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SIMULATION AND RESISTIVITY HODaING OF A GEOTHERMAL RESERVOIR 
WITX WATERS OF DIFFERENT SALINITY 

by 

KO D t U t S S *  n. W i l t ,  C. S. mdvarsson, and N. E. Goldstein 
Lawrence Berkeley Laboratory, University of Cal i fornia  

Snrkeley, Cal i fornia  9472Q 

Apparent resistivities measured by means of 
r epe t i t i ve  dipole-dipole surveys show s igni f icant  
changes v i t h i n  the C e r m  P r i e t o  reservoir. 
changes a re  a t t r ibu ted  to production and na tura l  
recharge. To tetter understand the observed 
geophysical phenomena, we performed a simple 
reservoir  s i m k t i o n  study combined with the 
appropriate DC r e s i s t i v i t y  calculat ions to 
determine the expected Mgnitude Of apparent 
r e s i s t i v i t y  change. we consider production froPl 

parameters of the Cerro P r i e t o  'A' reservoir  and 
assume lateral and vertical recharge of colder 
and less sa l ine  waters. Based on ra ther  schematic 
one- and trro-dimensional reservoir  simulations, 
we calculate changes i n  formation r e s i s t i v i t y  
which ve then transform i n t o  changes i n  apparent 
r e s i s t i v i t y  that would be observed a t  the 
surface. Simulated changes i n  apparent resist- 
i v i t i e s  over the production zone show increases 
of 10 to fQl Ovar a 3 year period a t  the current  
r a t e  of f lu id  extraction. Changes of this 
magnitude a re  not only within our a b i l i t y  to 
discern using proper f i e l d  techniques, bu t  a r e  
consis tent  in magnitude w i t h  some of the obnerved 
effects. mwever, the pat terns  of apparent 
r e s i s t i v i t y  changes i n  the simulated dipole-dipole 
preudosection only pa r t i a l ly  resemble the observed 
f i e l d  data. This i s  explained by the f a c t  t ha t  
the ac tua l  f l u id  recharge in to  tha 'A' reservoir 
is more complicated than assumed i n  our simple, 
schematic recharge models. DC r e s i s t i v i  
mQfIitoring appears capable of providing 
information on f lu id  flow processes i n  a producing 
geothermal reservoir. Such information is 
extremely valuable fo r  the development of quanti- 
t a t i ve  predictions of future  reservoir performance. 

&e 

liquid-dOrPiMted reservoir  With diQeMi0M urd 

c t  

INTRmucTIcN 

Surfaea r e s i s t i v i t y  measurements have often 
been succennfully employed i n  geothermal explora- 
tLon because geothermal reservoirs  usually have 
an associated r e s i s t i v i t y  anomaly uhich, when 
interpreted i n  conjunction w i t h  thermal and 
geochemical data ,  pernits approximate ident i f ica-  
t ion  of f i e ld  boundaries. Resis t iv i ty  data a re  
of ten  relied upon Lot i n i t i a l  resource e 
and for  targeting of exploratory w e l l s .  

For several years r e s i s t i v i t y  sounding and 
modeling have been carried Out a t  Cerro P r i e t o  by 
the Lawrence Urkefey Laboratory ( L W  and the 
Comisibn Federal de Electricidad (CFE). Ihis 
work has ident i f ied  subsurface structures which 

c o r r i l a t e  w e l l  with p roduc t ih  horizons urd 
geological aodela of Qrro Pr ie to  based on 
independent data. Repetitive res is t iv i ty  measure- 
ments made since 1919 by LBL have achieved a 
precision and reproducibi l i ty  which has mads it 
possible to c l ea r ly  ident i fy  temporal changes 
which can ba a t t r ibu ted  to the large sca le  
exploi ta t ion of the reservoir ( w i l t  and Goldstein, 
1981)c It is of i n t e r e s t  to note that  recent 
f ield tests in Utah and Kansas have also shown 
s igni f icant  changes i n  apparent formation 
r e s i s t i v i t y  as a consequence of tertiary oi l  
recovery procenses ( B a r t e l  and Wayland, t981). 
W i l t  and Coldstain (l981) discuss possible 
mechanisms which could eaoae the observtd resist- 
ivity changes a t  etro Pr ie to .  These include t i )  
recharge of f lu ids  w i t h  d i f f e ren t  salinity, (ii) 
formation of twephase zones near the wells, and 
t i i f )  changes in reservoir  temperature. Ihe 
present paper examines in more detail the feasi- 
b i l i t y  of applying r e s i s t i v i t y  measurements f o r  
Q O n i t o r i n g  reservoir processes caused by exploita- 
tion. t?e apply numerical modeling techniques to 
PQady migration of waters af d i f f e ren t  temperature 
and s a l l n i t y  in responne to production, and we 
use sirmlated changes of temperature and s a l i n i t y  
to predict changes i n  apparent resistivity a t  the 
surface. Our studies employ r a t h e r  schematic urd 
s b p l i f i e d  renervoir models in order to demon- 
rtrate how reservoir  engineering and geophysical 
tachnlques can be combined fo r  monitoring reser- 
voir processes cawed by exploitation. We 
have not  attempted to construct a detailed model 
Of the Cerro O r i e t o  field; hovcver. we have 
employed formation parameters, thermodynamic 
eohditfons, ud overal l  dimensions representative 
of Carro Drieto, so that  our results should 
permit a realistic assessment of the proposed 
methodology. 

SIMULATION OF A RESERVOIR 
WITX -0 WATERS OF DIFFERENT SALINITY 

conrider production of liquid water from 
a gmrous reservoir w i t h  an i n i t i a l  temperature of 
T r-3000f. The vertical pressure p ro f i l e  is 
4ssumed hydrostatic, vith an average pressure 
Pav - 120 bars. The reservoir communicates 
with recharge waters of T - 100% above andfor 
a t  the margins. me mass f rac t ion  of recharge 
water i s  denoted by XI i n i t i a l l y  x - 0 i n  the 
reservoir. The recharge waters are assumed to 
ham d i f f e ren t  (lowar) s a l i n i t y  than the water 
i n i t i a l l y  i n  place i n  the reservoir. 
of numerical modeling, howaver* we ignore a l l  
differences i n  thermophysical properties a r i s ing  
from di f fe ren t  sa l in i ty ,  such as differences i n  

For purposes 
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viscosi ty ,  density, boiling c u m ,  etc. We w r i t e  
separate mass balances for  'water 1" ( x  = 0 )  and 
' w a t e r  2" (x - 1 ) .  which makes it possible t o  
keep track of the individual waters as they 
start flowing and mixing i n  response to production. 
A similar  approach w a s  presented by Geshelin e t  
al. (1¶8l)  fo r  tracing f lu id  migration during 
steam ass i s ted  o i l  recovery. 

The reservoir simulations reported belw 
were carr ied out  with LBL's compositional simu- 
l a t o r  MUUCOH, which is similar t o  the geothermal 
reservoir  simulator S m 7 9  (Pruess and Schrocder, 
1980), except t h a t  tw water components are 
included. To demonstrate the mixing ef fec ts ,  we 
present results for  two one-dimensional model.. 
we consider A 1 - m  thick vertical slice of 70O-m 
length md 400-m height, which roughly corresponds 
to a ver t i ca l  section from the center of Cerro 
Pr ie to  A (or upper) reservoir to the mawin of 
the present w e l l  f i e l d  (see f igure t 1. 
sect ion shown in  rigura 1 is produced uniformly 
a t  a volumetric rate equal to the actual average 
rate Ovar the last several  years. 
reservoir  parameters of thickness w - 400 E. 
radius R = 700 m fo r  the presently exploited 
portion of Carro Pr ie to  f i e ld ,  the average 
production rata of 600 kg/s l=2,160 tona/hr) 
corresgonds to 8 volumetric rate of 9.74 x 10') 
k g / s a  . The total production r a t e  from the 
400 x 700 x 1 m3 sect ion i a  then 0.273 kg/s. 
Other model parameters were chosen to represent 
best estbates fez Qrro P r i e t o  reservoir  (ace 
Table 1). 

The 

hasumtng 

In case (a) we study lateral recharge. The 
top urd bot- boundariea are assumed "no flow', 
whereas conditions of T - lOOOc, p - 120 bars, 
x - 1 a re  maintainad a t  the right boundary. The 
l e f t  boundary corresponds to the center  of the 
reservoir  and is always "no flow' dm to symmetry. 
Thus, the syatem starts out  w i t h  a s t ep  change i n  
temperature 8nd water composition a t  the r igh t  
boundary. For the numerical simulation the 
reservoir  is aukdivided i n t o  20 volume dements  
of 35 m length each. Five sinks w i t h  a st rength 
of 0.0546 kg/s each were placed in to  elements 1 ,  
5 ,  9, 13, urd 17 to approximate a uniform deple- 
tAon (Figure 1 ) .  In response to production, water 
with T = lo-, x - 1 starts to invade the 
reservoir  from the margins. The temperature and 
composition prof i les  a f t e r  t - 3 years are 
shown i n  Figure 2. The thermal f ront  advances a t  
8 p p r O ~ h 1 t e l y  OM fourth the speed of the composi- 
t iona l  front, due to heat  t ransfer  from the rocks 

assumed in our modeling study, no -phase zones 
form i n  the reservoir. It should be stressed 
that the amcaring of cornpositional and thermal 
fron+a is en t i r e ly  due to numerical dispersion, 
as our model docs not include actual  physical 
dispersion due to multiple flow paths and other 
mechanisms. 
four times f iner  gr id ,  using 80 gr id  blocks fo r  
the 700 m length is a l so  shown i n  Figure 2. A 
much steeper, less dispersed prof i le  i a  then 
obtained for  the fronts. 

to the cold recharge waters. For the conditions 

For comparison a calculation with a 

Case (b) d i f f e r s  f r m  (a) i n  that ve r t i ca l  
recharga from the top is considered. 
simulating production, we perform gravi ta t ional  

Before 

equi l ibrat ion,  keeping p = 120 bars fixed a t  an 
elevat ion of 200 m above reservoir b o t t o m .  In 
the production simulation, the pressure is then 
mainained a t  its equilibrium value p - 106.7 
bars at  the top of the reservoir. 

Case (e) is the moat realistic of the models 
considered here. The model is tvcrdimensional, 
and deals  w i t h  both ver t i ca l  and lateral recharge 
and gradational changes i n  temperature and 
sa l in i ty .  
below ground surface urd extends to the rcsemoir 
top a t  800 m depth (see Figure 3 ) .  The reservoir 
height  is again W - 400 m, but  the l a t e r a l  
dimemion is a l igh t ly  increased to 1600 m, as 
compared  to 1400 m i n  the  one-dimensional models. 
Due to symmetry, only one half of the system 
needs to be modeled. Laterally, the reservoir is 
connectad to a recharge tone of 1000 m length 

the outer  boundary. The i n i t i a l  variations in 
temperatum urd f lu id  composition between reser- 
voir ud vertical and lateral recharge boundaries \ 
are assumed to be amooth. The, following paramate- 
itation was used: 

The ver t i ca l  recharge zone begins 600 m 

with COnditfOna O f  T l O ~ ,  X 1 on 

t i )  coplposition: 
0 i n  reservoir; 

t(U between reservoir 
4 n  - and rechazge boundaryt 

1 a t  recharge bomdary; 

( i f )  tempera+urcr 
300*C in reservoir; 

300 - f (L)  x (300-100)OC 
between reservoir and 

Tin recharge boundary; 

100.C a t  recharge bound- 
ary. 

I 
mre L i a  the dis tance from the vertical o r  
l a t e r a l  reservoir boundary, and 

L is the vertical or l a t e r a l  distance ktween 
resertroir and recharge boundaries (bertia = 
200 m; L1ater.l 1000 a). 

The computational aesh employs 100 m horison- 
ta l  and SO m ver t i ca l  spacing, fo r  a t o t a l  of 
(18 x 8 )  + ( 8  x 4 )  - 176 elemenb, plus elements 
f o r  representing the boundaries. The problem is 
initialized with approximate gravi ta t ional  
equilibrium relative t o  a reference pressure of 
p - 120 bars a t  1000 m depth. 
erature differences between reservoir  and recharge 
vaters  no rigomus gravi ta t ional  equilibrium is 
possible). The same volumetric production r a t e  
a s  was used i n  the one-dimensional models is 

(Due to the temp-  
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employed. 
sources, placed i n  elements 01, E3, DS, and E7 
(see Figure 3 ) .  

10'1 5 12, corresponding to a kH * 40 x 
10-12 m3. This agrees c losely with the 
Yie ld  value" 36 x lO'l2 m3,  which can be 
derived from an average transmissivity kH/U- 0.4 
x 10'6 m3/Pa.s ( L i g w r i ,  1979) and Y (300%) 
I 9.01 x 10-5 ~ a . s .  
assumed one tenth of horizontal permeability. 
For these gcrmeabilities, the reservoir can 
e a s i l y  sustain the applied production rate. 
The l a rges t  observed pressure decline a f t e r  5 
years is approximately 1 MPa, SO that pressures 
remain w e l l  above saturat ion pressure and no 
fwo-phase zones evolve. 

Production is divided among four 

Horizontal permeability is taken to be 100 x 

- 
vertical permeability was 

* 

Temperature prof i les  for layers  C. E, and G 
after 3 years of simulation a re  presented i n  
Figure 4. 
( t  - 0 )  is also plot ted for comparison. The 
f igure  shous a s igni f icant  migration (vertical 
and l a t e r a l )  of colder waters i n t o  the pmduction 
zone (0-800 meters away from the symmetry l i n e )  
due to the massive exploitation. The migration 
of the colder recharge waters from above is , 

evident  from the lowar temperatures i n  the G 
l ayer  in comparison with the temperature prof i le  
i n  the C layer in the production region. 
Lateral migration of the teeharge waters is a l so  
evident  i n  figure 4 when the temperature prof i les  
for layera C and G are compand to the i n i t i a l  
temperature d is t r ibu t ion  ft * 0 ) .  The tempera- 
t u re s  in layer  C arc everywhere higher than the 
temperatures i n  layers  C and t i n  the outaide 
region (> 800 meters away from the symmetry l i ne )  
because of bouyancy ef fec ta ,  

The i n i t i a l  temperature d is t r ibu t ion  

The composition prof i les  fo r  layers C, t, 
and C a f t e r  3 years of simulation are shown i n  
Figure 5. 
(t  * 0 )  is included for reference. The e f fec t s  
of vertical and lateral recharge, as w e l l  as 
buoyancy ef fec ts ,  are c lear ly  evident. The I 

i n t e r i o r  of the production region I l a f t  portion 
of Figure $ 1  i s  dominated by ver t ica l  recharge, 
which i s  st rongart  for the topmost layer. 
Accordingly, the mass f ract ion of recharge w a t e r  
is grea tes t  i n  layer  G, and smallest i n  layer  C 
near the bot- of the reservoir. A d i f f e ren t  
picture  is observed a+ the  reservoir margins at a 
distance of 800 m from the symmetry line. 
There lateral recharge is dominant, which, due to 
buoyancy ef fec ts ,  tends to ba stronger i n  the 
lower portiona gf the reservoir, SO that x ( layer  

e f f a c e  cause x ( layer  G) to decrease more 
rapidly away from the l a t e r a l  recharge boundary 

i s  obaervtd for  layer E or C. The decrease i n  x 
( layer  G) is reversed inside the reservoir  due to 
ve r t i ca l  recharge, giving rise to a minimum i n  x 
( layer  G) near the reservoir margin (800 m ) .  A 
complex interplay of ve r t i ca l  and l a t e r a l  recharge 
is a l so  observed for layer E. 

Again the i n i t i a l  composition prof i le  

w C) > x (layer E) > x ( layer  GI. The buoyan 

_ / -  ( a t  1800 m distance from the symmetry l ine )  than 

RESISTIVITY MODELING OF 
A RESERVOIR W I T H  WATER M I X I N G  

A two dimensional f i n i t e  difference computer 
code was used i n  numerical calculat ions fo r  
r e s i s t i v i t y  models i n  this study. The code 
RESISZD solves f i n i t e  difference equations fo r  
the electric potent ia ls  i n  or on the surface of a 
two dimensional half space with an a rb i t r a ry  
conductivity d is t r ibu t ion  (Bey and Morrison, 
19761 Dcy, 1976). Computer simulation may be 
done f o r  a wide var ie ty  of surface and downhole 
r e s i s t i v i t y  arrays. The accuracy of the code has 
been ver i f ied by comparing r e su l t s  to ana ly t ica l  
solut ions and malog IDOdels. 

The .code u t i l i z e s  a mesh of 113 x 16 nodes 
of which 58 x 13 can be used fo r  arbitrary 
r e s i s t i v i t y  dis t r ibut ions.  This l imited s ize  
mesh has p s e d  problems fo r  t h i s  study because it 
1s unable to provide.tine resolution i n  the 
region where the  r e s i s t i v i t y  changes are large. 
Bac.¶uSe of the limited mesh size, only 32 elementa 
can k used to describe r e s i s t i v i t y  within the 
production zone, and thus resistivity variat ions 
due to temperature and s a l i n i t y  changes were 
averaged over f a i r l y  large cross-sectional areas, 

CALCULATION OF RESISTIVITY VARIATIONS 

A study of the variat ions in r e s i s t i v i t y  due 
to changes i n  f lu id  properties i n  geothermal 
systems has recent ly  been published (Ershagi e t  
al., 1981 1. In the present paper we use those 
results to calculate resistivity as a function of 
aal ln i ty  and temperature. 

Figure 6 indicates the e f f e c t  of salinity 
and temperature on r e s i s t i v i t y  for "typical. 
sediments in a geothermal environment, Pot our 
study we assume that recharge waters have .3% 
dissolved so l ids  by weight and are a t  a tempera- 
tu re  of loo-. In the  production zone the 
parameters are 1.5% and 3 0 e .  respectively. 
These vahes are based on observed w a t e r  chemistty 
a t  a r r o  Pr ie to  (Grant et rl., 1981). P i p u n  6 
shows that r e s i s t i v i t y  variations due to s a l i n i t y  
and temperature changes can be qu i t e  large. 
f n  the recharge zone, i n i t i a l  resistivity is 50 
percent Larger than i n  the production zone due to 
temperature variat ion and more than 300 percent 
la rger  due to s a l i n i t y  differences. 

t ion  Msuwd i n  this study is shown i n  Figure 7. 
The 5 ohm-m surface corresponds to a caprock. 
The lS.6 ohm-m background 1s sedimentary rock 
w i t h  1S percent porosity and saturated with 
l o w  w a t e r  a t  .3 weight percent WCl,  The 
15.6 oh-m r e s i s t i v i t y  value for the background 
was calculated from Archie's law. The geothetlaal 
r e a e m i r  i s  represented by a 1600 m x 400 m zone 
buried a t  a depth of 800 meters. 
reservoir region the r e s i s t i v i t y  is i n i t i a l l y  
2.15 ohm-. This number was derived by adjust ing 
the background of 15.6 ohm-a f o r  increased 
s a l i n i t y  and temperature i n  the reservoir region. 

The i n i t i a l  subsurface r e s i s t i v i t y  dis t r ibu-  

Within the 
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RESULTS OF SAMPLE CALCULATIONS 

Res is t iv i ty  calculations for the three 
reservoir models presented above were done €or 
the dipole-dipole r e s i s t i v i t y  array over the 
producing tone. 
s t a t i o n  spacing of 800 meters and %-spacings' of 
1 t o  8, i.e.* the distance &tween transmitter 
and receiver is one to e igh t  times the 800 m 
s t a t i o n  spacing. This corresponds to a m a x i m u m  
source-receiver separation of 7200 meters. For 
the three cases studied (see above), we ca lcu la te  
r e s i s t i v i t y  pseudosections f o r  dipole-dipole 
surveys before exploitation and then a t  t i e s  of 
0.5, le 3, and S years after production began. 
The r e s i s t i v i t y  d is t r ibu t ion  is adjusted to 
account f o r  subsurface temperature and s a l i n i t y  
changes due to production. 
differences between the pre-production and 
subsequent *surveysa are then calculated on a 
paint-by-point basis and presented i n  pseudo- 
section form. 

Case a - Lateral Recharge 

The calculations assume a 

Apparent r e s i s t i v i t y  

Xn Figure 8 percent difference pseudosection 
plots f o r  1, 3, and 5 years a f t e r  production 
begins are given fo r  the lateral recharge case. 
The p lo t s  s h w  a recognizable pa t te rn  of change 
a t  1 year which grows increasingly stronger w i t h  
t i m e .  The patterns are similar a t  a l l  times. 
The p lo t s  show a narrow arcuate band where the 
e f f e c t  is l a rges t  below which is a -shadow zone' 
where l i t t l e  e f f e c t  is obserocd. The band of 
m a x i m u m  change is strongly influenced by curren t  
path8 that travel through the reservoir region 
whereas the .shadow zonea represents paths t h a t  
a r e  only weakly influenced by the reservoir. For 
a l l  plots,  s ign i f i can t  apparent r e s i s t i v i t y  
differences are observed a t  n - 2 to n - 8 f o r  
points d i r ec t ly  above the reservoir region. 

After 3 years even the cen t r a l  nodes i n  the 
production region are affected by the intrusion 
of colder and less sa l ine  water, and resistivity 
i n  this region increases sharply. The percent 
difference pseudosection p l o t  r e f l ec t s  this 
change by showing a more pronounced apgarent 
r e s i s t i v i t y  increase i n  the center of the arc and 
a reduction of the shadow zone beneath the 
arc. 

Assuming an average survey error of 1-2 
percent, which is typical f o r  the Cerro Prieto 
monitoring studies ( W i l t  and Goldstein, 19821, it 
should ba possible to detect changes after one 
year and to quantitatively model data a f t e r  2 or 
3 years. 

Case b - Vertical Recharge 

?or this casa.cold w a t e r  recharge is con- 
strained to flow ver t ica l ly  dwnward i n t o  the 
reservoir. Figure 9 shows percent difference 
psaudosections f o r  1, 3, and 5 years after 
production begins. 'Lhe difference pattern is 
quite similar to the lateral case, an arcuate or 
chevron pattern w i t h  a shadw zone beneath, but 
i n  this case the arc is narrower and thicker a t  
the top, 

One year r e s i s t i v i t y  changes are la rger  than 
f o r  the lateral case and appear shallower w i t h  
some s ign i f i can t  change even a t  n - 1. After one 
year the e f f e c t  is grea te r  than seven percent f o r  
a number of points, which is w e l l  above the 
measurement error levels.  After f i v e  years the 
pa t te rn  appears similar to the lateral case for 
the same time period. 

Case c - yertical and Lateral Recharge 

This case assumes both vertical and lateral 
recharge, w i t h  gradational in i t ia l  variations i n  
temperature and s a l i n i t y  outside of the production 
zone. In Figure 10, percent difference pseudo- 

. sections are shown for 0.5, 1, 3, and 5 years 
after the onset of production. There is very 
l i t t le change after 6 months, and a f t e r  one year 
only moderate change is observed. The intermediate 
zone seems to act as a buffer, slowing the rate 
of apparent resistivity change compared to the 
previous cases with step changes i n  temperature 
and sa l in i ty .  After three years much of the less 
s a l i n e  water reaches the production region, 
resu l t ing  in rather la rge  r e s i s t i v i t y  changes. 
The pat te rns  also seem broader than either the 
lateral or vertical case w i t h  s ign i f icant ly  
la rger  magnitudes. After 5 years the maximum 
resistivity change approaches 25 percent and a 
change of more than 10 percent occurs f o r  the n = 
1 points overlying the reservoir. S t  appears 
tha t ,  due to the smooth spatial variations 
i n  temperature and sa l in i ty ,  e a r l y  time rea is t -  
ivity changes are smaller and late time changes 
larger than predicted froan the one-dimensional 
s t e p  change mdels (a) and (b). 

* 

- 

DISCUSSION 

Case (e), the most realistic of the cases 
studied, has s ign i f i can t  implications f o r  resist- 
i v i t y  monitoring studies. Despite the large rate 
of production the apparent r e s i s t i v i t y  changes 
are small after one year of production and during 
such ea r ly  times reservoir-related changes could 
be t o t a l l y  obscured by seasonal variations i n  
r a in fa l l ,  runoff or i r r iga t ion  ( W i l t  and Goldstein, 
1982). IIOwever, given su f f i c i en t  production 
t ime, the recharge w a t e r s  vi11 a f f e c t  the reser- 
voir region so that the pa t te rn  of r e s i s t i v i t y  
change may help deternine the parametcn of f l u i d  
circulation. 

It is in te res t ing  to compare our calculated 
resistivity results to the actual monitoring 
measuremanta i n  Carro Orieto ( w i l t  and Goldstein, 
1982). Figure 11 show6 the percent changes i n  
apparent r e s i s t i v i t y  along a l i n e  over the 
production region ( l i n e  E-E* 1 a t  times of 1 , 1.5, 
and 2 3  years after the 1979 baseline measurements. 
md i t iona l  d e t a i l s  concerning the monitoring work 
are given i n  W i l t  and Goldstein (1982). The 
f i e l d  data show a f a r  mme complex pattern of 
change than the re l a t ive ly  simple models used i n  
the present study, but there are some s t r ik ing  
similarities i n  pattern and magnitude of resist- 
i v i t y  change, par t icu lar ly  i n  the production zone 
which i s  located between kilometers 9 and 13. 
This area has s h m  a continuous and steady 



r e s i s t i v i t y  increase very s imilar  i n  character 
t o  the arc-like pat terns  of generic m o d e l  ( c )  but  
1111th only half of the a r e  present. 
half is replaced with a zone of decreasing 
r e s i s t i v i ty .  The pat tern seems t o  suggest t h a t  
r e s i s t i v i t y  i n  the western part of the reservoir  
may be changing i n  accordance with our model, but  
i n  the eastern portion of the reservoir  more 
complex precesses are taking place. According to 
a f lu id  flow model, based on a l i thofac ies  
analysis  and temperature prof i les  (Halfman e t  
al.,  19821, recharge to the .Ag reservoir  is i n  
part hot water ascending from below and from the 
e a s t  along permeable paths provided by a cembina- 
t ion  of fau l ta  and sandstone units. This 
c i rcu la t ion  system might explain the differences 
between the ac tua l  r e s i s t i v i t y  changes uad those 
simulated. 
verification of the proposed f lu id  flow model by 
means of a more rigorous simulation study. 

The other  

The obvious next s t e p  is to attempt 

CONUUSIONS 

A methodology has been presented f o r  i nd i r ec t  
study of a qcothermal reservoir which combines 
numerical reservoir simulation w i t h  modeling of 
apparent r e s i s t i v i t i e s  as measured vith the 
dipole-dipole technique. For a Cerro Prieto-typa 
reservoir, temporal changes in apparent resist- 
i v i t y  dua to production and recharge of colder 
and less sa l ine  waters a re  both calculated urd 
a re  observed to be 8ubstrurti.l over tima i n t e rva l s  
of several years. 
t o  use r e s i s t i v i t y  surveys as a means fo r  monitor- 
ing reservoir processes. 
models predict r e s i s t i v i t y  changes which are 
roughly consis tent  with f i e l d  observations, more 
de ta i led  reservoir  models ar t  required to ade- 
quately represent the f i e l d  data. 

It therefore appears feas ib le  

WNle our scheamtic 

For most geothermal reservoirs, the patterns 
of f lu id  flow and r e s i s t i v i t y  change w i l l  be 
three-dtmensional. Therefore, accurate resist- 
i v i t y  aonitoring requires measurements along 
several  in te rsec t ing  prof i les .  

The propestd methodology should a l so  be 
applicable fo r  monitoring the migration of 
re injected fluids. I 

I 
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Inter- 

TABLE 1 
Parameters fo r  Production Simulation 

rock densi ty  2600 k g / d  
porosity 

horizontal permaability 

vertical permeability 
heat  conductivity 2.1 W/E* 

1 S I  
- 

100 x 911-15 m2 

10 x 10-1s E2 

rock spec i f i c  heat  900 J/lrsoc 
v e r t i c a l  axtent  

of r e s a m i r  400 P 

volumetric rate 
of production 

i n i t i a l  reservoir 
temperature 30m 

average i n i t i a l  

9.74 x 1r7 kg/s.m3 

reservoir pressure 12 18. (l20 bars) 

1 

Y 

6 



(a) Lateral Recharge 
Line of symmetry Reservoir top I/ .0 

Recharge boundary 
'4Wm I t  x.0 I- t400.C x.1 ' I T=300°C 

ily ?!uct~;y. J 

7OOm- 

I Z S ~ S ~ T ~ S I O  n H s mp-Grids!ements1-20 
Reservoir bottom 

(b) Vertical Recharge 
Recharge boundary 

Production zone 

?OOm - - 
XBL 826-2258A 

Figure 1. Onedimensional reservoir wdelr for 
lateral or vertical recharge. 

Y 

Figure 2. Temperature and composition profiles for 
lateral recharge after 3 years of produc- 

1 tion. 
I 
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I GROUND SURFACE 

Vertical recharge zone 

reservoir model for vertical and lateral recharge. 
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Figure 4.  Temperature profiles for tuodimensioaal model. 
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Figure 3. . Composition profiles for two-dkensiorral model. 

oso6r--l I00 .C 
CoCl2 

- 1  0 NaCl I 0 KCI 

I I I 
10 20 28 

Concentration, wt O/O (a) 
XBL 824-2189 

Figure 6. Dependence of resistivity on (a) Salinity and (b) temperature 
for sedimentary rocks. 
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Dipole -Dipole Stations Y 

0 1 2 3 4 6 7 0 9 10 11 12 13 

400 
L. 

E - 
Reservoir Region 
~ 2 2 . 1 5  S I  -m 

Bockground p = I5 I 6 $2 - m 

Figure 7. Undisturbed resistivity diatributiaa. 
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Figure 11. Resistivity pseudosections 8s measured 
in Gerro Prieto (percent ch8nges from 
1979 baseline). 
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