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ABSTRACT OF THE DISSERTATION 

 
 
 
 

Escherichia coli aging from a single cell 
 
 
 
 

by 
 
 
 

Chao Shi 
 
 

Doctor of Philosophy in Biology 
 
 

University of California San Diego, 2022 
 
 

Professor Lin Chao, Chair 
 

 

         E.coli are prokaryotes that show aging and rejuvenation. Evidences show that 

damage allocation among daughter cells can explain the aging and rejuvenation pattern 

in an E.coli lineage. However, population aging originated from cellular aging. And in 

E.coli, there is not enough study on the molecular dynamics that are necessary for a 

single cell to create different daughter cells. This is the focus of this thesis. Namely, 
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single cell experiments and single cell biophysic models are built to explain cellular 

aging in E.coli. And these studies are aimed to provide informative connections between 

cellular aging and population aging. 

         The age difference between cell poles is established physically by the division 

pattern of E.coli. With one pole being synthesed anew from most recent division, two 

poles of E.coli is inevitably different by the time they each exist. And proteins that harbor 

at the poles will have different age and wear and tear. On the other hand, given the 

division pattern, natural selection is optimizing the physical parameters and dynamics of 

proteins inside cell, so their intracellular distribution will result in the optimal intercellular 

distribution among the daughters and become beneficial to population fitness. Two 

categories of proteins are of greatest interest. First is damaged protein, usually in the 

form of protein aggregate, with its consequence being studied but dynamics obsure. 

Second is fresh functional protein and repair protein. Up to the starting of this thesis, no 

study has contributed to this topic.  

          The chapter 1 will investigate the fresh protein distribution in line with cellular 

aging. Chapter 2 is a model tackling the damage dynamics inside single cell. Chapter 3 

is discussing more conceptually and fundamentally, the evolutionary origin of cell 

division. 

          In chapter 1, a constitutively expressing green fluorescent protein (GFP) gene is 

inserted into E.coli genome under a stable promoter, and its intracellular and 

intercellular distribution is observed and discussed. We also invented a protocol of 

deconvoluting fluorescent image of E.coli colony. GFP here is representing a group of 

fresh proteins that are free of damage. The observation of GFP enriches in new pole 
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and new daughters are in consistent with the higher growth rate of new pole and new 

lineage. The representation of GFP is also appreciated by its relative small molecular 

weight and fast diffusion. This makes its localization most likely be a passive 

visualization of free intracellular space instead of an active and protein-specific 

arrangement. The fact of lack of physiological function of GFP in E.coli also supports 

the enrichment being passive, which indicates a baseline enrichment level of functional 

but invisible proteins that contribute to real fitness. In more detailed study, we find the 

free cellular space revealed by GFP can be predicted qualitatively by the age of the pole. 

The fact that younger pole has more free space leads to the speculation of 

accumulation of aged or damaged protein on the other end of cell. And therefore, fresh 

proteins are spatially excluded by damaged protein, from which polarity of cell is 

established and physiological distinction between daughters are maximized. Cellular 

polarity will subsequently be magnified into standing fitness variation of population, and 

we found the age can explain 37% of total variance of GFP distribution. This polarity is 

created by self-organisation based on size of molecules, and cannot be realized without 

damage aggregation. Given the possible energy cost of sorting and rearranging each 

specific damage or fresh protein of all sizes, the aggregation of damage allows damage 

and fresh protein to be organised physically by their size with no energy involved. The 

damage aggregation- disaggregation dynamics will be explored in Chapter 2. 

          In chapter 2, classical view of damage distribution causinig cellular aging is 

examined by a biophysical and individual based finite population model. Damage is 

hypothesed to have been actively transported to old pole, or have been excluded from 

nucleoid because of aggregation. The first hypothesis is rejected because the resulting 
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exponential-shape distribution is conflicting the observed damage enrichment of both 

poles. However, nucleoid exclusion hypothesis have not been tested and parameterized 

in an elongating E.coli cell. The key parameters in this picture, and are certainly 

parameters under natural selection, are the size of damage and the elongation regime 

of E.coli.  

          Damage particles originated from wear and tear of fresh and functional protein. 

When protein is damaged, the size will most likely keep similar. In this way, the high 

diffusion rate of protein will cause damage to have uniform distribution inside cell, and 

no polarity can be built without extra mechanism or energy. The evolution of protein 

aggregation solves this problem by allowing damaged protein to bind and form larger 

aggregate. The larger size will be physically excluded by nucleoid and eventually reside 

in the cell poles. And when cell divides, new pole is created damage free by the division 

of nucleoid, and will take time for new aggregate to colonize. And damage polarity is 

established automatically. Therefore, it is important that the size of aggregate is larger 

than the mesh size of nucleoid and larger than the space between nucleoid and cell wall.  

Once resides into the pole, the aggregate will keep growing by merging with more and 

more free flowing new damages, and will eventually cause old lineage die from  damage 

overload, if not saved by disaggregation or elongation. Disaggregation will efficiently 

control the size of damage aggregate by releasing repaired protein out from aggregate, 

and once aggregation –disaggregation equilibrium is reached, the size of aggregate will 

keep constant. In this way, disaggregation saves the old lineage by compromising the 

polarity of cell. And a moderate level of disaggregation is necessary. In our model, the 

free damage size after parameterization is close to the size of a ribosome. Therefore 



 

xiv 
 

free damage is small enough to travel through nucleoid between poles. And it takes 

aggregation of 3 free damages to be excluded from nucleoid and establish damage 

polarity. The disaggregation probability from model is 0.1. Since damage polarity is 

established passively, it is not robust under changing level of external damage, which 

occurs randomly across a cell. It explains why both experiment and model produce 

symmetry when external damage increases.  

          Elongation, in general, is an automatic dilution of existing damage, and will further 

promote elongation by alleviating detrimental effect of damage. And fast elongation will 

in turn lead to less reception of new external damage. There is a prominent positive 

feedback between fast/slow elongation and less/more amount of damage. Subcellular 

elongation pattern has been measured by transient cell wall labeling and monitoring 

local dilution. Our observation of new pole elongates significantly fast than old pole 

means elongation happened locally and the elongation –dilution feedback will also apply 

subcellularly. This results in more polarized damage distribution of a cell once initial 

damage/fresh protein polarity is established. In our model, each cell is represented by 

multiple one dimension compartments. And each compartment has its unique 

elongation probability, due to local damage, to reproduce local elongation. After 

parameterization, the model can reproduce the elongation rate relation between mother 

and old and new daughters, including stochastic attractor behavior at the equilibrium 

point where mother’s doubling time equals one of her daughter’s.  

          This model is developed on the assumption of exponential cell growth from self-

replicating compartments (growth units). In chapter 3, an in-detailed analysis is 

performed to quantitatively describe their behavior and consequences. 
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           When measured in better time resolution, E.coli elongation performs 

accerlerating multi-linear phases of growth. Each linear phase can be realized as 

constant biomass production of a certain growth units, with the shift to a faster phase 

being the event of a new unit start functioning. To keep up with cell size, the growth unit 

number needs to double as the cell length doubles. Considerinig most cells perform two 

linear phases during doubling, the growth unit should start from number of 2, advance to 

3, and divide right at the time it reaches 4. The fact of observing the third unit 

functioning also indicates the mixing of products from 2 existing units (cooperation). 

This mechanism gives cell that contains more growth units fitness advantage for their 

elongation span accomadates more rounds of cooperation. And a cell with short length 

has lower fitness. However, our elongation rate data at long cell length indicates slowing 

down of accerleration across phase shift, which can be explained by inefficient 

cooperation at new cell pole (c.f. chapter 1) caused by long distance between poles. 

Therefore, growth units not only result in multi-linear cell elongation, but their 

cooperation produces an optimal cell size and explains cell division.  

           Chapter 3 now has complete conceptual projection, and there are still controls 

and tests need to be performed. 
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Chapter1: Allocation of gene products to daughter cells is determined by the age 

of the mother in single Escherichia coli cells. 

 

1.1 Abstract 

Gene expression and growth rate are highly stochastic in E. coli. Some of the 

growth rate variations result from the deterministic and asymmetric partitioning of 

damage by the mother to its daughters. One daughter, denoted the old daughter, 

receives more damage, grows more slowly, and ages. To determine if expressed gene 

products are also allocated asymmetrically, we compared the levels of expressed green 

fluorescence protein in growing daughters descending from the same mother. Our 

results show that old daughters were less fluorescent than new daughters. Moreover, 

old mothers, which were born as old daughters, produced daughters that were more 

asymmetric when compared to new mothers. Thus, variation in gene products in a 

clonal E. coli population also has a deterministic component. Because fluorescence 

levels and growth rates were positively correlated, the aging of old daughters appears to 

result from both the presence of both more damage and fewer expressed gene products.  
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1.2 Background 

Gene expression and protein levels in individual cells is highly variable in clonal 

populations (1–10). Because many gene-regulating elements have low copy numbers 

(11), the variation is attributed to stochastic sampling. For example, if the elements are 

Poisson distributed, they will have a mean of μ and a variance of〖 σ〗^2, where 〖μ=σ〗^2, 

but the coefficient of variation for the relative difference between cells is σ/µ = 1/√μ, 

which increases with decreasing values of μ. Given that the amount of expressed gene 

products is an important component of cellular function and fitness, the amount of 

stochasticity is at first glance puzzling. A possible explanation is that cellular metabolism 

constrains the total pool of gene products and some genes are limited to a smaller, and 

perhaps suboptimal, number of regulatory elements. An additional explanation is that 

the variation is a form of bet hedging (12,13). If the environment is changing or variable, 

a variant cell could have by chance the gene product level that is appropriate for that 

instance. Alternatively, the apparent stochasticity could result from yet uncovered 

deterministic causes (14–16).  

Recent results have shown that the growth rate of single and clonal bacterial 

cells is also highly stochastic (17–19). However, the growth rates were found to have a 

significant deterministic component that is controlled by the asymmetrical partitioning of 

non-genetic damage, such as oxidized or mistranslated proteins, by a mother bacterium 

to its two daughters. The allocation of more damage to one daughter by a mother 

bacterium is associated with the age of the maternal cell poles. Because a rod shaped 

bacterium such as E. coli divides at the midplane of its long axis, the poles formed at 

the midplane are new while the distal poles are older (figure 1). As a result, all E. coli 
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cells have an old and a new pole. When a mother cell divides, one of its daughters 

receives the maternal old pole and the other the new pole. The daughters are denoted, 

respectively, the old and new daughters. The evidence for the asymmetrical partitioning 

of damage is manifold. Old daughters have been shown to have a slower growth rate 

than new daughters (17,20–26). The old pole and old daughters are more likely to 

harbor aggregates of damaged and synthetically misfolded proteins, and aggregate size 

is negatively correlated with cell growth rate (25,27). If dnaK, the gene responsible to 

dismantling aggregates for repair, is knocked out in E. coli lineages of new daughters 

survive while lineages of old daughters perish (18). Although early investigations 

reported that damage rates in standard laboratory culture were too low to generate an 

asymmetry between old and new daughters (23,28), follow up studies have shown that 

a difference is detectable with improved microscopy and larger sample sizes (17,18,26).  

The difference between growth rate of old and new daughters increases the 

variation between single cells. However, because the asymmetry is a deterministic 

component of bacterial cell division, the growth rate variation observed in a bacterial 

population, even in a clonal one, cannot be explained entirely by stochasticity. Because 

cell growth rates and ribosome number are positively correlated (29), it follows that 

levels of expressed gene products could also be similarly correlated.  We therefore 

investigated whether levels of expressed proteins could also be asymmetrically 

distributed between old and new daughters. Previous studies of the stochasticity of 

expressed proteins in single cells did not look for possible differences between old and 

new daughters and pooled them as independent replicates. We found that new 

daughters overall contained higher levels of expressed proteins than old daughters. The 



 

4 
 

difference between a pair of old and new daughters was greatest when the mother was 

born as an old daughter. Because old daughters have more damage, their lower level of 

expressed proteins could be explained by a competition model in which damage and 

proteins compete for space. Moreover, the level of expressed proteins correlated 

positively with the growth rate of the cells. From an evolutionary perspective, a growth 

rate difference between old and new daughters is beneficial because the resulting 

variation increases the efficiency of selection (24). Thus, the variation in growth rates 

and expressed gene products in a clonal population of E. coli has a deterministic 

component that is evolutionarily advantageous.  
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1.3 Results 

Protein levels are biased towards new poles and asymmetrical between old and 

new daughters  

To investigate whether variation in expressed protein levels between E. coli cells 

has a deterministic component, we first analyzed the GFP levels of micro-colonies of 1-

4 cells and compared old and new daughter pairs descending from the same mother 

(hereafter old and new daughters; figure 1) shortly after division. Despite fluorescence 

levels varying considerably between cells (consistent with earlier studies (2,4,6)), we 

noted less fluorescence in old poles than the new poles rendering old daughters overall 

dimmer as we followed single cells dividing into two and four cells (figure 2a). To 

explore this further, we plotted the fluorescent profile of new and old daughters along 

the cells and normalized the daughters into the same cell lengths for comparison (figure 

2b). Fluorescence along the cells was biased towards the new poles and not uniformly 

distributed. 

To quantify the bias towards new poles, we compared the old and new pole 

difference between old and new daughters (figure 1).  We found that the new pole was 

significantly brighter than the old pole in both new and old daughters (p = 3.41 x 10-48 

and 2.58 x 10-97, respectively) (figure 3a).  However, the fluorescence ratio of new to 

old poles was 1.2 ± 0.06 (SEM) in old daughters and 1.11 ± 0.006 in new daughters, 

and the pole ratio of old daughters was significantly larger than that of old daughters (p 

= 2.8 x 10-19). If the old and new poles were pooled to obtain the total fluorescence for 

single cells of new and old daughters, new daughters were significantly brighter (p = 

2.57 x 10-65) and the daughter fluorescence ratio (new/old) was 1.08 ± 0.004. 
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Deterministic asymmetry of GFP fluorescence is higher in daughters from old 

mothers than from new mothers  

Because pole fluorescence was more similar in new daughters than in old ones, 

we hypothesized that fluorescence between daughters from new mothers should be 

more similar than between daughters from old mothers. To identify old and new mothers, 

which were mothers born respectively as old or new daughters, we tracked the divisions 

for an additional generation beyond lineages presented in figure 1.  As before (see 

above), the new daughters from both new and old mothers were brighter (p = 1.78 x 10-

5 and p = 1.68 x 10-21, respectively).  However, old mothers produced significantly (p = 

2.75 x 10-9) more different daughters than new mothers, as demonstrated by the 

respective daughter fluorescence ratios of 1.12 ± 0.009 and 1.04 ± 0.008 (figure 3b).  

Note that the average of the 1.12 and 1.04 ratios replicates closely the value of 1.08 

that was obtained for the pooled daughters in the above section. 

 

Deterministic asymmetry accounts for a large component of the variance of 

expressed gene products in a population  

           To determine how much of the variation of expressed gene products in single 

cells is explained by deterministic asymmetry, we estimated the total variance (VT), the 

subcomponents attributable to deterministic asymmetry (VA) and error or unexplained 

factors (VE), and VT = VA + VE.  In the absence of more information, VE can be 

interpreted to represent the stochastic component ((15). 
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VT, VA, and VE were estimated separately for old and new mothers depicted in figure 3a.  

To obtain estimates for one mother type, the variance of fluorescence levels in its new 

and old daughters, VNew and VOld, was first determined (figure 4).  VT was then 

estimated from a pool consisting of all the old and new daughters. If deterministic 

asymmetry is absent, VOld and VNew are the sole components, VA = 0, and VT = VE = 

(VOld + VNew) / 2.  If deterministic asymmetry renders the fluorescence level of new 

daughters higher, the difference D = MNew – MOld> 0, where MNew and MOld are the 

mean fluorescence levels of the new and old daughters.  Because D > 0 pushes apart 

the old and new daughter distributions and inflates VT (figure 4), VT = (VOld + VNew) / 2 + 

D2/4 (19).  The deterministic component of variance VA is the term D2/4, in which case 

VA = VT – (VOld + VNew) / 2.  The contribution of deterministic asymmetry expressed as a 

percentage is  

        h2 = VA / VT 

             = 1 – (VOld + VNew) / 2 VT  

             = 1 – VE / VT 

           Our results showed that h2 = 10.1 and 40.1% for new and old mothers (figure 

4a,b). The higher h2 for older mothers is consistent with our results that old poles have 

less fluorescence (figure 3a) and that old mothers have daughters that are more 

different (figure 3b). An old pole in an old mother is older than the old pole in a new 

mother and therefore has lesser fluorescence than the old pole in the new mother. In 

other words – the more different the poles, the more different the daughters. Thus, a 

substantial proportion of the variation of expressed gene products previously attributed 

to stochasticity in single E. coli cells results from the deterministic process by which 
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more expressed gene products are allocated to new daughters.  The amount VE = (VOld 

+ VNew) / 2 that remains unexplained and attributed to stochasticity could be further 

reduced if other deterministic processes are uncovered. 

 

Deterministic component of variance for elongation rates of single cells  

           Group Because elongation rates in E. coli have a deterministic asymmetric 

component of variance (17,18), the cells quantified for fluorescence in Figure 4 were 

further examined to determine whether they manifested a similar asymmetry and 

variance pattern for elongation rates and whether GFP and elongation rates were 

correlated. Elongation rates were measured (see Material and Methods) for all 

daughters and grouped by old and new mothers. The effect of deterministic asymmetry 

on elongation rates was clear. If the old and new mothers were pooled, the new 

daughters had a significantly higher elongation rate (p = 1.96 x 10-23), and the ratio of 

the rates was 1.07 ± 0.006 in favor of new daughters. Moreover, new daughters had a 

significantly higher rate than old daughters regardless of whether they came from an old 

or new mother (p = 1.12 x 10-16 and p = 1.07 x 10-8, respectively; ratios of 1.083 ± 0.009 

and 1.059 ±0.009) (figure 3c). The ratios of 1.0833 and 1.0584 were significantly 

different by a one-tail t-test (p = 0.03), and the higher ratio suggested again that 

difference between daughters was bigger in old mothers. Thus, we partitioned the 

variance of elongation rates to estimate the deterministic fraction. Using the same 

approach followed for fluorescence (cf. figure 4) we estimated that the variance 

component due to deterministic asymmetry was h2 = 16.9 and 32.2% for elongation 

rates of daughters from new and old mothers (figure 5).  Thus, just as GFP fluorescence 
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in single E. coli cells, elongation rates are highly stochastic but a large fraction is 

deterministic. 

 

Correlation between GFP fluorescence and elongation rate of single cells 

  Because the patterns of fluorescence and elongation rate in old and new 

daughters and mothers were similar, we tested next whether the two traits could be 

related. A test for correlation revealed that fluorescence and elongation rates were 

positively correlated, however, only significant when coming from old mothers. 

Daughters from old mothers showed a strong and significant correlation (r = 0.26, p = 

0.0066) (figure 6a), while daughters from new mothers exhibited a weaker and not 

significant association (r = 0.041, p = 0.14) (figure 6b). The correlations from old 

mothers were also significantly larger than the correlations from new mothers (p = 

0.012). The correlation between elongation rate and fluorescence is consistent with 

early reports that show positive correlations between ribosome levels, which produce 

proteins, and growth rate (29,34). It is also consistent with figure 4,5 that show that 

asymmetry between daughter cells is always higher when originating from old mothers, 

which allocate more of her damaged proteins to her old daughter (18) and more newly 

synthesized proteins to her new daughter. 
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1.4 Discussion 

Our results show that expressed gene products, much like cell growth or 

elongation rates, have both a stochastic and a deterministic component. The 

deterministic components are manifested in single cells as a consistently higher level of 

reported GFP fluorescence in the new poles relative to the old poles of a bacterium. If 

the data, originally reported as ratios (figure 3a), are re-expressed as percent 

differences, new poles showed 5.2 and 9.1% more fluorescence in new and old 

daughters, respectively. The difference between the poles is unlikely explained by 

differential rates of localized gene expression. The mean length of the E. coli cells in 

this study was 3.6 μm and the mean doubling time was 40.2 min. The GFP mut3b 

variant used for our study has a maturation time of t50 = 4 min (30) and a diffusion rate 

of 9 μm2 sec-1 (31). With such a high diffusion rate, mature and fluorescent GFP 

molecules should effectively have a uniform distribution in the absence of any interfering 

factors. The presence of aggregates in the old poles of cells (25) suggests that an 

interfering factor could be limiting space. With more damage in the old pole, newly 

expressed gene products would find more space to occupy in the new pole. Because 

the maternal old pole is allocated to the old daughter (figure 1), space limitation due to 

the damage in the old pole is anticipated to restrict the abundance of expressed GFP in 

the old daughter. This prediction is supported by our observation that new daughters 

always were more fluorescent than old daughters, although difference was greater 

when daughter pairs came from old mothers (2.0 and 5.7% difference; new vs. old 

mothers; figure 3b). Our reported differences between new and old poles in new and old 

daughter (5.2 vs 9.1%) and between new and old daughters from new and old mothers 
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(2.0 vs 5.7%) also demonstrate a consistency that supports a possible role for damage. 

The difference is smaller for new daughters and for new mothers because they have 

less damage to create the difference. This is further shown by our estimates of the 

deterministic variance component explained by asymmetry. Deterministic asymmetry 

accounts for 10.1% of the total variance of GFP fluorescence in daughter pairs of new 

mothers, but 40.1% in old mothers (figure 4a).  

Because there is a strong correlation between elongation rate and the ribosome 

levels (29,34–36), it follows that the expressed level of gene products could also 

correlate with elongation rates. Our results confirmed this correlation between 

elongation rate and protein levels by using GFP production as a proxy for expressed 

proteins and measuring elongation rate of the same cells (figure 6a,b). The strength of 

these correlations is noteworthy for two reasons. First, because the production of GFP 

can be costly to cell growth (37), the correlation shows that it can, at the levels observed 

in our study, serve as a proxy for expressed gene products. The correlation may in fact 

be stronger because it may have been attenuated by the cost. Second, the stronger 

correlation in daughters produced by old mothers (figure 6a) supports again our 

suggestion that GFP levels, and now growth rates, could result from the space limitation. 

Because old mothers have more damage, their old and new daughters have more 

divergent levels of damage, gene products, and growth rates. New daughters, 

compared to old daughters, had 2.9 vs 4.0% higher elongation rates when produced, 

respectively, by new and old mothers (figure 3c). Space limitation is additionally 

supported by similarity between the effects of deterministic asymmetry on variation in 

expressed GFP levels and elongation rates. Deterministic asymmetry accounted for 



 

12 
 

32.2 vs 16.9% of total variance when old and new daughter pairs were produced by old 

vs. new mothers (figure 5a,b). Thus, our results show that the amount of expressed 

gene products and elongation rates in single cells are highly variable, but cannot be 

entirely attributed to stochasticity. When the age of a mother cell is considered, 

deterministic components account for a large fraction of single cell variability. 

A tempting hypothesis at this juncture is that the space occupied by aggregates 

limits the amount of ribosomes in a cell and therefore reduces the level of expressed 

proteins and the final elongation rate.  We recognize that the observed relationships we 

use to formulate this hypothesis could be correlational and not causal.  The hypothesis 

is only meant for stimulating discussion and future testing.  However, because it has 

been shown that the addition of an external damage agent to cells decreases elongation 

rates (18), damage may be the trigger that starts the process.  Because aggregates of 

damaged proteins tend to accumulate more in old poles and old daughters (25), and 

less in new poles and new daughters, the resulting asymmetry has a marked effect on 

the bacterial population (17,24). Lineages of old daughters accumulate increasingly 

more damage and the new daughters decreasingly less damage. While the old 

daughter lineage grows more slowly and ages, the new daughter lineage grows more 

rapidly and rejuvenates. However, because the total damage a cell has at birth is diluted 

by growth and increasing cell size, the accumulation of damage in the old daughter 

lineage increases only until the point at which the rate of increase is cancelled by the 

dilution. At this point, the growth rate of the old daughters stabilizes at an equilibrium 

value. Likewise, an equilibrium is achieved by the new daughter lineage. However, 

because new daughters are allocated less damage, the equilibrium growth rate for 
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those cells is higher than for old daughters. Thus, old daughters that are grown under 

standard laboratory conditions age but only until the equilibria. There is no death and 

the lineages are immortal. However, if the damage rate is increased by introducing 

external damage agents, such as phototoxicity, antibiotics, or heat, the old daughter 

equilibrium can be destabilized and the lineage dies. With the death, aging makes the 

lineage mortal. 

The asymmetry between the growth rate of old and new daughters (figures 3c, 

5a,b) is in principle evolutionarily advantageous to the bacteria. The growth rate 

difference between the old and new daughters creates fitness variation that increases 

the efficiency of natural selection for eliminating the damage from the population. A 

more intuitive explanation comes from a banking analogy comparing one account 

started with $1,000 and an interest rate of 8% yr-1 and two accounts with $500 at 6% 

and $500 at 10%. Splitting the $1,000 into the two $500 accounts yields more returns 

after one year because of the 10% returns. A bacterial lineage that allocates damage 

asymmetrically to its daughters likewise gains higher growth rate or fitness returns from 

the new daughters. The analogy is not perfect because bacterial lineages split the 

damage every generation. However, in both cases the outcomes are predicted by 

Jensen’s Inequality (38). If the returns are generated by a greater than linear process, 

such as exponential population growth or interest rates, they are increased by 

increasing the variance of the initial states. 

Cell growth rate variance created by random stochasticity alone can generate the 

advantage provided by Jensen’s Inequality (19). Lineages that by chance received more 

damage would also age, attain stable equilibrium states, and become mortal with high 
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rates of damage. However, although these lineages, along with their aging and 

rejuvenation, could be readily tracked by time-lapse microscopy, they would show no 

association with old poles and old daughters. Damage could accumulate equally in 

either old or new poles or daughters. The fact that damage aggregates and aging are 

associated with old poles and daughters in E. coli (17,18,20,21,25,27,39–42) has led us 

to suggest that the partitioning may have been polarized by anchored, and thus not 

diffusible or movable, damage (19). By virtue of being older, old poles most likely 

harbored the initial anchored damage. Allocating damage to the new pole would have 

countered the damage anchored to the old pole and the variance between old and new 

daughters would have been decreased. On the other hand, the variance is increased by 

polarizing the allocation to the old pole. Because aggregates in E. coli are sticky (39), 

an aggregate at the old pole grows as other aggregates adhere to it. Whether aggregate 

stickiness is inherent property of damaged proteins, or a trait evolved to concentrate 

damage to the old pole, is debatable and not known. Regardless, the asymmetric 

distribution of damage, and now also of expressed gene products (figures 2a,b, 3a,b, 

4a,b), is a deterministic process that increases the variance of single cells in an E. coli 

population. 
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1.5 Availability of data and materials 

Data are available on Dryad at doi:10.6075/J0542M0K 
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1.6 Figures 

 

Figure 1.1 | Assignment of old (red) and new (blue) poles and daughters in E. coli. 
Vertical, dotted line shows the middle and axial plane of the cell. Because the division 

plane cuts E. coli at the midpoint of the long axis, the poles formed at the division point 

are new and the distal poles are old. Note that if the polarity of the first cell is unknown, 

two divisions are required to determine old and new daughter. The outlines of the 

bottom four daughters in the figure are colored red and blue to identify them as old and 

new daughters, while the intracellular red and blue colors identify the old and new poles, 

also designated as O and N. 
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Figure 1.2 | Intracellular fluorescent difference of single cells.(a) Time-lapse 

images of an E. coli bacterium dividing into two and four cells. Top row: Phase contrast. 

Middle row: Assignment of old (red) and new (blue) poles from the top row cells. Bottom 

row: Heat-map of fluorescent images of the top row cells, showing lesser intensity by 

the old poles (blue color spots) than the new poles and inside the cells (pink color). 

Scale on the right goes from highest intensity = pink, to lowest = orange. (b) 

Fluorescence profile along the cells of new and old daughter pairs with color 

designation as in figure 1 for old (red) and new (blue) poles and daughters. The length 

of the cells is normalized for comparison (n = 40 pairs). Error bars show Standard Error 

of the Mean (SEM). 
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Figure 1.3 | Ratios of fluorescence and elongation rates within and between 

cells.(a) Fluorescence ratio (new/old) of the two polar halves from old (red) and new 

(blue) daughters (n = 404 pairs). Old daughters, show a higher asymmetry between the 

two polar halves than do new daughters. The ratio of fluorescence from the cell half that 

contains the oldest pole is 1.2 ± 0.06 (p = 2.58 x 10-97, 2-tailed paired t-test) in favor of 

the half that contains the newest pole in old daughter, and 1.1± 0.006 (p = 3.41 x 10-48, 

2-tailed paired t-test) in new daughters. The difference between the two ratios was 

significant (p = 2.8 x 10-19, 2-tailed non-paired t-test). New daughters in general had a 

higher fluorescence than old daughters with a ratio of 1.08 ± 0.004 (p = 2.57 x 10-65, 2-

tailed paired t-test). (b) Fluorescence ratio (new/old) of daughters from old (red) and 

new (blue) mothers. The ratio from old mothers was 1.12 ± 0.009 (p = 1.68 x 10-21, 2-

tailed paired t-test, n = 178 pairs) and from new mothers 1.04 ± 0.008 (p = 1.78 x 10-5, 

2-tailed paired t-test, n = 177 pairs). The difference between the two ratios was 

significant (p = 2.75 x 10-9, 2-tailed non-paired t-test). Consistent with the same finding 

mentioned in figure 3a, new daughters in general had a higher fluorescence than old 

daughters with an average ratio of 1.08 ± 0.006 (p = 4.67 x 10-23, 2-tailed paired t-test). 

(c) Ratio of elongation rate (see Material and Methods for details) of new over old 

daughters from new (blue) and old (red) mothers. The ratio from old mothers was 

1.0833 ± 0.009 (p = 1.12 x 10-16, 2-tailed paired t-test, n = 178 pairs) and from new 

mothers 1.0584 ± 0.009 (p = 1.07 x 10-8, 2-tailed paired t-test, n = 177 pairs). The two 

ratios were significantly different from each other (p = 0.03, 1-tailed non-paired t-test), 

showing a higher asymmetry between the daughters coming from old mothers than from 

new mother. New daughters in general had a higher elongation rate than old daughters 

with an average ratio of 1.07 ± 0.006 (p = 1.96 x 10-23, 2-tailed paired t-test), consistent 

with the fluorescence ratios mentioned in figure 3a,b. 
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Figure 1.4 | Deterministic variance of fluorescence between new and old 

daughters from old and new mothers.(a) Top panel: Normalized density –

distribution– of fluorescence of new (blue) and old (red) daughters from old mothers (n = 

178 daughter pairs). Dots on the x-axis indicate the average fluorescence for each 

distribution. “D” (black arrow) stands for the distance between peaks of new and old 

daughter curves. Significance for “D” as determined from ratios between new and old 

daughters in figure legend 3. The average population density, combining new and old 

daughters, is indicated by dashed lines. Bottom panel: Normalized fluorescence of each 

new (blue) and old (red) daughter pairs from old mothers. The zero point is the average 

fluorescence between each pair. As can be seen, the old daughter in each pair more 

often ends up on the minus-side of the pair’s zero-point, i. e. having less fluorescence. 

The deterministic asymmetry when the daughters come from old mothers was 

calculated to constitute 40% of what normally is reported as stochasticity. (b) Same as 

(a), but from new mothers. n = 177 daughter pairs. The deterministic asymmetry when 

the daughters originate from new mothers (bottom panel) was calculated to constitute 

10% of what normally is reported as stochasticity. 
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Figure 1.5 | Deterministic variance of elongation rate between new and old 

daughters from old and new mothers. (a) Top panel: Density –distribution– of 

elongation rate of new (blue) and old (red) daughters from old mothers (n = 178 

daughter pairs). Dots on the x-axis indicate the average fluorescence for each 

distribution. “D” (black arrow) stands for the distance between peaks of new and old 

daughter curves. Significance for “D” as determined from ratios between new and old 

daughters in figure legend 3. The average population elongation rate, combining new 

and old daughters, is indicated by dashed lines. Bottom panel: Normalized elongation 

rate of new (blue lines) and old (red lines) daughter pairs from old mothers. The zero 

point is the average elongation rate between each pair. As can be seen, the old 

daughter in each pair more often ends up on the minus-side of the pair’s zero-point, i. e. 

having a slower elongation rate. The deterministic asymmetry when the daughters come 

from old mothers was calculated to constitute 32.2% of the total variance. (b) Same as 

as (a), but from new mothers. n = 177 daughter pairs. The deterministic asymmetry of 

daughters coming from new mothers was calculated to be 16.9% of the total variance. 

 

 

 



 

21 
 

 

Figure 1.6 | Correlation between normalized GFP fluorescence and normalized 

elongation rate showing a higher rate when daughters come from old mothers 

than from new mothers. Because the normalized values did not conform to a 

standard Gaussian distribution, the correlation statistics and comparisons were 

conducted by randomizing the data and obtaining a null distribution of 

correlations.  The p-values reported represent the probability that the observed 

correlation is exceeded by the correlations of the null distribution.(a) Normalized 

fluorescence versus normalized elongation rate between new and old daughters from 

old mothers. Correlation r = 0.24, p = 0.0066 (**), n = 178 daughter pairs. (b). 

Normalized fluorescence versus normalized elongation rate between new and old 

daughters from new mothers. Correlation r = 0.041, p = 0.14 (n.s.), n = 177 daughter 

pairs. A comparison of observed correlation from old and new mothers (figure 6a vs 6b) 

was found to be significant (p = 0.012). 
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Supplementary Figure 1.1 | Point spread function and criteria of iterative 

deconvolution 
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1.7 Methods 

Bacterial strains, growth media, and GFP reporter  

           Growth experiments were performed using E. coli K12 (NCM3722 ΔmotA:frt, 

chromosomal:T:ptet-GFP:frt) (43), which has a chromosomal insert of constitutively 

expressed native green fluorescent protein (gfp), unfused to any protein and thereby 

with no deterministic spatial placement in the cell as a mature protein. Cells were grown 

in M9 minimal media (44) supplemented with 0.02 mg ml-1 of thiamine, and 0.18 mg ml-

1 of glucose as the carbon source. Protein levels were quantified by using GFP as a 

reporter. Because native GFP is estimated to have a diffusion rate of 9 μm2 sec-1 (31) 

and E. coli cell has a mean cross sectional area of about 3 μm2, the protein is rapidly 

dispersed throughout a cell in less than 1 s. Because our fluorescence images were 

taken at 20 min intervals, the distribution of GFP densities in a mother cell, and 

consequently also in the daughters, is not diffusion limited. Rather, the different 

densities result from differential production or gene expression within the cells. The 

strain was kindly provided by Minsu Kim (Emory University).  

 

Cell growth and microscope slides  

Cells from -80˚ C glycerol stock were streaked onto agar plates. A single colony 

was inoculated into M9 media and grown at 37˚ C overnight. The following day the 

culture was diluted 1:100 in M9 and grown for 2 hours. One µl of the culture was then 

pipetted onto a 10 µl M9 agarose pad. The agarose pad was then was then flipped with 

the bacterial side down onto a 24 x 60 mm cover glass and placed over a 25 x 75 mm 

single depression slide sealed with vaseline (modified from earlier methods described in 
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(20,21,23) to fit inverted microscope). Individual cells from two different movies were 

followed through time lapse microscopy at 37˚ C until each grew into a micro-colony of 

64 cells. 

 
Time-lapse microscopy  

Cells were imaged with an inverted microscope (Nikon Eclipse Ti-S), equipped 

with Nikon NIS-Elements AR control software, 100X objective  (CFI Plan APO NA 1.4), 

external phase contrast rings for full intensity fluorescence imaging (FITC), fluorescence 

light source (Prior Lumen 200) with motorized shutter (Lambda 10-B Sutter 

SmartShutter), and camera (Retiga 2000R FAST 1394, mono, 12 bit). Phase contrast 

and fluorescence images were recorded every 2 and 20 minutes, respectively. 

 
Image quantification and analysis  

Fluorescence measurements were collected by tracing cell outlines on the phase 

contrast images, transferring the outlines to the corresponding fluorescence frame, and 

quantifying density of fluorescence inside the outline. Outlines were traced manually. 

Blind replicate outlines, made without any awareness of cell polarity, reproduced the 

same results. All fluorescence images were corrected by removing outliers, subtracting 

background, and deconvoluted to correct for diffraction scattering. The software ImageJ 

(NIH) was used for quantifying fluorescence densities, outlier removal, and background 

subtraction.  Fluorescence measurements were collected by first tracing cell outlines on 

the phase contrast images and the corresponding fluorescent frame was processed as 

following: The background of each frame was subtracted using "rolling ball" algorithm in 

ImageJ with ball radius 20 pixels. Noise created by heat overflow of single pixel was 
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corrected by "remove outliers" algorithm in ImageJ with threshold intensity difference 

1000 and threshold radius 0.5 pixel.  Deconvolution was accomplished by the Lucy-

Richardson method in Matlab 2017b (The MathWorks, Inc., Natick, MA), (see 

Supplemental Material for details). Fluorescence measurements for pairs of old and 

new daughters were normalized by subtracting the mean of the pair’s values. To 

calculate elongation rates, lengths of individual bacterial cells were extracted manually 

from recorded time-lapse images with ImageJ. From lengths compiled over time, the 

elongation rate r was estimated as the slope of a linear regression of (log/length) over 

time. A log transformation was used because elongation rates are known to be 

exponential (20). All lengths were measured immediately after division and prior the 

next division. 

 

Statistical tests  

All comparisons were evaluated by either t-tests or randomized designs. Details 

of sample sizes and choices of paired, unpaired, one- and two-tailed comparisons are 

provided in the figure legends. Randomized designs were used when data did not 

conform to standard Gaussian requirements. When appropriate, values are presented 

as mean ± SEM (standard error of the mean). 

 

 
 

 

 

 

 

 

 



 

26 
 

 

1.8 Acknowledgments 

           We thank Kevin Chi and Xiyu Liu for assistance.  

           Chapter 1, in full, is a reprint of material published in: Chao Shi, Lin Chao, 

Audrey MenegazProenca, Andrew Qiu, Jasper Chao and Camilla U. Rang. 2020. 

“Allocation of gene products to daughter cells is determined by the age of the mother in 

single Escherichia coli cells”.Proc. R. Soc. B.28720200569.20200569. The dissertation 

author was the primary investigator and author of this paper.  



 

27 
 

1.9 References 

1.  Thattai M, van Oudenaarden A. Intrinsic noise in gene regulatory networks. Proc         
Natl Acad Sci U S A [Internet]. 2001 Jul 17 [cited 2019 Jun 10];98(15):8614–9. Available 
from: http://www.ncbi.nlm.nih.gov/pubmed/11438714 

2.  Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a 
single Cell. Science (80- ) [Internet]. 2002 [cited 2019 Jun 10];297:1183–6. Available 
from: www.sciencemag.org 

3.  Raser JM, O’Shea EK. Noise in gene expression: origins, consequences, and 
control. Science (80- ) [Internet]. 2005 Sep 23 [cited 2019 Jun 10];309(5743):2010–3. 
Available from: http://www.ncbi.nlm.nih.gov/pubmed/16179466 

4.  Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB. Gene regulation at the 
single-cell level. Science (80- ) [Internet]. 2005 Mar 25 [cited 2019 Jun 
10];307(5717):1962–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15790856 

5.  Wang Z, Zhang J. Impact of gene expression noise on organismal fitness and the 
efficacy of natural selection. Proc Natl Acad Sci U S A [Internet]. 2011 Apr 19 [cited 
2019 Jun 10];108(16):E67-76. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/21464323 

6.  Kiviet DJ, Nghe P, Walker N, Boulineau S, Sunderlikova V, Tans SJ. 
Stochasticity of metabolism and growth at the single-cell level. Nature [Internet]. 2014 
Oct 3 [cited 2019 Jun 10];514(7522):376–9. Available from: 
http://www.nature.com/articles/nature13582 

7.  Kærn M, Elston TC, Blake WJ, Collins JJ. Stochasticity in gene expression: from 
theories to phenotypes. Nat Rev Genet [Internet]. 2005 Jun 10 [cited 2019 Jun 
10];6(6):451–64. Available from: http://www.nature.com/articles/nrg1615 

8.  Raj A, van Oudenaarden A. Nature, nurture, or chance: stochastic gene 
expression and its consequences. Cell [Internet]. 2008 Oct 17 [cited 2019 Jun 
19];135(2):216–26. Available from: 
https://www.sciencedirect.com/science/article/pii/S0092867408012439 

9.  Sanchez A, Choubey S, Kondev J. Regulation of noise in gene expression. Annu 
Rev Biophys [Internet]. 2013 May 6 [cited 2019 Jun 27];42(1):469–91. Available from: 
http://www.annualreviews.org/doi/10.1146/annurev-biophys-083012-130401 

10.  Huh D, Paulsson J. Random partitioning of molecules at cell division. Proc Natl 
Acad Sci [Internet]. 2011 Sep 6 [cited 2019 Jun 27];36(6):15004–9. Available from: 
https://www.pnas.org/content/108/36/15004 

11.  Guptasarma P. Does replication-induced transcription regulate synthesis of the 
myriad low copy number proteins of Escherichia coli? BioEssays [Internet]. 1995 Nov 1 



 

28 
 

[cited 2019 Jun 18];17(11):987–97. Available from: 
http://doi.wiley.com/10.1002/bies.950171112 

12.  Carey JN, Mettert EL, Roggiani M, Myers KS, Kiley PJ, Goulian M. Regulated 
stochasticity in a bacterial signaling network permits tolerance to a rapid environmental 
change. Cell. 2018 Mar 22;173(1):196-207.e14.  

13.  Veening JW, Stewart EJ, Berngruber TW, Taddei F, Kuipers OP, Hamoen LW. 
Bet-hedging and epigenetic inheritance in bacterial cell development. Proc Natl Acad 
Sci U S A. 2008 Mar 18;105(11):4393–8.  

14.  Huang S. Non-genetic heterogeneity of cells in development: more than just 
noise. Development [Internet]. 2009 Dec 1 [cited 2019 Jun 10];136(23):3853–62. 
Available from: http://www.ncbi.nlm.nih.gov/pubmed/19906852 

15.  Zernicka-Goetz M, Huang S. Stochasticity versus determinism in development: a 
false dichotomy? Nat Rev Genet [Internet]. 2010 Nov 28 [cited 2019 Jun 
10];11(11):743–4. Available from: http://www.nature.com/articles/nrg2886 

16.  Bergmiller T, Andersson AMC, Tomasek K, Balleza E, Kiviet DJ, Hauschild R. 
Biased partitioning of the multidrug efflux pump AcrAB-TolC underlies long-lived 
phenotypic heterogeneity. Science (80- ). 2017;356(6335):311–5.  

17.  Proenca AM, Rang CU, Buetz C, Shi C, Chao L. Age structure landscapes 
emerge from the equilibrium between aging and rejuvenation in bacterial populations. 
Nat Commun. 2018;9(1).  

18.  Proenca AM, Rang CU, Qiu A, Shi C, Chao L. Cell aging preserves cellular 
immortality in the presence of lethal levels of damage. Kaeberlein M, editor. PLOS Biol 
[Internet]. 2019 May 23 [cited 2019 Jun 11];17(5):e3000266. Available from: 
http://dx.plos.org/10.1371/journal.pbio.3000266 

19.  Chao L, Rang CU, Proenca AM, Chao JU. Asymmetrical damage partitioning in 
bacteria: a model for the evolution of stochasticity, determinism, and genetic 
assimilation. PLoS Comput Biol. 2016;12(1):1–17.  

20.  Stewart EJ, Madden R, Paul G, Taddei F, Burland V. Aging and death in an 
organism that reproduces by morphologically symmetric division. Kirkwood T, editor. 
PLoS Biol [Internet]. 2005 Feb 1 [cited 2017 Jul 10];3(2):e45. Available from: 
http://dx.plos.org/10.1371/journal.pbio.0030045 

21.  Rang CU, Peng AY, Chao L. Temporal dynamics of bacterial aging and 
rejuvenation. Curr Biol [Internet]. 2011;21(21):1813–6. Available from: 
http://dx.doi.org/10.1016/j.cub.2011.09.018 

22.  Rang CU, Proenca A, Buetz C, Shi C, Chao L. Minicells as a damage disposal 
mechanism in Escherichia coli. 2018; Available from: https://doi.org/10.1128/mSphere 



 

29 
 

23.  Rang CU, Peng AY, Poon AF, Chao L. Ageing in Escherichia coli requires 
damage by an extrinsic agent. Microbiol (United Kingdom). 2012;158(6):1553–9.  

24.  Chao L. A model for damage load and its implications for the evolution of 
bacterial aging. PLoS Genet. 2010;6(8).  

25.  Lindner AB, Madden R, Demarez A, Stewart EJ, Taddei F. Asymmetric 
segregation of protein aggregates is associated with cellular aging and rejuvenation. 
Proc Natl Acad Sci [Internet]. 2008;105(8):3076–81. Available from: 
http://www.pnas.org/cgi/doi/10.1073/pnas.0708931105 

26.  Urszula Ł, Glover G, Capilla-lasheras P, Young AJ, Pagliara S, Young AJ. 
Bacterial ageing in the absence of external stressors. Phil Trans R Soc B. 
2019;374:20180442.  

27.  Govers SK, Mortier J, Adam A, Aertsen A. Protein aggregates encode epigenetic 
memory of stressful encounters in individual Escherichia coli cells. Laub M, editor. 
PLOS Biol [Internet]. 2018 Aug 28 [cited 2019 Jun 19];16(8):e2003853. Available from: 
https://dx.plos.org/10.1371/journal.pbio.2003853 

28.  Lele UN, Baig UI, Watve MG. Phenotypic plasticity and effects of selection on 
cell division symmetry in Escherichia coli. Kaeberlein M, editor. PLoS One [Internet]. 
2011 Jan 10 [cited 2019 Dec 17];6(1):e14516. Available from: 
https://dx.plos.org/10.1371/journal.pone.0014516 

29.  Schaechter M, Maaløe O, Kjeldgaard NO. Dependency on medium and 
temperature of cell size and chemical composition during balanced growth of 
Salmonella typhimurium. J Gen Microbiol [Internet]. 1958 [cited 2019 Jun 12];19:592–
606. Available from: www.microbiologyresearch.org 

30.  Balleza E, Kim JM, Cluzel P. Systematic characterization of maturation time of 
fluorescent proteins in living cells. Nat Methods. 2018 Jan 3;15(1):47–51.  

31.  Mullineaux CW, Nenninger A, Ray N, Robinson C. Diffusion of green fluorescent 
protein in three cell environments in Escherichia coli. J Bacteriol. 2006 
May;188(10):3442–8.  

32.  Cormack BP, Valdivia RH, Falkow S. FACS-optimized mutants of the green 
fluorescent protein (GFP). In: Gene. Elsevier B.V.; 1996. p. 33–8.  

33.  Sundararaj S. The CyberCell Database (CCDB): a comprehensive, self-updating, 
relational database to coordinate and facilitate in silico modeling of Escherichia coli. 
Nucleic Acids Res. 2004 Jan 1;32(90001):293D – 295.  

34.  Kjeldgaard NO, Kurland CG. The distribution of soluble and ribosomal RNA as a 
function of growth rate. J Mol Biol [Internet]. 1963 Apr 1 [cited 2019 Jun 12];6(4):341–8. 
Available from: https://www.sciencedirect.com/science/article/pii/S0022283663800935 



 

30 
 

35.  Poulsen LK, Licht TR, Rang C, Krogfelt K a, Molin S. Physiological state of 
Escherichia Coli BJ4 growing in the large intestines of streptomycin-treated Mice. J 
Bacteriol [Internet]. 1995;177(20):5840–5. Available from: isi:A1995RZ77000018 

36.  Rang CU, Licht TR, Midtvedt T, Conway PL, Chao L, Krogfelt KA, Cohen PS and 
Molin S. Estimation of growth rates of Escherichia coli BJ4 in streptomycin-treated and 
previously germfree mice by in situ rRNA hybridization. Clin Diagn Lab Immunol 
[Internet]. 1999;6(3):434–6. Available from: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=103738&tool=pmcentrez&ren
dertype=abstract 

37.  Rang C, Galen JE, Kaper JB, Chao L. Fitness cost of the green fluorescent 
protein in gastrointestinal bacteria. Can J Microbiol [Internet]. 2003;49(9):531–7. 
Available from: http://www.nrcresearchpress.com/doi/abs/10.1139/w03-072 

38.  Perlman MD. Jensen’s inequality for a convex vector-valued function on an 
infinite-dimensional space. J Multivar Anal. 1974;4(1):52–65.  

39.  Coquel A-SS, Jacob J-PP, Primet M, Demarez A, Dimiccoli M, Julou T,Moisan L, 
Lindner AB and Berry H. Localization of protein aggregation in Escherichia coli is 
governed by diffusion and nucleoid macromolecular crowding effect. Shvartsman S, 
editor. PLoS Comput Biol [Internet]. 2013 Apr 25 [cited 2017 Jul 7];9(4):e1003038. 
Available from: http://dx.plos.org/10.1371/journal.pcbi.1003038 

40.  Mortier J, Tadesse W, Govers SK, Aertsen A. Stress-induced protein aggregates 
shape population heterogeneity in bacteria. Curr Genet [Internet]. 2019 [cited 2019 Mar 
4];65(1):11–6. Available from: https://doi.org/10.1007/s00294-019-00947-1 

41.  Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein 
aggregation. Nat Rev Mol Cell Biol. 2010;11(11):777–88.  

42.  Winkler J, Seybert A, König L, Pruggnaller S, Haselmann U, Sourjik V, Weiss M, 
Frangakis AS, Mogk A and Bukau B . Quantitative and spatio-temporal features of 
protein aggregation in Escherichia coli and consequences on protein quality control and 
cellular ageing. EMBO J. 2010 Mar 3;29(5):910–23.  

43.  Kim M, Zhang Z, Okano H, Yan D, Groisman A, Hwa T. Need-based activation of 
ammonium uptake in Escherichia coli. Mol Syst Biol [Internet]. 2012 Sep 25 [cited 2019 
Jun 18];8(1):616. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23010999 

44.  Miller JH. Experiments in molecular genetics. Cold Spring Harbor, New York: 
Cold Spring Harbor Laboratory Press; 1972.  

 

 



 

31 
 

Chapter 2: An aging landscape results from damage dynamics in single cell 

 

2.1 Abstract 

Aging researches started from multicellular organism as a physiological and 

populational phenomenon with underlying obscurity. With the rise of molecular and 

single cell approaches, data of cellular aging has accumulated. Taking this advantage, 

our model, for the first time, connects single cell damage dynamics to characteristics of 

an aging population. The model is built on damage dynamics of E.coli cell, and can 

precisely recapitulated features of an aging E.coli population under natural selection. 

The model also predicts populational asymmetry under different level of external 

damage and verified the single cell biophysical theory of damage dynamics 

simultaneously. 
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2.2 Background 

Aging has been observed and studied as the progressive loss of function at the 

macromolecule, tissue, organ, or individual level, driven by the deterioration of 

intracellular processes [12]. Single cell organisms, among which E.coli and budding 

yeast are the most extensively studied under the topic of aging, are unique in that all 

aging processes occur in one cell, and the lifetime of an individual can be monitored by 

scale of hours. In addition, in single cell organisms, cellular aging is directly connected 

with aging-related molecular dynamics [13,14]. Within these two decades, the discovery 

of E.coli aging has particularly broadened the area by the observation of coexistence 

between immortality and aging, revealing an ancestral type of the evolution of aging [1-

2,10,15].  

In E.coli, aging is reported by experiments that show asymmetrical physiology 

among two daughter cells of the mother cell, leading to an aging landscape in E.coli 

population that directly determines population fitness [1,2,4,5,10]. Mechanistically, this 

is originated by asymmetrical distribution of macromolecules, especially damaged 

protein in form of aggregates, in the mother cell [3,6-9]. Protein aggregates have been 

shown significant correlation to the age and elongation rate of E.coli [8]. Due to the 

large size of aggregates, experiments and steady-state simulations proposed that 

aggregates are largely excluded from E.coli nucleoid and show passive enrichment and 

free Brownian motion in both cell poles (nucleoid exclusion model) [6,9]. When cell 

divides, the new pole is born with very little aggregates whereas old pole contains 

aggregates from mother cell. This is the source of asymmetrical damage distribution in 
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single cell, and ultimately spreading to the whole population throughout successive cell 

divisions. 

However, two points are missing in the steady-state single cell aging model. 

First, elongation is an automatic dilution of damage and will further promote elongation 

that could result in less reception of new damage, starting a new dilution-elongation 

feedback on elongation, and vice versa. Besides single cell-level elongation, researches 

have tracked down subcellular elongation events by insertion of patches of new cell 

walls [18-21]. It worth examine if the pattern of insertion correlates to the age of cell pole 

since the distribution of local dilution-elongation event is important in shaping the 

damage distribution of the whole cell. 

Second, although aging starts from asymmetrical distribution of macromolecules 

of single cell, aging landscape, as a group trait, evolves in population. Fisher's 

fundamental theorem provides argument of fitness advantage for evolution of standing 

fitness variation inside population [27], and aging has shown to contribute up to 37% to 

E.coli physiology variation measured by GFP intensity [26]. As mother cell divides, the 

fitness asymmetry of siblings prevail as population builds up by generations, shaped by 

in-population selection from exponential population expansion, and eventually reaches 

equilibrated aging landscape as standing fitness variation under selection. Previous 

numerical simulation has successfully predicted the old and new daughter doubling time 

equilibrium by assuming uniform single cell damage distribution and a constant 

segregation factor of damage in all mother cells [11]. Therefore more realistic simulation 

is needed to reconstruct asymmetrical damage segregation by simulating damage 

dynamics of singe cell and then rebuild the equilibrated population. 
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As a significant link between E.coli single cell aging and population aging, our 

model explored the dynamics of damage aggregates within single cell and examined 

the influence of internal and external factors by recreating the population aging 

landscape. 
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2.3 Results 

 

Single cell elongation and division  

A lineage is established from a single cell by successive elongation and division. 

Considering the difficulty of analytically redistributing damage during elongation, we 

start from numerical discrete simulation of single cell. 

In the model, a single cell is born with seven linearly concatenated growth units, 

mimicking the uni-directional exponential elongation nature of E.coli.  Each growth unit 

contains certain amount of damage that uniformly distributed within this unit, and all 

units have the same damage-free duplication probability. The single cell model is 

simulated by the time step of one minute. As time goes by, each unit makes 

independent decision on its duplication according to their duplication probability. As a 

unit duplicate, a new growth unit is added next to the old unit, and the damage in the old 

unit is shared equally among old and new unit. 

It is not clear if each growth unit has its own elongation probability according to 

their damage content, though reports have confirmed the negative correlation between 

elongation rate and amount of damage aggregates in single cell level [8]. Therefore a 

transient labeling of cell wall is performed to quantify the amount of new elongation in a 

subcellular level (Fig 1). We observed significant higher elongation rate of new pole 

over old pole in old daughters, and non-significance in new daughters. This result is 

consistent with the experimental observation of higher damage deposit in the old pole 

over new pole in old daughters, and similar damage deposit across old and new pole in 

new daughters [17], demonstrating a similar negative correlation of elongation rate with 
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amount of damage in subcellular level as shown in whole cell [8]. It allows us to apply 

unique duplication probability to each growth unit being reversely correlated to its own 

damage content. To prevent negative probability in very high damage in the old poles, 

this damage-duplication relation is constrained by a first order hill function.   

Cell division is set when number of growth unit doubled from birth. At division, 

growth units are evenly allocated to two daughter cells, from on the position of the 

division ring. All the damaged proteins stay in their original growth unit, manifesting the 

maternal effect of damage inheritance. For the sake of tracking cell lineage in a 

population, the two daughter cells are named according to their parent cell’s name, and 

also according to the pole they inherit.  

 

Single cell damage distribution dynamics  

The major cause of aging is external and internal damage. In our model, 

damage distribution determines fitness of single cell and populational fitness variation. 

As we model each bacteria cell by one dimensional growth units, each unit carries a 

certain amount of damaged particles. The damage particles are either inherited from 

mother cell, or imposed uniformly by time onto every growth unit. We assume that all 

damage particles are identical hypothetical proteins, and cellular repair of damage is 

negligible.  

Based on nucleoid exclusion model of cellular damage [6,9], a damage particle 

in the model performs constant diffusion rate across whole cell except much slower 

outward diffusion from the two growth units representing two cell poles. The behavior of 

each damage particle is best described by one dimensional random walk with Einstein’s 
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diffusion equation [24,25]. Determined by simulation time step, each damage particle 

inside its growth unit creates a probability distribution. The proportion of distribution that 

stretches out of the original unit is the unit-crossing probability of one time step, in both 

directions. To simulate the effect of damage aggregation-disaggregation on cell poles, 

the outward diffusion rate from both ends of growth unit is reduced from the normal 

diffusion rate by a fraction. 

In each time step, an in silico E.coli cell goes through an iteration that consists 

of uniform new damage accumulation, damage diffusion, aggregation-disaggregation, 

cell elongation, damage rearrangement and checkpoint of cell division. Fig 2 shows a 

typical simulated damage distribution of single cell close to division, with notable 

enrichment of damage at both poles. The distribution is consistent with experimental 

data [3]. 

 

Population growth and natural selection 

No age structure is observed without a lineage of organism. In particular, age 

structure in E.coli has shown some of the most intriguing features originated from 

asymmetrical damage segregation [11,22]. As reported by experiment, when following 

the consecutive old pole inheritance (old daughter lineage) or new pole inheritance (new 

daughter lineage) from an arbitrary E.coli cell, the old daughter of old daughter lineage 

or new daughter of new daughter lineage converges to their respective equilibrated 

doubling time. And these two lineages serve as the low and high limit of fitness of 

population under physiological damage condition [11,15,22]. This is an important 

observation of prokaryote aging coexisting with immortality. When following consecutive 
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old and new daughter lineages in the model, we can successfully reproduce the two 

equilibrium points of the population. In addition, attractor behavior emerged around 

equilibrium due to probabilistic elongation of each growth unit, resembling the innate 

noise of E.coli elongation (Fig 3). Interestingly, experiments have also show similar 

stochasticity around old and new equilibrium points of doubling time [22].  

To parameterize the model, the doubling time relation between mothers and 

daughters published from microfluidic experiment [22] is used. And cell length of birth in 

the model is obtained by same experiment. When mapped to published E.coli cytosolic 

diffusion dynamics [23], the size of damage particle in our model is estimated as 

40.31MDa, with radius 39nm assuming comparable density of E.coli ribosome. This 

estimation is below the low size limit of aggregate that has been observed to be 

excluded by the nucleoid [9]. It is consistent with its ability of travelling between two cell 

poles. After parameterization, our model can quantitatively reproduce an aging E.coli 

population (Fig 4). 

 

Asymmetry of an E.coli population 

Aging has been argued having selective advantage as the advantage of 

standing variation of population fitness. The mechanistic origin of aging lies on 

physiological asymmetry of each individual. Previous model has assigned same factor 

of damage asymmetry across population, due to lack of knowledge of damage diffusion 

process [11]. Here we found the differential damage asymmetry according to the age of 

E.coli in the same population. Equilibrated new daughters are on average 20% more 

symmetrical than equilibrated old daughter (Fig 5). And as a cell ages from new 
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daughter equilibrium to old daughter equilibrium, asymmetry increases. The result is 

most likely due to the positive elongation-dilution feedback in new daughters, and less 

age difference between the poles of new daughters (1 generation) than old daughters 

(at least 2 generations). Similar results are reported by analyzing doubling time and 

elongation rate of siblings from new or old mother cells [26], and from single cell 

imaging of GFP distribution within new and old cells [26].  

External damage is inevitable and is one of the most important sources of aging 

[3,6,17]. It varies due to environmental fluctuation. As nucleoid exclusion mechanism 

being a most supported mechanism of damage organization under physiological 

damage level, it worth examine its response to elevated external damage. To best 

mimic the random nature of external damage in the model, new damages are imposed 

uniformly to every growth unit. When new damage rate increases, we observed 

concurrent decrease of damage asymmetry of every dividing mother cell (Fig 6). This is 

in consistent with microfluidic experiment result, where external damage is imposed by 

phototoxicity [17]. The result reveals a limit of damage organization performed by 

nucleoid exclusion machinery. The inability of organizing all damage into the old pole is 

also the reason for the immortality of old lineage of E.coli, viewed as an ancestral form 

of aging. 
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2.4 Discussion 

 

External and internal damage, provided its fitness harm and inevitability, can be 

organized to create positive fitness effect by generating standing variation of population. 

According to Fisher's fundamental theorem [27], a completely asymmetrical damage 

separation (0 and 100%) will be ideal to maximize population fitness. However, 

observed damage separation factor is 41 and 59% [11,22], clearly implicating the 

unknown trade-off on asymmetry, which can be explored mechanistically. 

The advantage of damage nucleoid exclusion theory is that there is no energy 

cost of organizing damage, and the asymmetry is achieved completely by the size of 

free-diffusing damage and aggregated damage. In this way, the size of damage has 

direct evolutionary significance. Studies in other organism have shown the major source 

of aggregate being RNA binding protein [16], whose size varies in a wide range. But 

most of them, as free-diffusing damage, can shuffle between old and new poles. The 

advantage of damage shuffling before aggregation is that old pole will have chance to 

share damage with new pole, preventing damage overload and the death of old lineage 

(simulated and experimentally observed [17]). It requires the dimension of free-diffusing 

aggregate not being greater than the continuous free space between old and new poles. 

On the other hand, too much damage shuffling between poles will promote symmetry 

and weaken the advantage of asymmetry by generating variance. Therefore, as 

aggregated damage being impossible to leave the pole they reside, free-diffusing 

damage size is key to adjust population asymmetry and should be evolved into a 

moderate range that balances between the pros and cons of damage shuffling. Our 
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estimation of free-diffusing damage size falls in this range: its molecular weight, as if 

being a sphere, can tightly fit into the mesh of the nucleoid. In this way, the difference 

between theoretical and observed damage separation factor can be explained. 

As our model has explored, the fluctuation of external damage can change the 

asymmetry of population dramatically. In the same way, the external damage level 

could leverage the optimal size and dynamics of free-diffusing and aggregated damage. 

It will be significant both in theory and clinical studies to predict damage parameters 

(size, aggregation and disaggregation rate, repair rate, damage sensitivity) 

computationally by using similar model, and evolve E.coli in different level of external 

damage and test its evolutionary response. 
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2.5 Figures 

 
Figure 2.1 |  Ratio of elongation rate between poles in old and new daughters. 
Elongation rate ratio is calculated as elongation rate of new pole versus old pole. 
Elongation rate of old and new poles are significantly different in old daughters (two-
tailed paired t-test, n=28, p=0.00545), with elongation rate ratio 1.510±0.153. Elongation 
rate of old and new poles are not significantly different in new daughters (two-tailed 
paired t-test, n=28, p=0.366), with elongation rate ratio 0.957±0.0921. Old daughters 
show significantly higher asymmetry of elongation than new daughters (two-tailed 
paired t-test, n=14, p=0.00779). The differential elongation rate asymmetry between old 
and new daughters is inconsistent with experimental observation of differential 
aggregate asymmetry across daughters. 
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Figure 2.2 | Simulated 1-dimension damage distribution of a single cell.Damages 
show significant enrichment at both poles of a single cell. Inherited from mother cell, old 
pole shows higher level of damage enrichment than new pole. This is in consistent with 
nucleoid exclusion theory that damage aggregation occurs only at both poles. 
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Figure 2.3 | Simulated equilibrium of doubling time of old and new lineages. a) 
phase trajectories of doubling time of two randomly chosen consecutive old and new 
generations show stability under fluctuations over 40 generations. b) same dataset 
plotted over 80 generations shows mean doubling times of old and new daughter 
generations equilibrate at 20.0779 min and 25.169 min. 
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Figure 2.4 | Simulated phase graph of doubling time of an aging E.coli population 
in the mother machine. Old daughters (24.232±1.263 min, n=1000) showed longer 
doubling times than new daughters (20.939±0.927 min, n=1000). The separation of old 
and new sub-populations is significant (two-tailed paired t-test, n=1000, p<1e-10). 
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Figure 2.5 | Damage asymmetry in old and new daughters.Damage asymmetry is 
calculated as fraction of damage in new pole. 0.5 represents symmetry.  Old daughters 
(0.393±0.0415, n=1000) show higher damage asymmetry than new daughters 
(0.435±0.0158, n=1000) (two-tailed paired t-test, n=1000, p<1e-10). Note that old 
daughters also show higher variance of asymmetry, which is in consistent with their 
more variant age difference between poles. 
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Figure 2.6 | Damage partitioning disrupted by increasing rate of external 
damage.Damage asymmetry is calculated as fraction of damage in new pole. 0.5 
represents symmetry. External damage is imposed uniformly across the cell. As 
external damage rate elevating, the damage distribution in every cell becomes more 
uniform. Therefore damage partitioning between poles and following daughter cells will 
not be as effective. 
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2.6 Methods 

 

WGA cell wall staining 

To monitor the cell wall dynamics, we labeled cell wall by wheat germ agglutinin 

(WGA)- Alexa flour 488 conjugate from Life Technologies Corporation. Overnight 

culture is prepared from single colony by plating permanent E.coli K-12 MG1655 strain 

stock. Cells are then transferred to fresh media and grow in 37 degree to exponential 

phase and OD ~0.5. Then the culture is diluted 10 times into 1mL and incubated with 40 

ul 1mg/mL fluorescent WGA. The sample was vortexed and kept shaking in dark 

incubator for 20 minutes. When the incubation is finished, the cells were spinned down 

and washed twice in fresh M9 media to clean the unbinded WGA conjugates. Then cells 

are placed on top of pre-sterilized Lb agar pad for imaging. 

 

Single cell time lapse imaging 

A Nikon Eclipse Ti-S microscope is used for imaging. And NIS-Element AR 

software is used for time lapse image acquisition. One phase contrast and one 

fluorescent image were taken at same time every 30 mins with 150 ms exposure. After 

imaging, cells are identified and fluorescent signals are measured with software ImageJ 

(NIH, https://imagej.nih.gov/ij ) 

 

Single cell modeling 

The model of individual based E.coli aging population is performed by R 3.3.0. 



 

49 
 

Each individual cell is described by one dimension array with each array 

element representing a growth unit. Damage particles are localized in each growth unit 

and taking one dimension random walk to neighbor growth units depending on its size. 

We choose the length of growth unit in the following way. A very small growth unit will 

achieve highest resolution of damage distribution, but the simulation time for a whole 

cell will be very long since diffusion in each time step can across several neighboring 

growth units under reflective boundary condition. A smaller time step will help to hold a 

smaller distance of diffusion, but it takes more time step to simulate the doubling of 

single cell. On the other hand, a very big growth unit guarantees fast simulation of 

diffusion, but the resolution of damage distribution will be low and asymmetry will be 

weak. Taken these into consideration, growth unit size is designed to be 0.5um, with 

each cell born with 7 units and divide with 14 units. And time step is set to be one 

minute. 

As cell elongates, the checkpoint of cell division is set to be at least twice as 

many of the initial number of growth unit (cell length doubled from birth), and the 

number of growth unit is checked in each time step. Different regime of emerging and 

positioning of the division ring in E.coli is reported, but majority of data supports the 

position of division ring being in the middle of dividing cell. Therefore in the simulation, 

when cell length doubled, cell divided from the middle. 

 

Finite population modeling 

To start as close to an equilibrated population, our starting population is built 

from simulated old and new equilibrated lineages. The population size 1000 is kept by 
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random culling at each time any individual divides. The population is simulated until the 

average doubling time of the population stabilizes. 

 

Model parameterization  

Parameterization is done by fminsearch function from R package pracma, with 

Hooke-Jeeves optimization algorithm. From the simulation of a finite bacteria population, 

we were able to reproduce four key observations we got from culturing bacteria under 

microscope in LB media. i.e. the equilibrate doubling time of old and new daughter, the 

relation of doubling time between two daughters and their mother. These observations 

are therefore used to calibrate three unknown parameters in the model. i.e. the size of 

free-diffusing damage particle (that determines diffusion rate under the relation of 

cytosolic mass-diffusion relation [23]), the disaggregation rate of aggregated damage 

(only applied in both poles), and new damage rate per time step.  
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Chapter 3: Optimal bacterial size results from multi-linear elongation 
 

3.1 Abstract 

          Optimal phenotypes can evolve by stabilizing selection (1,2). However, the 

characterization of the phenomenon in one example, rather than from several disparate 

ones, is rare (3,4). Here we show that an optimal birth length, previously undocumented, 

maximizes growth to division in E.coli. From an old study, we proved that E.coli length 

grew exponentially by a succession of linear phases with increasing but decelerating 

rates. Short cells are not optimal for their lengths span fewer phases than long cells, 

therefore elongate more linear. Very long cells are not optimal for the decelerating rates 

of elongation. Thus, the optimum is a birth length that maximizes the sum of growth at 

all lengths from birth to division. The discovery of optimal E.coli size provides a key 

answer to the origin of cell division and biological population. 

 

 

 

 

 

 

 

 

 

 

 



 

56 
 

3.2 Background 

          Reproduction is a hallmark of biological organism. By reproduction, population 

size grows exponentially. In single cell organism, population growth is achieved by 

continuous cell division. Since the invention of microscope, the elongation dynamics of 

E.coli has been widely reported as exponential (5-8), and cell width is unchanged (7,9). 

However this widely accepted view negates the necessity of cell division and the 

formation of an E.coli population because the population dynamics can be realized by a 

single cell, besides all the extra machinery and energy cost of cell division (16). This 

fact therefore calls for new evolution theory of cell division and more careful examine of 

single cell elongation dynamics.  

          With the development of single cell tracking and imaging, researchers have 

observed the elongation of E.coli is composed of two or more of linear phases with 

increasing rates (13), which has been regarded as exponential in low resolution 

observations. This brought up about new examining of fundamental growth unit of E.coli. 

The exponential view of E.coli elongation requires each unit biomass of cell contributes 

equally to the addition of new biomass. Therefore an E.coli cell is a population of 

fundamental growth units. This is supported by the observation that E.coli growth rate 

correlates clearly with count of ribosomes (10,11), and ribosome here, with its self-

replicating nature, can be regarded as fundamental growth unit. On the contrary, the 

multiple linear elongation regime indicates larger scale and more integrated growth units 

that achieve self-replication for only one or few times during a doubling, revealed by the 

number of linear phases. One hypothesis of growth units is peptidoglycan factories for 

cell wall growth (13). They function as a unit and exist at integer numbers. The number 
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of functional factories increases step wise, and number of factories correlates with 

length. 

          The observation of multiple linear elongation gives us a new chance to revisit the 

evolution of cell division. Starting from massive microfluidic experiment, we firstly 

proved the precision of multiple linear elongation dynamics over exponential dynamics. 

Furthermore, our sample size allowed us to map out the length landscape that outside 

the equilibrated range of cell length, where our data identified an optimal cell size that 

emerges from multiple linear phases of elongation. The observation of optimal cell size 

for the first time provides support of cell division and origin of population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

58 
 

3.3 Results 

Observation of E.coli optimal birth length 

          We first verified that E. coli cell width did not change with length under our 

experimental conditions. We found no change and thereafter quantified cell growth by 

length. We examined next the relationship between elongation rate and birth length of 

single E. coli cells. As previous study has shown, we found a local fitness peak 

connected by higher fitness with long birth length, and no global optimal birth length is 

observed (Figure 3.1a). However, the distribution of birth length shows good 

consistency with abundant representation of local fitness peak but under-representation 

of long birth length (Figure 3.2b). It drew our interest to exploring cell elongation regime. 

 

Characterizing of E.coli cell elongation 

          To re-examine the dynamics of E.coli elongation, we cultured E.coli strain 

MG1655 in LB media in microfluidic device, and time-lapse elongations were recorded 

every 1 min from 540 randomly chosen E.coli in the growth chamber (Figure 3.2a). All 

cells were then pooled by length. The mean length steps (δ, dµm per min) show a 

sigmoid relation with current length, featuring two phases of constant steps connected 

by a transition (Figure 3.2c). This is consistent with the observation of two linear 

elongation phases connected by an inflection in single cell data (Figure 3.2b), and also 

cell that divides early with no inflection (Figure 3.2b). The pooling assumed that cell 

elongation at a later length was independent of birth length. We tested the correlation 

between lengths of birth and δ within every bin of current length. No significance is 
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observed. Thus δ is independent of birth length and elongation is a Markovian process 

in E.coli. 

          When we further examine the shape of mean δ, the expectation of mean δ of bi-

phasic growth is a step function, but the location of the step can be stochastic for 

different cells and the outcome is a sigmoid. And the expectation of a continuous 

exponential growth is linear. The sigmoid fit of mean δ being significantly better than 

linear fit (Akaike test, p=0.00366) proved that cell elongation is bi-phasic.To minimize 

the noise of step location in δ, we also picked the single cells that show significant bi-

phasic growth and aligned their inflection point (Figure 3.2d). The average location of 

step is estimated as 41.74dµm. Therefore on average, cell that divides earlier than 

41.74dµm will not cover next linear phase and will keep linear, whereas cell that 

exceeds 41.74dµm will cover next linear phase and will be bi-phasic. Both observation 

and simulation (by integrating δ) of single cell elongation trajectories proves this 

expectation (Figure 3.2e). 

 

Landscape of multi-phasic growth 

          The shape of mean δ increases as a step indicates an underlyinggrowth unit 

production process as units increase with cell length, as discussed by Reshes et al (13). 

Assuming the equivalence of all growth units, the number of growth unit should be in 

equilibrium with the length of a cell, i.e. the growth unit number at division should be 

twice as the number at birth. Given the observation of single increase event of this 

number, the growth unit number can only be born at 2 units, increases to 3 and divides 
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at 4 units (Figure 3.3). And given 41.47dµm is the length at inflection, the length 

threshold of a new growth unit addition is 41.47/3 = 13.82dµm. From here, we predicted 

all the inflections on graph of mean δ, which has been obscured by limited sample size, 

by taking a integer multiple of this threshold. 

          Our data showed good consistency with predicted inflections (Figure 3.4), and the 

magnitude of each δ step is the midpoint of a linear fit on all binned δ in this step. From 

δ landscape, the growth trajectory of an arbitrary cell can be reconstructed by 

integrating δ from length of birth to death, and its division time and growth rate can be 

predicted. 

 

Prediction of E.coli optimal birth length 

          All E.coli reaches length equilibrium when its birth length doubles before division 

at the middle. But when cells are away from equilibrium, different regimes (most 

prominently adder and sizer) are proposed to explain their returning to equilibrium. The 

relation of birth length and length change we found in our dataset (Figure 3.5a) shows 

intermediate pattern of adder and sizer. To simulate the equilibrium growth rates of cell 

of different birth lengths, we assumed all cells in our dataset had its birth length doubles 

before division. Therefore a fitness landscape of E.coli birth length is predicted and 

there we observed an optimal birth length (Figure 3.5b). This optimum was also the 

most common length (Figure 3.1b), which is most important because it indicates that the 

lengths in our sample were representative of a population under selection. The optima 

were 20% higher than the lowest rates, and bacterial populations are readily large 

enough to support natural selection of this magnitude (14,15). 
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3.4 Discussion 

          E.coli elongation has been viewed as exponential, which assume independence 

of self-replicating units, and therefore negate the significance of division and optimal 

birth length. Our discovery of growth unit number transits from 2 to 3 indicates units will 

have cooperated and mixed their products to assemble the third unit. Acquiring a third 

unit from two is equivalent to accruing early benefits by compound interest. Therefore it 

is also evolutionarily beneficial over model of non-cooperating units (Figure 3.3b,c). 

Cells with short birth lengths are slow because they divide before their length reaches 

the inflection. Short cells are born with one unit and divide at two. Since their units are 

isolated in different cells, there is no cooperation and a population of short cells 

increases exponentially only by division. Cells with long birth lengths benefit from more 

occurrence of compounding, but are hurt by decreased magnitude of δ steps. This could 

be well expected considering the distance limitation of cooperation between growth 

units. A constant δ step requires products of all growth units being concentrated at one 

position regardless of their localization in the cell, which will be difficult when cells are 

long. The fact that E.coli ribosomes and gene products are concentrated at the poles 

(12,17) could explain the decline if the polar units in long cells are under-supplied. Thus 

the decreasing δ steps indicating longer distance, local cooperation and limited product 

mixing. In short, short cells suffer from lack of compounding and linear growth, and long 

cells have limited cooperation offsetting their benefit of having more chance of 

compounding. Thus, medium cells are optimum and this is the evolutionary significance 

of cell division and potentially the primordial motivation of ecological population. 
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3.5 Availability of data and materials 

          The authors declare that all data supporting the findings of this study are 

available within the paper. 
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3.6 Figures 

 
 
Figure 3.1 | Cell birth length affects growth rate in E.coli.(a) Growth rate (±SEM) 

relative to birth length in microfluidic device. Dashed line shows a local optimal which 

peaks at the highest enrichment of birth length in b). (b) Cell frequency relative to birth 

length in microfluidic device.  
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Figure 3.2 | E.coli growth relative to cell length.(a) Cell length from birth to division 

ranked by birth length. (b) Representative cell showing mono (open circle) and bi-phasic 

(open and close circle) growth from birth to division. (c) δ relative to cell length (±SEM) 

with tanh fit (solid line) and linear fit (dashed line). tanh fits significantly better 

(p=0.00366) than linear. The expectation of δ of exponential growth is linear. (d) δ 

relative to inflection point (±SEM) shows a clean step across two linear phases. The 

expectation of δ of bi-linear growth is step. (e) Empirical standard cell showing bi-phasic 

growth with no division 
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Figure 3.3 | Growth unit cooperation.(a) Cell born with 2 units. (b) New units built 

slowly without cooperation. (c) New functional unit built quickly with cooperation. (d) 

Growth unit number relative to length in Figure 2c cell. 3 units coexisting is not realized. 

Cell divides when growth unit number doubles to 4 but the step (dashed) coincides with 

division and is not observed. (e) Growth unit number relative to length in cooperating 

cell born with 2 units (lower line) or 4 units (upper line). 3 and 4, 5, 6, 7 units coexisting 

are realized and observed. 4 and 8 (dashed) units coexisting are realized but not 

observed.  
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Figure 3.4 | Observed and fitted δ over current length of E.coli. δ is predicted on 
shorter and longer length of cell where sample size is limited. Red dots show area of 
Figure 3.2c where sample size exceeds 200 and inflection point is revealed by fitting 
tanh. Then all inflection points are predicted subsequently (dashed lines). Within each 
step between two inflections, expected δ (solid line) is obtained by fitting a polynomial 
line and predict midpoint. The expected δ is then used to construct empirical standard 
cell (Figure3.2e) and predict division time and growth rate. 
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Figure 3.5 | E.coli elongation regime and optimal cell size.(a) The amount of E.coli 
growth before division (added length) relative to its birth length. A flat line is the 
expectation of “adder” regime. A straight line with slope -1 is the expectation of “sizer” 
regime. Our data shows an intermediate of both features. (b) Optimal cell size 
landscape realized by assuming doubler (division at twice of birth length, blue line) but 
not adder (yellow line). In one E.coli population, adder regime stabilizes the length of 
population, but is insufficient to give fitness landscape of populations of different birth 
lengths.  
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3.7 Methods 

Cell culture and experiment conditions 

          K-12 E. coli wild-type strain MG1655 are grown in Luria-Bertani (LB) media 

overnight in 37 degree Celsius incubator before loaded with LB media to microfluidic 

device. The device is designed to have multiple channels in parallel with each row of 

culture chambers opening on both ends between two channels. The depth of the 

chamber confines E.coli colony to be mono-layer once cells are loaded by 

centrifugatopn. Microfluidic fabrication, cell loading, time-lapse imaging, and image 

collection and analysis have been described (5, 12). As cells start elongation and 

division, the chamber will be filled and cells will be pushed out from both side of 

chamber to the channels and being washed out to the outlet of device. Therefore the 

number of cells in a chamber will reach equilibrium. Study has shown (12) no significant 

enrichment of age or physiology being observed in the equilibrated chamber population 

caused by configuration or limitation of this device. The imaging is done on the bottom 

of selected culture chambers. After cell entering the chamber, the device is left running 

for 8.6 hours (i.e 23.37 generations with average generation time 22.11 minutes) before 

data acquisition to allow stabilization of cell physiology. 

 

Data acquisition 

          The imaging process is directed by NIS-Elements AR software under Nikon 

Eclipse Ti-S microscope. Time-lapse phase images are taken every 20s throughout the 

whole experiment. The frequency of cell length sampling is one frame out of every 3 



 

69 
 

frames from birth to division. Images were analyzed with software ImageJ (NIH, 

https://imagej.nih.gov/ij). Statistical analysis was done by R version 3.3.0. 

 

Data sets 

          The dataset for this study consists of 540 cells with 9853 length measurements. 

The cells are ranked by length of birth ranges from 21 to 50 dμm and every cell is 

represented by a trace of length span from birth to death. The data of following study 

starts from every cell at the length span 29 to 49 dμm where the collective sample for 

each specific length exceeds 200. 

 

Length bins and measuring δ 

          To get the correct inflection point estimation, we starts from length span 29 to 49 

dμm where the collective sample of δ for each 1 dμm bin exceeds 200. A tanh function 

is fit and inflection point is predicted. The inflection point is the transition of 2 to 3 growth 

unit. Therefore the length threshold of growth unit transition is inflection position/3. Due 

to the noise of inflection of single cell, the transition between linear phases is not a 

sharp step but a slope connecting neighbor linear phases. And similar slopes should be 

observed before and after these two linear phases because the existence of other linear 

phases. To eliminate the effect of slopes due to neighboring linear phases on the 

estimation of this inflection point, from the predicted inflection point and predicted length 

threshold, we picked the area half threshold before and after the inflection point to be 

least impacted by neighbor slopes, and fit a tanh function again. A new inflection point is 
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predicted and then its half threshold area is being fit again. This process iterates until 

the position of inflection point and predicted length threshold does not change.  

          As length threshold of growth unit transition is fixed, we can predict the length 

boundary of each linear phase by taking multiple of the threshold.  δ of the first and 

second linear phases are averaged with bin size 1 dμm. As talked above, the beginning 

of third phase has 1 dμm bins that sample size of δ exceeds 200. For the rest of the 

phase, all δ are considered collectively and being divided to two bins that has sample 

size as close as possible. Same two bins are implemented in the fourth linear phase. 

And for the fifth linear phase, due to very limited sample size, all points are pooled in 

one bin.  

          To eliminate the noise of inflection on estimation of δ in each linear phase, a 

linear fit of the mean δ of all bins within a linear phase is performed, and its interpolation 

on the midpoint of this phase is used to represent the mean δ of the entire phase. The 

landscape of mean δ therefore appears step-like nature with each step representing 

constant δ within each linear phase of growth. 

 

AIC (Akaike Information Criterion) test 

          The fit of models (e.g., sigmoid versus linear) to data was evaluated by likelihood 

ratio test and the AIC test was used to evaluate the likelihood probability using 

packages in R. 

 

Detection of inflection point of single cell 
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          Single cell growth curve is highly noisy. And the length trajectory of each single 

cell is measured by every 1 min. To find the inflection point of each cell during transition 

of 2 to 3 growth units, we firstly picked all the cells whose growth spans the length 

range of second and third linear phases. Then the growth trajectory of each cell is fit to 

one linear line. The same trajectory is then fit to bi-linear lines assuming inflection point 

being each length point from the first 3 to the last 3 time point. Each bi-linear fit is 

compared with linear fit by Bartlett’s test of homoscedasticity. Then all the p-values from 

bi-linear fit are collected and the minimum is found by interpolation. If the minimum is 

less than threshold of 0.05, the minimum position is a significant inflection, and the 

trajectory of this cell is showing significant bi-linear behavior than linear. 

 

Standard cells, estimating expected division time DiT and growth rate 

          The empirical standard cell growing over time was created to illustrate bi-phasic 

growth over time (Figure 3.2e). The cell, born with a length of L0 = 29 dµm, was 

constructed by taking the δ values in Figure 3.2c and using them to recreate the 

growing lengths. A cell of length L increases by a unit length to L+1 over a time interval 

of 1/δ. Thus, the time needed for a cell to elongate from L0 to Lt is t = ∑1/δL from L0 to 

Lt. The curve represents a cell that elongates without dividing. However, if Lt is the 

division length, then t becomes the division time DiT. Thus, although this standard cell 

was based on empirically determined δ values, an expected standard cell can also be 

generated from hypothetical δ values. Such an expected standard cell can then be used 

to predict expected DiT values given any pair of L0 and Lt. And  r = log(Lt/L0)/DiT.  
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