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Mathematical models of biochemical systems provide a means to elucidate the link

between the genotype, environment, and phenotype. A subclass of mathematical

models, known as mechanistic models, quantitatively describe the complex non-linear

mechanisms that capture the intricate interactions between biochemical components.

However, the study of mechanistic models is challenging because most are analytically

intractable and involve large numbers of system parameters. Conventional methods to

analyze them rely on local analyses about a nominal parameter set and they do not reveal

the vast majority of potential phenotypes possible for a given system design. We have

recently developed a new modeling approach that does not require estimated values

for the parameters initially and inverts the typical steps of the conventional modeling

strategy. Instead, this approach relies on architectural features of the model to identify

the phenotypic repertoire and then predict values for the parameters that yield specific

instances of the system that realize desired phenotypic characteristics. Here, we present

a collection of software tools, the Design Space Toolbox V2 based on the System Design

Space method, that automates (1) enumeration of the repertoire of model phenotypes,

(2) prediction of values for the parameters for any model phenotype, and (3) analysis of

model phenotypes through analytical and numerical methods. The result is an enabling

technology that facilitates this radically new, phenotype-centric, modeling approach. We

illustrate the power of these new tools by applying them to a synthetic gene circuit that

can exhibit multi-stability. We then predict values for the system parameters such that the

design exhibits 2, 3, and 4 stable steady states. In one example, inspection of the basins

of attraction reveals that the circuit can count between three stable states by transient

stimulation through one of two input channels: a positive channel that increases the

count, and a negative channel that decreases the count. This example shows the power

of these new automated methods to rapidly identify behaviors of interest and efficiently

predict parameter values for their realization. These tools may be applied to understand

complex natural circuitry and to aid in the rational design of synthetic circuits.
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INTRODUCTION

One of the current challenges in biology is to understand
the mapping between a particular genotype and a particular
phenotype in the context of a specific environment. The
overarching goal, with important consequences to science,
biotechnology, and medicine, is to predict the phenotypes
that arise from changes in the genotype, the environment

or both. However, phenotypes emerge from complex systems

of biochemical components that are inherently non-linear,

with intricate interactions that cannot be understood through
intuition. Thus, it is no surprise that the “genotype-to-

phenotype” problem is commonly regarded as one of the grand
challenges in modern biology (Brenner, 2000).

A prominent approach to address this difficult challenge is

to formulate mathematical models and analyze them to gain

detailed insight into the design principles underlying biochemical
mechanisms (Savageau, 2009). However, most mathematical
models of biological mechanisms are analytically intractable and

therefore their study tends to be uniquely tailored and limited in
scope.

The conventional strategy for the analysis of mathematical

models of non-linear phenomena typically begins with a

combination of experimentally measured values for a subset of
system parameters and mathematically estimated values for the
(often many) remaining parameters (e.g., Sun et al., 2012). The
result is an established set of parameter values that serves as
the focus for analyses that provide local information regarding
system behavior. Thus, this conventional strategy might be
termed a parameter-centric approach. When the number of
parameters is small and the data is rich, this approach can
be very successful. However, it is most often the case that
the available experimental data is limited and the number of
system parameters is large. Consequently, this approach has
severe limitations when attempting to discover the repertoire of
potential phenotypes latent in a particular system design.

We have recently developed a radically new modeling strategy
that—unlike the parameter-centric approach—does not depend
on specific values for the parameters (Lomnitz and Savageau,
2015). This new, phenotype-centric, approach builds on and
extends the System Design Space method (Savageau et al.,
2009; Fasani and Savageau, 2010; Lomnitz and Savageau, 2013)
by (1) enumerating the repertoire of model phenotypes latent
in a particular system design, (2) identifying phenotypes that
exhibit characteristics of interest, and (3) predicting parameter
values for the realization of a specific instance of the system
exhibiting the characteristics of interest (Lomnitz and Savageau,
2015).

Here, we present a collection of software tools, the Design
Space Toolbox V2, that automates the most difficult steps of this
strategy. These software tools build on a previous iteration, the
Design Space Toolbox for Matlab R©, that formalized automatic
construction of the design space for biochemical systems
(Fasani and Savageau, 2010). The new tools we present here
automate the deconstruction of amodel into qualitatively distinct
phenotypes—thereby automatically enumerating the phenotypic
repertoire of the system (Lomnitz and Savageau, 2015). These

tools improve upon the previous iteration by addressing key
bottlenecks and expanding upon its capabilities through new
technologies that enable analyses not previously possible.

The most important contributions from these new tools
include (1) a complete redesign for improved resource
management and parallelization of the algorithms for concurrent
analysis of model phenotypes; (2) automation of the analysis of
local stability through an expansion of the analytical capabilities
of the tools; (3) automation of the prediction of parameter
values for phenotypes of the system, and (4) automating the
co-localization of cases to determine the simultaneous realization
and visualization of ensembles of model phenotypes (Lomnitz
and Savageau, 2015).

We illustrate the capabilities of these new tools and the
thought process guiding the newmodeling approach by means of
an example. Although we use a model with specified mechanisms
for illustrative purposes, in practice one will undoubtedly have
only partial information about the underlying mechanisms
and one must fill in the missing information by making
hypotheses that need to be tested. In our method one need
only postulate the architectural information: the topology, signs,
and stoichiometry of the interactions. As we have discussed
elsewhere (Lomnitz and Savageau, 2015), these are the features
of a model that are most readily obtained by experiment
or by means of sampling a small number of integers. The
more difficult values to determine are rate constants and
binding constants, which our method handles automatically
in the process of testing the hypotheses. Our method allows
for the efficient testing of alternative models by automatic
enumeration of the phenotypic repertoire and prediction of
model parameters without numerical estimation or sampling
of a high-dimensional parameter space. In a recent application
we tested 40 different models (hypotheses) and found only five
that were consistent with the experimental data (Lomnitz and
Savageau, in review).

Following the detailed illustration of the methods, we
apply them to a mechanistic model for a new synthetic gene
circuit, proposed here, that can exhibit multi-stability involving
up to four steady states. Furthermore, we show that this
circuit can alternate between three distinct states in a step-
wise fashion through the transient stimulation in one of two
input channels—a positive channel that results in forward
transitions through the three states and a negative channel that
results in reverse transitions through the three states. In this
way, we describe a genetic counter that can count between
three states that—unlike other genetic counters that can count
transiently (e.g., see Friedland et al., 2009)—can retain its count
indefinitely.

This example shows the power of these new automated
tools to provide insight into the underlying design principles
of a system involving complex non-linear interactions that are
ubiquitous in biology. We also have shown that these tools are
useful for designing novel synthetic gene circuits that may be
important for a variety of applications from biotechnology (e.g.,
Martin et al., 2003) to medicine (e.g., Ro et al., 2006), and
for gaining insights into more complex natural circuitry (e.g.,
Benner and Sismour, 2005; Stricker et al., 2008; Mukherji and
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van Oudenaarden, 2009; Tigges et al., 2009; Kim and Forger,
2012).

BACKGROUND

In this section, we review key concepts and definitions from
the System Design Space methodology (Savageau et al., 2009)
that deconstructs systems based on differences in phenotypes
(Lomnitz and Savageau, 2014). As a vehicle to facilitate
presentation of the basic concepts, we apply the System Design
Space method to a simple example involving a single gene
regulator that is autogenously controlled via a positive feedback
loop that exhibits the potential for bistability. In a later section,
we build on this simple example to show how our automated
tools can be applied to a more complex circuit.

We analyze the system by (1) formulating amechanisticmodel
of a simple biochemical system; (2) recasting the model into the
generic Generalized Mass Action (GMA) form; (3) constructing
the design space for the recast GMA-System; (4) enumerating
the phenotypic repertoire of the model; and (5) analyzing model
phenotypes to identify their phenotypic characteristics.

Formulating a Mechanistic Model of a
Biochemical System
Mathematical modeling of biochemical phenomena usually
begins with the synthesis of available knowledge from the
literature and experimental data that together provide a
foundation for generating a particular hypothesis. The hypothesis
is usually represented by a conceptual model that contains
qualitative information regarding the key components and their
interactions, typically visualized using some sort of diagram. An
example of a conceptual model for a simple gene regulatory
circuit is represented in Figure 1.

Once the qualitative aspects of a system and its interactions
have been realized in a conceptual model, we formulate
mathematical models by hypothesizing specific biochemical
mechanisms involving the elementary rate laws of chemical
kinetics and the rational function rate laws of biochemical
kinetics (Lomnitz and Savageau, 2013). The result is a system of
non-linear differential equations that is analytically intractable in
all but the simplest cases (Lomnitz and Savageau, 2014).

In general, the exponents in the power laws that characterize
classical chemical kinetics are small integer values, as are the
exponents in the rational functions that characterize classical
biochemical kinetics. In the case of an enzymatic reaction, the
largest exponent in the rate law is equal to the number of
reactant binding sites on the enzyme (Wyman, 1964), and this
is typically equal to the number of subunits in a multimeric
protein (Monod et al., 1965). In the case of a regulator that
is a multimeric DNA binding protein, the largest exponent
is equal to the number of subunits in the regulator molecule
multiplied by the number of specific sites on the DNA to
which it binds. Experimental evidence indicates that regulators
function as multimeric, typically dimeric, molecules that bind a
single recognition site, or possibly a small number of such sites
cooperatively, for each transcriptional unit controlled (Mandal

FIGURE 1 | Conceptual model for the design of a gene regulatory

circuit exhibiting positive autogenous regulation. (A) A cartoon of the

proposed design showing an autogenously activated gene regulator in green.

The regulator is fused with a dimerization domain shown in purple.

Homodimerization leads to the active form of the regulator. A repressor,

represented by the red capsule, sterically hinders activator binding. (B) Binding

to a second protein with a complementary dimerization domain leads to a

heterodimer that is degraded by cellular proteases or other machinery. (C)

Abstract representation of the gene circuit design. The activator X1, which

corresponds to the green protein in the cartoon, autogenously activates its

own expression. The bimolecular reaction of X1 and X2 leads to the

heterodimer, which corresponds to the blue-green protein in the cartoon, that

is then degraded. The repressor X3, which corresponds to the red protein in

the cartoon, blocks binding of the activtor to its DNA control region.

et al., 1990; Kim and Little, 1992). If the mechanisms in the
model are known, then the exponents will be known; if one has
to hypothesize a mechanism, then one has only to sample a small
number of fixed integer values for the exponents to characterize
the model.

The aspects of a mathematical model that remain fixed for
a particular mechanism—independent of the specific values for
the parameters that characterize a particular instantiation—are
defined as its architectural features (Lomnitz and Savageau, 2015).
These features include (a) the network topology of interactions,
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(b) the signs of the interactions, and (c) the number of binding
sites involved in the interactions that in turn manifests itself in
the exponents found in the power laws of chemical kinetics and
in the rational functions of biochemical kinetics, which, as noted
above, are fixed integers for a particular mechanism.

A mathematical model for the conceptual system shown in
Figure 1 is represented by the following ordinary differential
equation (ODE),

dX1

dt
= α1







1+ ρ1

(

X1
K1

)2
+ X3

K3

1+
(

X1
K1

)2
+ X3

K3






− β1X1 − kX1X2 (1)

where X1 represents the dependent activator protein; X2

represents a protein with a complimentary heterodimerization
domain, X3 represents the repressor protein, and their values are
treated as independent variables; α1 represents the basal level of
expression for the synthesis of X1; β1 represents the first-order
rate constant for the loss of X1 by dilution due to exponential
growth; ρ1 represents the capacity for activation of X1 synthesis;
K1 represents the concentration of X1 for the half-maximal rate
of synthesis; K3 represents the concentration of X3 that results in
half-maximal repression; and k represents the rate constant for
X1–X2 heterodimer formation.

This model makes conventional assumptions found in
the literature regarding the mechanisms for the control of
transcription, and for the translation and loss of stable proteins by
dilution due to exponential growth. However, if the mechanisms
were unknown, one could postulate alternative mechanisms, as
outlined in the Introduction, and test the hypothesized models
against experimental data.

Recasting Equations into a Generic Form
The System Design Space method provides a novel approach
to deconstruct mathematical models of biochemical systems
(Savageau et al., 2009). At its core, this approach utilizes
an innovative definition for model phenotypes that is based
on dominant processes that produce sub-systems exhibiting
qualitatively-distinct behavior (Savageau et al., 2009).

In order to apply the System Design Space method, the system
must first be recast into the canonical GMA form involving
a system of differential equations plus algebraic constraints
expressed mathematically as,

dX1
dt

=
P1
∑

k= 1

α1k

n+m
∏

j= 1
X
g1jk
j −

Q1
∑

k= 1

β1k

n+m
∏

j= 1
X
h1jk
j

...

dXnt
dt

=

Pnt
∑

k= 1

αntk

n+m
∏

j= 1
X
gnt jk
j −

Qnt
∑

k= 1

βntk

n+m
∏

j= 1
X
hnt jk
j

(2)

0 =

Pnt+1
∑

k= 1

α(nt+1)k

n+m
∏

j= 1
X
g(nt+1)jk

j −

Qnt + 1
∑

k= 1

β(nt+1)k

n+m
∏

j= 1
X
h(nt+1)jk

j

...

0 =
Pn
∑

k= 1

αnk

n+m
∏

j= 1
X
gnjk
j −

Qn
∑

k= 1

βnk

n+m
∏

j= 1
X
hnjk
j

(3)

where nt represents the number of dynamic variables; nc
represents the number of auxiliary variables; n = nt + nc
represents the number of dependent variables; m represents the
number of independent variables; αik represents the rate constant
for the k-th positive term of the i-th equation; β ik represents the
rate constant for the k-th negative term of the i-th equation; Pi
and Qi represent the number of positive and negative terms for
the i-th equation, respectively; gijk and hijk represents the kinetic
order for the influence of the j-th variable on the k-th positive
and negative term of the i-th equation, respectively; Xj represent
the j-th variable such that the first nt variables are the dynamic
variables, the second nc are the auxiliary variables and the last m
variables are the independent variables.

Mechanistic models of biochemical phenomena can be recast
exactly into this form by following a well-defined series of steps
(Savageau and Voit, 1987). Furthermore, for most biochemical
systems the recasting process is straight-forward and involves
five simple steps: (1) expanding terms in the numerator by
multiplying through by common factors; (2) defining auxiliary
variables for each denominator that has multiple terms; (3)
rearranging terms in the equation for the auxiliary variables so
that the left-hand side is equal to 0; (4) substituting the auxiliary
variables for the corresponding denominators; and (5) defining
a new system of differential-algebraic equations involving the
modified differential equations and the algebraic equations for
the auxiliary variables.

We illustrate the process by recasting into the GMA form
Equation (1), which involves a typical rational function from
biochemical kinetics.
Step 1. Expand the numerator of the equation for X1 by
multiplying through by the α parameter.

dX1

dt
=

α1 + α1ρ1

(

X1
K1

)2
+ α1

X3
K3

1+
(

X1
K1

)2
+ X3

K3

− β1X1 − kX1X2 (4)

Step 2. Define an auxiliary variable, X100, equal to the expression
in the denominator.

X100 = 1+

(

X1

K1

)2

+
X3

K3
(5)

Step 3. Rearrange terms in the new equation so that the left-hand
side of the equation is equal to 0.

0 = 1+

(

X1

K1

)2

+
X3

K3
− X100 (6)

Step 4. Substitute the auxiliary variable for the denominator of
the equation from Step 1.

dX1

dt
= α1X

−1
100 + α1ρ1X

2
1K

−2
1 X−1

100 + α1X3K
−1
3 X−1

100

−β1X1 − kX1X2 (7)
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Step 5.Define a new system by including the algebraic constraint
from Step 3.

dX1

dt
= α1X

−1
100 + α1ρ1X

2
1K

−2
1 X−1

100 + α1X3K
−1
3 X−1

100

−β1X1 − kX1X2 (8)

0 = 1+ X2
1K

−2
1 + X3K

−1
3 − X100 (9)

The result is a differential-algebraic system in a generic form
consisting of linear combinations of non-linear terms having a
very specific structure (products of power laws) that is capable of
representing a broad range of non-linear systems (Lomnitz and
Savageau, 2013). It should be noted that from a mathematical
perspective both independent variables and system parameters
are treated equally within the context of the System Design Space
method (Fasani and Savageau, 2010); thus, in this article we use
the terms independent variables and parameters interchangeably
to refer to their combined set.

Mathematical Definition of
Qualitatively-Distinct Phenotypes
The system of equations in the GMA form can be analyzed
by using the novel System Design Space method. This method
deconstructs complex non-linear systems into a finite number of
qualitatively-distinct, non-linear, sub-systems (S-Systems). The
qualitatively-distinct phenotypes are mathematically defined in
terms of these sub-system equations (Savageau et al., 2009;
Lomnitz and Savageau, 2013) and their system behavior is
tractable for a variety of system properties (Savageau, 2009; Voit,
2013).

Grouping of Terms
The mathematical definition of qualitatively-distinct phenotype
originates from the structure of the GMA-system. Inspection of
this generalized form, shown in Equations (2) and (3), reveals
a regular structure: for any i-th equation, the right-hand side is
a sum of Pi positive terms and Qi negative terms. Therefore, a
system will have a system signature that involves a listing of the
number of positive and negative terms, i.e., (P1Q1P2Q2 . . .PnQn)
(Savageau et al., 2009; Fasani and Savageau, 2010; Lomnitz and
Savageau, 2015).

Dominant Terms
At any given point in the combined variable and parameter
space of the system, where each variable and parameter has a
specific value, the magnitude of the terms in each equation can
be quantified and the terms with a given sign can be ranked
based on their relative magnitude. A dominant term is defined
as the largest term of a given sign for an equation of the GMA-
system; and the dominant terms with positive and negative signs
are the dominant positive term and the dominant negative term,
respectively (Savageau et al., 2009).

The dominant terms can be uniquely identified based on
the index in their corresponding summations. The combination
of indices for dominant terms for all the equations yields
a unique case signature that involves a listing of indices of
dominant positive and dominant negative terms in order, i.e.,

[p1q1p2q2 . . .pnqn] (Savageau et al., 2009; Fasani and Savageau,
2010; Lomnitz and Savageau, 2015), where pi and qi are the
indices of the dominant positive term and dominant negative
term of the i-th equation, respectively. Note that the system
signature (surrounded by parentheses) is differentiated from the
case signatures (surrounded by square brackets).

Dominant S-Systems
Any point in the variable plus parameter space has a
corresponding combination of dominant terms. Because the
possible combinations of dominant terms are finite, with the
maximum determined by

∏n
i PiQi, this partitions the space into

a set of discrete “chunks” that are identifiable by their unique
case signature (Savageau et al., 2009; Fasani and Savageau, 2010;
Lomnitz and Savageau, 2013). Each discrete chunk has a unique
combination of dominant terms and, by retaining only the
dominant terms and neglecting the non-dominant terms, we can
define a dominant sub-system that is characteristic of a particular
“chunk.”

The dominant sub-systems, defined by retaining only the
dominant terms, have a very special structure. These equations
are S-Systems that have a single positive term and a single negative
term that are products of power laws given by the following
equations,

dX1
dt

= α1p1

n+m
∏

j= 1
X
g1jp1
j − β1q1

n+m
∏

j= 1
X
h1jq1
j

...

dXnt
dt

= α1pnt

n+m
∏

j= 1
X
g1jpnt
j − β1qnt

n+m
∏

j= 1
X
h1jqnt
j

(10)

0 = α1p(nt+1)

n+m
∏

j= 1
X
g1jp(nt+1)
j − β1q(nt+1)

n+m
∏

j= 1
X
h1jq

(nt+1)
j

...

0 = α1pn

n+m
∏

j= 1
X
g1jpn
j − β1qn

n+m
∏

j= 1
X
h1jqn
j

(11)

The steady-state equations for S-Systems are non-linear but
tractable because they become linear when transformed into
logarithmic coordinates (Savageau, 2009; Voit, 2013).

Dominance Conditions
If we had to sample the full (n + m)-dimensional space of
a system—where n is the number of dependent variables plus
auxiliary variables andm is the number of independent variables
plus parameters—to identify the regions associated with each
qualitatively-distinct phenotype, the usefulness of this approach
would be limited. However, the fact that each term is a product
of power laws makes possible more extensive analysis of the
conditions that partition the continuous variable and parameter
space into discrete regions that define the design space of a
system.

Dominance can be expressed mathematically through a series
of inequalities. The inequalities for the dominant terms of the i-th
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equation are given by,

αipi

n+m
∏

j= 1

X
gijpi
j > αik

n+m
∏

j= 1

X
gijk
j ∀k =

{

1, 2, 3, . . . , Pi|k 6= pi
}

(12)

βiqi

n+m
∏

j= 1

X
hijqi
j > βik

n+m
∏

j= 1

X
hijk
j ∀k =

{

1, 2, 3, . . . , Pi|k 6= qi
}

(13)

which can be transformed to yield a series of linear inequalities in
the logarithm of the variables,

logαipi +

n+m
∑

j= 1

gijpi logXj > logαik +

n+m
∑

j= 1

gijk logXj

∀k =
{

1, 2, 3, . . . , Pi|k 6= pi
}

(14)

logβiqi +

n+m
∑

j= 1

hijqi logXj > logβik +

n+m
∑

j= 1

hijk logXj

∀k =
{

1, 2, 3, . . . , Pi|k 6= qi
}

(15)

Because these inequalities are linear, they have the following
characteristics: (1) each condition defines a half-space of the (n+
m)-dimensional space (i.e., half the (n + m)-dimensional space);
and (2) the intersection of all the half-spaces yields either (a) an
(n + m)-dimensional dominance polytope (i.e., there is a feasible
region for the phenotype in the state plus parameter space) or (b)
a null region (i.e., there is no feasible region for the phenotype
anywhere in the combined state plus parameter space). The
validity of the dominance polytope can be determined very
efficiently and is typically the first phase of a linear programming
problem (Vanderbei, 1996).

Boundary Conditions
The steady-state solution of a dominant S-System is linear
in logarithmic coordinates (Savageau, 2009). The boundary
conditions for validity of the corresponding phenotype are
obtained by substituting the linear solution for the steady
state into the linear dominance conditions, to yield boundaries
for the dominant sub-system that are linear in logarithmic
space (Savageau et al., 2009; Fasani and Savageau, 2010). Each
boundary condition defines an m-dimensional half-space and
the intersection of these half-spaces yields an m-dimensional
phenotypic polytope.

From a geometric perspective, the steady-state solution
defines anm-dimensional solution hyperplane that “cuts” through
the (n + m)-dimensional dominance polytope. The boundary
conditions are the edges at the intersection between the solution
hyperplane and the dominance polytope, which yields the
phenotypic polytope of the system.

However, the boundary conditions may not necessarily yield a
feasible region because of two reasons: (a) the dominant S-System
is underdetermined and has no steady-state solution or (b) the
solution hyperplane and the dominance polytope do not intersect
anywhere in the (n + m)-dimensional space. The validity of

the feasible region can be determined in the same way as the
validity of the dominance polytope by using linear programming
methods (Fasani and Savageau, 2010).

Qualitatively Distinct Phenotypes
The dominant S-Systems capture the behavior of the system’s
dominant processes contributing to the synthesis and loss for
each species. These non-linear sub-systems, with particular
phenotypic characteristics, capture the dominant behaviors of
the full system. These sub-systems are valid representations of
the system behavior within mathematically defined boundaries
that are analytically determined by the system equations
themselves. The combination of a characteristic sub-system and
mathematically defined boundaries partitions parameter space
into a finite number of regions where the system behavior has
a series of characteristic traits. The result is a mathematical
definition for qualitatively-distinct phenotypes that is based on
the processes of a given system that are dominant in a particular
context (Savageau et al., 2009; Lomnitz and Savageau, 2015).

Phenotypic Repertoire
The phenotypic repertoire is defined as the collection of
qualitatively-distinct phenotypes (valid phenotypic polytopes),
integrated into a space-filling structure known as the system
design space (Lomnitz and Savageau, 2015).

DESIGN SPACE TOOLBOX V2

It is widely recognized that the phenotype-to-genotype challenge
is difficult in large part because the tools available for the
analysis of non-linear systems have little power to explore
the global landscape of system behavior. Thus, most analyses
rely on estimating values for the parameters and analyzing
the system at a local level. The System Design Space method
addresses some of these limitations by providing detailed
information about the system behavior from a global perspective
(Lomnitz and Savageau, 2014). It does this by enumerating the
repertoire of a system’s qualitatively-distinct phenotypes and
identifying a subset of phenotypes of interest. It achieves this by
deconstructing intractable non-linear systems into tractable non-
linear sub-systems that can be reassembled to define a system’s
design space (Savageau et al., 2009).

We have recently applied this methodology to a variety of
biochemical systems that exhibit rich behaviors including multi-
stability (Savageau and Fasani, 2009; Martínez-Antonio et al.,
2012; Fasani and Savageau, 2013) and oscillations (Lomnitz
and Savageau, 2013, 2014, 2015). Other examples involve
natural gene circuits that play crucial roles in the transitions
between alternative modes of biological operation [e.g., aerobic
to anaerobic growth (Tolla and Savageau, 2010, 2011; Tolla
et al., 2015), growth phase transitions (Martínez-Antonio et al.,
2012) and phage λ transition between lysogenic and lytic
growth (Savageau and Fasani, 2009)]. However, in each of
these examples, the construction and analysis of the system’s
design space was significantly simplified by automating and
systematizing the System Design Space method. This was first
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made possible via a collection of software tools known as the
Design Space Toolbox for Matlab R© (Fasani and Savageau, 2010).

The Design Space Toolbox for Matlab R© provided a series of
innovations that systematized the analysis of complex systems:
it automated (1) construction of a System Design Space;
(2) enumeration of the qualitatively-distinct phenotypes of a
given system; and (3) the local analyses of the dominant S-
System equations. Through these innovations it has provided
insight into the fundamental principles underlying a variety of
natural systems (Savageau and Fasani, 2009; Tolla and Savageau,
2011). Although these tools have paved the way for more
complicated systems to be analyzed by the System Design
Space method, it was clear that the implementation of these
tools had severe limitations as it pertains to performance when
analyzing larger systems. Here we present a second iteration of
software tools, the Design Space Toolbox V2, that redesigns the
computational approach, enables more complex circuitry to be
analyzed, and extends the possible analyses through additional
functionality.

Technology Overview
The original toolbox was built within Matlab R© as a collection
of .m scripts. There were many advantages that resulted from
this decision: The Matlab R© environment provided access to
a variety of tools for symbolic algebra, linear algebra and
linear optimization. Furthermore, it provides a rich scientific
programming platform with its own interpreted language
for rapid iterations between model formulation and model
analysis. Furthermore, it provides fast vectorized operations that
performed much better than iterated loops in its own language.
These properties of the environment were critical in the design
choices for the original toolbox, which improved performance
by applying vector operations where possible and by providing
an application programming interface that was part of the larger
Matlab R© ecosystem.

However, with these design choices come several limitations:
The Matlab R© environment provides access to limited system
resources and its use of vectorized operations for faster
performance had huge memory requirements that limited
feasibility for larger problems.

Here, we present a novel set of tools using very different design
choices. This new collection of tools is comprised of a stand-
alone library, written in the C language, that implements its own
symbolic algebra engine and leverages open-source compiled
libraries for linear algebra (Gough, 2009) and linear optimization
(via the GLPK library). This new toolbox applies concurrent
approaches to leverage the “embarrassingly parallelizable” nature
of the System Design Space approach by analyzing each
qualitatively-distinct phenotype of the system independently
from every other qualitatively-distinct phenotype using multi-
threaded concurrent algorithms. A visual representation of the
technology in the Design Space Toolbox V2 is shown in Figure 2.

This new software library applies many of the same concepts
and theory of the previous version to automate the construction
of a system design space, but involves a complete redesign of
the tools for better memory management and parallelization
for concurrent analysis. It also extends the original toolbox by
providing an extensive library, with over 648 exposed functions,
for the analysis of the system and its phenotypes. The new
functionality of the toolbox includes: (1) automating the local
stability analysis for model phenotypes; (2) enumerating the
vertices of the feasible regions in up to three dimensions, both
numerically and symbolically; (3) extending the capabilities
of the symbolic algebra component to facilitate the analytical
discovery of design principles; (4) defining constraints on the
dependent variables and parameters of the system (i.e., to define
architectural constraints and biological constraints), among
many others.

The most important innovation provided by these new
software tools is the enabling of a radically new modeling
strategy. It does this by facilitating prediction of values for
the parameters that can be used to focus computational effort
on regions of parameter space that exhibit characteristics
of particular interest. It achieves this automatically by (1)
enumerating the repertoire of model phenotypes; (2) predicting
sets of parameter values for any model phenotype; (3) predicting
sets of parameter values for the simultaneous realization
and visualization of an ensemble of model phenotypes; and
(4) predicting sets of parameter values for the simultaneous
realization of an ensemble of model phenotypes that are phased

FIGURE 2 | Overview of the Design Space Toolbox V2. Components are represented by rectangles, stacks represent component dependencies. Different

component types are represented by color: Python packages (green); C library (orange); C/Python wrapper (purple); and third-party dependencies (gray).

Frontiers in Genetics | www.frontiersin.org 7 July 2016 | Volume 7 | Article 118

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Lomnitz and Savageau Software Enabling a Novel Modeling Strategy

to achieve a specific progression of behaviors (Lomnitz and
Savageau, 2015).

Using this approach, we have been able to identify parameter
values for a class of systems that display rich behaviors including
monostability, bistability, sustained oscillations, and bifurcations
among them (Lomnitz and Savageau, 2013, 2014, 2015).

Analysis via the Python Package
In this sub-section we illustrate the steps involved in constructing
and analyzing a mechanistic model by an application of the
toolbox to the simple example given by Equations (8) and (9).
These methods will then be applied to a more complicated
circuit that exhibitsmore interested behaviors in Section Example
Applied to a Synthetic MemoryModule. The simple example and
the examples found later in this article illustrate the use of the
Python Package within the Design Space Toolbox V2. This level
of the toolbox offers access to most of the power of the C library
within an interpreted environment similar to Matlab R© for rapid
scientific programming and prototype analyses.

The Design Space Toolbox V2 also includes a graphical
user interface embedded within the IPython Notebook that
facilitates its use by new users, with examples readily available
online. However, the analyses presented in this Article are not
reproducible using the graphical user interface and require the
Python Package that has greater access to a wider set of functions.

Construction of the System Design Space
The first step in the analysis using the Design Space Toolbox V2
is to prepare the Python environment, which requires importing
the python package into the current session:

import dspace

Once the environment has been initialized, the next step is to
construct the appropriate computational objects that are used
to formulate and analyze the mechanistic model. This entails
refactoring the system of equations into a computer-readable
format, simply a list of equations using a string representation (∗

represents multiplication, r̂epresents power operator., represents
d/dt). The differential equations and algebraic constraints are
expressed explicitly by defining both sides of the equations.
For example, the system described by Equations (8) and (9) is
represented using the following string representation,

string_eq = [‘X1. = a1*X100^-1\

+ a1*rho1*X1^2*K1^-2*X100^-1\

+ a1*X3*K3^-1*X100^-1\

- b1*X1\

- k*X1*X2’,

‘0 = 1 + X1^2*K1^-2 + X3*K3^-1 - X100’

]

and then the equations are parsed by the symbolic algebra
component to construct an object of the Equations class that
represents the system equations including auxiliary variables,
which must be defined explicitly:

equations = dspace.Equations(string_eq,

axuliary_variables=[‘X100’])

At this point, each string is used to construct an object of
the Expression class, which parses the string and builds
an abstract syntax tree representation that handles symbolic
manipulation and evaluation of mathematical expressions within
the design space toolbox. TheEquations class can then be used
to construct an object of the DesignSpace class,

ds = dspace.DesignSpace(string_eq)

that handles the majority of the steps involved in the
System Design Space method. It calculates the maximum
number of phenotypes, constructs objects that represent
qualitatively-distinct phenotypes, and provides utility functions
for visualization of the system design space. By convention, the
DesignSpace object that represents the biochemical system
being analyzed is named ds—a short name for convenience
because it is the starting point for so many analyses.

Enumeration of the Phenotypic Repertoire
As mentioned in the previous sub-section, the DesignSpace
object for a particular system is the starting point for most
analyses. Among these analyses, perhaps the most important, is
automatic enumeration of the phenotypic repertoire for a system.
This is achieved by instructing the ds object to identify all its
valid cases,

ph = ds.valid_cases()

where the output, stored in the “ph” variable, contains a list
of case numbers for all the cases that have a feasible region
somewhere in parameter space. These represent the qualitatively-
distinct phenotypes of the system and together they define its
phenotypic repertoire.

It should be noted that the ds object enumerates the
phenotypic repertoire in parallel by creating a pool of cases that
need to be tested, spawning n threads (where n is the number of
processors available) that each request a case from the pool, and
analyzing each case for validity. The results from each thread are
returned to the ds object so it can assemble, sort and return the
results. It should be noted that this is typically one of the most
costly operations in an analysis and the results are stored by the
ds object to eliminate excessive work following consecutive calls.

This can be applied to the example system and the number of
valid phenotypes counted,

len(ph)

to show that it has a total of 10 qualitatively-distinct phenotypes
that are valid somewhere in design space, as shown by the cases
in Table 1.
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TABLE 1 | Enumeration of the phenotypic repertoire for the simple system

shown in Figure 1.

Case Case ∂ log X1/∂ log X2 ∂ log X1/∂ log X3 Stability

number signature

1 [1111] 0.0 0.0 S

4 [1211] −1.0 0.0 S

7 [2111] 0.0 0.0 U

8 [2121] 0.0 0.0 S

9 [2131] 0.0 1.0 U

10 [2211] 1.0 0.0 U

11 [2221] −1.0 0.0 S

12 [2231] 1.0 1.0 U

15 [3131] 0.0 0.0 S

18 [3231] −1.0 0.0 S

Phenotypic Characteristics of
Qualitatively-Distinct Phenotypes
The qualitatively-distinct phenotypes of the system can be
analyzed for a variety of system properties, or phenotypic
characteristics, such as those previously discussed in Section
Mathematical Definition of Qualitatively-Distinct Phenotypes.
Many phenotypic characteristics are automatically determined
by the toolbox and these are typically determined by analyzing
instances of the Case class that represent different cases of the
design space. Instances of the Case class are obtained by calls to
the ds object using a case identifier. For example, we can create a
Case object representing Case 1 by calling the ds object with the
case number 1 (or ‘1’),

case1 = ds(1)

or with the case signature [1111],

case1 = ds(‘1111’, by_signature=True)

The phenotypic characteristics of a qualitatively-distinct
phenotype typically fall within one of two categories:
characteristics of the phenotype in the context of system
design space (e.g., the boundaries of validity and global tolerance
of the system to large qualitative changes; Coelho et al., 2009) or
characteristics of the phenotype as they pertain to sub-system
behavior (e.g., stability of the steady state and local robustness
(insensitivity) of the system to small quantitative changes). In
particular, our methods provide a novel means of characterizing
global robustness, which we term “global tolerance” to clearly
distinguish it from local robustness. Global tolerance is defined
as the largest change in parameter values before there is a
qualitative change in the phenotype (Coelho et al., 2009).
This is determined automatically for each parameter and
phenotype. Local robustness also is determined automatically by
means of conventional parameter (in)sensitivities (local relative
derivatives) for each parameter and phenotype. Some examples
showing how this information is utilized in a stochastic context
can be found in Fasani and Savageau (2013, 2015).

In general, characteristics in the context of system design
space are determined from the Case object, and characteristics

in terms of sub-system behavior can be acquired from instances
of the SSystem class that represent the dominant S-System of a
particular case. The SSystem object representing the dominant
S-System for a case is a property of the Case object. For example,
the SSystem instance of Case 1 can be retrieved by

ssys = case1.ssystem

and the properties of the dominant S-System can be readily
determined. For example, we can view the equations of the
dominant S-System,

ssys.equations

which returns

[X1.=X100^-1*a1-X1*b1, X100=1]

a list of Expression objects represented using strings. Similarly,
the steady-state solution for the SSystem object can also be viewed
using the

ssys.solution

command that returns

[X1=a1*b1^-1, X100=1]

The SSystem class can be used to show (1) the sub-system
equations, (2) analytical steady-state solution—in Cartesian and
logarithmic coordinates, (3) numerical values for the steady-
state solution at a given point, (4) the steady-state fluxes at a
given point, (5) local factors like logarithmic gains for signal
amplification and parameter sensitivities for local robustness, and
(6) information concerning the local stability of the system.

In the last three columns of Table 1 we show the logarithmic
gains for X1 with respect to X2 and X3 and the stability of
a representative fixed point for a particular case. These two
types of characteristics are acquired for the sub-system from the
SSystem object. We begin by showing how an instance of the
SSystem class can be analyzed for its phenotypic characteristics.

Automated Analysis of Log-Gain Factors and

Parameter Sensitivities
The logarithmic gains and parameter sensitivities are purely a
function of the kinetic orders of an S-System (Savageau, 2009).
In the context of System Design space, the kinetic orders are
architectural features of the system and thus for any particular
system design are assumed to be constant (Lomnitz and
Savageau, 2015); therefore, the log-gain factors and parameter
sensitivities are constant for a particular dominant S-System.
Furthermore, because independent variables and parameters of
the system are treated equally, the parameter sensitivities are
obtained in the same way as log-gain factors.

The logarithmic gain of X1 relative to X3 for Case 1 of the
example is determined by

ssys.log_gain(‘X1’, ‘X3’)

which, as shown in Table 1, is equal to 0—indicating that X1

is uncoupled from X3 and thus a change in X3 does not elicit
a change in X1 as long as Case 1 is the qualitatively-distinct
phenotype of interest.
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Automated Analysis of Local Stability
As discussed previously, the SSystem class automates the
determination of local stability for the S-Systems. However,
for conventional eigenvalue analysis, the first step involves
converting the dominant S-Systems into a purely dynamical
system by removing any algebraic constraints. This is necessary
because most dominant S-Systems include algebraic constraints
originating from the recasting process. The algebraic constraints
can typically be removed by virtue of the fact that S-System
equations have tractable steady-state solutions; hence, the
auxiliary variables can be solved in terms of the dynamic variables
and system parameters, and their solution can then be used to
eliminate the algebraic constraints. Here, we show how a solution
for the auxiliary variables can be determined using the algebraic
constraints to create a new representation of the dominant S-
System that is purely dynamical.

Removing algebraic constraints from differential-algebraic

S-Systems
We begin with the equations for a dominant S-System composed
of ODEs and algebraic constraints, as shown in Equations (10)
and (11). The algebraic constraints, shown in Equation (11), are
equivalent to nc equations of an S-System at steady state, where nc
is the number of auxiliary variables. The steady-state solution for
the S-System equations can be readily obtained by transforming
the system into logarithmic coordinates (Savageau, 2009) that are
represented in matrix notation by the following equation

Gy+ a = Hy+ b (16)

where G and H are nc × (n + m) matrices of kinetic orders
for the positive and negative terms of the algebraic equations,
respectively—such that Gij = gijpi and Hij = hijqi ; y is an (n +

m)-column vector—such that yi = logXi; a and b are nc-column
vectors of the logarithm of the rate constants for the positive and
negative terms of the algebraic equations—such that ai = logαipi

and bi = logβiqi .
Next, we partition the G and H matrices into sub-matrices

corresponding to dynamic, auxiliary and independent variables,
represented by the t, c and I subscripts. Likewise, we partition
the y vector into vectors corresponding to dynamic, auxiliary and
independent variables,

y =





yt
yc
yI



 (17)

G =
[

Gt Gc GI

]

(18)

H =
[

Ht Hc HI

]

(19)

which yields the following system of equations in matrix
notation,

Gtyt + Gcyc + GIyI + a = Htyt +Hcyc +HIyI + b (20)

We rearrange the terms so that the auxiliary variables are on the
left-hand side of the equation and all other variables are on the
right-hand side,

Acyc = −Atyt −HIyI + B (21)

where B= b− a, and Ai = Gi − Hi for i= {t, c, I}.
We find the inverse of Ac, defined as Mc, and multiply both

sides of the equation, which yields the following equation for the
auxiliary variables,

yc = −Ryt − SyI + U (22)

where R = Mc At is an nc × nt matrix; S = Mc AI is an nc × m
matrix; andU =McB is an nc-column vector. The solution for the
i-th auxiliary variables, in Cartesian coordinates, is therefore

Xi = ui

nt
∏

j= 1

X
rij
j

n+m
∏

j= n

X
sij
j (23)

where ui is the entry in the i-th row of theU vector; rij is the entry
in the i-th row and (j–nt)-th column of the Rmatrix; and sij is the
entry in the i-th row and (j–n)-th column of the Smatrix.

Substituting the solution for the auxiliary variables into the
dynamic equations of the dominant S-System yields the following
system of nt ODEs,

dXi
dt

= αipi

nc
∏

j= 1
u
gijpi
j

nt
∏

j= 1
X

gijpi−
n
∑

k= nt

gikpi rkj

j

n+m
∏

j= n
X

gijpi−
n
∑

k= nt

gikpi skj

j

−βiqi

nc
∏

j= 1
u
hijqi
j

nt
∏

j= 1
X

hijqi−
n
∑

k= nt

hikqi rkj

j

n+m
∏

j= n
X

hijqi−
n
∑

k= nt

hikqi skj

j

(24)

which no longer has algebraic constraints and thus can be
analyzed using conventional S-System analysis for local stability
(Savageau, 2009).

To remove algebraic constraints for an instance of the
SSystem class, we use the following command,

alt_ssystem = ssys.remove_algebraic_

constraints()

which creates a new instance of the SSystem class that is
equivalent mathematically, but does not have the auxiliary
variables and associated algebraic constraints. The equation of
the SSystem object representing the dominant S-System for
Case 1, without the algebraic constraints, is

[X1.=a1-X1*b1]

Analyzing purely dynamical S-Systems for local stability
The SSystem object, without algebraic constraints, is then
analyzed for its local stability using one of two methods: standard
eigenvalue analysis or by applying the Routh criteria for stability
(Routh, 1877; Yang, 2002). In either case, the stability of a
dynamical system depends on a particular set of values for the
parameters.

Starting with a reference parameter set, stored in the pvals
variable of the VariablePool class, that represents a point in
design space for the S-System, we determine the eigenvalues for
the system,
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alt_ssystem.eigenvalues(pvals)

or we can quickly get the number of eigenvalues with positive real
part,

alt_ssystem.positive_roots(pvals)

The stability of Case 1, at this representative point, is stable, as
shown in Table 1, given that it has 0 eigenvalues with positive
real part.

Automated Analysis of Global Tolerance
The Global Tolerance for a parameter and phenotype can
be determined automatically from the Case object. From
a geometric perspective, the global tolerance from a point
is defined as the distance to the nearest boundaries of the
enclosing phenotypic region in logarithmic coordinates (Fasani
and Savageau, 2010). This can be calculated by performing
a series of 1-D linear programming problems where all the
parameters are fixed except for the parameter of interest.

The complete set of global tolerances for the example Case 1
at the starting reference parameter set is determined by

tolerances = Case1.measure_tolerances(pvals)

which returns a dictionary of key-value pairs, where the keys
are the names of the parameters and the values are tuples with
fold-decrease and fold-increase values representing the global
tolerances in arithmetic coordinates, such that

tolerances[‘X3’]

yields the tuple (1e-20, 10.0). The first value indicates that a
fold-decrease of 20 orders of magnitude are necessary to elicit a
qualitative change in system behavior, whereas a 10 fold-increase
results in a qualitative change in system behavior. Note that
the value of 1e-20 is in fact bounded by the program, and
typically corresponds to an infinitely large global tolerance—
hence a qualitative change in system behavior cannot be achieved
by only decreasing the value of X3. Other large but fixed values
may be determined by physical constraints such as the solubility
limits for a metabolite or the diffusion limit for a particular
rate constant. The set of global tolerances for Case 1, given a
representative interior point, are shown in Table 2.

For this property, as for local stability in the previous section,
starting from a representative point begs the question: How do
we find this representative point?

Predicting Phenotype-Specific Parameter
Sets
One of the challenges when analyzing non-linear systems is
finding parameter values that realize a particular behavior
or, in the context of the System Design Space method, a
particular qualitatively-distinct phenotype of the system. For
example, this mathematical model has a total of 12 independent
variables/parameters that together define a 12-dimensional space.
The naive approach might be to sample this space to try and
find a combination that yields a particular phenotype of interest.
However, even if we were to sample five values for each of the

TABLE 2 | Global tolerances for Case 1 of the system in Figure 1

measured as the fold-difference for a qualitative change in phenotype.

Parameter Global tolerance

Fold-decrease Fold-increase

α1 1× 10−20 3.162

β1 0.316 1× 1020

ρ1 0.1 10.0

K1 0.316 1× 1020

K3 0.1 1× 1020

k 1× 10−20 10.0

X2 1× 10−20 10.0

X3 1× 10−20 10.0

12 parameters, the number of combinations we would have to
test would be enormous—512 = 244,140,625; thus, this approach
to search for values that realize a phenotype of the system is
not feasible for most biological systems that have many more
independent variables/parameters.

We have recently developed methods within the framework
of the System Design Space approach that automatically predict
representative values for any phenotype of the system (Lomnitz
and Savageau, 2015). This is automated by the Design Space
Toolbox V2 using linear programming techniques that can
quickly and efficiently find the solution for the optimization
of a linear function within a feasible region delimited by
linear bounds (Vanderbei, 1996). Our software tools predict
a set of values for the parameters of Case 1 using a simple
instruction,

pvals = case1.valid_parameter_set()

that results in a parameter set near a vertex of the feasible region.
Alternatively, parameter sets within the interior of the feasible
region of a phenotype can be obtained by a variety of methods
(e.g., see Lomnitz and Savageau, 2015) and is done using the
following command:

pvals = case1.valid_interior_parameter_

set()

The results for the local stability of the qualitatively distinct
phenotypes shown in the last column of Table 1were determined
by predicting a set of parameter values in the interior and
calculating the number of eigenvalues with positive real part.
The particular parameter set predicted for Case 1 is: K1 = 1.00;
K3 = 10.00; X2 = 1.00; X3 = 1.00; α1 = 1.00; β1 = 10.00; ρ1 =
10.00.

The possible sets of values that our tools can predict are
effectively limitless. To focus the choices, we can (1) impose
power law constraints on the dependent and independent
variables of the system, (2) optimize a power law objective
function, and (3) impose bounds on the permissible values for
each of the parameters and independent variables. Each of these
options is a simple command, e.g.,

case1 = ds(1, constraints=[‘X1 > 100’])
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pvals = case1.valid_parameter_set

(p_bounds={‘X3’:[1e-3, 1e3]},

optimize=‘X1^2*X2^2*X3^-2’

)

Predicting Ensemble-Specific Parameter
Sets
We have previously developed methods that enable the
prediction of parameter values for the simultaneous realization
of an ensemble of model phenotypes (Lomnitz and Savageau,
2015). The types of ensembles for which these tools can predict a
corresponding set of parameter values fall within three categories:
(1) intersections of phenotypes at a single point in design space;
(2) co-localization of phenotypes within a slice of design space;
and (3) arrangement of phenotypes phased within a slice of
design space to exhibit a particular progression of behaviors.

Predicting Parameter Sets for Case Intersections
The validity of the intersection of multiple cases in design space
can be readily determined using linear programming methods
(Fasani and Savageau, 2010). This is achieved by combining
the Ni boundary conditions of n different qualitatively-distinct
phenotypes (Fasani and Savageau, 2010). This is particularly
useful to determine if a system can exhibit multi-stability such
as bistable regimes for hysteretic switches. The Design Space
Toolbox V2 extends the analysis of intersecting cases beyond
determining their validity. It enables prediction of values for the
parameters that yield such an intersection. We begin by defining
an object of the CaseIntersection class, that inherits many
of its properties from the Case class.

Using the example DesignSpace object defined in
Construction of the System Design Space, with the phenotypic
repertoire shown in Table 1, we can determine if the intersection
of different ensembles of cases are mathematically possible
and, if so, predict values for the parameters that lead to their
realization. To illustrate the CaseIntersection class, we
apply it to identify intersections of three phenotypes consistent
with bistable regimes. We choose the first two stable cases, Cases
1 and 4, and the first unstable case, Case 7, as shown in the last
column of Table 1,

case1, case4, case7 = ds([1, 4, 7])

in = dspace.CaseIntersection([case1, case4,

case7])

With the CaseIntersection object, we can determine
validity as if it were a Case object by using the following
command,

in.is_valid()

which yields False. This indicates that the intersection of
Cases 1, 4, and 7 does not exist - regardless of values for the
parameters. We can select an alternative intersection of three
cases by selecting the next possible stable case, Case 8, instead
of Case 4,

case8 = ds(8)

alt = dspace.CaseIntersection([case1,

case7, case8])

and we determine its validity,

alt.is_valid()

which yields True. This indicates that the intersection of Cases
1, 7, and 8 exists and we can now proceed to predict a set
of values for the parameters that results in the realization of
this intersection. As with the Case object, we can predict a
set of values using the valid_parameter_set method or
valid_interior_parameter_setmethod,

pvals = alt.valid_interior_parameter_set()

which yields the following set of values for the parameters: K1 =

1.00; K3 = 10.00; X2 = 1.00; X3 = 1.00; α1 = 0.32; β1 = 10.00;
ρ1 = 100.00.

Predicting Parameter Sets for Case Co-Localizations
An extension of the Case Intersection concept is Case Co-
localization. This concept involves identifying an ensemble
of n phenotypes that are simultaneously realized, hence they
are valid, within a slice of design space for which a given
number of parameters or independent variables are allowed to
change. These variables, known as slice variables, define an s
dimensional slice through design space, where s is the number
of slice variables (Lomnitz and Savageau, 2015). The qualitatively
distinct phenotypes, Cases as we have defined them, are the
phenotypes associated with parameter values located within a
particular polytope in system design space. Such polytopes may
abut one another, or they might be completely separated; the
situation is difficult to visualize in a high-dimensional space. The
objective of the case co-localization function is to find a set of
parameter values, if it exists, that yields a “slice” through the
high-dimensional space that allows simultaneous visualization of
selected polytopes. An intuitive example would be to determine
if two phenotypes, e.g., a wild type and diseased phenotype, are
simultaneously realized and the transition visualized within a
2D slice, where one axis represents a genotypically determined
parameter and the other an environmentally determined
variable.

We have previously shown that the validity of case co-
localizations can be determined without sampling parameter
space, it can be used for an arbitrary number of phenotypes and
can be done in an arbitrary number of dimensions (Lomnitz
and Savageau, 2015). We begin by duplicating and renaming
the slice variables for each case in the ensemble and combining
the boundaries for each case with the newly defined variables
(Lomnitz and Savageau, 2015). The result is an (m + n (s −
1))-dimensional convex polytope in logarithmic space, where
s is the number of slice variables that can be analyzed in
the same way as the feasible regions for Cases and Case
Intersections.

The CaseColocalization class inherits properties from
the CaseIntersection class and can be analyzed in the same
way as a CaseIntersection object. As an example, we define
an ensemble of phenotypes, composed of cases 8, 12, 15, and 18
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and applymethods similar to those described in the previous sub-
section. This ensemble for co-localization, with X2 as the slice
variable, is created as follows:

c8,c12,c15,c18 = ds([8, 12, 15, 18])

co = dspace.CaseColocalization([c8, c12,

c15, c18], [‘X2’])

With the CaseColocalization object, we can determine
validity of the ensemble by using the following command:

co.is_valid()

In this example it yields True. This indicates that there
is a simultaneous realization of these behaviors within a
slice of parameter space, and that there are sets of values
for the parameters capable of realizing this ensemble.
Moreover, the sets can be determined automatically
by using the valid_parameter_set method or
valid_interior_parameter_setmethod,

co.valid_interior_parameter_set()

which yields the following sets of values for the parameters: K1 =

1.00;K3 = 0.10;X3 = 1.00; α1 = 0.10; β1 = 10.00; ρ1 = 10000.00;
X2,8 = 1.00; X2,12 = 100.00; X2,15 = 1.00; X2,18 = 100.00—
where X2,i represents the value for the X2 variable within the
feasible region for Case i.

Predicting Parameter Sets for Specific Arrangements

of Cases
The method of case co-localization determines if an ensemble of
cases can be simultaneously realized within some s-dimensional
slice of parameter space, automatically and independent of
sampling this infinitely large space. However, it does not yield
any information about how the cases in the ensemble are
located in the s-dimensional slice relative to each other or
other important landmarks in the system design space. However,
because these co-localizations are extensions of the methods
that analyze cases in design space, we can apply the same
methods. In particular, recall that the validity of cases in
design space can be determined within particular constraints,
as shown briefly at the end of Predicting Phenotype-Specific
Parameter Sets. These same methods can be applied to objects
of the CaseColocalization class to achieve a particular
progression of behaviors (Lomnitz and Savageau, 2015), by
imposing a set of power law constraints among all variables
including replicated slice variables.

To illustrate this, we will create an ensemble of cases 8, 12,
15, and 18 arranged in ascending numerical order, such that
X2,8 < X2,12 < X2,15 < X2,18, are located from left to right
in the design space of the system. We can determine whether
this arrangement is possible somewhere in parameter space
and predict values for the parameters that yield this particular
arrangement.

An arrangement is created in the Design Space Toolbox V2
by introducing a new co-localization and adding constraints
between the replicated slice variables representing X2 when

defining the co-localization. The replicated slice variables
representing X2 are defined with special notation using
the following format: $<slice variable>_<index in

colocalization>. In this example, the slice variable is X2

and the indices in the co-localization for cases 8, 12, 15, and
18 are 0, 1, 2, and 3, respectively. Thus, the arrangement is
constructed by

c8,c12,c15,c18 = ds([8, 12, 15, 18])

arr = dspace.CaseColocalization

([c8, c12, c15, c18],

[‘X2’],

constraints =[‘$X2_0 < $X2_1’,

‘$X2_1 < $X2_2’,

‘$X2_2 < $X2_3’,

)

The arrangement is simply a Case Co-localization plus additional
constraints; thus, we determine validity and predict values for the
parameters in the same way as we did for co-localization,

arr.is\_valid()

which yields False. The result is that the specific arrangement
that we specified is not possible, regardless of values for the
parameters. Using the same cases, we can try different relative
arrangements and additional constraints as long as both sides
of the inequality defining the constraints are power laws. As an
example, consider another arrangement involving Cases 8, 12, 15,
and 18 with a different order by flipping the sign for one of the
inequalities,

c8,c12,c15,c18 = ds([8, 12, 15, 18])

arr = dspace.CaseColocalization

([c8, c12, c15, c18],

[‘X2’],

constraints = [‘$X2_0 < $X2_1’,

‘$X2_1 > $X2_2’,

‘$X2_2 < $X2_3’,

‘$X2_1 > $X2_3’]

)

The validity of this co-localization yields True and thus, we can
predict a set of values that realizes this arrangement: K1 =

1.00; K3 = 0.10; X3 = 1.00; α1 = 0.01; β1 = 1.00; ρ1

= 10000.00; X2,8 = 0.10; X2,12 = 10.00; X2,15 = 0.10;
X2,18 = 10.00.

Frontiers in Genetics | www.frontiersin.org 13 July 2016 | Volume 7 | Article 118

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Lomnitz and Savageau Software Enabling a Novel Modeling Strategy

Visualizing the Design Space of
Biochemical Systems
One of the powerful features of the System Design Space
method is that it partitions parameter space into regions and
this structure reveals breakpoints in the characteristics of the
system. This structured space, the design space of a system, can
readily be visualized to gain insight into the landscape of possible
phenotypes that a system can exhibit. These software tools enable
visualization through the matplotlib package, the NumPy
package and the SciPy package (Oliphant, 2007; Millman and
Aivazis, 2011; van der Walt et al., 2011). We illustrate the Design
Space Toolbox V2 visualization tools by applying them to the
example system using the parameter set from the intersection
of Cases 1, 7, and 8. In addition, we show the visualization of
the stability showing the number of eigenvalues with positive real
part.

The first step is to import the matplotlib plotting package into
the python environment,

from matplotlib.pyplot import *

and import the plotting extension for the dspace classes,

import dspace.plotutils

The typical way of visualizing a design space is by showing
the qualitatively-distinct phenotypes in a 2D plot, where
the x- and y-axes represent slice variables and the z-
axis represents different cases identified by different colored
regions.

Using the example DesignSpace object from the previous
sub-sections, and the parameters predicted for the intersection of
Cases 1, 7, and 8, these tools create the plot of the 2-D slice by the
command

ds.draw_2D_slice(gca(), #:1

pvals, #:2

‘X2’, #:3

‘b1’, #:4

[1e-3, 1e3], #:5

[1e-3, 1e3], #:6

intersections = [1, 3] #:7

)

as shown in Figure 3A. The first argument is a matplotlib
axis object for a plot canvas; the second argument is an
instance of the VariablePool class with the values for the
parameters; the third is the name of the x-axis; the fourth
argument is the name of the y-axis; the fifth argument is
the range of the x-axis in Cartesian coordinates; the sixth
argument is the range of the y-axis in Cartesian coordinates;
the seventh argument indicates the number of intersections

FIGURE 3 | Visualization of the system design space and a phenotypic

trait for the simple synthetic gene circuit in Figure 1. (A,B) The x-axis

represents the concentration of the complimentary protein, X2. The y-axis

represents the rate constant for X1 loss from either dilution or active

degradation. (A) System design space showing the qualitatively-distinct

phenotypes by color on the z-axis. Regions of overlap, represented by regions

with multiple qualitatively-distinct phenotypes as shown in the colorbar,

correspond to regions with multiple fixed points. (B) Stability plot showing the

number of eigenvalues with positive real part on the z-axis. Blue corresponds

to monostability; Red corresponds to bistability. Note that the regions of

bistability in (B) correspond to the regions of overlap in (A).

of cases to be drawn, where [1, 3] indicates it will display
regions associated with individual phenotypes and with three
phenotypes consistent with bi-stability (i.e., 2 stable and 1
unstable).

The stability of the fixed points also can be visualized. This is
achieved by using a different command, but with mostly the same
set of arguments,

ds.draw_2D_positive_roots(gca(), #:1

pvals, #:2

‘X2’, #:3

‘b1’, #:4

[1e-3, 1e3], #:5

[1e-3, 1e3], #:6

)

as shown in Figure 3B.
The toolbox provides additional tools to visualize dominant

eigenvalues, steady-state concentrations, steady-state fluxes, and
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mathematical functions evaluated at steady state. It also provides
tools to visualize 1-D slices and 1-D response curves including
stability information for bifurcation plots.

EXAMPLE APPLIED TO A SYNTHETIC
MEMORY MODULE

In this Section, we illustrate the general capabilities of the
Design Space Toolbox V2 by applying it to a two-gene synthetic
circuit involving two transcriptional activators. This example
serves the dual purpose of highlighting the novel, phenotype-
centric, modeling strategy we have recently developed that inverts
many of the typical steps in the conventional, parameter-centric,
modeling approach (Lomnitz and Savageau, 2015).

The novel modeling approach begins by enumerating the
phenotypic repertoire for a global perspective of system
behavior; then predicting phenotype-specific or ensemble-
specific parameter sets that realize phenotypic characteristics of
interest; and finally focusing computational effort on localized
regions of the parameter space for detailed analysis of the
full system. The Design Space Toolbox V2 enables this novel
modeling approach by automating the most difficult steps in the
process.

The synthetic gene circuit, proposed and analyzed here, is
intended to serve as a genetic hysteretic switch that can exhibit
multistability. We show that this circuit can “count” between
three distinct states in a positive direction that increases the
counter and in a negative direction that decreases the counter.
We show that by coupling the circuit with a target gene, a
reporter, it can transition between three distinct intensity levels
in a step-wise manner.

In the following sub-sections we (1) describe the design of the
synthetic gene circuit; (2) formulate a mathematical model that
captures the mechanistic details of the interactions; (3) analyze
the system using our phenotype-centric modeling strategy; and
(4) show examples of instances of the system at predicted points
in the system’s design space that exhibit a variety of behaviors.

Synthetic Gene Circuit Design
Synthetic gene circuits have been constructed to serve a variety
of purposes (Lu et al., 2009). One prominent use for synthetic
biology is to forward engineer biological systems to gain
insight into fundamental design principles (Mukherji and van
Oudenaarden, 2009). Some examples that apply principles from
engineering to biological systems include rationally designed
synthetic oscillators (Elowitz and Leibler, 2000; Atkinson et al.,
2003; Tigges et al., 2009) and bistable switches (Gardner et al.,
2000; Atkinson et al., 2003).

We apply similar principles for the design of a system with
the potential to exhibit multistability. This implies that there are
instances of the system that have multiple stable fixed points, also
known as steady-state attractors, with an associated set of initial
conditions that define the basin of attraction within which the
system gravitates toward a particular fixed point in state space.

The design of the synthetic gene circuit, represented in
Figure 4, is composed of two transcriptional activators, X1 and

X2 that autogenously control expression of their own genes; the
result is two seemingly independent positive feedback loops. The
X1 andX2 regulators are translationally fused with a dimerization
domain that causes X1 monomers to form heterodimers with
X2 monomers. The X1–X2 dimers are inactive and targeted
for degradation by cellular proteases, which results in a strong
thermodynamic potential that makes heterodimer formation
essentially irreversible. Transcription of the activator genes is
repressed by a third regulator, X3, that binds to the upstream
region of the gene for both X1 and X2, sterically hindering the
auto-activation. The role of this repressor in the system is to tune
the behavior of the system. A cartoon of the proposed construct
is shown in Figure 4A, and an abstraction of the gene circuit with
the key interactions is shown in Figure 4C.

Mathematical Model
We formulate a mathematical model composed of ODEs for the
synthetic gene circuit design in Figure 4. Given that there is a fast
turnover of mRNA relative to protein, we assume that synthesis
of protein directly tracks mRNA expression. Thus, we model
modulation of transcription as having a direct effect on the rate
of protein synthesis. The mathematical model is described by the
following system of non-linear equations,

dX1

dt
= α1







1+ ρ1

(

X1
K1

)2
+ X3

K3

1+
(

X1
K1

)2
+ X3

K3






− β1X1 − kX1X2 (25)

dX2

dt
= α2







1+ ρ2

(

X2
K2

)2
+ X3

K3

1+
(

X2
K2

)2
+ X3

K3






− β2X2 − kX1X2 (26)

where αi represents the basal level of expression for the synthesis
of the i-th regulator; β i represents the rate constant for loss
of the i-th regulator by dilution due to exponential growth;
ρi represents the capacity for activation by the i-th regulator;
Ki represents the concentration of the i-th regulator for half-
maximal regulation; and k represents the rate constant for X1–X2

heterodimer formation.

Recasting Equations into the Generic GMA Form
We recast the mathematical model into the generic GMA form
using the 5-step approach outlined in Recasting Equations into a
Generic Form, which yields the following system of differential-
algebraic equations,

dX1

dt
= α1X

−1
100 + α1ρ1X

2
1K

−2
1 X−1

100 + α1X3K
−1
3 X−1

100

−β1X1 − kX1X2 (27)

dX2

dt
= α2X

−1
200 + α2ρ2X

2
2K

−2
2 X−1

200 + α2X3K
−1
3 X−1

200

−β2X2 − kX1X2 (28)

0 = 1+ X2
1K

−2
1 + X3K

−1
3 − X100 (29)

0 = 1+ X2
2K

−2
2 + X3K

−1
3 − X200 (30)

where X100 and X200 are the auxiliary variables defined for the
denominators in Equations (25) and (26), respectively. These
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equations are then used as input to the Design Space Toolbox V2
for analysis as described in Section Construction of the System
Design Space.

Computer-Aided Novel Modeling Strategy
We analyze the system using the phenotype-centric modeling
strategy (Lomnitz and Savageau, 2015) that involves (1)
establishing criteria for what constitutes the model phenotypes of
interest, (2) enumerating the repertoire of model phenotypes, (3)
identifying model phenotypes that exhibit the characteristics of
interest, and (4) predicting values for the parameters that realize
the desired behavior. We have previously used this strategy to
identify phenotypes that exhibit the potential for oscillation (e.g.,
see Lomnitz and Savageau, 2015) or specific couplings between
inputs and outputs to achieve binary logic functions (Lomnitz
and Savageau, in press). Here, the phenotype-centric modeling
strategy is applied to identify a variety of phenotypes including
bistability, tristability and quadrastability.

Criteria for Model Phenotypes of Interest
The first step in the phenotype-centric modeling strategy
is to establish criteria for what constitutes a phenotype of
interest based on a set of phenotypic characteristics. Typical
characteristics include the coupling between input and output,
stability of the fixed points, quantitative local robustness to small

changes in system parameters, and qualitative global tolerance to
large changes in system parameters.

The design for the synthetic gene circuit in Figure 4 is
expected to have the potential to exhibit multistability; therefore,
there should be multiple fixed points, some of which are stable
and some unstable, at a single point in parameter space. In the
context of a system’s design space, multistability involves an
overlap or intersection of multiple cases (Savageau and Fasani,
2009; Fasani and Savageau, 2010; Martínez-Antonio et al., 2012).

Although multistability involves a combination of cases
exhibiting either unstable or stable fixed points, we are interested
in those that are stable; thus, the first criterion for what
constitutes a phenotype of interest is that it be locally stable.
Furthermore, a desirable property is that the fixed points be
locally insensitive to unintended signals; thus, a second and third
criterion is that bothX1 andX2 are uncoupled from the repressor,
X3. In summary, we are looking for cases that are locally stable,
have X1 uncoupled from X3 [L(X1, X3) = 0], and have X2

uncoupled from X3 [L(X2, X3)= 0].

Enumerating the Repertoire of Phenotypes
of Interest
The mechanistic model for the synthetic gene circuit is
analyzed here following the outline in Section Design Space
Toolbox V2: we (1) refactor the system equation into the

FIGURE 4 | Conceptual model for the design of a synthetic gene circuit with 2-, 3-, and 4-state memory. (A) A cartoon of the proposed design for a gene

circuit with two autogenously regulated activators, each similar to that in Figure 1. The first is represented in green with a purple dimerization domain and the second

is represented in blue with a yellow dimerization domain. Homodimerization of each leads to the active form of the regulator. A repressor, represented by the red

capsule, sterically hinders the binding of each activator. (B) Binding of monomers from each of the two activators through complementary dimerization domains leads

to a heterodimer that is rapidly degraded by cellular proteases or other machinery. (C) Abstract representation of the synthetic construct. The two activators X1, green

in the cartoon, and X2, blue in the cartoon, heterodimerise to create a complex that is degraded, each activates its own expression by binding to target DNA, and this

binding is sterically hindered by the common repressor X3, red in the cartoon.
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computer-readable format to construct a DesignSpace object,
which we call ds (e.g., Section Construction of the System
Design Space), (2) enumerate the valid phenotypes of the
system using the ds.valid_cases() method (e.g., Section
Enumeration of the Phenotypic Repertoire), and (3) determine
the phenotypic characteristics of each valid phenotype to
identify (a) the number of eigenvalues with positive real
part at a representative point, (b) L(X1, X3), and (c) L(X2,
X3) (e.g., Section Phenotypic Characteristics of Qualitatively-
Distinct Phenotypes). The representative point to identify the
number of eigenvalues with positive real part is predicted using
the valid_interior_parameter_set() method of an
instance of the Case class as described in Section Predicting
Phenotype-Specific Parameter Sets. The number of phenotypes
that satisfy our criteria are 21 of the 59 valid phenotypes, a
portion of which is shown in Table 3.

Alternative Realizations of the Synthetic
Gene Circuit
Maximizing the Number of Stable States
In Sections Predicting Phenotype-Specific Parameter Sets and
Predicting Ensemble-Specific Parameter Sets we showed that
our tools are able to predict values for the parameters that
are specific to a phenotype or to an ensemble of phenotypes—
either Case intersections at a single point in design space,
Case co-localizations in a slice of design space, or Case
specific arrangements in a slice of design space. Among these
ensembles, Case intersections are particularly useful to identify
the existence of multistability (Fasani and Savageau, 2010), and
the ability of our tools to predict parameter values for their
realization, as shown in Section Predicting Parameter Sets for
Case Intersections, offers some interesting possibilities.

The first possibility we explore is the ability to identify the
maximum number of stable phenotypes that can intersect in
the system’s design space, as this corresponds to the maximum
number of steady-state attractors the system can exhibit. The
general strategy on how to identify case intersections of n cases
has been previously described (Fasani and Savageau, 2010). Here,
we use this same approach but only apply it to the cases that
are stable given that we are not interested in the cases that are
unstable.

If the cases that satisfy the criteria are stored in the cases
variable, our tools can list all the intersection of k = {2, 3, 4, . . . ,

TABLE 3 | Enumeration of the phenotypic repertoire for the system shown

in Figure 2.

Case number Case signature L(X1, X3) L(X2, X3) Stability

1 11111111 0.0 0.0 S

10 11121111 0.0 0.0 S

19 11211111 0.0 0.0 U

… … … … …

297 32213131 1.0 1.0 U

306 32223131 0.5 0.5 U

315 32313131 0.0 0.0 S

n} cases. If for some value of k there are no intersections, the
program stops and the value of k–1 is the maximum number of
case intersections. The first step of finding all the intersections of
k= {2, 3, 4, . . . , n} cases is achieved by

attractors = ds.intersecting_cases

(range(2, 22),cases)

and the result is a list of all possible intersections involving
combinations of 2 up to 21 cases. These are stored in the
attractors variable and used to identify the largest number of
intersecting cases,

max([len(i._cases) for i in attractors])

which yields a maximum of four cases with stable fixed points
that can be simultaneously realized at a single point in design
space. Therefore, this design for a genetic memory module can
have up to four steady state attractors for quadrastablity.

Predicting Parameter Sets for Realization of

Multi-Stability
The gene circuit design has a maximum of four steady-state
attractors in which X1 and X2 can be high or low at any given
time. This result might not be surprising, given that the system
has two positive feedback loops that appear to be independent
from each other. However, these positive feedback loops are part
of an integrated system and can interact to produce interesting
behaviors. One could speculate that an increase in either X1 or
X2 might lead to a decrease in X2 or X1, respectively, due to
the formation of X1–X2 heterodimers. Here, we explore a series
of alternative behaviors for bistable, tristable and quadrastable
switches including a stable counter with three different levels.

The System Design Space method we have described can
be applied for a deconstruction of dynamic behaviors in state
space. This deconstruction, which is still in the early phases
of its development, partitions state space into regions that
exhibit qualitatively-distinct trajectories that provide valuable
information regarding the system’s basins of attraction and
response to transient perturbations. The dominance conditions
define (n + m)-dimensional polytopes, where n is the number
of dependent variables and m is the number of independent
variables/parameters. For each equation in the Dominant S-
System, we can identify regions where the positive term is greater
than the negative term and thus a region with a qualitatively-
defined trajectory. The particular arrangement of steady states
and the trajectories around these steady states can be represented
visually, as shown in the left panels of Figure 5, and can be
compared with the basins of attraction for the original system
of equations, as shown in the right panels of Figure 5. In each of
these examples, our automated tools provide rich information for
rapid identification of interesting properties for the system. The
results can then be refined by applying conventional methods to
the full system.

Predicting bistable genetic switches
The Design Space Toolbox V2 can be used to predict values for
the parameters that result in instances of the system that are only
bistable switches. We achieve this in two steps: we identify all the
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FIGURE 5 | Dynamic behavior for the bistable, tristable, and

quadrastable instances of the synthetic gene circuit in Figure 4.

(A–C) The x-axis represents the logarithm of the concentration of the first

activator, X1; the y-axis represents the logarithm of the concentration of the

second activator, X2. The axes are normalized with respect to the mean of the

values for X1 and X2 for each of the stable steady states in a given instance,

respectively. The dynamic behaviors and basins of attraction for each of the

stable states for instances of the system exhibiting (A) bistability, (B) tristability,

and (C) quadrastability. The steady states of the system are represented by

black circles (stable) and white circles (unstable). (Left panels) State-space

deconstruction of the gene circuit by system design space showing

qualitatively-distinct trajectories. Different colored regions represent areas

where the dynamics of the system follow a particular trajectory: southwest

(purple); southeast (green); northwest (orange); and northeast (blue). (Right

Panels) Different colored regions represent values for the activators that are

attracted to a unique steady-state (•). The boundaries between the basins of

attraction are obtained by refinement using the original equations.

valid ensembles of two stable phenotypes satisfying our criteria,
and then predict representative parameter values and identify
those instances that have only two steady-state attractors—to
eliminate ensembles thatmight be part of higher-order ensembles
with more steady-state attractors.

The first step is most easily achieved using the same command
as in Section Alternative Realizations of the Synthetic Gene
Circuit, modified to return only Case Intersections involving two
stable phenotypes,

en2 = ds.intersecting_cases([2],cases)

where en2 stores all the ensembles of two stable phenotypes at a
single point.

The second step is achieved by iterating through each
ensemble [for en in en2:]; predicting a representative
point that realizes an ensemble [pvals=en.valid_

interior_parameter_set()]; identifying the cases valid
at the representative point [all_cases = ds(ds.valid_

cases(p_bounds=pvals))]; and counting the number
of cases that are locally stable [sum([case.positive_

roots() == 0 for case in all_cases])]. An
example from among the six showing a bistable instance of the
design, as predicted following these steps, is shown Figure 5A.

Predicting tristable genetic switches
We identify instances of the system that exhibit tristability using
the same approach used to identify bistability—we identify the
valid ensembles of three stable phenotypes and select those that
have only three steady-state attractors.We change the first step by
identifying the ensembles with Case Intersections of three stable
phenotypes,

en3 = ds.intersecting_cases([3],cases)

and proceed with the same steps used for the bistable case. We
find eight ensembles that exhibit tristability, an example of which
is shown in Figure 5B.

Predicting quadrastable genetic switches
Because the maximum number of stable phenotypes that can
intersect at a given point in design space is 4, the task of
identifying instances of the system that exhibit quadrastability is
simpler than the bistable and tristable examples. Here, all we need
to do is identify ensembles of four stable phenotypes,

en4 = ds.intersecting_cases([4],cases)

which yields a total of 18 that can exhibit quadrastability. An
example is shown in Figure 5C.

Predicting State-Space Arrangements of the

Steady-State Attractors
As we discussed in Section Predicting Phenotype-Specific
Parameter Sets, we can add constraints to the system and thus the
number of parameter sets we can predict is effectively limitless.
Here, we show how constraints can be impose to identify relative
arrangements of the steady-state attractors that are permissible in
state space. To achieve this, we define new independent variables
that partition state space into four quadrants [i.e., (–,–), (−,+),
(+,−), and (+,+)] and apply our tools to determine which
combination of quadrants the stable-state attractors can occupy.

We define two variables, Xr,1 and Xr,2, that partition state
space into the four quadrants with the boundaries X1 = Xr,1

and X2 = Xr,2, such that the (−,−) quadrant is given by X1 <

Xr,1 and X2 < Xr,2. Then, we reconstruct a new instance of the
DesignSpace class with the independent variables explicitly
defined to include the Xr,1 and Xr,2 variables.

The new instance of the DesignSpace class can create
new instances of the Case class with added constraints, as
shown in Section Predicting Phenotype-Specific Parameter Sets.
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From Section Predicting Parameter Sets for Realization of Multi-
Stability we identified all the ensembles of four stable phenotypes
that result in a quadrastable instance of the system. We then
test the validity of each of these ensembles with constraints
imposed on its constitutive cases. For example, if we have four
cases with case identifiers represented by the variables case0,
case1, case2, and case3 that comprise an ensemble for
a quadrastable system, we impose constraints on these cases to
ensure that each is in a separate quadrant as follows,

C0 = ds(case0, constraints = [‘X1 < Xr1’,

‘X2 < Xr2’])

C1 = ds(case1, constraints = [‘X1 < Xr1’,

‘X2 > Xr2’])

C2 = ds(case2, constraints = [‘X1 > Xr1’,

‘X2 < Xr2’])

C3 = ds(case3, constraints = [‘X1 > Xr1’,

‘X2 > Xr2’])

ensemble = space.CaseIntersection([C0,

C1, C2, C3])

and validity of the ensemble can be tested as shown in Section
Predicting Ensemble-Specific Parameter Sets. We apply this to
test each of the 35 combinations of criteria like that in the
example above. We find that 24 of the 35 can satisfy their
relevant criteria and that the remaining 11 are unable to satisfy
their relevant criteria regardless of values for the parameters and
thresholds for the quadrants.

Predicting a Stable Counter With Positive and

Negative Channels
One arrangement of particular interest has one steady-state
attractor that occupies each of the quadrants—consistent with
four binary boolean states, represented by (−,−), (−,+),
(+,−), and (+,+). We find that all of the ensembles identified
in Section Predicting Parameter Sets for Realization of Multi-
Stability are able to yield this particular arrangement of steady-
state attractors, an example of which is shown in Figure 6, where
Xr,1 = 1 and Xr,2 = 1.

This combination of (−,−), (+,−), (−,+), and (+,+)
binary boolean states makes this design useful as a control switch
where the expression of target genes are regulated by X1, X2 or
both. For example, this synthetic circuit, controlling a reporter
gene whose synthesis is directly coupled to X1 and inversely
coupled to X2, can effectively count from 0 to 3 at well-defined
levels for its expression. Such a reporter under the control of this
module is modeled mathematically by the following ODE

dX4

dt
= α4

(

ρ41X
2
1 + K2

1

X2
1 + K2

1

)

(

ρ−1
42 X

2
2 + K2

2

X2
2 + K2

2

)

− β4X4 (31)

where X4 represents concentration of the reporter protein; α4

represents the rate of synthesis of X4 at an unrepressed and
inactivated state; β1 represents the rate constant for loss of X4 by

FIGURE 6 | Dynamic behavior of a quadrastable instance of the

synthetic gene circuit. (A,B) The x-axis represents the logarithm of the

concentration of the first activator, X1; the y-axis represents the logarithm of

the concentration of the second activator, X2. (A) State-space deconstruction

of the gene circuit by system design space showing qualitatively-distinct

trajectories. The steady states of the system are represented by black circles

(stable) and white circles (unstable). The colors of the different regions

correspond to regions with different qualitatively-distinct trajectories as

described in the caption of Figure 5. (B) The basin of attraction, represented

by the colored regions, represent the domains of state space that are attracted

to a particular stable steady state (black circles). The boundaries between the

basins of attraction are obtained by refinement using the original equations.

dilution due to exponential growth; ρ41 represents the capacity
for activation of X4 synthesis by X1; ρ42 represents the capacity
for repression of X4 synthesis by X2.

The ability of this design to perform as a stable counter arises
from the X1–X2 heterodimer formation in combination with the
seemingly independent positive feedback loops for X1 and X2.
For example, a transient increase in one species elicits a transient
drop in the other that, in combination with the positive feedback
loops, can lead to a switch from a stable “+” state to a stable “−”
state.

This is reflected in the teardrop-shaped basin of attraction
for the steady-state attractor in the (+,+) quadrant: when the
system is at the (+,+) attractor and there is a transient increase
in the concentration of either X1 or X2, the dynamics of the
system are such that it leaves the basin of attraction for the
(+,+) attractor and enters the basin of attraction for the (+,−)
or (−,+) attractor, respectively. A visual representation of the
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FIGURE 7 | Basins of attraction for a 4-state genetic counter. The x-axis

represents the logarithm of the concentration of the first activator, X1; the

y-axis represents the logarithm of the concentration of the second activator,

X2. Different colored regions represent values for the activators that converge

to a unique steady-state attractor. Transitions from an initial steady state (white

circle) to a new steady state (black circle) following an equal size bolus

(275µM) in one of the two activators. The top panels show transient

simulations following a bolus of X1 (green arrows). The bottom panels show

transient simulations following a bolus of X2 (red arrows). Left and right

sub-panels show the transitions from different initial steady-state attractors.

transitions between the steady-state attractors following transient
stimulation is shown in Figure 7.

Assume that the system is poised at the attractor in the (−,+)
quadrant; if X1 is added in some amount, i.e., 275µM, the system
transitions to the attractor in the (+,+) quadrant; then if X1 is
added again in the same amount, a transition to the attractor
in the (+,−) quadrant ensues; therefore, by adding the same
bolus of X1 twice, in a step-wise fashion, the system has switched
between an equal number of steps, which bears the signature of a
genetic counter.

Now, assume the system is poised at the opposite attractor
in the (+,−) quadrant; if X2 is added in the same amount the
system transitions to the attractor in the (+,+) quadrant; then if
X2 is added again in the same amount, a transition to the attractor
in the (+,−) quadrant ensues; therefore, by adding the same
bolus of X2 twice, in a step-wise fashion, the system has reverted
back to the original state.

These traits show that the system has two distinct channels
that enable two sequences of transitions between the same three
states but in the opposite order. A positive channel for (−,+)
→ (+,+) → (+,−) and a negative channel for (+,−) →

(+,+)→ (−,+). By coupling themodule with the reporter gene,
we show that the system is capable of counting between three
levels of reporter concentration and can perform basic arithmetic
using values 0, 1, and 2. An example showing a sequence of

FIGURE 8 | Simulation of the counter following stimulation of the

positive and negative channels. Simulation of system behavior following a

series of transient stimulations at regular intervals of 20 time units (dashed

vertical lines). (A) Lines represent the concentrations of the reporter

corresponding to the counter X4; (B) the positive channel X1; and (C) the

negative channel X2. Transient stimulation of the positive channel, green

vertical lines in (B), results in an increase in the counter state, green

background in (A). Transient stimulation of the negative channel, red vertical

lines in (C), results in a decrease in the counter, red background in (A). Time

intervals without stimulation through either channel show that the count is

stable, as shown by the white background in (A).

additions and subtractions following transient addition of X1 and
X2, respectively, is shown in Figure 8.

CONCLUSIONS

The Design Space Toolbox V2 is a compendium of tools
designed to aid in the analysis and design of biochemical
systems. It is particularly useful for the characterization of system
design principles. Indeed, each of the “landmarks” in system
design space—boundaries and vertices—are rigorously defined
by particular constellations of parameter values that represent
the “design principles” of the system (e.g., Savageau and Fasani,
2009). These constellations are not at all obvious and would
be difficult to discover by trial and error, but are automatically
determined with our tools. As in other engineering disciplines,
knowing such design principles allows one to control the system
in a more rational fashion.

These tools have already proven useful for understanding
complex natural circuitry (Savageau, 2013) and for rationally
designing and engineering new synthetic gene circuits (Lomnitz
and Savageau, 2013, 2014, 2015) described by models composed
of power functions from chemical kinetics and rational functions
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from biochemical kinetics. However, the full scope of models that
can be analyzed by these new tools has yet to be explored.

These tools automate the construction and analysis of the
design space of biochemical systems in a manner similar to
a previous iteration of software tools known as the design
space toolbox for Matlab R©. However, this new iteration is a
complete redesign of the approach that expands the scope of
applicable systems beyond what was previously possible due to
limits on both time and computational resources. The most
important contribution provided by these tools is the enabling
of a radically new phenotype-centric modeling strategy (Lomnitz
and Savageau, 2015) that inverts the steps in the conventional
parameter-centric strategy and automates those that are most
difficult.

To illustrate our software tools, we applied them to the design
of a synthetic two-gene circuit that has positive feedback loops
with the potential for hysteretic-switch behavior. However, unlike
other hysteretic switch designs that exhibit typical bistability (e.g.,
Gardner et al., 2000; Atkinson et al., 2003), this circuit has two
seemingly independent positive feedback loops that are coupled
by a fused heterodimerization domain. In an automated analysis,
we show that this design can be tuned to exhibit up to four
stable steady states. Furthermore, our tools predict multiple sets
of values for the parameters that realize specific instances of the
system that exhibit bistability, tristability and quadrastability.

Further analysis of a quadrastable instance of the system
reveals that it can alternate between three of the steady states
following transient stimulation in one of two input channels: a
positive channel that results in the forward transition between
these states; and a negative channel that results in the reverse
transition between these same states. By coupling this network

to a reporter gene, we have shown that this circuit can effectively
count between three levels of fluorescence intensity in a step-wise
manner.

These examples show the power of our new tools and
illustrate how they enable a radically new modeling strategy
that does not rely on first establishing nominal values for the
parameters. Instead, this phenotype-centric strategy enumerates
the phenotypic repertoire, identifies phenotypes of interest
according to specific criteria, and then predicts sets of parameter
values for realizing the phenotypes of interest. By assembling a
variety of criteria, these tools can predict instances of a system
that displays a rich assortment of behaviors.
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