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Abstract
Why do we need to sleep? What regulates when we sleep? And what dictates the number of hours
we require? These are often viewed as three separate biological questions. Here, we propose they
share molecular etiologies, whereby regulators of sleep schedules and sleep duration also govern
the physiological purposes of sleep. To support our hypothesis, we review Mendelian human
genetic variants sufficient to advance sleep-wake onset (PER2) and shorten sleep length (DEC2),
and evaluate their emerging roles in immune responses that may rely on a sound night of slumber.
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Introduction
Sleep is an innate behavior that is evidently circadian for modern humans because it is
usually a daily, consolidated event with predictable timing. Quality of sleep is of utmost
importance, but it remains difficult to define because its purpose is highly debated in light of
many intriguing possibilities [1,2]. Besides restorative biological processes, optimal sleep in
conventional society also takes into account its timing (i.e. sleep schedules relative to the
time of day, also known as Process C due to its association with circadian rhythmicity) and
its duration (i.e. the number of hours that yield satiety, also known as sleep homeostasis or
Process S) (Figure 1A) [3]. Sleep disorders such as insomnia or sleep deprivation distort the
relationship between Process C and S and affect both (Figure 1B). Other variations in sleep
patterns include those that specifically affect Process C such as advanced sleep phase (where
affected individuals feel sleepy in the late afternoon and wake up before sunrise, though the
total amount of sleep remains conventional) (Figure 1C), and those that perturb only Process
S such as natural short sleep (Figure 1D) [4]. Therefore, understanding the biological
underpinnings of Process C and S may lead to targeted treatment for sleep disorders.
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It is a common belief that there are separate molecular pathways for Processes C and S, and
there may be coordinated mechanisms between them that together ensure “optimal” sleep
quality. Therefore, the molecular basis of the two-process model is sometimes simplified as
a Venn diagram with two partially intersecting circles (Figure 2A). Process C is better
understood compared to Process S because it is associated with the “molecular core clock,”
which defines a series of mechanisms that allow a cell to maintain circadian rhythmicity.
The most defined aspects of the molecular core clock are a series of transcription-translation
negative feedback loops that take approximately 24 hours to complete [5,6]. But despite a
remarkable correlation between cellular and behavioral circadian periods (the time it takes to
complete one cycle), [7] it is not clear how the molecular core clock regulates timing of
sleep onset and offset. The molecular basis of Process S is even more nebulous because it is
challenging to define and assay sleep homeostasis in vitro. Therefore, identifying molecular
components sufficient to alter sleep timing and duration is of high research interest.

Through the identification of Mendelian human sleep traits, genetic mutations that result in
advanced sleep phase (PER2) and shortened sleep duration (DEC2) were found [8–10]. With
regard to the two-process model, PER2 appear to participate in Process C and DEC2 in
Process S. Interestingly, emerging evidence suggests an intimate relationship between
Processes C and S, and clinical outcomes related to immune responses. Is it possible that
instead of directly sharing molecular mechanisms, Process C and S may instead coordinate
through participating in physiological reasons for sleep such as immune function? Here we
posit that PER2 and DEC2 may function as regulators of sleep timing and duration
respectively, yet both simultaneously impact the immune system via separate mechanisms
(Figure 2B). Together, this hypothesis explains the observed correlation between sleep and
immune responses, and also supports an alternative view of the two-process model. Finally,
we discuss the challenges of untangling the molecular basis of sleep regulation (how much
sleep and when), its physiological function (why we sleep), and the consequences (or
feedback) of impaired sleep on molecular mechanisms underlying Processes C and S.

Human Genetics of Sleep Timing and Duration
The first Mendelian human circadian rhythm trait characterized was Familial Advanced
Sleep Phase (FASP), a highly penetrant autosomal dominant trait [8,11]. Affected
individuals awaken and go to bed exceptionally early to maintain a normal quantity and
quality of sleep, and attempts at modifying circadian tendencies (such as the use of
phototherapy) are usually unsuccessful [12,13]. This advancement in sleep phase is
accompanied by a shortening of free-running activity period, which measures the
endogenous behavioral sleep-wake cycle in the absence of environmental cues such as light,
food timing, and social interaction [11,14].

Using human genetic methods, it was determined that PER2-S662G is associated with FASP
in this pedigree. To demonstrate that PER2-S662G is sufficient to advance sleep timing,
BAC transgenic mice carrying PER2-S662G and PER2-S662D were generated, with the
latter mimicking phospho-serine at the same site because S662 was hypothesized to be a
phosphorylation site. Remarkably, PER2-S662G mice recapitulate advanced activity onset
and shorter free-running period observed in FASP individuals, whereas PER2-S662D mice
demonstrate longer free-running periods [9]. Further supporting the importance of PER2
phosphorylation in sleep timing, an additional genetic variant identified for FASP is located
in CSNK1D, which reduces enzymatic activity and therefore hypophosphorylates PER2 in
vitro [15,16]. In addition, constitutive expression of PER2 reversibly disrupts circadian
rhythms of activity [17].
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Together, these findings suggest that the circadian oscillation of PER2 may be sufficient for
regulating sleep timing [6]. However, FASP individuals do not exhibit overt changes in
Process S according to EEG measures of sleep architecture [11]. In addition, Per2 knockout
(KO) mice are reported to exhibit no significant differences in sleep homeostasis [18],
suggesting that PER2 may be responsible for only Process C. But since PER2 and CSNK1D
mutations appear to be sufficient for advancing sleep phase and transmit in a Mendelian
manner, it was hypothesized that a rare genetic variant that changes sleep duration may also
exist. Indeed, Familial Natural Short Sleepers (FNSS) were found to sleep 6–6.5 hours per
night (~2 hours less than controls), and they do not report a sense of sleep deprivation.
These FNSS individuals carry a mutation in DEC2/BHLHE41, which encodes a
transcription repressor that belongs to the Hairy/Enhancer of Split subfamily [19]. The
mutation replaces a proline at position 384 with arginine, and BAC transgenic mice carrying
DEC2-P384R exhibit altered sleep homeostasis. Specifically, DEC2-P384R mice undergo
shorter duration of rapid eye movement (REM) (~2%) and non-REM (NREM) (~6%) sleep,
and recover more readily from sleep deprivation. Together, these findings suggest that
DEC2-P384R is sufficient for reducing sleep length [10].

How does the DEC2-P384R mutation reduce sleep quantity? Early evidence suggests that
DEC2 participates in the molecular core clock, but it is unclear whether circadian molecular
mechanisms are responsible for its effects on sleep quantity [20–22]. P384R is located in a
novel proline-rich domain with no known circadian function. In addition, unlike PER2-
S662G, neither DEC2-P384R nor Dec2 KO mice demonstrate a change in free-running
period of activity [10,23]. These findings suggest that at least on a behavioral level, sleep
quantity and timing are separate processes. In addition, the evidence presented so far seems
to suggest that PER2 regulates sleep timing through the molecular core clock, whereas
DEC2 alters sleep duration through other pathways that require further investigation.
Therefore, Process C and S may not directly share molecular mechanisms responsible for
co-regulating sleep timing and duration. However, recent studies demonstrate a clinical
correlation between sleep and immune responses. Perhaps PER2 and DEC2 both exert
distinct effects on immune responses, resulting in co-regulation of a potentially important
function of sleep? To address this possibility, we explore immune-related roles of PER2 and
DEC2 in the next section.

Genes that make you tick can make you sick
While there are numerous studies aimed at understanding circadian effects on metabolism,
cardiovascular function, and other physiological processes, similar research for
immunological responses is just beginning to emerge [5,24]. Clinical observations suggest
that the time of day influences susceptibility to disorders of human immunologic activity,
which implies that circadian molecular mechanisms may regulate immune function. For
example, the risk of mortality in human patients suffering from sepsis is increased between
the hours of 2 am and 6 am [25]. Some rheumatic arthritis and asthma patients experience
daily cyclical variations in the severity of symptoms [26–29]. Similarly, changes in sleep
quantity can interfere with appropriate immunologic responses. For instance, adults with
short sleep duration had lower secondary antibody responses to Hepatitis B vaccine,
resulting in decreased predicted clinical protection [30]. In turn, this observation is
associated with increased T lymphocyte activation and reduced natural killer (NK) cell
activity [31]. Together, these findings suggest that sleep timing or duration and some aspects
of immune function may be regulated by common molecular mechanisms.

PER2 and DEC2 appear to be sufficient for altering sleep timing and duration respectively,
and these proteins are recently implicated in immune processes, potentially one of the many
purposes for sleep. Indeed, Per2 KO mice demonstrate resistance to endotoxemic shock
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compared to wild-type mice after intraperitoneal injection with lipopolysaccharide (LPS)
[32], and this finding is attributed to reduced oscillations and absolute quantities of IFN-γ
and IL-1β cytokines. Furthermore, peritoneal macrophages of Per2 KO mice downregulate
the expression of Toll-like receptor 9 (TLR9), a pattern recognition receptor that participates
in both innate and adaptive immunity. When challenged with TLR9 agonist, peritoneal
macrophages from Per2 KO animals had reduced IL6 and TNFα production in vitro. These
effects likely involve the molecular core clock, because in vivo challenges of wild-type mice
performed at the peak of TLR9 oscillation revealed increased morbidity and mortality [33].

Supporting the involvement of the molecular core clock in immune responses, other core
clock components are also implicated to regulate inflammatory potential. When injected
with LPS, both systemic Rev-Erbα KO and macrophage restricted Bmal1 KO mice had
elevated cytokine production by abolishing the robust time-sensitive generation of IL-6
compared to controls [34]. Macrophages from Cry1/2 double KO mice have increased
nuclear factor kappa B (NF-κB) activity, causing elevated baseline cytokine expression in
vitro and generating greater inflammation when challenged with LPS in vivo [35]. In
addition, in the absence of Clock, T cells fail to proliferate in a circadian manner [36]. As
many immune relevant transcription factors, such as members of the signal transducer and
activator of transcription family (STATs) and NF-κB, also fall in the domain of circadian
regulation, it is likely that the molecular core clock drives downstream activities of immune
responses, with PER2 responsible for a subset that remains to be fully elucidated [37].

Similar to PER2, DEC2 also exerts influences on immune function. Specifically, DEC2 is
involved in the maturation of T helper type 2 (TH2) cell lineages associated with humoral
(antibody mediated) immunity. TH2 cells highly express DEC2 compared to other T-cell
lineages [38,39]. Dec2 KO mice demonstrate defective TH2 responses after repeated
stimulation with OVA peptide, decreased alveolar infiltrate and reduced TH2 cytokine
production after exposure to an in vivo model of allergic asthma [39]. DEC2 overexpression
in undifferentiated T cells drives a TH2 cell polarization while in vivo allergic asthma
challenges yield increased TH2 cytokine production and increased lung interstitial infiltrate
compared to WT animals [38]. To our knowledge however, there are no current studies
addressing the effect of Dec2 on TH2 cell populations or the larger immune system in the
context of circadian timing or, more relevantly, distortion of sleep length. As DEC2 has
been shown to affect pathways as diverse as cellular proliferation, differentiation, apoptosis
and responses to hypoxia, DEC2 may exert its effects on the immune system and sleep
duration outside of the molecular core clock. Further research is necessary for defining
pathways downstream of DEC2, and it will be interesting to see whether DEC2-P384R
confers beneficial or detrimental immune outcomes in addition to its role in reducing sleep
duration.

Our hypothesis assumes that one of the main purposes of sleep is immune-related, and most
findings that investigate the relationship between sleep and immune responses do so through
disrupting sleep. Transcriptome based analysis of human subjects after sleep deprivation
(disruption of Process C and S) reveal significant changes in multiple immune related
pathways [40,41]. Supporting these findings, sleep deprivation in animal models decreases
circulating lymphocyte populations, reduces the cellularity of the spleen and bone marrow
[42,43], and acutely elevated inflammatory markers [44]. Simulated jet-lag models (which
attempt to mimic disruptions of Process C) altered coordinated rhythmic expression of
cytolytic factors and cytokines in NK cells, leading to deficient cytolytic function [46] and
markedly decreased survival after LPS injection [45,46]. Interestingly, when compared to
control, a group of genes that maintain circadian oscillation after sleep deprivation were
explicitly immune related, hinting at the critical nature of circadian immune regulation since
they are relatively preserved [41]. Together, these findings support a correlation between
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sleep and immune function, and we conclude with a further discussion of this association in
relations to our hypothesis.

Conclusions
Although it is difficult to study both adaptive and innate immune responses simultaneously,
it is plausible that Process C has a broader effect on immunity encompassing both adaptive
and innate functions, whereas Process S may more specifically affect adaptive immunity and
T cell polarization. Sleep deprivation with its effect on both Process C and S would then
encompass the broadest range of immune alteration. However, even though these data allude
to a hierarchical model for sleep and immunity (i.e. disruption of Processes C and S results
in impaired immune function), a forced alteration in sleep timing/duration may not be the
same as natural/habitual short sleep that satisfies homeostatic requirements. For instance,
sleep deprivation may disrupt both the normal physiological purposes of sleep and affect
molecular cues for initiating and enforcing sleep.

As an alternative viewpoint, here we propose that Processes C, Process S and certain
immune responses (that may contribute to the physiological necessity of sleep) share
molecular components such as PER2 and DEC2. As FASP and FNSS models exhibit stable
and inherent alterations of sleep timing and duration, the characterization of their immune
responses may address this hypothesis. Furthermore, identification of novel genes for FASP
and FNSS may provide additional molecular correlates for sleep timing and duration beyond
PER2 and DEC2. Ultimately, physiological reasons for sleep and regulation of sleep itself
may require a delicate balance of shared molecular events. Therefore, tuning these pathways
using both KO/haploinsufficient animals (loss-of-function) and transgenic mice carrying
human mutations (gain-of-function) may reveal the answers to age-old questions of how,
when, and why we sleep.
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Highlights

• 2-Process Model for sleep has distinct circadian (Process C) & homeostatic
(Process S) components

• Mendelian genes exist for advancing sleep (PER2) & shortening sleep duration
(DEC2)

• Some immunologic responses are associated with circadian timing & sleep

• PER2 is part of a molecular clock that influences innate & adaptive immune
function

• DEC2 is implicated in immune function through T cell polarization
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Figure 1. The Integration of Process C and Process S
Figure not drawn to scale to emphasize theoretical changes. (a) The hypothetical two
process model of sleep as described by [3] integrates the daily (circadian) oscillation of
sleep propensity (Process C) with the homeostatic sleep propensity accumulated in the
awake state and relieved by restorative sleep (Process S). This model of integration assumes
that Process C is unaltered in the setting of sleep deprivation. (b) A model of sleep
integration whereby sleep deprivation also alters Process C (purple line) causing increased
dys-synchrony between the two-processes and reconciliation of sleep need. (c) A model of
integration where Process C is advanced (red line) over normal (dashed line) and Process S
is unperturbed. (d) A model of integration where homeostatic sleep component of Process S
is shortened and Process C is undisturbed. Blue bars, sleep. White bars, sleep deprivation.
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Figure 2. Molecular basis for the Two-Process Model of sleep regulation
(a) The two-process model has been and remains instrumental for understanding the
dynamics of sleep regulation, and recent research is focused on finding molecular correlates
for these processes, with an implicit assumption that there are shared molecular mechanisms
as well as separate pathways. (b) Our proposed model for understanding the purposes and
regulation of sleep based on the Two-Process model [3]. Recent evidence suggests that
PER2 and CSNK1D may be sufficient to alter sleep onset-offset timing, and DEC2 may be
sufficient to reduce sleep duration and modify sleep architecture by reducing NREM sleep
more than REM sleep. Emerging findings point to additional roles for PER2 and DEC2 in
various aspects of immune function, which may contribute to the physiological purposes of
sleep.
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