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Abstract: This study probed the largely unexplored regulation and role of fibronectin in Angiotensin
II-stimulated cardiac fibroblasts. Using gene knockdown and overexpression approaches, Western
blotting, and promoter pull-down assay, we show that collagen type I-activated Discoidin Domain
Receptor 2 (DDR2) mediates Angiotensin II-dependent transcriptional upregulation of fibronectin by
Yes-activated Protein in cardiac fibroblasts. Furthermore, siRNA-mediated fibronectin knockdown
attenuated Angiotensin II-stimulated expression of collagen type I and anti-apoptotic cIAP2, and
enhanced cardiac fibroblast susceptibility to apoptosis. Importantly, an obligate role for fibronectin
was observed in Angiotensin II-stimulated expression of AT1R, the Angiotensin II receptor, which
would link extracellular matrix (ECM) signaling and Angiotensin II signaling in cardiac fibroblasts.
The role of fibronectin in Angiotensin II-stimulated cIAP2, collagen type I, and AT1R expression was
mediated by Integrin-β1-integrin-linked kinase signaling. In vivo, we observed modestly reduced
basal levels of AT1R in DDR2-null mouse myocardium, which were associated with the previously
reported reduction in myocardial Integrin-β1 levels. The role of fibronectin, downstream of DDR2,
could be a critical determinant of cardiac fibroblast-mediated wound healing following myocardial
injury. In summary, our findings suggest a complex mechanism of regulation of cardiac fibroblast
function involving two major ECM proteins, collagen type I and fibronectin, and their receptors,
DDR2 and Integrin-β1.

Keywords: cardiac fibroblasts; DDR2; fibronectin; Integrin-β1; angiotensin II; AT1 receptor; cIAP2;
collagen I

1. Introduction

Cardiac fibrosis, a hallmark of the senescent myocardium and the end stage of nearly
all forms of heart disease, involves an excessive deposition of extracellular matrix by cardiac
fibroblasts, leading to arrhythmias, pump dysfunction, and heart failure [1]. In a setting
of myocardial damage, normally quiescent cardiac fibroblasts, under the influence of pro-
fibrotic factors such as Angiotensin II (Ang II), are phenotypically transformed into α-smooth
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muscle actin (α-SMA)-positive myofibroblasts that infiltrate the site of injury, proliferate, and
produce collagen and other extracellular matrix (ECM) components, leading to the formation
of collagenous scar tissue that aids wound repair and preserves myocardial integrity in the
short-term. However, unlike in non-cardiac tissues, active myofibroblasts in the heart resist
apoptosis and persist in the infarct scar long after termination of the healing response, which
results in excessive collagen deposition, adverse tissue fibrosis, and compromised ventricular
compliance in the long-term [1]. Clearly, the delineation of molecular mechanisms underlying
cardiac fibroblast function and cardiac fibrosis is a clinically relevant goal.

Although earlier studies on cardiac fibrosis had focused on collagen type I as a major
contributor to the progression of tissue fibrosis [2], there is now increasing appreciation of
the role of cellular fibronectin, an ECM glycoprotein, as an important regulator of ECM and
tissue remodeling [3]. In fact, recent studies have considered fibronectin as a potential target
to limit tissue fibrosis [4]. The inhibition of fibronectin polymerization is reported to reduce
collagen deposition in the ECM and exert cardioprotective effects through attenuation of
cardiac fibroblast proliferation and adverse fibrotic remodeling of the heart in an ischemia–
reperfusion model [4]. These observations suggest a role for fibronectin in cardiac fibroblast
function and cardiac fibrosis and provide compelling rationale for further studies on the
regulation of fibronectin expression in cardiac fibroblasts and the mechanisms that underlie
its regulatory role in these cells.

We had recently reported that Ang II, a potent pro-fibrotic factor whose intracardiac levels
are increased following myocardial injury [5], enhances the expression of Discoidin Domain
Receptor 2 (DDR2), a collagen receptor tyrosine kinase, which, upon activation by collagen,
has an indispensable regulatory role in the expression of collagen type I in Ang II-stimulated
cardiac fibroblasts [2,6]. Ang II also induces anti-apoptotic cIAP2 that protects cardiac fibroblasts
against ambient stress [7]. Interestingly, the pro-survival role of Ang II in cardiac fibroblasts via
cIAP2 was also found to be mediated by collagen type I-activated DDR2 (7).

As a sequel to our earlier findings, we now report that DDR2 has an obligate role in Yes-
activated Protein (YAP)-mediated transcriptional upregulation of cellular fibronectin protein
expression by Ang II in cardiac fibroblasts. Downstream of DDR2, fibronectin mediates Ang II-
stimulated collagen type I protein expression and cIAP2-dependent resistance to apoptosis in
cardiac fibroblasts exposed to oxidative stress. Importantly, fibronectin has an obligate role in
Ang II-stimulated expression of the Ang II receptor, AT1R, which would link ECM signaling
to Ang II signaling that profoundly impacts cardiac fibroblast function. Furthermore, a
combination of gene knockdown and overexpression approaches revealed that the regulatory
role of cellular fibronectin in cardiac fibroblasts is mediated by Integrin-β1 signaling. Notably,
we observed a small but significant reduction in basal levels of AT1R in DDR2-null mouse
myocardium, which is associated with a reduction in myocardial Integrin-β1 levels, reported
by us earlier (6). We propose that the pro-survival role of cellular fibronectin and its regulatory
role in collagen and AT1R expression, downstream of DDR2, could be critical determinants of
cardiac fibroblast response to myocardial injury.

2. Results
2.1. DDR2 Mediates Ang II-Stimulated Fibronectin Expression in Cardiac Fibroblasts

Treatment of cardiac fibroblasts with Ang II (1 µM) enhanced cellular fibronectin
protein expression (≈2-fold), with concomitant increase (≈5-fold) in DDR2 protein expres-
sion (Figure 1A). Since enhanced DDR2 protein levels correlated with enhanced cellular
fibronectin protein expression, the effect of siRNA-mediated DDR2 knockdown on fi-
bronectin protein expression was checked to ascertain if DDR2 regulates fibronectin. DDR2
knockdown significantly diminished the Ang II-induced increase in fibronectin protein
expression (Figure 1B). Furthermore, inhibition of collagen type I-dependent activation
of DDR2 using WRG-28 [8] blocked Ang II-stimulated fibronectin protein expression
(Figure 1C). Conversely, overexpression of DDR2 in unstimulated cardiac fibroblasts led to
an upregulation of cellular fibronectin protein levels (Figure 1D), confirming the indispens-
able role of DDR2 in fibronectin protein expression.
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(Ang II) (1 µM). Protein was isolated at 12 h of Ang II treatment and subjected to Western blot 
analysis for the detection of fibronectin and DDR2, with β-actin as loading control. * p < 0.05 and ** 
p < 0.01 vs. control. (B) Cardiac fibroblasts were transiently transfected with DDR2 siRNA (5 pmol) 
or control (scrambled) siRNA prior to treatment with Ang II for 12 h. Fibronectin protein expres-
sion was examined with β-actin as loading control. Validation of DDR2 silencing is also shown. * p 
< 0.05, * p < 0.01 (comparisons as depicted in the figure). (C) Cardiac fibroblasts were treated with 
WRG-28 (2 µM) for 1 h prior to Ang II treatment. Cells were collected at 12 h post-Ang II treatment 
and fibronectin protein levels were examined, with β-actin as loading control. * p < 0.05 and ** p < 
0.01 (comparisons as depicted in the Figure). (D) Cardiac fibroblasts were transfected with DDR2 
cDNA overexpression plasmid (DDR2 OE) (with empty vector control, Control OE), as described 
under Materials and Methods, and fibronectin protein expression was examined, with β-actin as 
loading control. ** p < 0.01 vs. Control OE. Validation of DDR2 overexpression is also shown. Data 
are representative of three independent experiments, n = 3, Mean ± SEM. 

Figure 1. DDR2 mediates Ang II-stimulated fibronectin protein expression in cardiac fibroblasts. (A) Sub-confluent quiescent
cultures of cardiac fibroblasts were stimulated with Angiotensin II (Ang II) (1 µM). Protein was isolated at 12 h of Ang II
treatment and subjected to Western blot analysis for the detection of fibronectin and DDR2, with β-actin as loading control.
* p < 0.05 and ** p < 0.01 vs. control. (B) Cardiac fibroblasts were transiently transfected with DDR2 siRNA (5 pmol) or
control (scrambled) siRNA prior to treatment with Ang II for 12 h. Fibronectin protein expression was examined with
β-actin as loading control. Validation of DDR2 silencing is also shown. * p < 0.05, ** p < 0.01 (comparisons as depicted
in the figure). (C) Cardiac fibroblasts were treated with WRG-28 (2 µM) for 1 h prior to Ang II treatment. Cells were
collected at 12 h post-Ang II treatment and fibronectin protein levels were examined, with β-actin as loading control.
* p < 0.05 and ** p < 0.01 (comparisons as depicted in the Figure). (D) Cardiac fibroblasts were transfected with DDR2 cDNA
overexpression plasmid (DDR2 OE) (with empty vector control, Control OE), as described under Materials and Methods,
and fibronectin protein expression was examined, with β-actin as loading control. ** p < 0.01 vs. Control OE. Validation of
DDR2 overexpression is also shown. Data are representative of three independent experiments, n = 3, Mean ± SEM.

2.2. Transcriptional Regulation of Fibronectin by DDR2-Activated YAP Transcription
Co-Activator

Since YAP was earlier reported to be activated downstream of DDR2 [6], and bioin-
formatics analysis of the fibronectin promoter region showed a consensus binding site
for TEAD (a YAP-co-activated transcription factor), we checked whether YAP inhibition
would have an effect on fibronectin protein expression. YAP inhibition using a chemical in-
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hibitor (verteporfin) or siRNA significantly reduced Ang II-stimulated cellular fibronectin
protein expression (Figure 2A,B). Furthermore, chromatin immunoprecipitation assay
(ChIP) demonstrated YAP binding to the promoter region of fibronectin (containing the
TEAD consensus sequence) in Ang II-treated cells, which was attenuated in DDR2-silenced
(siRNA) or inhibited (WRG-28) cells (Figure 2C), confirming the transcriptional regulation
of fibronectin by DDR2-activated YAP.
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Figure 2. Transcriptional regulation of fibronectin by DDR2-activated YAP transcription co-activator.
(A) Cardiac fibroblasts were treated with verteporfin (10 µM) for 1 h prior to Ang II treatment.
Cells were collected at 12 h post-Ang II treatment, and fibronectin protein levels were examined,
with β-actin as loading control. ** p < 0.01 (comparisons as depicted in the Figure). (B) Cardiac
fibroblasts were transiently transfected with YAP siRNA (10 pmol) or control (scrambled) siRNA
prior to treatment with Ang II for 12 h. Fibronectin protein expression was examined, with β-actin as
loading control. Validation of DDR2 silencing is also shown. ** p < 0.01 (comparisons as depicted
in the Figure). Data are representative of three independent experiments, n = 3, Mean ± SEM. (C)
Sub-confluent quiescent cultures of cardiac fibroblasts were transiently transfected with YAP siRNA
(10 pmol) or control (scrambled) siRNA prior to treatment with Ang II (1 µM), and another set of
cells was pre-treated with WRG-28 for 1 h. Cells were collected at 30 min post-Ang II treatment and
chromatin was immunoprecipitated with anti-YAP antibody, followed by PCR amplification, and
analyzed on a 2% agarose gel for presence of the 150 bp region of the fibronectin gene promoter
containing the TEAD consensus binding site.

2.3. Functional Significance of Fibronectin Expression in Cardiac Fibroblasts
2.3.1. A Role for Fibronectin in Ang II-Dependent cIAP2 Expression and Apoptosis
Resistance in Cardiac Fibroblasts Exposed to Oxidative Stress

Fibronectin has been reported to enhance cell survival in various cell types [9–12].
Previous studies from our laboratory have demonstrated that Ang II enhances cIAP2
protein expression in cardiac fibroblasts that in turn protects these cells against ambient
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stress [7]. In the present study, the role of cellular fibronectin in the regulation of Ang
II-dependent cIAP2 expression in cardiac fibroblasts was probed. Fibronectin knockdown
using siRNA attenuated Ang II-stimulated cIAP2 protein expression (Figure 3A) and
enhanced the apoptosis susceptibility of cardiac fibroblasts exposed to 25 µM H2O2, as
indicated by decreased procaspase 3 and increased cleaved-caspase 3 levels (Figure 3B).
These observations pointed to the role of cellular fibronectin in enhancing cardiac fibroblast
survival under conditions of oxidative stress.
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Figure 3. Fibronectin mediates Ang II-stimulated protein expression of cIAP2, collagen type I, and
AT1R in cardiac fibroblasts. (A) Cardiac fibroblasts were transiently transfected with fibronectin
siRNA (20 pmol) or control (scrambled) siRNA prior to treatment with Ang II for 12 h. cIAP2 protein
expression was examined, with β-actin as loading control. Validation of fibronectin silencing is also
shown. * p < 0.05 and ** p < 0.01 (comparisons as depicted in the Figure). (B) Cardiac fibroblasts were
transiently transfected with fibronectin siRNA (20 pmol) or control (scrambled) siRNA. Following
treatment of cells with 25 µM H2O2 for 3 h, the cells were collected, and levels of procaspase 3
and cleaved-caspase 3 were determined, with β-actin as loading control. Validation of fibronectin
silencing and associated changes in cIAP2 levels are also shown. ** p < 0.01 (comparisons as depicted
in the figure). (C,D) Cardiac fibroblasts were transiently transfected with fibronectin siRNA (20 pmol)
or control (scrambled) siRNA prior to treatment with Ang II for 12 h. (C) Collagen type 1 protein
expression was examined with β-actin as loading control. Validation of fibronectin silencing is
shown. ** p < 0.01 (comparisons as depicted in the Figure). (D) AT1R protein expression was
examined, with β-actin as loading control. Validation of fibronectin silencing is shown. ** p < 0.01
(comparisons as depicted in the Figure). Data are representative of three independent experiments,
n = 3. Mean ± SEM.
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2.3.2. Fibronectin Mediates Ang II-Dependent Increases in Collagen Type I Expression

Fibronectin has been implicated in hepatic and pulmonary fibrosis [13–16], and global
or fibroblast-specific ablation of fibronectin in adult mice post-injury resulted in significant
cardio-protection with reduced hypertrophy and fibrosis [4,17]. Therefore, the possible role
of cellular fibronectin in collagen type I expression in cardiac fibroblasts was probed next.
Significant attenuation of Ang II-stimulated collagen type I protein expression (Figure 3C)
upon RNA interference-mediated knockdown of fibronectin suggested a role for cellular
fibronectin in the regulation of collagen expression in cardiac fibroblasts.

2.3.3. Fibronectin Mediates Ang II-Stimulated AT1 Receptor Expression in
Cardiac Fibroblasts

Previous studies from our laboratory have demonstrated that Ang II acts via the
AT1 receptor (AT1R) to enhance cIAP2 and collagen type I protein expression in cardiac
fibroblasts [7,18,19]. Therefore, we verified whether fibronectin plays a role in AT1R
expression in Ang II-treated cardiac fibroblasts. Interestingly, fibronectin knockdown
downregulated both basal and Ang II-stimulated AT1R protein expression (Figure 3D),
clearly indicating the role of cellular fibronectin in AT1R expression in cardiac fibroblasts.

2.4. Fibronectin Regulates Ang II-Mediated AT1R Expression through
Integrin-β1/Integrin-Linked Kinase Signaling Pathway

Fibronectin is reported to act via integrin α5β1 [20], and inhibition of the β1 subunit,
the partially conserved catalytic subunit of integrins [21–23], rather than the α5 subunit,
has a more pronounced inhibitory effect on the binding and assembly of exogenous fi-
bronectin [20,24]. In the present study, we observed that fibronectin siRNA attenuates
Integrin-β1 protein expression in Ang II-treated cardiac fibroblasts (Figure 4A), suggesting
that cellular fibronectin has an obligate role in the regulation of its receptor. The effect of
knockdown of Integrin-β1 and Integrin-linked kinase (ILK), a proximal effector of Integrin-
β1 [25], on AT1R was probed next. Abrogation of Integrin-β1 signaling using Integrin-β1
or ILK siRNA led to attenuation of AT1R protein expression in Ang II-stimulated cardiac
fibroblasts (Figure 4B,C). Notably, overexpression of Integrin-β1 in fibronectin-silenced
cells partially restored the protein levels of cIAP2, collagen type I, and AT1R in Ang II-
treated cells (Figure 4D), clearly demonstrating the involvement of fibronectin-dependent
Integrin-β1 signaling in the regulation of cIAP2, collagen type I, and AT1R expression in
cardiac fibroblasts.

2.5. DDR2 Knockdown Attenuates Ang II-Stimulated Expression of AT1R in Cardiac Fibroblasts

Since fibronectin expression is dependent on DDR2, we investigated the effect of DDR2
knockdown on Ang II-stimulated AT1R expression. siRNA-mediated DDR2 silencing
reduced both basal and Ang II-stimulated AT1R protein expression (Figure 5A). However,
DDR2 overexpression failed to restore AT1R in fibronectin-silenced cells, showing that
DDR2 regulates AT1R via cellular fibronectin (Figure 5B).
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Figure 4. Fibronectin regulates Ang II-stimulated AT1R protein expression through Integrin
β1/Integrin-linked kinase signaling pathway. (A) Cardiac fibroblasts were transiently transfected
with fibronectin siRNA (20 pmol) or control (scrambled) siRNA prior to treatment with Ang II for
12 h. Integrin-β1 (ITGB1) protein expression was examined with β-actin as loading control. ** p < 0.01
(comparisons as depicted in the figure). (B) Cardiac fibroblasts were transiently transfected with
ITGB1 siRNA (5 pmol) or control (scrambled) siRNA prior to treatment with Ang II for 12 h. AT1R
protein expression was examined, with β-actin as loading control. Validation of Integrin-β1 silencing
is also shown. ** p < 0.01 (comparisons as depicted in the Figure). (C) Cardiac fibroblasts were tran-
siently transfected with ILK siRNA (5 pmol) or control (scrambled) siRNA prior to treatment with
Ang II for 12 h. AT1R protein expression was examined, with β-actin as loading control. ** p < 0.01
(comparisons as depicted in the Figure). (D) Cardiac fibroblasts were co-transfected with fibronectin
siRNA (10 pmol) and ITGB1 cDNA overexpression plasmid (2 µg). Following transfection, the cells
were revived in M199 with 10% serum for 12 h. Post-revival, the cells were serum-deprived for 24 h
prior to treatment with Ang II for 12 h. Cells were collected and protein levels of AT1R, cIAP2, and
collagen type 1 were examined, with β-actin as loading control. * p < 0.05 and ** p < 0.01 (comparisons
as depicted in the Figure). Validation of fibronectin knockdown and ITGB1 overexpression is also
shown. Data are representative of three independent experiments, n = 3, Mean ± SEM.
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Figure 5. DDR2 regulates Ang II-stimulated protein expression of AT1R in cardiac fibroblasts. (A) Cardiac fibroblasts
were transiently transfected with DDR2 siRNA (5 pmol) or control (scrambled) siRNA prior to treatment with Ang II for
12 h. AT1R protein expression was examined, with β-actin as loading control. Validation of DDR2 silencing is also shown.
* p < 0.05, ** p < 0.01 (comparisons as depicted in the Figure). (B) Cardiac fibroblasts were co-transfected with fibronectin
siRNA (10 pmol) and DDR2 cDNA overexpression plasmid (2 µg). Following transfection, the cells were revived in M199
with 10% serum for 12 h. Post-revival, the cells were serum-deprived for 24 h prior to treatment with Ang II for 12 h.
Cells were collected, and AT1R protein levels were examined, with β-actin as loading control. * p < 0.05 and ** p < 0.01
(comparisons as depicted in the Figure). Validation of fibronectin knockdown and DDR2 overexpression is also shown.
Data are representative of three independent experiments, n = 3, Mean ± SEM.

2.6. AT1R Levels in DDR2-Null Mouse Hearts

In view of the obligate regulatory role of DDR2 in Ang II-stimulated cardiac fibroblasts,
we examined AT1R levels in DDR2-knockout mice carrying a germline deletion of DDR2.
Knockin of a MerCreMer gene targeting exon 3 of the DDR2 allele was used for germline
deletion of DDR2 in mice, and we had previously described the generation and validation of
these mice, along with initial observations [26]. In the present study, immunohistochemical
analysis of cardiac tissue sections using an anti-AT1R antibody demonstrated a small
but significant reduction in myocardial AT1R expression in DDR2-null mice (Figure 6A).
However, the global reduction in AT1R staining intensity suggested a likely decrease in
AT1R in myocytes in addition to fibroblasts, which are reportedly fewer in mouse heart [27].



Int. J. Mol. Sci. 2021, 22, 9343 9 of 17

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 18 
 

 

DDR2-null mice (Figure 6A). However, the global reduction in AT1R staining intensity 
suggested a likely decrease in AT1R in myocytes in addition to fibroblasts, which are 
reportedly fewer in mouse heart [27]. 

 
Figure 6. Corroboration of the DDR2-AT1R link in vivo. (A) Representative image showing 
3,3′-diaminobenzidine (DAB) staining of AT1R protein in myocardial tissue sections of 10-week-old 
WT and DDR2-null mice. ** p < 0.01 versus WT (n = 7). (B) Sub-confluent quiescent cultures of H9c2 
cells were treated for 24 h with conditioned medium (CM) derived from control siRNA-treated 
cardiac fibroblasts or DDR2-silenced cardiac fibroblasts. Quiescent cultures of H9c2 in M199 
without serum were used as the control for basal AT1R protein expression in these cells. AT1R 
protein expression in H9c2 cells was examined by Western blot analysis and normalized to β-actin. 
** p < 0.01 (comparisons as depicted in the Figure), (n= 3, for the conditioned medium experiments, 
cardiac fibroblasts were from three isolations from three rats). (C) Sub-confluent quiescent cultures 
of H9c2 cells were treated for 24 h with conditioned medium (CM) derived from control      
siRNA-treated cardiac fibroblasts or fibronectin (FN)-silenced cardiac fibroblasts. Quiescent cul-
tures of H9c2 in M199 without serum were used as the control for basal AT1R protein expression in 
H9c2 cells. AT1R protein expression was examined by Western blot analysis and normalized to 
β-actin. ** p < 0.01 (comparisons as depicted in the Figure), (n = 3, for the conditioned medium ex-
periments, cardiac fibroblasts were from three isolations from three rats). 

2.7. Cardiac Fibroblasts Influence AT1R Expression in H9c2 Cells via DDR2-Dependent 
Paracrine Mechanisms 

Figure 6. Corroboration of the DDR2-AT1R link in vivo. (A) Representative image showing 3,3′-
diaminobenzidine (DAB) staining of AT1R protein in myocardial tissue sections of 10-week-old WT
and DDR2-null mice. ** p < 0.01 versus WT (n = 7). (B) Sub-confluent quiescent cultures of H9c2 cells
were treated for 24 h with conditioned medium (CM) derived from control siRNA-treated cardiac
fibroblasts or DDR2-silenced cardiac fibroblasts. Quiescent cultures of H9c2 in M199 without serum
were used as the control for basal AT1R protein expression in these cells. AT1R protein expression in
H9c2 cells was examined by Western blot analysis and normalized to β-actin. ** p < 0.01 (comparisons
as depicted in the Figure), (n = 3, for the conditioned medium experiments, cardiac fibroblasts were
from three isolations from three rats). (C) Sub-confluent quiescent cultures of H9c2 cells were treated
for 24 h with conditioned medium (CM) derived from control siRNA-treated cardiac fibroblasts or
fibronectin (FN)-silenced cardiac fibroblasts. Quiescent cultures of H9c2 in M199 without serum were
used as the control for basal AT1R protein expression in H9c2 cells. AT1R protein expression was
examined by Western blot analysis and normalized to β-actin. ** p < 0.01 (comparisons as depicted
in the Figure), (n = 3, for the conditioned medium experiments, cardiac fibroblasts were from three
isolations from three rats).

2.7. Cardiac Fibroblasts Influence AT1R Expression in H9c2 Cells via DDR2-Dependent
Paracrine Mechanisms

Therefore, preliminary experiments were performed to explore the influence of
fibroblast-specific DDR2 on myocyte AT1R expression. To this end, the effect of rat car-
diac fibroblast-conditioned medium on AT1R expression in the rat ventricular H9c2 cell
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line (cardiomyoblasts) was analyzed. The exposure of H9c2 cells to fibroblast-conditioned
medium for 24 h enhanced AT1R protein expression, but notably, conditioned medium from
DDR2-silenced (Figure 6B) or fibronectin-silenced (Figure 6C) cardiac fibroblasts did not
enhance AT1R protein expression in H9c2 cells, pointing to a DDR2/fibronectin-dependent
paracrine effect of cardiac fibroblasts on AT1 expression in myocytes.

A schematic representation of the molecular events that link ECM and Ang II signaling
pathways in cardiac fibroblasts is provided in Figure 7.
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3. Discussion

Despite the centrality of interstitial fibrosis in heart disease and in the aging my-
ocardium, and increasing appreciation that therapies directed at cardiac fibrosis may retard
heart failure, there are limited therapeutic options to effectively target cardiac fibroblasts
and attenuate cardiac fibrosis. Blocking the actions of Ang II either with AT1R blockers or
ACE inhibitors is an accepted treatment strategy to reduce adverse cardiac remodeling fol-
lowing myocardial infarction, but it may entail unfavorable effects such as the paradoxical
activation of a negative feedback loop within the Renin–Angiotensin cascade, leading to
systemic elevation of Ang II [28–30]. Identification of alternate therapeutic targets would
hinge around a sound understanding of the molecular basis of cardiac fibrogenesis.

In this regard, the critical role of ECM in myocardial pathophysiology, particularly in
the pathogenesis of heart failure, has attracted increasing attention in recent years. ECM
proteins significantly impact cellular responses, cell migration, differentiation, proliferation
and survival through their ability to bind to multiple interacting partners, including other
ECM proteins, and the transmission of growth factor signals [31,32]. Alterations in ECM are
reported to play an important role in modulating fibroblast phenotype and function [33].
Major ECM proteins, collagen and fibronectin, and their receptors, DDR2 and integrins,
participate in signaling events and determine cell fate [34]. Our previous studies had
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shown that collagen type I-activated DDR2 is a ‘master switch’ in cardiac fibroblasts with
an obligate role in phenotypic transformation, proliferation, collagen expression, and
apoptosis resistance in cardiac fibroblasts [2,6,7].

Fibronectin is a high molecular weight glycoprotein constituent of the ECM that
interacts with several matrix and cell surface proteins to regulate cell adhesion, migration,
metastasis, proliferation, and differentiation, as well as embryogenesis, wound healing,
and blood coagulation [3]. It has also been reported that tissue fibrosis is associated with
the upregulation of fibronectin [13–16]. In the present study, Ang II was found to enhance
cellular fibronectin expression (Figure 1A). Although Ang II per se has not been shown to
enhance fibronectin, our observation is consistent with scleraxis-mediated enhancement
of fibronectin gene expression in cardiac fibroblasts by TGF-β1 [35], since it is known that
Ang II exerts some of its effects via TGF-β signaling in these cells [36].

We have shown previously that Ang II acts via the AT1 receptor and the GPCR
pathway to enhance DDR2 expression that in turn plays an indispensable role in collagen
type I gene expression [2]. The findings reported here indicate that DDR2 mediates Ang II-
stimulated expression of not only collagen type I but also of fibronectin (Figure 1B,C), which
underscores its critical role in ECM homeostasis and ECM signaling. Furthermore, our data
show the transcriptional upregulation of fibronectin by DDR2-dependent activation of YAP
(Figure 2), which is a mechano-sensitive transcriptional co-activator [37]. The observation
is consistent with previous studies that implicate the transcriptional activation of YAP
in pro-fibrotic gene expression in fibroblasts [37]. Moreover, a previous study from our
laboratory implicated Ang II-dependent activation of YAP in collagen type I expression [6],
and the inhibition of YAP has been reported to attenuate cardiac fibrosis [38].

It was of obvious interest to explore the pathophysiological significance of augmented
fibronectin expression in cardiac fibroblasts. Cardiac fibroblasts are relatively resistant
to several death signals that prevail in the injured myocardium, which enables these
cells to play a central role in tissue repair following myocyte loss but also facilitates their
persistence in the infarct scar, resulting in disproportionate stromal growth and pump
dysfunction [1,39]. While a role for constitutively expressed Bcl-2 in the resistance of cardiac
fibroblasts to a variety of pro-apoptotic stimuli was reported by Mayorga et al. [40], our
recent studies showed that anti-apoptotic cIAP2, induced by Ang II via a DDR2- and Serum
Response Factor-mediated mechanism, protects cardiac fibroblasts from ambient stress [7].
The present study extends these earlier observations and points to a role for cellular
fibronectin, downstream of DDR2, in Ang II-stimulated cIAP2 expression (Figure 3A) and
protection of the cells from oxidative damage (Figure 3B). In a recent study by Valiente-
Alandi et al., no significant change in fibroblast survival was observed upon inhibition
of fibronectin polymerization under basal conditions [4]. However, it is possible that
fibronectin is important for survival under stress conditions.

Collagen type I is the most abundant ECM protein in the heart and is a major con-
stituent of the scar tissue formed following injury [41]. Excessive collagen deposition leads
to diminished ventricular compliance that contributes to the initiation and progression of
heart failure. The regulation of collagen expression has understandably been a subject of
intense investigation for a long time. The findings presented here show that apart from a
role in cIAP2 expression, cellular fibronectin has a role in collagen type I expression in Ang
II-treated cells (Figure 3C), which is consistent with what was observed by Valiente-Alandi
et al. in an ischemia–reperfusion injury model [4].

Probing the regulatory role of fibronectin further, we found that its knockdown
attenuates the expression of not only cIAP2 and collagen type I but also of Integrin-β1
(Figure 4A), which is known to be importantly involved in transducing ECM signaling [42].
Thus, apart from acting as a ligand to trigger Integrin-β1 signaling, cellular fibronectin
also regulates Integrin-β1 gene expression in Ang II-stimulated cardiac fibroblasts. Further,
plasmid-mediated overexpression of Integrin-β1 in cells following fibronectin knockdown
restores, at least in part, the expression of cIAP2 and collagen type I (Figure 4D). Together,
the data indicate that cellular fibronectin is required for the expression of Integrin-β1 that
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in turn regulates cIAP2 and collagen type I in response to Ang II. The observed effect of
Integrin-β1 overexpression in fibronectin-silenced cells suggests that fibronectin may not be
indispensable as a ligand for Integrin-β1 signaling, and that other ligands such as collagen
may also trigger Integrin-β1 signaling. Our earlier study had shown that a cross-talk
between the two major collagen receptors, DDR2 and Integrin-β1, is a critical determinant
of α-SMA-dependent collagen expression in Ang II-stimulated cardiac fibroblasts [6].
Moreover, cell survival through ECM–integrin interactions has long been recognized [43].
In light of the data presented here, it appears that fibronectin acts downstream of DDR2
to regulate Integrin-β1 signaling-dependent gene expression in cardiac fibroblasts. Our
findings on the role of Integrin-β1 as an ‘effector molecule’ in a complex regulatory cascade
are consistent with an earlier report that ECM-mediated mechanical stress activates TGF-
β and triggers the expression of Integrins and the pro-fibrotic gene program in cardiac
fibroblasts [44].

We also examined the mechanistic basis of fibronectin-mediated apoptosis resistance
and collagen expression in Ang II-stimulated cardiac fibroblasts, downstream of DDR2.
It is known that Ang II, an effector molecule of the Renin–Angiotensin system, acts via
the AT1 receptor to exert its potent pro-fibrotic effects on cardiac fibroblasts, which makes
Ang II–AT1 signaling a major regulator of cardiac fibroblast response to myocardial injury
and hence a determinant of structural and functional alterations in the injured heart [45].
We had previously uncovered a complex mechanism of regulation of AT1R involving the
redox-sensitive NF-κB and AP-1 transcription factors that are activated by the coordinated
action of ERK1/2 MAPK, p38 MAPK, and JNK in cardiac fibroblasts exposed to oxidative
stress [19]. Interestingly, Ang II produced endogenously in response to oxidative response
was found to be responsible for increased AT1R expression [19]. Here, we present the
novel finding that cellular fibronectin has an obligate role in the regulation of AT1R in Ang
II-stimulated cardiac fibroblasts (Figure 3D). Notably, while knockdown of Integrin-β1
or ILK attenuated Ang II-stimulated AT1R expression, the overexpression of Integrin-
β1 in fibronectin-silenced cells partially restored AT1R expression (Figure 4D), showing
that Integrin-β1 signaling underlies, at least in part, the regulatory role of fibronectin
in enhanced AT1R expression in Ang II-stimulated cardiac fibroblasts. Consistent with
the fact that both fibronectin and Integrin-β1 are under the regulatory control of DDR2,
Ang II-stimulated AT1R expression was found to be attenuated in DDR2-silenced cells
(Figure 5A). However, DDR2 overexpression did not restore AT1R in fibronectin-silenced
cells, showing that DDR2 regulates AT1R via fibronectin (Figure 5B).

The relationship between DDR2 and AT1R was further evident from the reduced AT1R
levels in myocardial tissue from DDR2-null mice (Figure 6). Admittedly, the observed
difference was modest, although significant, but it is pertinent to note that these were basal
levels and hence noteworthy. Nonetheless, the regulatory role of DDR2 in AT1R expression
in Ang II-stimulated cells could be far more pronounced, as borne out by the findings
presented here. Our attempts to determine fibronectin levels in fixed myocardial tissue were
not successful, which was possibly due to antigen masking, and it is also likely that only the
injured myocardium may provide robust signals. However, we had previously reported a
significant reduction in collagen [10] and Integrin-β1 [6] in cardiac tissue from DDR2-null
mice. Additionally, data from the conditioned medium experiments presented here show
that a loss of DDR2 or fibronectin in cardiac fibroblasts could repress paracrine factors
regulating AT1R expression in myocytes. Considered in tandem, these data demonstrate
the importance of the DDR2–fibronectin–Integrin-β1 axis in AT1R expression, pointing
to a convergence of ECM signaling and Ang II signaling. These data unravel a novel
mechanism by which ECM can impact cardiac fibroblast function via Ang II signaling.

Our findings indicate the existence of a complex mechanism of regulation of car-
diac fibroblast function involving two major ECM proteins, collagen type I and cellular
fibronectin, and their respective receptors, DDR2 and Integrin-β1. Future investigations
should evaluate the possible role of other factors such as periostin within this complex
mechanistic framework of molecular events under the regulatory control of DDR2 in
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cardiac fibroblasts. To uncover mechanisms relevant to cardiac fibrogenesis, it is also
important to probe these DDR2-dependent signaling pathways in a setting of heart disease
and in the senescent myocardium.

Lastly, as noted earlier, targeting ECM proteins could offer alternate therapeutic strate-
gies to prevent or minimize adverse cardiac remodeling in pathological states. In this
regard, it is significant that fibronectin inhibition is reported to exert cardioprotective
effects through a significant reduction in cardiac fibrosis and adverse fibrotic remodeling
in an ischemia/reperfusion injury model [4]. Viewed in tandem with these earlier obser-
vations in an in vivo model of myocardial injury, our findings support the postulation
that increased susceptibility of cardiac fibroblasts to apoptosis and prevention of excessive
collagen deposition may, in part, explain the cardioprotective effect of fibronectin inhibition
observed in the animal model. Based on their findings, Valiente-Alandi et al. suggest
that targeting fibronectin polymerization may be a new therapeutic strategy for treating
cardiac fibrosis and heart failure. However, given the ubiquitous distribution and critical
role of fibronectin and Integrin-β1 in the heart, targeting them may entail global conse-
quences, compromising cardiac integrity and function. On the contrary, since fibronectin
and Integrin-β1 are under the regulatory control of DDR2, it is logical to postulate that the
predominant localization and regulatory role of DDR2 in cardiac fibroblasts mark it as a
cardiac fibroblast-selective drug target to control cardiac fibrosis.

4. Materials and Methods

Angiotensin II and M199 were obtained from Sigma-Aldrich (St. Louis, MO, USA).
Lipofectamine 2000 was from Invitrogen (Carlsbad, CA, USA). The Low Cell# ChIP kit
protein A × 48 was from Diagenode (Denville, NJ, USA), and the Chemiluminescence
Western blot detection reagent was from Thermo Fisher Scientific (Waltham, MA, USA).
DDR2, Integrin-β1, ILK, and control siRNAs were from Ambion (Foster City, CA, USA).
Fibronectin siRNA was custom-synthesized by Eurogentec (Liège, Belgium). The rat
DDR2/CD167b Gene ORF cDNA clone expression plasmid was obtained from Sino Bi-
ologicals (Beijing, China). Pcax Itgb1-FLAG was a gift from Dennis Selkoe and Tracy
Young-Pearse (Addgene plasmid 30153) [46]. Opti-MEM and fetal calf serum (FCS) were
from GIBCO (Waltham, MA, USA). All cell culture ware was purchased from BD Falcon
(Corning, NY, USA). Primary antibodies against DDR2 (Cat No. 12133S), Caspase 3 (Cat No.
9662), and cleaved-Caspase 3 (Cat No. 9661) were obtained from Cell Signaling Technology
(Danvers, MA, USA). Primary antibodies against cIAP2 (Cat No. sc7944), Fibronectin (Cat
No. sc9068), AT1R (Cat No. sc1173), and Collagen I (Cat No. sc293182) were from Santa
Cruz Biotechnology (Dallas, TX, USA). Loading control β-Actin (Cat No. A2228) antibody
was obtained from Sigma-Aldrich. ILK antibody was obtained from Elabscience (Houston,
TX, USA). All antibodies were used after dilution (1:1000). XBT X-ray Film was from Care-
stream (Rochester, NY, USA). The study on rats was approved by the Institutional Animal
Ethics Committees of Sree Chitra Tirunal Institute for Medical Sciences and Technology (B
Form No: SCT/IAEC-233/AUGUST/2017/94 and SCT/IAEC-268/FEBRUARY/2018/95),
and the study on mice was approved by the Institutional Animal Care and Use Committee
of the University of California, San Diego (protocol S05478, current approval: 2/19/2020–
2/19/2023).

4.1. Isolation of Cardiac Fibroblasts

Cardiac fibroblasts were isolated from young adult male Sprague–Dawley rats
(2–3 months old) as described earlier [47]. Sub-confluent cultures of cardiac fibroblasts
from passage 2 or 3 were used for the experiments. Cells were serum-deprived for 24 h
prior to treatment with 1 µM Ang II. Cells were pre-incubated with 10 µM verteporfin for
1 h before the addition of 1 µM Ang II in the appropriate group. The cells were collected
and processed further to analyze the expression of various genes and proteins.
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4.2. Western Blot Analysis

Sub-confluent cultures of cardiac fibroblasts in serum-free M199 were treated with Ang
II (1 µM), and relative protein abundance was determined by Western blot analysis follow-
ing standard protocols, with β-actin as the loading control. Enhanced chemiluminescence
reagent was used to detect the proteins with X-ray film.

4.3. RNA Interference and Overexpression

Cardiac fibroblasts at passage 3 were seeded on 60 mm dishes at equal density. After
24 h, the cells were incubated in Opti-MEM for 5–6 h with Ambion pre-designed Silencer-
Select siRNA, custom-designed siRNA from Eurogentec, or scrambled siRNA (control
siRNA) at the given concentrations (10 pmoles for both DDR2 and Integrin-β1, 20 pmoles
for Fibronectin (mix of siRNA 1 and 2) and Lipofectamine 2000).

The constitutive expression of DDR2 and Integrin-β1 was achieved under the control
of a CMV promoter. Both plasmids were verified by restriction mapping. For overexpres-
sion, the plasmid vector for DDR2 (2 µg/µL) was transfected using Lipofectamine 2000.
Following a post-transfection recovery phase in M199 with 10% FCS for 12 h, the cells were
serum-deprived for 24 h and then treated with Ang II (1 µM) for the indicated durations.
Cell lysates were prepared in Laemmli sample buffer (with β-mercaptoethanol), denatured,
and used for Western blot analysis.

4.4. Chromatin Immunoprecipitation (ChIP) Assay

The ChIP assay was performed with the Low Cell Number ChIP kit, according to
the manufacturer’s protocol. Briefly, after treatment of cardiac fibroblasts with 1 µM Ang
II for 30 min, the cells were cross-linked with 1% formaldehyde, lysed, and sonicated
with Bioruptor® sonication device (Diagenode, Liege, Belgium) to generate ≈600 bp DNA
fragments. The lysates were incubated with anti-YAP antibody overnight at 4 ◦C with
rotation. Immune complexes were precipitated with protein A-coated magnetic beads.
After digestion with proteinase K to remove the DNA-protein cross-links from the immune
complexes, the DNA was isolated and subjected to PCR using primers for the specific
promoter regions. In samples immunoprecipitated with the YAP antibody, the fibronectin
promoter region was amplified using FP-5′-AAAACCGTTTTGTCAAGGGATG-3′ and RP-
5′-TACCAGTTTCTTACAAGCGGTG-3′. DNA isolated from an aliquot of the total sheared
chromatin was used as loading control for PCR (input control). ChIP with a non-specific
antibody (normal rabbit IgG) served as negative control. The PCR products were subjected
to electrophoresis on a 2% agarose gel.

4.5. In Vivo Study and Histology

The generation of DDR2-null mice and genotyping were described in our previous
study [26]. Mouse tissue sections were prepared as described previously [6]. Briefly, hearts
were collected from age-matched (10 weeks) WT and DDR2-null mice, fixed in 4% buffered
paraformaldehyde for 2 days, embedded in paraffin, cross-sectioned, and mounted onto
slides. AT1R levels in these sections were analyzed by 3,3′-diaminobenzidine staining and
quantified using Fiji-Image J software [48].

4.6. Conditioned Medium Experiments

Rat ventricular H9c2 cells were used as an in vitro model for myocytes. The effect
of cardiac fibroblast-conditioned medium on H9c2 cells was studied. Cardiac fibroblasts
isolated from young adult (2–3 months) male Sprague–Dawley rats were transfected with
scrambled siRNA, DDR2 siRNA, or fibronectin siRNA. Six hours post-transfection, the cells
were revived in M199 with 10% serum for 12 h. Subsequently, the cells were transferred
to M199 without serum for 24 h to generate fibroblast-conditioned medium. H9c2 cells
were exposed to the fibroblast-derived conditioned medium from each of the transfected
groups, collected after 24 h of incubation. H9c2 cells exposed to fresh M199 medium
without serum served as controls for basal expression. Lysates of H9c2 cells were collected
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at 24 h following exposure to the conditioned medium, and AT1R protein expression was
analyzed and quantified after normalization to β-actin expression.

4.7. Statistical Analysis

Data are expressed as Mean ± SEM (Standard Error of Mean). Statistical analysis was
performed using Student’s t-test (unpaired, 2-tailed) for comparisons involving 2 groups.
For comparisons involving more than 2 groups, the data were analyzed by one-way
ANOVA (with one variable) or two-way ANOVA (with two variables). p ≤ 0.05 was
considered significant. The in vitro data presented are representative of 3 or 4 independent
experiments and the in vivo data are representative of 7 age-matched animals from each
group.
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