly bound to a third

monomer, describing an elongated series of monomers, while tnsp2 is the count of pairs of

unbound monomers jointly bound to two other monomers, describing a closed-cycle effect.

Finally, a 2-star is a configuration in which one node is bound to two others (inclusively -

thus a node with four partners is the center of six 2-stars, see SI Fig. S10), and describes

the number of branches on a given monomer. As suggested by [79, 222], ϕe can be thought

of as the baseline energy for interaction between two otherwise unbound monomers, and ϕ2s

serves as a first-order approximation to the change in this energy associated with existing

bound interactions (i.e., every existing tie to monomer i increments the energy of a new

bound interaction with i by ϕ2s). Jointly, these forces are sufficient to produce not only

distinct fibril types, but many other aggregation states.

The graph terms corresponding to pair-wise interactions, elongation, branching, and cycle-

formation represent net interaction energies resulting from combinations of intermolecular

interactions, and thus vary depending on both peptide sequence and experimental condi-

tions. However, these terms are agnostic of some spatial and energetic effects that are

typically included for consistent model behavior when studying physical systems such as

protein aggregates. In particular, maintaining consistent behavior at constant concentration
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requires accounting for the entropic contribution of spatial mixing (which is implicit in the

topological model); following [79], we use the Krivitsky reference measure h(G) = N−te(G)

for this purpose (see also [106, 32] for a more formal treatment). Likewise, maintaining con-

sistent behavior across temperature requires accounting for energy within bond vibrations.

As in prior work, we take such vibrational motion to be time-scale separated from formation

or dissolution of edges, implying a total contribution to the graph Hamiltonian of kBT per

edge (each edge having one potential and one kinetic degree of freedom, and oscillations

being classical). The coefficient on the edge term, te, thus contains the force applied to each

edge, ϕe, as well as the adjustment for temperature, kBT . The remaining three terms also

have coefficients representing the net forces (ϕ2s, ϕnsp1 , ϕnsp2) that influence the respective

local topology (indicated by t2s, tnsp1 , and tnsp2 , respectively). This results in a final graph

Hamiltonian of the form

H(g) = (ϕe + kBT )te(g) + ϕ2st2s(g) + ϕnsp1tnsp1(g) + ϕnsp2tnsp2(g). (4.2)

The corresponding ERGM has parameter vector

θ = (−ϕe/(kBT )− 1− logN,−ϕ2s/(kBT ),−ϕnsp1/(kBT ),−ϕnsp2/(kBT )) (4.3)

with statistics t = (te, t2s, tnsp1 , tnsp2) (where we have re-specified θ relative to the counting

measure, as is common in practical use).

Given translation into ERGM form, equilibrium draws from the NHM can be obtained

using standard Markov chain Monte Carlo (MCMC) techniques [22]; here, we use the de-

fault tie/random-dyad Metropolis-Hastings algorithm from the ergm package [91] within the

statnet library [105] for simulation, with systems of size N = 150. (As noted below, we

also perform targeted simulations with larger system sizes of N = 750 to verify stability of

the model.)

68



4.3.2 Network Sampling

We define a parameter space over a range of values for parameters ϕnsp1 , ϕnsp2 , and ϕ2s, with

a constant value for ϕe. The range for each parameter value is determined based on physical

grounds and on prior examination of regions that produce stable 1-ribbons and 2-ribbons

[222, 221]. Parameter values follow the intuition for energy values that are measured in

physical systems, where a more negative value indicates a lower energy and a more favorable

local topology, and a more positive value indicates a disfavored topology. Thus, ϕe < 0

is necessary for aggregation to be favorable, ϕnsp1 < 0 encourages elongated structures,

ϕ2s ≥ 0 disfavors additional branching after an edge is added to a node, and ϕnsp2 < 0

favors the formation of 4-cycles (cycles consisting of exactly four monomers). Conversely,

positive parameter values for ϕnsp1 and ϕnsp2 result in less elongation (i.e. less aggregation

beyond the formation of dimers) and less cyclization, respectively. We then employ a Halton

sequence to sample 16,000 low-discrepancy points covering the parameter space, simulating a

network for each combination of parameter values in the sample using the statnet packages

in R[156, 91, 105]. Networks are simulated at three different ϕe values: -50, -66, and -81

kcal/mol (equivalent to θe values of 75, 100, and 125, respectively).

Following the initial, uniform survey of the parameter space, resulting phase boundaries

within the space are refined by sampling additional networks in regions where network sim-

ulations are observed to produce fibrillar aggregates. For each initially sampled parameter

value that is found to produce fibrils with the -66 kcal/mol ϕe value, 10 new points are sam-

pled from the surrounding parameter space using a multivariate normal distribution (MVN)

centered on the original point. This results in a total of 43,880 networks sampled from the

parameter space, shown in Figure 4.2 as convex hulls encapsulating networks that produce

given target structures.
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Figure 4.2: Networks were sampled from the space formed by ranges of parameter values on
t2s, tnsp1 , and tnsp2 . A) Convex hulls of networks with a majority of vertices forming 1-ribbons
(orange), dimers (turquoise), 4-cycles (blue), and unstructured-aggregates (dark pink). The
unfilled space between the dimer hull and the 1-ribbon and 4-cycle hulls contains networks
with mixtures of dimers, 2-paths, and 4-cycles. B) Examples of the target structures, mapped
according to naive descriptions of their network structures: elongation and tie density. All
structures except for the 4-prism (grey) are observed in this study.

4.3.3 Yield Calculations

Each point in the parameter space is classified according to the average yield of target

fibrils over five independent network simulations with N = 150 monomers. Vertices within

each network are assigned a target fibril structure classification based on its local network

structure. Graphlet orbits are used to identify the number of vertices that are locally in

one of three target fibril structures: 1-ribbon, 2-ribbon, and 4-cycle oligomer [217]. Other

target structures, such as “cubic” oligomers (cyclized 2-ribbons), dimers, and unstructured

aggregates, are classified based on either the number of vertices that are included in a single

structure, or using a heuristic classifier that uses component size and cycle information for

a given structure within the network (see SI for details of classification). Examples of each

structure, as well as the convex hulls of networks containing those structures in the parameter

space, are shown in Fig. 4.2.
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4.3.4 System Size Checks

To verify that the phase behavior is not heavily influenced by system size, we replicate simu-

lations for a portion of our sampled space with a much larger number of protein monomers.

Since our interest is in the inter-phase boundaries, we probe them by sampling points on

a series of three parallel trajectories through the parameter space that intersect the previ-

ously determined boundaries (allowing us to determine whether the boundaries move as N

increases). The trajectories are shown in Figure 4.6. Two sets of networks are simulated

for each point on the three trajectories, one with N=150, and the second with N=750.

This represents an increase of 5 times the system size of the original networks; our choice of

reference measure implies that these systems are maintained at constant concentration (c.f.

[58]).

We sample the trajectories using the equation ϕ2s = (5/2)ϕnsp1+ϕi, where ϕi is the intercept

and is equal to 287, 182, and 78 kcal/mol for the pure 1-ribbon phase, the 1-ribbon/2-ribbon

interface, and the mixed 2-ribbon/oligomer phases, respectively. The value of ϕnsp2 is kept

constant at -100 kcal/mol. Points are sampled equidistantly along this line, moving from the

pure dimer phase towards the pure unstructured aggregate phase. We end sampling when

at least five networks have been classified as unstructured aggregates. We then compute

target structure yields for each of these networks for comparison of the boundary locations

to determine any dependence on system size.

4.3.5 Phase Classification

We classify distinct phases of fibrillar and non-fibrillar aggregation states using points that

produce networks with 100% yield of the corresponding aggregation product. The resulting

phases are described as “pure” phases in following sections. Phases with more than one

structure type are referred to as “mixed,” and are treated separately.
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4.4 Results and Discussion

We begin by discussing the boundaries within the parameter space that separate phases of

our target structures. Next, we determine dependence of the phase boundary location on

the value of the ϕe parameter and discuss how phase boundaries impact our interpretation of

intermolecular interactions. We then characterize the regions of the space containing mixed

phases, and examine how mixtures respond to system size, N . Next, we describe how to

calculate the change in energy that accompanies additional interactions, and discuss how

changes in temperature would affect the system. Finally, we discuss the utility of NHMs and

possible applications to empirical data.

4.4.1 Phase Boundaries

The points producing 100% yields of dimer, gel, or 1-ribbon structures produce the starkest

boundaries. Examination of the phases plotted on the ϕnsp1-ϕ2s plane, shown in Figure

4.3A, suggests the parallel boundaries between the 1-ribbon phase and the unstructured-

aggregate phase, the 1-ribbon phase and mixed oligomer phase, as well as the pure dimer

phase and the mixed oligomer phase follow similar equations with unique intercept values,

ϕ0, corresponding to the specific boundary. Thus, the equation:

ϕ0 = ϕ2s + ϕnsp1 (4.4)

relates each boundary at its unique intercept to the difference in magnitude of the positive

ϕ2s and the negative ϕnsp1 values. Increasingly positive ϕ2s inhibits additional interactions

beyond the first interaction for any bound monomer. Increasingly negative ϕnsp1 favors

elongation, which necessitates at least a second interaction for any bound monomer. The

combination of these two values describes the net free energy required for bound monomers
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to accommodate additional interactions. Intuitively, when the magnitude of ϕ2s is sufficiently

greater than that of ϕnsp1 multiple interactions are ultimately disfavored, with the intercept

(ϕ0) determining the number of additional interactions any monomer can accommodate. The

interpretation of exact intercept values is discussed below.

The ϕnsp1-ϕnsp2 plane, shown in Figure 4.3B, shows the relationship between negative (fa-

vorable) values for both elongation and cyclization. Here, a boundary between the pure

1-ribbon phase and the 2-ribbon and 4-cycle mixed phases is observed with the equation:

ϕ0 = ϕnsp2 − 2ϕnsp1 . (4.5)

The relationship between ϕnsp1 and ϕnsp2 is correlated, as tnsp1 structures are required for

cyclization (tnsp2) to occur. More precisely, the aggregation of four monomers into a cycle

may be accomplished most simply by the combination of two dimers through two elongating

interactions (ϕnsp1). Correspondingly, the net free energy necessary to stabilize the 4-cycle

structure is proportional to the energy of two elongating interactions by a proportionality

constant, 2. When ϕnsp1 values are more negative elongation is favored over cyclization, and

when ϕnsp2 is more negative (such that ϕnsp2 is sufficiently greater than 2ϕnsp1) cyclization

is favored over elongation. When ϕnsp2 is greater than 2ϕnsp1 by a small amount, elongated

structures containing 4-cycles are able to form. Further discussion of exact intercept values

is found in following sections.

The plane given by (4.4) and (4.5), shown in Figure 4.3C, shows a boundary between the

pure 1-ribbon phase and the majority 2-ribbon networks, and follows the equation:

(1/2)ϕnsp2 − ϕnsp1 = −(ϕ2s + ϕnsp1), (4.6)

where the difference in the magnitudes of the intercepts from (4.4) and (4.5) determines
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Figure 4.3: Plots show phase boundaries between regions of the parameter space producing
networks with 100% of vertices in a type of target structure. Examples of networks from
each phase are shown above. A) Convex hulls containing the pure dimer, pure 1-ribbon
fibril, and pure unstructured-aggregate phases are plotted on the ϕ2s-ϕnsp1 plane. Eq. 4.4
with ϕ0 =0 is shown as a dashed red line. Phase boundaries are located at unique values
of ϕ0 that are shown to be multiples of ϕ∗

e (Fig. 4.4). Example networks (from left to
right) are of the unstructured-aggregate phase, the 1-ribbon phase, and the dimer phase.
B) The pure 1-ribbon fibril convex hull and the mixed oligomer convex hull are plotted on
the ϕnsp1-ϕnsp2 plane. Eq. 4.5 is shown as a dashed red line with ϕ0 =0. Yellow points
represent networks with a majority of vertices in 2-ribbon fibril structures. Examples show
two mixed 2-ribbon networks and a mixed 4-cycle oligomer network containing 2-ribbon
segments and cubic oligomers. C) Pure 1-ribbon, dimer, and unstructured-aggregate hulls,
as well as the mixed oligomer hull, are plotted on the plane given by Eqs. 4.4 and 4.5. Eq.
4.6 is shown as a dashed red line with ϕ0 =0. The window at top-right shows a close-up of
the interface between phases of pure 1-ribbon, mixed oligomer, pure unstructured-aggregate,
and networks with majority 2-ribbon fibrils (yellow hull). Example networks are from the
majority 2-ribbon phase, the mixed oligomer phase in the region between the majority 2-
ribbon phase and pure 1-ribbon phase, and the pure 1-ribbon phase. Examples were chosen
to show the consistent elongating effect, and the increase in closure effects resulting in 4-
cycles, 2-ribbons, and cubic oligomers at smaller ϕ0 values.
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the phase. This amounts to a comparison of the elongating effect that determines the

number of interactions for any monomer and the cyclization effect that determines whether

additional interactions to an elongated aggregate are between monomers of the same or

different structures. Equation 4.6 can be further simplified to (1/2)ϕnsp2 = −ϕ2s, making

the location of the boundary a function of the competing effects of cyclization and branching.

Note that for a 4-cycle to be formed on an elongated aggregate consisting of more than four

bound monomers, at least one of the interacting peptides will need to be able to accommodate

three total interactions (further discussion of the influence of pre-existing interactions on new

interactions is found in the sections below). When the intercepts of (4.4) and (4.5) are of

similar magnitude with a difference less than the net energy of an interaction between two

monomers (ϕe), small changes in any one parameter may make the difference between forming

a 1-ribbon or 2-ribbon fibril, or a 4-cycle oligomer. The relationship between intercept values

and the ϕe parameter are discussed in the following section.

4.4.2 Dependence on ϕe

Noting that these networks were simulated with a fixed θe = 100 (using the traditional ERGM

form and terms), we observe the intercepts of (4.4) to be approximately located at multiples

of θe: −θe/4, −θe/3, −θe/2, and −θe, for the unstructured-aggregate phase boundary, the

pure 1-ribbon phase boundaries, and the pure dimer phase boundaries, respectively (see

Figure 4.4). Because edge formation depends on vibrational and entropic contributions in

addition to the edge potential (i.e., θe = −ϕe/(kBT ) − (1 + logN)), phase boundaries do

not fall as neatly on multiples of ϕe as they do on θe. As such, we introduce a parameter to

describe the intercepts in relation to ϕe that includes the energetic effects of bond vibration

and entropic effects of system size; the net edge energy equivalent, ϕ∗
e = −ϕe−kBT (1+logN),

formalizes the relationship of the phase boundaries with the edge potential.
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Figure 4.4: Segments of the ϕ2s +ϕnsp1 boundaries (Eq. 4.4) plotted against ϕnsp2 show the
effect of varying ϕe values on phase boundary locations. For each ϕe values, boundaries are
observed to shift by a proportional amount toward or away from ϕ0 = 0. Boundary values
relative to the net edge energy equivalent value, ϕ∗

e = −(ϕe + kBT (1 + logN)), are labelled
in red.

Networks are sampled throughout the space at values of ϕe that are larger (ϕe = -81 kcal/mol,

θe = 125, ϕ∗
e = 78 kcal/mol), and smaller (ϕe = -50 kcal/mol, θe = 75, ϕ∗

e = 47 kcal/mol)

than the original analyses (ϕe = -66 kcal/mol, θe = 100, ϕ∗
e = 62 kcal/mol), while using the

same ranges on ϕnsp1 , ϕnsp2 , and ϕ2s. Changes to the magnitude of ϕe (and thus, ϕ∗
e) affects

the location of phase boundaries in a predictable manner, as shown in Figure 4.4. For larger

magnitudes of ϕ∗
e, we observed a shift of the pure phase boundaries toward higher values of

ϕ0 in Eq. 4.4 that remain equivalent to the relative values of ϕ∗
e described above. Similarly,

smaller magnitudes of ϕe result in lower values of ϕ0 that maintain the relative values of ϕ∗
e.

The linear relationship between phase boundary location and the relative value of ϕ∗
e high-

lights the advantage of conducting simulations and analyses using network potentials that

are unbiased by local spatial effects such as the monomer shapes in molecular CG models:

changes in state stability can be understood in terms of simple balances of multi-body forces,

without having to specify the specific factors giving rise to those forces. In the case of pro-

teins, the value of ϕ∗
e is related to the net free energy required for any two monomers (bound
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or free) to form a stable interaction, and may vary depending on physical parameters of the

system being studied. For instance, a smaller ϕe value may be related to a peptide that has

fewer degrees of freedom that can be employed for stabilizing an interaction, such as polar

residues that are able to form salt bridges with other peptides, or surface area available for

interaction[18, 110]. Smaller ϕe values result in smaller portions of the parameter space that

produce networks with fibrils as there is less energy available for monomers to accommodate

additional interactions beyond the formation of a dimer.

Specifically, 1-ribbon fibrils are formed for intercepts of Eq. 4.4 between ϕ∗
e/3 and ϕ∗

e/2. In

this region, the third interaction for any monomer results in three local topologies of both

t2s and tnsp1 (see SI Fig. S10B), resulting in 3ϕ2s − 3ϕnsp1 > ϕ∗
e; i.e. the stabilizing effect of

elongation (ϕnsp1) is not enough to accommodate the strain placed on the existing interactions

(ϕ2s) by the addition of the third interaction, and the net free energy is less than that required

(ϕ∗
e) for an edge to form. Similarly, networks formed between ϕ∗

e/2 < ϕ2s − ϕnsp1 < ϕ∗
e

contain a mixture of dimers and proto-fibrils; while elongation may occur, the additional

interactions are strenuous and prevent structures from forming that have more than three

bound monomers. Networks sampled in the region ϕ2s − ϕnsp1 > ϕ∗
e contain only dimers as

bound monomers are incapable of accommodating additional interactions. Physical protein

structures may experience this inhibitory effect due to electrostatic or other interactions that

prevent a stable bond from forming [174]. Alternatively, elongation may be constrained by

conformational limits of the peptide [146]. Given that dimers are a well known precursor to

oligomers, protofibrils, and many other aggregation states [18, 203], the presence of a large

region of the parameter space occupied by dimer phases is compatible with the view that

this is an easily achieved state.

Unstructured aggregates form when ϕ0 < ϕ∗
e/4, i.e. when the addition of a fourth edge

to any vertex can be mediated by other vertices with fewer edges elsewhere in the gel-like

network (note that a fourth edge on a vertex gives a count of six t2s and tnsp1). For ϕ0 < 0,
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the magnitude of ϕnsp1 outweighs that of ϕ2s, and edges may be added to any vertex such

that the density of the graph is now only limited by the reference measure. This phase

may include states in which peptides remain unfolded and disordered, resulting in transient

interactions with other peptides that do not lead to stable patterns of interactions such as

those needed to form β-sheets; alternately, it may also include states in which monomers

remain globally well-folded, but sustain enough local disorder to sustain the interactions

needed to condense into a gel.

4.4.3 Mixed Phases

The 2-ribbon, 4-cycle oligomer, and cubic oligomer structures are found to co-occur at vary-

ing proportions in the region of the parameter space between ϕ∗
e/4 < (ϕ2s+ϕnsp1) < ϕ∗

e, and

surround the pure 1-ribbon phase. The majority of points sampled from the mixed phases

produce networks largely composed of 4-cycle structures, with a much smaller quantity of

2-ribbon structures, and an even smaller quantity of cubic structures. 2-ribbon and cubic

structures are located within the range given by ϕ∗
e/4 < (ϕ2s + ϕnsp1) < ϕ∗

e/2, with some

dimer and 4-cycle structure found at values extending toward ϕ∗
e, as shown in Fig. 4.5A-C.

The mixed phases appear to form in layers corresponding roughly to intercepts on (4.4),

although the boundaries between them are not all parallel, and would require sampling at a

finer scale than we have available here to determine precise locations and intersections.

The second phase boundary between the pure 1-ribbon phase and the mixed 2-ribbon and

oligomer phases, shown in Fig. 4.5D-E, depends on the relative magnitudes of ϕnsp1 and ϕnsp2 ,

as given by Eq. 4.5. We note that, unlike 2-stars, NSP(k) terms are not “nested,” such that

one NSP(2) does not also contain two NSP(1) structures. At ϕ0 = 0 the closure-inducing

force of ϕnsp2 is equivalent to twice the force of elongation by ϕnsp1 , forming the upper bound-

ary of the majority 2-ribbon phase. For ϕ0 > 0, the cycle-closure effect of tnsp2 is unfavorable
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Figure 4.5: The region between pure dimer and pure unstructured-aggregate phases (shown
in previous plots by wavey texture) contains mixtures of target structures. A) Copy of the
plot in Fig 4.3A with the mixed network phases in bolded wave texture. Pure phases are
in muted colors for visual reference. B) Mixed networks are plotted individually, colored by
the target structures produced. All points contain multiple structure types. C) The same
plot as in B, separated by structure type. (Clockwise: dimers (turquoise), 4-cycles (blue),
cubes (green), and 2-ribbons (yellow). D) A copy of Fig. 4.3B, with mixed networks plotted
as points. E) The same plot as in D, separated by structure type.
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due to the necessary removal of two tnsp1 for every tnsp2 . Thus the elongation effect of tnsp1

drives the structure formation. Large cycles may still form at ϕ0 > 0, however, it is more

likely that a terminal vertex will form a tie with the terminal vertex of a different structure,

of which there are multiple, than with the other terminal vertex of its own structure, of which

there is only one. This is consistent with behavior of amyloid fibrils, which can be rigid and

inflexible, and exist in an environment where other obstructions may make it difficult to form

cycles from a single fibril. For ϕ0 < 0, we observe a mixture of 1-ribbons, 2-ribbons, 4-cycles,

and “cubic” oligomers (annularized 2-ribbons), and as ϕ0 becomes more negative the 4-cycle

and cubic oligomer structures become dominant. Predominantly oligomeric networks form

when ϕ0 < −ϕ∗
e/3, or

∑
[2ϕnsp1 , ϕnsp2 ]

T · 3[tnsp1 , tnsp2 ] < ϕ∗
ete, i.e. when formation of six tnsp2

upon cyclization of the 2-ribbon into a cubic oligomer (see SI Fig S11) is more stabilizing than

maintaining three tnsp1 in the extended 2-ribbon structure . For peptide aggregates, this may

occur as a result of environmental interactions such as protein concentration [10, 186, 229]

or the presence of lipids [108, 4, 190].

The plane formed by Eqs. 4.4 and 4.5 (shown in Fig. 4.3C) reveals a third phase boundary

between the pure 1-ribbon phase and the mixed 2-ribbon and oligomer phases described

by (4.6), which is simplified to (1/2)ϕnsp2 = −ϕ2s as explained above. The 2-ribbon phase

is found within ϕ∗
e/6 < ϕ0 < ϕ∗

e/4, with the 1-ribbon phase beginning at ϕ0 > ϕ∗
e/3, and

the mixed 4-cycle oligomer phase forming for all ϕ0 < ϕ∗
e/2. This corresponds with our

previous observations on the location of phase boundaries relative to the value of ϕe; while

we have effectively normalized the elongation effects of ϕnsp1 · tnsp1 (the -ϕnsp1 on both sides

of (4.6) can be separated from the Hamiltonian by dividing (4.1) by exp[ϕnsp1tnsp1/kBT ]),

the relationships observed in (4.4) and (4.5) are still present via ϕ2s and ϕnsp2 and their

respective relationships with ϕ∗
e.

The networks with 2-ribbon yields >50% are thus found only within the ranges ϕ∗
e/4 <

(ϕ2s + ϕnsp1) < ϕ∗
e/2, −ϕ∗

e/3 < (ϕnsp2 − 2ϕnsp1) < 0, and ϕ∗
e/6 < ((1/2)ϕnsp2 + ϕ2s) < ϕ∗

e/4.
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This volume in the parameter space forms a thin sliver that follows the 1-ribbon boundary,

and includes cube and 4-cycle structures. “Pure” 2-ribbon networks were not produced

with the given network terms (always coexisting in equilibrium with structured oligomers),

and may require additional terms in the Hamiltonian. Alternately, it may be the case that

pure 2-ribbon equilibria do not arise in nature, as 2-ribbons seen from PDB structures of

amyloid fibrils would have been obtained by removing non-fibrillar material prior to structure

determination.

System Size Effects

Figure 4.6: Sampling along ϕ2s = 5
2
ϕnsp1 + ϕi shows effects of sample size (N) on phase

boundary locations (with vertical adjustments to prevent overlap), with intercepts ϕi at 48,
1, and -47 kcal/mol on Eq. 4.5 for A, B, and C, respectively. The top trajectories for all
three sets are networks with N=150, and the bottom are those with N=750. A) The pure
1-ribbon phase boundaries are the same for both system sizes, shown with arrows pointing
to the boundary networks. B) The 1-ribbon/4-cycle oligomer boundary and the 1-ribbon/2-
ribbon boundary are similar, with 1-ribbon and 2-ribbon networks appearing in the same
locations for both system sizes. C) Mixed 4-cycle oligomer phase and unstructured-aggregate
phase boundaries are the same for both system sizes, shown by arrows pointing to boundary
networks. Points are colored according to the majority target structure (colors match those
in Fig. 4.2)

As shown in Fig. 4.6, there is no significant movement of the phase boundaries after in-
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creasing the system to five times its original size. Moreover, the similarities between target

structure yields indicate that the properties of the networks produced at these points in the

parameter space are intrinsic properties of the model itself. The changes in system size do

have some noticeable effects on the regions of the space between pure phases (i.e., regions

of mixed phase). Notably, smaller networks have more fluctuation in relative proportions of

target structures, with higher proportions of the less represented structures (see SI Fig. S9).

We thus conclude that the pure phase boundaries are well-characterized for systems on the

scale of ≥ 102 monomers.

4.5 Discussion: Calculating the Net Energy of Inter-

actions

The favorability of interaction depends on the number of interactions a free or bound

monomer is already involved in, and the ability of the bound monomer to accommodate

an additional interaction. As shown in Figure 4.7, the calculation of the total energy of a

network system after an addition of an edge is impacted by the properties of the vertices

between which the edge was formed. For the simple examples in Fig. 4.7, we focus on

edge additions between a terminal vertex of a 1-ribbon and a vertex that is either part of a

separate structure, or part of the same structure as the initiating vertex. This distinction is

necessary, as edges that bind two separate structures are fundamentally incapable of forming

cycles. On the other hand, edges that bind two vertices of the same structure inherently in-

hibit further elongation. Additionally, as noted previously, cycle-closure interactions within

an elongated aggregate necessarily require at least one bound monomer to accommodate a

third interaction (illustrated in the bottom row of Fig. 4.7).

This is relevant in discussions of fibrilization of peptides, as some of the most toxic species
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Figure 4.7: Change score calculations depend in part on the prior graph state. The degree of
vertices prior to edge addition is shown in the figure as increasing by row, starting with degree
= 0, with the added edge indicated by a blue arrow pointing towards the vertex whose degree
is being indicated. When an edge is added between a terminal vertex of a 1-ribbon and a
vertex with degree 0 or 1, the resulting structure is a 1-ribbon, with a change in graph energy
equal to

∑
[ϕ2s, ϕnsp1 , ϕnsp2 ]

T [t2s, tnsp1 , tnsp2 ] where the change score ([t2s,tnsp1 ,tnsp2 ]) is either
[1,1,0] or [2,2,0], as indicated below the example structures. When the added vertex increases
the component size, the result is elongation, shown on the left half of the figure. When the
added vertex is part of the same component, the result is cycle closure, shown on the right
half of the figure. Some structures result in an increase in the total graph energy, such as the
structures with degree 1 and 2 closure that form 3-cycles. As such, these structures are rarely
observed in the networks studied here, and receive no classification. Otherwise, orange boxes
indicate 1-ribbon structures, purple indicates unstructured-aggregates, blue indicates 4-cycle
oligomers, and yellow indicates structures that may lead to 2-ribbon (or cubic oligomer)
structures. These examples are far from exhaustive, but illustrate the dependence of fibril
formation on the properties of surrounding monomers and aggregates.
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are thought to be small oligomers, similar to the 4-cycle and “cubic” oligomers studied here.

Formation of 4-cycles and cubic structures requires high energy bonds that can overcome the

loss of entropy that is had by constraining the conformation of the peptides. As shown in

the discussions for Eqs 4.5 and 4.6, cycles form only when elongating tnsp1 topologies are less

favorable than cyclizing tnsp2 topologies, i.e. when interactions with separate structures or

free monomers is unlikely or destructive and the formation of closed cycles allows aggregate

structures to persist.

The value of ϕ∗
e, described as the net edge energy equivalent above, is equal to the magnitude

of the base edge energy adjusted by kBT (1 + logN). This adjustment accounts for the

combined energetic and entropic effects of bond vibration and system size, returning ϕ∗
e

to a value that, relative to other forces in the NHM, more closely resembles the network

parameterization of θe. This is necessary for descriptions of phase boundaries using NHMs,

as time-scale separated dynamics (vibration and diffusion) do impact edge formation, and

must be accounted for.

4.6 Conclusion

NHMs are a scalable and insightful framework for studying protein aggregation, allowing

both exploration of the space of possible multi-body interactions and rationalization of the

resulting equilibria in terms of intermolecular forces. Examination of a simple, four-term

model reveals a very rich structure, with multiple distinct fibrillar phases, a gel-like phase,

and multiple oligomeric phases (including complex, annular oligomers). We find that the

dominant drivers of the phase structure are respectively competition between hindrance of

increasing contact numbers (on the one hand) and favorability of elongation of locally linear

structures (on the other), and the competition between the latter elongation forces and the

favorability of locally closed, loop-like structures. Elongation must dominate hindrance to
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obtain fibrils and complex oligomers, though if the overall favorability of bonding relative to

hindrance becomes too large, the system collapses into a gel phase. 2-ribbon fibrils arise when

elongation and formation of contacts is favored sufficiently for the mean contact number to

grow beyond what a 1-ribbon can sustain, but below that of the gel phase; in addition, loop

closure must be sufficiently favorable to lead to the characteristic “stacked 4-cycle” of the

2-ribbon, but not so strong as to cause the fibril to collapse into oligomers. This complex

balance may explain why we do not see parameters with 100% 2-ribbon yield, though we do

see cases with yields in excess of 50%.

Direct parameterization in terms of net intermolecular forces is a virtue for generality of

insight, but has trade-offs with respect to atomistic detail: we cannot, on the basis of

these models alone, specify which polypeptide sequences and experimental conditions reside

within which part of the parameter space. However, specification of the intermolecular forces

needed to give rise to specific aggregation states provides experimental targets for their

measurement, and also motivates MD studies to predict forces of the type used here from

atomistic models. The picture provided here is thus complementary to other experimental

and theoretical techniques for probing the phenomenon of protein aggregation.
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Chapter 5

Summary

5.1 Contributions

• My analysis of the SARS-CoV-2 Main Protease revealed trends in its evolution that

describe how the viral reproduction process adapts to human hosts, thus allowing

the virus to persist and proliferate despite society’s preventative efforts as well as

lineage truncation that naturally results from host deaths. Protein Structure Networks,

typically used for studying structural properties of the protein itself, here provided

hints about the effects of the host environment on the protein’s adaptation; changes

in structural cohesion give insight into the thermodynamic constraints placed on the

protein by the environment. A closer look at the amino acid substitutions themselves

gives clues about the residue interactions that are necessary for dimerization - and

thus function of the protease - by revealing which residues persist despite hundreds of

opportunities for mutation. The combination of these analyses tells an integral part of

the story of how the reproductive process of SARS-CoV-2 preserves the structure and

function of the Main Protease while adapting to new hosts.
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• I used the framework of Network Hamiltonian Models to scale network simulations of

WT γ-Dc and its W42R variant based on mcMC simulations by Wong, et al,[209] by

two orders of magnitude, from 375 monomers to 10,000, which is unreachable by typical

molecular dynamics simulations using today’s computational resources. In the process,

I was also able to examine the effects of system size on the simulation of aggregates,

and discovered a change in the distribution of aggregate sizes in simulations of larger

systems. While this may not necessarily be an artefact that would be observed in

a physical system, it does highlight a detail that deserves attention when running

computational simulations of disordered aggregates at various system sizes.

• I also used Network Hamiltonian Models to examine the emergent phases of ordered

peptide aggregates by varying the coefficient on network terms in the Hamiltonian,

revealing the sensitivity of aggregate structures to the balance of a minimal set of terms

describing multi-body interactions. The ratios of elongation-inducing and contact-

inhibiting forces are revealed to be directly related to the energy of each additional

edge or contact; this relationship is thus shown to dominate the phase behavior of

fibril formation, with secondary effects observed to result from the interaction between

closure-inducing forces and forces that encourage aggregate growth. In contrast with

the γ-Dc results, ordered aggregation patterns are observed to be consistent regardless

of system size, which highlights a fundamental difference in the aggregation behavior

of ordered versus disordered systems.

5.2 Limitations

• Data for study of the SARS-CoV-2 Main Protease was provided by clinical samples,

which inherently includes limitations due to human reporting error, as well as limi-

tations on the breadth of observable mutations that can occur to the protease. Ad-
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ditionally, the study done here was entirely computational, and would benefit from

corroborating experimental studies. This is, however, unfeasible given the large num-

ber (1,253) variants. This large number also limits the computational power that can

be devoted to simulation of each variant. As such, simulated dynamics trajectories were

limited to 20ps, while simulations on the order of nano-seconds would have provided

more information about the dynamics and structural relationships of the protease that

govern dimerization and active site function.

• Simulations of γ-Dc aggregation in these analyses were inherently limited by the results

of the original mcMC simulations[209], which were reliant upon conformations of γ-

Dc that were sampled from single, and two monomer simulations. Additionally, the

mcMC simulations are limited by system size, and a comparison of results at larger

system sizes is unavailable. Finally, it is infeasible to corroborate the results of either

simulation method with experimental results, as these are naturally very dense system

that are difficult to reproduce, and experimental systems would necessarily involve

much larger system sizes than can be computed.

• The simulation of phases involves computation of a large number of systems that

are unlikely to have physical significance, and thus are difficult to study experimen-

tally. Experimental system also are beholden to environmental effects that are not

representable in the Network Hamiltonian Model framework, such as thermodynamic

variables of volume, temperature, and pressure. Network Hamiltonian Models are also

presently unable to capture interactions with surfaces, or other chemical species in the

system that may affect the aggregate products. Finally, the work here describes funda-

mental phenomena that, while vital to understanding underlying forces that govern the

process of fibril formation, can appear trivial when considering real systems, making

the importance of this work difficult to communicate to experimental researchers.
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5.3 Next Steps

• The process governing formation and dimerization of the SARS-CoV-2 Main Protease

is still largely a mystery, however it is believed that the protease is initially anchored

to the membrane of the endoplasmic reticulum by neighboring sections of the viral

polypeptide as it is transcribed by host rybosomes. Computational simulations of the

protease in hydrophobic media (such as a membrane) could be compared with identical

simulations in water to observe differences in dynamics of the monomer and dimer

structures, giving insight into how the protease is lysed from the viral polypeptide,

and how dimerization might occur.

• The conformational states of WT gD-Crystallin and its W42R variant that are used

in mcMC simulations by Wong, et al,[209] provide a potential connection between the

topological patterns described by network terms and the chemical interactions that

determine the strength of the physical interaction. Further analysis of the relationship

between monomer conformations and their local graph environment could be performed

using classic network analysis methods to more precisely define how the coarsened

aggregate topology is impacted by the fine-grain details of chemistry.

• The fundamental nature of the phases described by network models of multi-body

interactions leaves a wide array of possibilities for future directions. Additional network

terms may be added to the Network Hamiltonian to explore how the added complexity

affects aggregate topology given the known relationships shown in the present work.

Alternatively, descriptions for other topologies, such as crystalline sheets or lattices,

may be defined and searched for using the current model, perhaps with adjustments to

the given coefficients. An experimental study may also be done using a chosen unique

peptide sequence to determine how environmental parameters may be controlled to

empirically reproduce a variety of fibrillar phases found in the current models. The

boundaries are determined by the inputs.
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trigger distinct aggregation pathways. Cell Death Dis, 11(2):1–16, Feb. 2020.

[43] Y. Chebaro, S. Pasquali, and P. Derreumaux. The Coarse-Grained OPEP Force Field
for Non-Amyloid and Amyloid Proteins. J. Phys. Chem. B, 116(30):8741–8752, Aug.
2012.

[44] B. Chen and J. I. Siepmann. A Novel Monte Carlo Algorithm for Simulating Strongly
Associating Fluids: Applications to Water, Hydrogen Fluoride, and Acetic Acid. J.
Phys. Chem. B, 104(36):8725–8734, Sept. 2000.

[45] B. Chen and J. I. Siepmann. Improving the Efficiency of the Aggregation-Volume-Bias
Monte Carlo Algorithm. J. Phys. Chem. B, 105(45):11275–11282, Nov. 2001.

[46] X. Chen, M. Chen, and P. G. Wolynes. Exploring the Interplay between Disordered and
Ordered Oligomer Channels on the Aggregation Energy Landscapes of α-Synuclein. J.
Phys. Chem. B, 126(28):5250–5261, July 2022.

[47] F. Chiti and C. M. Dobson. Protein Misfolding, Amyloid Formation, and Human
Disease: A Summary of Progress Over the Last Decade. annurev-biochem, 86:27–68,
May 2017.

[48] I.-T. Chu, C. J. Stewart, S. L. Speer, and G. J. Pielak. A Difference between In Vitro
and In-Cell Protein Dimer Formation. Biochemistry, 61(6):409–412, Mar. 2022.

[49] J. I. Clark. Self-assembly of protein aggregates in ageing disorders: The lens and
cataract model. Philos. Trans. R. Soc. B Biol. Sci., 368(1617):20120104, May 2013.

93



[50] W. Close, M. Neumann, A. Schmidt, M. Hora, K. Annamalai, M. Schmidt, B. Reif,
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Figure A.1: Kernel density estimates of cohesion scores within each chain, pooled across
variants; vertical lines indicate grand means.
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Figure A.2: Kernel density estimates of cohesion scores over the whole chain, and within
each domain, pooled across variants; vertical lines indicate grand means.
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Figure A.3: Log ratio of torsion between variants over the torsion within variants, for each
angle phi and psi; free monomer values shown in top panel, dimer values shown in bottom
panel. Values were calculated by finding the angles between atoms in the DCD trajectory
frames, in radians, then taking the angular mean and angular variance over each trajectory.
Variance within-chain was then estimated by taking the mean of the trajectory variances
for each variant sequence, and variance between-chains was estimated by taking the angular
variance of the trajectory means for each variant sequence. Higher values indicate greater
between-variant differences in mean angle, net of within-trajectory (dynamic) variation.
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Mean Difference Std.Err t value Pr(>t)
Polar 0.04 0.01 3.19 0.0014

HydropathyKD 0.59 0.06 10.46 0.0000
Charge 0.02 0.01 2.16 0.0309

Aromatic 0.18 0.01 17.49 0.0000
Mass 11.12 0.66 16.76 0.0000

Volume 8.80 0.64 13.85 0.0000
Bulk -0.01 0.00 -4.17 0.0000

Table A.1: Mean differences in amino acid side chain physical properties, for substituted
residues. Substitution favors larger, more massive, and more hydrophobic residues.

Fraction of conserved Fraction of all Fraction of AA type conserved
(#AA/37) (#AA/306) (#AA conserved/#AA total)

Tyr 0.135 0.036 0.455
Phe 0.135 0.056 0.294
His 0.054 0.023 0.286
Cys 0.081 0.039 0.25
Asp 0.108 0.056 0.235
Glu 0.054 0.029 0.222
Gly 0.135 0.085 0.192
Asn 0.081 0.069 0.143
Gln 0.054 0.046 0.143
Leu 0.081 0.095 0.103
Pro 0.027 0.042 0.077
Ser 0.027 0.052 0.063
Ala 0.027 0.056 0.059

Table A.2: Distribution of conserved residues by amino acid type. Non-mutated residues: 2
11 14 16 28 29 39 41 44 54 66 79 115 118 126 133 140 144 145 150 154 172 176 182 183 185
187 192 203 211 268 286 289 290 291 295 299
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Appendix B

Supporting Information for Chapter 3

B.1 Reproducibility Details

B.1.1 Atomistic Simulation

Input aggregate networks were generated by Wong, et al,[209] from atomistic simulations of

equilibrium distributions of WT and W42R γ-Dc using the multi-conformation Monte Carlo

(mcMC) methods described in Prytkova, et al[151].

MD simulations: Conformation libraries for mcMC steps were obtained from explicit

solvent MD simulations under the CHARMM36 forcefield [23] in TIP3P water [98], as de-

tailed in Wong, et al[209].

Parameters of mcMC simulations:

• No. of γ-Dc monomers (for both WT and W42R): N = 375 proteins
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• Temperature: 310K

• Pressure: 200g/K

• periodic boundary conditions

Output of mcMC simulations:

• 14,000 frames WT equilibrium distributions

• 16,000 frames W42R equilibrium distributions

Further details needed for reproducing the original atomistic and mcMC simulation study

can be found in Wong, et al[209].

B.1.2 Network Generation

Aggregation graph definitions by Wong, et al[209]:

• vertex: single protein monomer

• edge: occurs if two monomers have respective domains whose centers of mass are

within 31Å of each other

(This cutoff reflects the distance required for direct contact, as revealed by analysis of

domain-domain radial distribution functions across simulation frames; see Wong et al. [209],

figure S3.)

Network visualization and analysis software:

115



• R statistical computing system, version 4.2.0 [157]

• Libraries: statnet [83], network [29], sna [30], ergm [91], ergm.userterms [89],

parallel [], Rcpp[]

B.1.3 Component/Aggregate Size Distribution Estimation

Component sizes: (computed with the sna library for all networks)

Distributions were estimated using a non-parametric Bayesian procedure:

Algorithm 1 Component size distribution estimation. Comparison with observed (atom-
istic) simulations are shown in Figure 4 of the main text.

1: procedure componentPosterior
2: nets← γ-Dc aggregation networks
3: jeffreys.prior ← 0.5
4: n← network.size(nets)
5: comp.dist.obs← table(component.dist(nets, connected = “weak”)[[“csize”]], n)
6: count← rowSums(comp.dist.obs)
7: posterior.mean = (count+ jeffreys.prior)/sum(count+ jeffreys.prior)
8: posterior.param = count+ jeffreys.prior

L2 norm of the logged relative distribution [84] (our measure of discrepancy between distri-

butions):

Algorithm 2 L2 norm of log relative size distribution for comparison of atomistic and
network simulations.

1: procedure distributionDistances
2: obs.data← γ-Dc aggregation networks
3: sim.data← componentPosterior distributions
4: comp.dist.obs← component.dist(obs.data, connected = ‘‘weak”)
5: sum((log((comp.dist.obs[[“cdist”]] + 0.5)/sum(comp.dist.obs[[“cdist”]] + 0.5)) −

log(sim.data[[“posterior.mean”]]))2)
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B.1.4 Model Selection and Parameter Estimation

Models were fit by maximum likelihood estimation (MLE), using the pooling method of Yin

and Butts [218]; estimation was performed using the ergm package [91], version 4.1.2, using

the stochastic approximation method with respective base burn-in and thinning intervals of

5× 104 and 2× 104. The packages sna (version 2.6) and ergm.components (version 0.1) are

also required.

Algorithm 3 Pooled ERGM MLE model fit. Resulting parameter coefficients are used in
Algorithm 4 to assess aggregate size distributions of the estimated model.

1: procedure fitERGM
2: nets← γ-Dc aggregation networks
3: control← control.ergm(main method = ”Stochastic Approximation”,MCMC.burnin =

5 ∗ 104,MCMC.interval = 2 ∗ 104, loglik = control.logLik.ergm(MCMC.burnin =
375,MCMC.interval = 375))

4: if gwesp(α) then
5: expand.grid(n) for grid search on α

6: f ← nets ∼ edges+ isolates+ dimers+ compsizesum+ nsp(1)+ gwesp(α)+ esp(1)+
esp(2)

7: fit← ergmMSFit(formula = f, control = control)

Refer to Yin and Butts[218] for detailed description of the pooled MLE method being imple-

mented in the function ergmMSFit. Selection of the GWESP decay parameter was performed

by grid search. Change statistics for the dimer count and summed component size terms

were implemented via the ergm.userterms library [89].

B.1.5 Extrapolative Simulation

Extrapolative simulation was performed by MCMC using the ergm library, using the default

Tie-No-Tie sampler.

Systematic pilot simulations using the final fitted models (not shown) indicated that, for

graphs of order N , burn-in and thinning parameters of 250N provided good convergence
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Algorithm 4 Component size distribution simulation. Coefficients for the best fit for each
model are given in Table 1 of the main text.

1: procedure componentSimulation
2: terms← ERGM parameters
3: coef ← coef(fit)
4: basenet← observedγ-Dc aggregation nets
5: burnin← 3752

6: thin← 3752

7: control← control.simulate.formula(burnin, thin)
8: g ← simulate(basenet ∼ terms, coef, control)
9: draws← 5000
10: comp.dist.sim← componentSimulation(terms, coef, basenet, draws, burnin, thin)
11: i← 2
12: ncp← 5
13: while i =< ncp do
14: g ← simulate(g[[length(g)]] ∼ terms, coef, control)
15: sim← g
16: i← i+ 1

17: sim← componentPosterior(sim, jeffreys.prior)
18: return sim

Algorithm 5 Component size distribution comparison by L2 norm. Results are displayed
in Figure 4 of main text.

1: procedure componentCompare
2: opar ← comp.dist.obs[[“posterior.param”]]
3: spar ← comp.dist.sim[[“posterior.param”]]
4: metric← “logL2”
5: tolerance← 1 ∗ 10−5

6: tot.est← 0
7: for i to length(opar) do
8: reps = 64
9: dv ← MonteCarloQuadratureFunction(opar[[i]], spar[[i]], reps,metric)
10: mean.est← dv[1]/reps
11: mean.square.est← dv[2]/reps
12: sd.est← ((mean.square.est−mean.est2)/reps)1/2

13: while (reps< 1 ∗ 106) && (abs(sd.est/mean.est) > tolerance) do
14: dv ← MonteCarloQuadratureFunction(opar[[i]], spar[[i]], reps)
15: mean.est← (mean.est+ dv[1]/reps)/2
16: mean.square.est← (mean.square.est+ dv[2]/reps)/2
17: sd.est← ((mean.square.est−mean.est2)/reps)1/2

18: tot.est← tot.est+mean.est

19: return tot.est

118



Algorithm 6 Extrapolative simulations for large system sizes. Results are displayed in
Figure 5 of main text.

1: procedure extrapolativeSim
2: mod← ERGM base model
3: draws← 1000
4: n← 375
5: temp← 310
6: conc← 200
7: target← list(“compdist”, “graphs”, “stats”)
8: co← coef(mod)
9: co[−1]← co[−1] ∗ 310/temp
10: co[1]← 310/temp ∗ (co[1] + 1 + log(375))− 1− log(n) + log(conc/200)
11: kB ← 1.987204259 ∗ 10−3

12: phi← (−kB ∗ 310) ∗ co
13: phi[1]← (−kB ∗ 310) ∗ (co[1] + 1 + log(375))
14: net ← network(rgraph(n, tp = (mod[[“target.stats”][1] ∗ 2/375)/(n − 1),mode =

“graph”), directed = FALSE)
15: sim← simulate(“net ∼ mod”, co, draws, control)
16: return sim

and mixing properties over a wide size range (with mixing improving with size). Component

size distributions and other metrics for the extrapolated network simulations were computed

as described for the other simulations.
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Appendix C

Supporting Information for Chapter 4

C.1 Fibril Classification

Classification of 1-ribbons, 2-ribbons, and 4-cycle oligomers was performed using the ergm.graphlets

package along with rule-based methods in R [217]. The graphlet orbits determine the num-

ber of vertices adjacent to a given vertex belonging to specific local automorphism orbits,

allowing that focal vertex to be classified by the structure of its surrounding vertices. For

the structures encountered in the simulations for this paper, the following classification rules

were employed. For each simulation frame, each vertex was classified into aggregation type

as follows:

1-ribbons: the focal vertex ((is adjacent to one other vertex AND belongs to an open

2-path) OR (is adjacent to two other vertices AND is the center vertex of an open

2-path)) AND (belongs to a component containing at least 4 serially adjacent vertices

satisfying the former criteria).

2-ribbons: the focal vertex ((is adjacent to two other vertices AND is the center of an open
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2-path AND belongs to a chordless 4-cycle) OR (is adjacent to three other vertices

AND is the center of one open 3-star AND belongs to two chordless 4-cycles)) AND

(belongs to a component containing at least six vertices satisfying the former criterion)

4-cycles: the focal vertex belongs to a component of order 4 AND the focal vertex belongs

to a chordless 4-cycle.

dimers: the focal vertex belongs to a component of order 2.

cubic oligomers: the focal vertex belongs to a component of order 8 in which (all vertices

are automorphically equivalent AND all vertices have degree 3 AND the component

contains no odd-length cycles AND all vertices belong to three 4-cycles AND all vertices

belong to twelve 6-cycles).

unstructured aggregates (“gel”): the focal vertex belongs to a component containing at

least 50% of the vertices in the network such that at least 90% of vertices within the

component fail to meet any of the above classification criteria.

Yield for a given type is calculated from the fraction of vertices classified into the corre-

sponding category. As described in the main text, much of the parameter space reliably

produces phases that are dominated by a particular species; some regions (see e.g. Figure

5) produce mixed phases in which multiple aggregation states coexist. (See Figure S8 for

additional examples.) We note that these classes do not exhaust the set of all aggregation

states known to arise from NHMs, but were found to effectively summarize the set of states

observed for the specific class of interactions studied here.
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Table C.1: Edge-Dependent Phase Boundary Intercepts on Equation 3 (ϕ2s + ϕnsp1 = ϕ0)

Phase Boundary Intercept Edge Values Rel. Val.
ERGM notation θe = 75 100 125
NHM notation ϕe (kcal/mol) = -50 -66 -81
net edge energy equiv. ϕ∗

e (kcal/mol) = 47 62 78

Unstructured Aggregate θ0 = 19 26 32
ϕ0 = 12 16 20

= 0.25ϕ∗
e 0.26ϕ∗

e 0.26ϕ∗
e ≈ ϕ∗

e/4

Pure 1-ribbon (lower) θ0 = 22 28 40
ϕ0 = 14 17 25

= 0.30ϕ∗
e 0.28ϕ∗

e 0.32ϕ∗
e ≈ ϕ∗

e/3

Pure 1-ribbon (upper) θ0 = 36 50 62
ϕ0 = 23 31 38

= 0.49ϕ∗
e 0.50ϕ∗

e 0.49ϕ∗
e ≈ ϕ∗

e/2

Pure Dimer θ0 = 70 96 122
ϕ0 = 44 60 76

= 0.94ϕ∗
e 0.96ϕ∗

e 0.98ϕ∗
e ≈ ϕ∗

e

Conversion between ERGM notation (θ) and NHM notation (ϕ) for an arbitrary term s can

be performed as follows:

ϕs =


−kBT (θs + 1 + logN) s = e

−kBTθs s ̸= e

θs =


−ϕs/(kBT )− 1− logN s = e

−ϕs/(kBT ) s ̸= e

where T is the system temperature, N is the number of monomers, kB is Boltzmann’s

constant, and e refers to the edge term. The additional offsets to the edge parameters

reflect the effect of bond vibrations and entropic corrections for motional degrees of freedom,

per [78]. (Note that this specification is in terms of the counting measure, with entropic

corrections expressed as an offset to the edge parameter rather than as a separate h(g)
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function. The two expressions are equivalent, with the form given here appropriate for use

with e.g. statnet software [91].)

Figure C.1: Reproduction of Figure 2, showing boundaries of each phase marked by a dotted
red line, with the corresponding unique intercept of each boundary shown in the legend and
indicated by an arrow to the respective boundary. Intercepts should be interpreted as being
added to the right-hand side of the respective equation indicated on each plot. I.e. plot
(A) shows locations of boundaries with unique intercepts (denoted ϕ0) on the equation
ϕ2s = −ϕnsp1 + ϕ0, plot (B) shows boundaries with unique intercepts on ϕnsp2 = 2ϕnsp1 + ϕ0,
and plot (C) shows boundaries with unique intercepts on ϕnsp2/2−ϕnsp1 = −ϕ2s−ϕnsp1 +ϕ0.
As illustrated by these plots, the value of ϕ0 for a given boundary is found to be equivalent
to a simple fraction of ϕ∗

e, the net edge equivalent energy, which is an adjustment to the
base ϕe value that is independent of spatial constraints and bond vibration energies, since
those energy contributions have no effect on changes to structural calculations resulting from
individual edge addition. As such, each ϕ0 relates the location of the boundary in the given
parameter space to the change in topology of the allowable structures that may be formed
by the addition of an edge.
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Figure C.2: Plots A-F show the composition of networks simulated from the sample trajec-
tories depicted in Figure 4. In the first row, plots A-C correspond to networks simulated
with 150 vertices, with plot A showing the trajectory going through the pure 1-ribbon phase
boundaries, plot B showing the mixed 2-ribbon phase boundaries, and plot C showing the
mixed 4-cycle and cubic oligomer phase boundaries. The second row, plots D-E, show the
compositions of networks simulated with 750 vertices following the same sampling trajecto-
ries as the plots of the top row. Phase boundaries are observed to remain at fixed values of
the parameter space, despite a five-fold increase in the system size of the simulated networks.
Additionally, plots B and E highlight the stability of compositions of mixed phase in the
parameter space, indicating that the phases of fibril and oligomer formation are intrinsically
related to descriptions of topological interactions, and are independent of system size.
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Figure C.3: Panels A-D show counts of tnsp1 , t2s, and tnsp2 network topologies with red,
yellow, and blue/teal dashed lines, respectively. Panel A depicts a minimal 1-ribbon fibril
structure with 2 t2s (yellow) and 2 tnsp1 (red). Panel B shows the count of 3 t2s and 3
tnsp1 that result from adding a third edge to any vertex that already has exactly two edges,
such as occurs at the ϕ2s = −ϕnsp1 + ϕ∗

e/3 boundary. Panel C shows the count of 6 t2s
and 6 tnsp1 that results from the addition of a fourth edge to a vertex, such as at the
ϕnsp2/2 − ϕnsp1 = −ϕ2s − ϕnsp1 + ϕ∗

e/6 boundary where 2-ribbon fibrils share a boundary
with the unstructured-aggregate (gel) phase. This highlights the geometrically increasing
effect of adding an edge to a single vertex. Panel D shows the count of t2s found in a 4-cycle
oligomer, while panel E shows the count of 2 tnsp2 in the same 4-cycle oligomer, with the
null edge indicated by the blue and teal dashed lines, and the letters ’a’ and ’b’ indicating
the two mutual partners being shared by each respective null edge. tnsp1 do not occur in
4-cycles due to the non-nesting nature of the ”shared partner” network terms. Comparison
of panels A, and E illustrates the relationship between tnsp1 and tnsp2 that determines the
ϕnsp2 = 2ϕnsp1 + ϕ∗

e/4 boundary between the 1-ribbon fibril phase and the 4-cycle oligomer
phase. The addition of the fourth edge that forms the 4-cycle removes the 2 tnsp1 found in
the minimal 1-ribbon (panel A) by adding 2 tnsp2 , meaning the decrease in energy got by
having 2 tnsp2 is large enough to compensate for losing 2 tnsp1 , and exceeds that value by
an amount equivalent to adding one te, thus losing the 1-ribbon structure while forming the
4-cycle.
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Figure C.4: Individual vertices experience sets of forces acting on them that differ according
to structure. Panels A and B show the forces acting on a vertex within a 2-ribbon fibril,
indicated with a dark gray shading. Panel A shows the ϕ2s forces in yellow, and the ϕnsp1

forces in red. While the counts of t2s and tnsp1 are equivalent, the sets of edge and vertices
involved in either structure type are different. Panel B shows the ϕnsp2 forces in blue and
teal, with blue representing the nsp(2) structures in which the focal vertex is part of the
null dyad, and teal representing the null dyads to which the focal vertex acts as a shared
partner. The focal vertex is thus involved in a total of four nsp(2), three nsp(1), and three
2-star structures. Panel C shows a focal vertex that is part of a cubic oligomer, with ϕnsp2

forces illustrated in blue and teal as in panel B. In the case of the cube, the focal vertex is
involved in six total nsp(2) structures and three 2-star structures, but cannot be described
as being part of any nsp(1) structures. Thus, cubes occur at small negative values of ϕnsp1

and large negative values of ϕnsp2 , as described by the boundary ϕnsp2 = 2ϕnsp1 − ϕ∗
e/3.
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