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ABSTRACT: Force fields are a key component of physics-based
molecular modeling, describing the energies and forces in a molecular
system as a function of the positions of the atoms and molecules
involved. Here, we provide a review and scientific status report on the
work of the Open Force Field (OpenFF) Initiative, which focuses on
the science, infrastructure and data required to build the next
generation of biomolecular force fields. We introduce the OpenFF
Initiative and the related OpenFF Consortium, describe its approach
to force field development and software, and discuss accomplish-
ments to date as well as future plans. OpenFF releases both software
and data under open and permissive licensing agreements to enable
rapid application, validation, extension, and modification of its force
fields and software tools. We discuss lessons learned to date in this new approach to force field development. We also highlight ways
that other force field researchers can get involved, as well as some recent successes of outside researchers taking advantage of
OpenFF tools and data.

1. INTRODUCTION
Force fields provide a key ingredient for much of modern
classical molecular modeling, providing the energies and forces
in a molecular system as a function of the positions of the atoms
and molecules involved. Such force fields use classical
approximations to the underlying quantum chemical potential
energy surface, resulting in a much simpler, if much more
approximate, function of only the atomic positions. Force fields
(FFs) for biomolecular and soft matter systems are typically split
into valence terms (those involving atoms connected by only a
few terms), which are typically fit directly to quantum
mechanical (QM) data, and nonbonded terms, which use
classical limits of QM derived forces, such as the 1/r dependence
of Coulomb’s law and the 1/r6 of London dispersion forces.
Most commonly in biomolecular and soft matter FFs, these
nonbonded terms are two-body additive, which are relatively
quite cheap, but may also frequently involve more complex (and
expensive) multibody interactions such as terms involving
electronic polarization.1−3

As a way to approximate the behavior of molecular systems
relatively cheaply, force fields play a key role in biomolecular
modeling and simulation, chemistry, and even materials
applications.1−9 In drug discovery settings, they are often used

to explore and guide molecular design, allowing ideas to be
tested or explored in advance of their experimental synthesis and
testing. Force fields thus have broad applications at diverse
scales, ranging from assisting with conformer generation and
estimation of geometries and energetics for small molecules10,11

up to helping to predict the interactions between proteins and
small molecule drugs or signaling molecules,12−21 to protein
design,22−25 polymer modeling,26−28 design of materials for
separations,29,30 and many other areas.

Because so many different modeling techniques rely on force
fields in one form or another, researchers have focused
considerable development effort on building general and
transferable force fields which can handle large swaths of
chemistry simulated together in complex mixtures, and such
force fields are now widely used across research fields. However,
one major challenge in force field development is the amount of
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human time and expertise involved in traditional force field
development. Creating a new general force field from scratch,
covering most or all of normal organic chemistry and
biomolecules typically takes many human-years, based on
historical precedent.1 Thus, while there have been numerous
adjustments to biomolecular force fields over the years,
especially terms relating to proteins and nucleic acids,15,31−34

up until recently,35−39 the core of most of our present-day force
fields, at least aside from the torsions and charges, typically date
to the 1980s and early 1990s. While age in itself is not a major
argument for updates, in the intervening years, computer power
has grown tremendously (along with our ability to accurately
compute precise estimates of varied physical properties) as well
as the availability of diverse experimental and molecular data
sets. Thus, force field efforts today could take a more systematic
approach to fitting, taking advantage of broader and more
diverse data sets and experimenting with different physical
properties than those employed in these foundational efforts.

Small molecule force fields have received much less attention
than biomolecular force fields, to a great extent because the
chemical diversity required is far greater and the number of
studies requiring any given small molecule is much smaller.
Small molecule force fields have typically been developed at least
in part by generalizing biomolecular force fields to cover more
chemical space.40−42 Thus, development of small molecule force
fields has lagged behind that of protein force fields, partly
because of the additional chemical complexity involved and
corresponding additional human time required.

Building a new general force field from scratch using
traditional approaches would simply require too much effort
over too long a time for individual academic groups to tackle the
problem, not to mention the fact that typically, funding is
difficult to impossible to obtain for such an academic effort.

The amount of effort involved in force field parametrization
and optimization makes it surprisingly difficult to answer even
basic questions in force field science. For example, the popular
AMOEBA force field differs from conventional fixed-charge
force fields by adding atomic polarizability, fixed multipoles, an
alternate functional form for nonpolar interactions (a buffered
14−7 potential rather than Lennard-Jones 12−6) and adopting
different training data and a different parametrization philoso-
phy.1 If fitting were a less arduous task involving less human
effort, it might be possible to determine how much each different
choice impacts force field accuracy and transferability, e.g. if it
were possible to fit a force field in the same manner as AMOEBA
or GAFF2, while holding training data generally fixed, we could
explore the impact of a single choice−perhaps taking a
conventional LJ 12−6 fixed-charge force field and adding only
polarization, then comparing head-to-head to determine the
impact of that specific choice on accuracy, transferability, and
computational cost. Such force field science is, to our knowledge,
nearly unexplored. These issues also help motivate our desire to
build new general-purpose force fields, as early efforts43−49 often
made one specific set of choices in terms of the types of data used
for fitting and the molecules considered (as well as functional
form), without systematically exploring how the choice of fitting
data, the composition of the training set and other factors
impacted force field accuracy and transferability. A modern,
more automated effort taking advantage of advances in
simulation methodologies and computer power could system-
atically explore these issues and provide a great deal of insight
into force field science.

1.1. What Is the Open Force Field Initiative? The Open
Force Field (OpenFF) Initiative is an open source, open data,
and open science effort focused on improving force fields and
the related infrastructure, such as by compiling training data and
automating fitting infrastructure, thereby accelerating force field
science. Our interest in this initiative was largely driven by our
own frustration with the state of force field science: both the
difficulty of addressing the remaining fundamental science
questions in the area, as well as the unclear path toward iterative
improvement of existing public force fields. Our own research
fairly frequently led us to encounter force field problems when
modeling small organic molecules, and in some cases even
suggest solutions50,51 but the path toward including these in any
specific force field, or getting them addressed by any force field
development process, was unclear. While commercial vendors
like Schrödinger have invested considerable effort in proprietary
force fields, these FFs are prohibitively expensive for many to use
and progress on any particular problem is dictated by a single
commercial entity.

To some extent, the lack of production-level open source
modern small molecule force fields springs from poor alignment
of incentives. To be specific, by “production-level”, we mean
force fields and infrastructure that can be scaled over large and
diverse sets of input data (molecules) repeatedly in an
automated or semiautomated way, without significant human
attention applied to the process). Incremental improvement of
existing work tends to be a poor fit with traditional academic
funding mechanisms; for example, most major grant mecha-
nisms from the US National Science Foundation (NSF) and
National Institutes of Health (NIH) have “innovation” as a key
review criterion. It can be hard to argue that a force field effort is
innovative if what is most needed is to extend an existing effort
by adding more data or exploring changes to the fitting process,
functional form, or fitting data.

Yet this type of incremental innovation may be precisely what
is needed to advance force field science and address lingering
accuracy challenges and systematic errors in molecular
modeling. Force fields and molecular modeling software already
have considerable value for early stage drug discovery1,2,5,9 yet
still have key areas where steady, often incremental, improve-
ment is needed to improve outcomes.

At the same time, the problem of improving force fields is not
necessarily an ideal fit for the pharmaceutical industry, either.
Industry typically focuses more directly on human health and
investments which can be expected to have a direct impact on
pharmaceutical discovery and development. While individual
companies invest in basic science relating to molecular modeling
to varying degrees and at varying times, such investments can
rise and fall with the fortunes of individual companies and
changes in their management. Additionally, many companies
(probably correctly) view force field and molecular modeling
tools as precompetitive infrastructure�something that might
be worth investing in to the extent that it improves day-to-day
operations but not part of their business model. They might
therefore be open to contributing some amount of money for
collaborative efforts to improve force fields, but complex legal
structures often preclude collaborative arrangements directly
between companies in the drug discovery space.

Drawn by the vital need for high quality force fields which can
be used easily at scale, in the mid-2010s, many companies began
to invest in, or explore investing in, their own infrastructure in
this area. However, the desire to avoid duplicate efforts and
improve quality led to interest in a consortium model for force
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fields. In such a consortium, interested parties could pool funds
and combine efforts to explore and improve force fields, while
ensuring the data, results, software, and products are made
available under a permissive license for subsequent reuse and
further research. Ideally, the group thought, a consortium model
could democratize force field development, ensuring that
anyone would have the ability to make any necessary
improvements to force fields in the future. The same model
could allow outsiders to take advantage of the same infra-
structure, data, and approaches as formal partners, accelerating

innovation and facilitating crowdsourcing approaches rather
than requiring success to be achieved only by a designated few.

This discussion ultimately led to the formation of the Open
Force Field Consortium, a specific industry-funded consortium
focused on open source/open data approaches to force fields for
molecular modeling in the pharmaceutical discovery space. The
Open Force Field Consortium now forms a small part of the
broader Open Force Field Initiative, with the Initiative
encompassing all related science and infrastructure, regardless
of funding mechanism, and the Consortium being the industry-

Figure 1. Indirect chemical perception requires that a library of atom types encodes all potentially relevant chemical environments. Force field
assignment via indirect chemical perception requires several stages of processing. First, in the force field development process (left) a human expert
(“wizard”) considers a set of molecules which the force field should cover and decides which chemical environments will be important to treat
separately, choosing a set of atom types to bin this chemistry and tabulating or encoding these atom type definitions. The expert then encodes a typing
engine which can assign these atom types to arbitrary molecules, writing out a chemical graph with atoms (nodes) labeled by atom types. Once this
engine is in place, the expert separately encodes a parametrization machinery which will read in labeled chemical graphs and assign force field
parameters based on atom types, often from a lookup table called a parameter file. This engine will write out the result to a file containing a
parametrized system suitable for simulations. The expert also develops the parameter file which will be used by the parametrization engine. Second, in
the parameter assignment process (right), a specific molecule or system is input into the typing engine previously developed, which applies the atom
type definitions and writes out a labeled chemical graph. This labeled graph is then processed by the parametrization engine to produce a parametrized
system suitable for simulation. This process is indirect�the parametrization engine considers a labeled graph, not the molecule itself. Thus, in this final
step, all of the relevant information about distinct chemical environments must be encoded by the atom types and other information in the graph (in
AMBER-family force fields, just the atom types and connectivity). Figure adapted from ref 67. Available under a CC-BY 4.0 license. Copyright 2018,
Mobley et al.
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funded portion operating under one specific consortium
agreement with one specific governance structure. The broader
Initiative includes essentially any interested parties, including
work from the Consortium’s main PIs, plus work by anyone who
gets involved, such as Daniel Cole at Newcastle University
(investigating new functional forms and automating torsional
scans),36,52 and Brian Space at U. North Carolina53,54 (applying
OpenFF infrastructure for organic solids). These collaborations
generally have evolved not through a formal process but
organically, with investigators reaching out to propose ideas for
which working together would be beneficial for both OpenFF
and these investigators.

Initially, the Open Force Field Consortium operated under
the fiscal sponsorship of the NSF-funded MolSSI (the Molecular
Sciences Software Institute), but eventually a new nonprofit, the
Open Molecular Software Foundation (OMSF), was created to
house this and other projects in the open source space relating to
molecular modeling. To a large extent, the creation of OMSF
was motivated by the incentive problems discussed above, with
critical work in this space not being a good match in either
academia or industry, as well as by the difficulty of transferring
smaller amounts of money from industry to academic groups.
OMSF has since expanded to host other similar software efforts,
such as the Open Free Energy Consortium, the OpenFold
Consortium, and Open Rosetta.
1.2. The OpenFF Approach Changes How Parameters

Are Assigned. One way in which OpenFF seeks to reduce the
human expertise involved in force field fitting is by changing how
parameters are assigned. Specifically, while a reasonable amount
of effort has gone into improving the automated fitting of
parameters for a particular force field given input data, such as
via ForceBalance,55−57 this approach still requires a great deal of
human expertise deciding which parameters need to be fitted
when building general purpose force fields. Notably, a human
expert must decide how many atom types (and thus how many
bond, angle, torsional, Lennard-Jones and charge parameters)
are needed to represent all of the relevant chemistry, and then,
given these choices and others, automated machinery can
improve the values of the parameters associated with these force
field terms. Atom typing rapidly becomes extremely complex
even for relatively simple molecules, however.

OpenFF is not alone in the space of avoiding traditional atom
typing, nor the only new force field effort. The Automated
Topology Builder framework also takes an alternate approach to
typing and parameter assignment58 as does TAFFI,59 and the
XtalPi/Pfizer XFF force field uses a somewhat similar framework
to advance an alternate force field effort.38 Other machine
learning frameworks like Espaloma,60,61 Grappa,62 MACE,63

DMFF64 or other differentiable frameworks65 provide an
interesting alternative and potentially promising future
direction, as well.
1.2.1. OpenFF Seeks to Assign Parameters via Direct

Chemical Perception Rather than Indirect Chemical Percep-
tion. To automate the entire force field generation process, or at
least make this possible, OpenFF sought to reduce the human
expertise required even in early stages, such as atom typing.
Specifically, our goal was to eliminate predefined atom types and
instead move to a chemical perception language which can be
adjusted as part of a force field development process, paving the
way for further work to automate even the typing portion of
force field generation. In particular, here, we implement this by
encoding force field parameters using the SMARTS substructure
search language.

Atom typing can be thought of as a type of indirect chemical
perception (Figure 1), where a molecule or molecules are
processed via some machinery to assign labels to atoms (atom
types) and then these labels are subsequently processed to assign
parameters. Thus, the key to success is ensuring that the atom
types encode all of the relevant information but no unnecessary
information, as once parametrization is begun, the atom typing
rules are considered fixed. Subsequent addition of new atom
types�for example, to extend the force field into new areas of
chemical space�creates enormous difficulties in how existing
parameters should be adjusted to accommodate the need to fit
newly created parameters.8 We note that hierarchical schemes
can assist with this, e.g.,66 and thus a hierarchical scheme
provides part of our solution as well.

Force field parameters could instead be assigned by a process
of direct chemical perception, which might bypass atom typing
altogether and would assign parameters to individual atoms,
bonds, angles, or torsions by processing the full molecular graph
directly via a chemically aware engine. To see the distinction,
note that force fields in the AMBER force field family do not
retain bond order when assigning parameters, so if any bond
order information is necessary, this must be encoded in the
labels or atom types themselves, as we discuss further below. In
contrast, a tool doing direct chemical perception could use
information about a molecule such as bond order, as it operates
directly on the molecular graph itself rather than an intermediate
labeled graph that no longer retains bond orders or access to
other molecular properties. Atom typing can therefore be
thought of as a lossy compression of the local chemical structure,
providing only the information about the chemical environment
that is preserved in the atom type definitions.

In our view, while atom typing has been extremely helpful in
developing general and relatively transferable force fields that
have allowed a great deal of progress in applications of molecular
modeling (MMFF94,68,69 GAFF,42 and CGenFF70 have been
crucial in enabling widespread modeling of protein−ligand
interactions), we believe it has also impaired force field science
and force field development and we hope to change that. Atom
typing requires a human expert, and poses an arduous task
introducing “a certain degree of ambiguity and arbitrariness”.71

Given the expertise required, then, most work on general
purpose (bio)molecular force fields is done by select individuals
in just a handful of groups. The chemical perception for atom
typing is typically hard-coded into software tools where it is
often both invisible and hard to modify (although there are
efforts to change this72). Overall, this impairs force field science
because very few individuals or groups have the necessary
expertise to modify, extend, or even troubleshoot the available
expert systems for atom typing, although some efforts are being
made to improve this, such as by hierarchical atom typing.66

Atom typing also provides a key place where early decisions or
even mistakes can lead to subsequent problems for force field
development which are hard to overcome. For one, atom typing
makes an up-front decision as to how to bin chemical space.
Once separate atom types are assigned, it is difficult to bin
chemical space differently, even if the data might warrant it.
Additionally, an introduction of a new atom type to fix a problem
with one valence term results in a proliferation of parameters for
all valence terms. To apply automated parametrization
machinery when many equal parameters exist (such as the 16
sets of Lennard-Jones parameters for carbon in GAFF/GAFF2
which only have three distinct values40), a human expert would
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have to designate which parameters should be constrained to be
identical versus which should be allowed to be distinct.

The complexity of atom typing and the lack of independence
of the chemical perception for different parameter types also
makes parametrization vastly more complicated. For example,
AMBER16s GAFF 1.8 has 6,387 lines of parameters and GAFF2
(version 2.1) has 6,796. A key question for applying automated
methods like ForceBalance is how many of these constitute
parameters which should be fitted separately, versus how many
should in fact be equivalent, such as the multiple identical
Lennard-Jones parameters for carbons in biphenyl, but are
different only because of indirect chemical perception. One
concrete example of this issue is the CA-CA carbon aromatic
bond in AMBERs parm9645,73 and parm99 sets,74 which has a
length of 1.40 Å. The CA-CB bond, which is defined between
substantially the same types except that CB is an an aromatic
carbon at the junction of 5- and 6-membered rings, such as in
adenosine and tryptophan, has a length of 1.404 Å. The
difference between these two bonds is very small at only 0.004 Å,
with identical force constants, and with no clear data indicating
that this difference is warranted or truly significant,73 given the
precision of the calculations.

Direct chemical perception (DCP) allows direct assignment
of parameters via processing the full chemical graph of
molecules, avoiding the limitations of atom types (Figure 2)�
instead of assigning parameters by processing a connectivity
graph labeled with predefined atom types, DCP can assign
parameters via operations acting directly on the full chemical or
molecular graph. For our purposes, the “full chemical graph”
here is defined as the standard valence bonded representation of
the molecule with explicit hydrogens, formal charges, and an
aromaticity model applied. Essentially, DCP means using a
chemical perception language to assign force field parameters
based on molecular fragments. DCP can be used to encode
traditional atom type-based force fields by encoding the same
chemical perception, so it can even reproduce pathologies or
complexities associated with atom typing (with enough effort)
such as the complex treatment of bridgehead atoms in GAFFs
handling of biphenyls. Direct chemical perception avoids these
problems naturally. For example, the bond between aromatic
rings in biphenyl is a single bond, and thus DCP can easily
recognize it as requiring different bonded parameters than the
aromatic bonds within the aromatic rings.75 Additionally, since
the parametrization engine has access to the molecular graph, it
has bond order information as well as full access to all

Figure 2.Direct chemical perception eliminates the need to encode all relevant chemical environment information in arbitrary predefined atom types.
Force field assignment via direct chemical perception works on the full chemical graph of the molecules involved (including elements, connectivity,
bond order, etc.), rather than first encoding information about the chemical environment into a complex set of predetermined atom types. First, in the
force field development process (left) a human expert (“wizard”) and/or an automated method (a force field engine, FF engine) considers a set of
molecules which the force field should cover (as well as potentially input data) and develops a force field to cover this chemistry, producing a set of
parameter definitions and a parametrization engine that can apply these to molecules. Second, in the parameter assignment process (right), a specific
molecule or system is input into the parametrization engine previously developed, which processes the molecule and uses the parameter definitions to
apply force field parameters, producing a parametrized system suitable for simulation. The parameter assignment process is direct; the parametrization
engine acts directly on the chemical graph of the molecules comprising the system, so all chemical environment information provided (or computable)
is available to the engine. Unlike indirect chemical perception, there is no intermediate step of assigning atom type labels to a molecular graph;
parameters are assigned directly based on the chemistry. Figure adapted from ref 67. Available under a CC-BY 4.0 license. Copyright 2018, Mobley et
al.
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information about the chemical environment. Thus, a variety of
tools can be applied in parametrization, including (if needed)
electronic structure calculations.

Direct chemical perception avoids hiding the chemistry
addressed by individual terms of the force field under an
additional layer of encoding which can obscure the intent. For
example, consider parameter assignment for valence parameters
within ring systems of various sizes. In todays fixed charge force
fields, bond stretch parameters within such rings are dominated
by the order (single, aromatic, or double) of the bonds involved,
with modulation in some cases by the number of attached
electron withdrawing or donating groups, but the size of the
rings involved plays very little role in the bond stretch
parameters. In contrast, angle bending parameters for the
same rings show almost the exact opposite behavior; bond order
matters comparatively little because the angle is primarily
dictated by the geometry of the ring, whereas the size of the ring
plays a huge role in determining the equilibrium angle. Thus, it
seems that one type of chemical perception, focused primarily
on bond order, is appropriate for assigning bond stretching
parameters, whereas another is more appropriate for angle
bending parameters.

However, indirect chemical perception typically applies the
same chemical perception for all force types, so if we need to
introduce new atom types to capture the correct geometry of
rings, we will simultaneously be introducing new bond
stretching parameters, whether we want them or not. GROMOS
is a notable exception,76,77 using separate atom typing for
valence versus van der Waals terms, though similar concerns still
apply (specifically, generalization of the GROMOS force field to
new molecules has often been done by hand by human experts
(“assigning parameters based on analogy” as one report put it58),
though approaches like the Automated Topology Builder aim to
change this58). Direct chemical perception allows us to easily
avoid this and focus on the (potentially unique) chemical effects
which are important for individual force terms. DCP also allows
the issue of generality versus accuracy to be explored specifically
for individual parameters in the force field without requiring
coupling among all parameters. For example, with DCP, one can
easily explore whether introduction of a new Lennard-Jones
parameter improves agreement with specific data, without
necessarily requiring new torsions to be introduced to the force
field. In the long-run, we believe DCP makes force fields more
easily extensible simply because the chemical perception is not
hard-coded into a piece of software by an expert.

In the OpenFF Initiative, we use a specific implementation of
direct chemical perception, based on the chemical query
language SMARTS78 and its SMIRKS extension, as the basis
for our SMIRKS Native Open Force Field (SMIRNOFF)
format. We use DCP to assign both bonded parameters (bonds,
angles, torsions) and nonbonded parameters (vdW and
electrostatics terms). Specifically, we currently assign atomic
Lennard-Jones parameters using DCP, and use Lorentz−
Berthelot combining rules to parametrize interatomic inter-
actions. While directly parametrizing interactions between
atoms would offer more flexibility, this would result in a huge
expansion of parameters in the force field and therefore has so far
remained a prospect for future exploration. Electrostatics
parameters assigned using DCP are generally done so to
compensate for deficiencies with our charge model, such as lack
of coverage for particular ion species, or poor scaling for larger
molecules such as proteins (see section 3). SMIRKS, and the
SMIRNOFF format, can dramatically reduce the complexity (in

terms of number of apparently independent parameters) in
existing force fields while still yielding force fields of broad
generality and allowing a variety of new innovations which
would be quite difficult in typical force fields.

Direct chemical perception allows a dramatic simplification of
force field typing and greatly reduces redundancy. For example,
typical OpenFF force fields have a few hundred lines of
parameters in contrast to other force fields which have
thousands to hundreds of thousands of lines of parameters, yet
OpenFF accuracy, depending on the measure, has been better,
comparable, or at least not dramatically worse.79

1.2.2. This Direct Chemical Perception Approach Facili-
tates Inferred Types. OpenFF’s direct approach to chemical
perception allows typing to be manipulated as part of the force
field development and assignment process. Thus, early OpenFF
efforts in this area experimented with certain approaches for
automatic derivation of types in a data-driven manner.80,81

However, the combinatorial complexity of potential types have
led to later variations of this. For example, as we discuss further
below, OpenFF Initiative researchers have been exploring
“bespoke” parametrization of molecules, where some aspects
of typing and parametrization can be refined in application to a
specific molecule or a series of molecules.52 Others are exploring
data-driven refinement of types via proposed splits and
merges.82

1.3. The OpenFF Approach to Open Data, Open
Software, and Open Science. A key driving philosophy of
OpenFF is the concept of open science. This concept of
openness applies in three main areas, here: open-source
software, open data, and an open scientific discovery process.
We believe open data and open software is essential to this open
scientific process, furthering force field science by enabling
external researchers to focus on building on our work rather
reproducing it. With free access to the same tools that we use,
scientists can easily expand on our work, conduct their own
experiments, and compare performance.
Open data: We aim to ensure all data sets used in the fitting or

benchmarking of released force fields abide by the principles of
FAIR:83

• Findable and Accessible: OpenFF fits and benchmarks
parameters both to quantum chemistry (QC) data sets
and physical property data sets. For QC data sets, which
we typically generate ourselves, we assign unique
identifiers (data set names and versions), and we maintain
software (OpenFF QCSubmit) to act as an interface for
retrieving the data sets. Data sets are deposited in
MolSSI’s QCArchive database so that they can be easily
reused by researchers across the Initiative and field,
regardless of where they are based. As of this writing,
MolSSI’s QCArchive serves as a public archive of all
generated quantum chemical data, though in the long
term it is likely to shift to retaining only currently active
data sets, in which case OpenFF’s archival fitting data sets
will continue to be made available with force field releases
and as permanent releases on Zenodo. For data sets we
use from other sources, e.g. our physical property data
sets, we commit to only using data with an open license.
Where licensing allows, we distribute the specific subsets
of data used for training and fitting our force fields. If this
is not possible, we release the scripts we use for retrieval
and curation. Our force fields are also named following
semantic versioning for easy identification.
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• Interoperable: in our force field releases, where possible,
we release the actual targets used for fitting in both
human- and computer-readable formats. For valence
fitting targets where we own copyright, we release a) text
files designed for ForceBalance, in addition to b) JSON
files for the OpenFF QCSubmit library. For physical
property data, where licensing allows, we release the
actual targets used in human- and computer-readable
CSV files and JSON files for the OpenFF Evaluator
library. We furthermore release our benchmarking results
as CSV files.

• Reusable: We release our data sets under a permissive
open license (typically CC-BY). All QC data sets in our
qca-data set-submission repository are gen-
erated and described with version identifiers and rich
metadata describing the scope (size, number of con-
formers, elements covered, computational procedure) of
each data set, as well as the motivation and the procedure
for generation. All data sets include a “provenance”
section that lists the versions of key packages involved. We
have also recently begun including the full Python
environments used to generate the data set for improved
reproducibility.

Open Software: The OpenFF approach to software goes
hand in hand with our commitment to open data. We release all
software under permissive open-source licenses, typically MIT
and BSD-3, to allow as many people as possible to easily use and
benefit from our code. We both develop our own libraries, and
contribute to other key libraries in the open-source molecular
modeling space. As described below in the “infrastructure
toolkit” section and “alternative functional forms” section), we
provide multiple interfaces for users that allow them to extend
and build on our code. We strive to have comprehensive
documentation, tutorials, and examples on how to use our
software and best practices. Again as with the data, we aim to
follow the FAIR4RS principles.84

• Findable and Accessible: our libraries are hosted, and
developed through GitHub. They are released and
published on GitHub, Zenodo, and conda-forge, where
they can be installed with standard Python package
managers. Each release is uniquely labeled with a version
identifier that either follows semantic or calendar
versioning standards.

• Interoperable: our software is designed to be interoper-
able with standard formats, major cheminformatics
toolkits and popular molecular modeling engines, as
expanded on in the discussion of OpenFF Interchange
below.

• Reusable: we use standard versioning schemes and release
our packages with clear specifications on required
dependencies through the software channels above.

Open Scientific Process: OpenFF is designed for the
scientific process to be as open as possible. We post all
presentations from our preprints and meetings publicly on our
Web site. We encourage other investigators to use our tools and
to participate in discussions. The BespokeFit package (described
more below) is an example of a project that developed through
contact with an outside investigator who had shared interests.

If you are interested in participating or collaborating with
OpenFF, we encourage you to get involved via our
organization’s GitHub repositories and discussion board, as
well as our examples, workshops, and documentation. We are

also happy to connect interested collaborators with team
members working in relevant areas. Overall, our hope is that in
the long run, the community will take advantage of OpenFF data
sets and infrastructure (as well as their own contributions) to
push forward force field science dramatically so the field as a
whole will benefit from dramatically improved force fields,
whether they come from our project or elsewhere.

A word about decision-making is warranted. To a large extent,
OpenFF strives to make decisions based on running scientific or
fitting experiments rather than in a philosophy-driven manner,
as the latter often results in wasted time and effort. To give a
concrete example, early OpenFF efforts selected one particular
choice of QM basis set and level of theory for initial fitting work
(based on careful examination of literature data),85 with the
expectation that this would have to be improved at a later date
(with a corresponding refit of all force fields) after fitting
machinery was in place following a more systematic bench-
marking effort. However, this more systematic benchmarking
effort seems to suggest that our initial choice−which was
relatively carefully informed based on the literature−was indeed
adequate86 so we continue to rely on the same QM choices. We
also have to make choices about weighting factors used for
ForceBalance fitting,85 and rely heavily on testing and
benchmarking of different fitting experiments to see which
results in best accuracy and transferability. Recent choices to
move to fitting to mixture data rather than pure solution
data39,87 were informed by fitting experiments as well. Likewise,
use of vibrational frequency data in fitting hurt force field
accuracy (at least with our present data sets and machinery) so
this was dropped.39

That said, resources may not be adequate to systematically
explore all choices on the desired time scale, so the main
OpenFF Consortium is led by its governing board in deciding
where to invest resources. Long-term, this will likely result in a
diverse ecosystem of force fields and exploration done by the
broader OpenFF Initiative (see e.g. the double exponential work
of Cole and collaborators36), with only certain innovations being
picked up by the more narrowly focused Consortium.
1.4. Synergy with Other Open Science Efforts.OpenFF

promotes open collaborations for the larger benefit of the
molecular simulation community, and owes its success to all the
contributions from both upstream and downstream developers
in adapting our software stack and providing feedback on our
science efforts. We rely on many external software packages and
public databases in training and testing of our force fields. At the
most basic level, simulation engines such as OpenMM88 and
GROMACS89 are critical for enabling us to employ our force
fields in simulations. PMX from the Gromacs community90 and
the Open Free Energy initiative have been crucial in
benchmarking our Parsley and Sage force fields with binding
free energy calculations.

OpenFF is furthermore only able to obtain the data sets we
use to fit and benchmark our force fields by building on top of
earlier work by the scientific community. We use physical
property data from publicly available databases such as
ThermoML,91 MnSol92,93 and FreeSolv.94 For training and
benchmarking valence parameters we generate substantial
quantum mechanical (QM) data. This QM data generation
relies on the electronic structure package Psi4 and the QC
infrastructure created by MolSSI (QCFractal, QCPortal,
QCEngine), along with QCArchive for storing the generated
data according to FAIR data principles.95,96 The sustained
development of Psi4, incorporating new quantum chemical
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methods and maintenance of the aligned QC packages to
modern programming standards, has been crucial in fueling our
science efforts at scale.

For example, the infrastructure made it easy to generate huge
data sets such as the protein data sets we are using to train the
next generation fully consistent protein and small molecule force
field, Rosemary. These protein data sets include two-dimen-
sional torsion scans of protein backbone dihedrals, which easily
runs into 300 K or more constrained optimizations per data set
(with around 6000 constrained optimizations per 2D torsion
scan of 576 (24 × 24) grid points).97 Another joint effort with
OpenMM was generating the SPICE data set.98 This data set,
which contains more than a million single point energies and
forces, was enabled by OpenFF’s QCSubmit and MolSSI’s QC
software stack with Psi4 being the calculation engine. OpenFF’s
Industry Benchmark set79 is another example of collaboration
with like-minded people in industry who want to push for open
standards in benchmarking force fields. This in turn has
benefited others in the molecular modeling community; the
authors of the XFF force field included the OpenFF Industry
Benchmark in their validation data set.99

2. CURRENT PROGRESS
2.1. New Generations of Force Fields. Our first

SMIRNOFF format force field was SMIRNOFF99Frosst.75

This force field was an adaptation of Bayly’s AMBER-family (or
GAFF-sibling) parmFrosst force field100 into the direct
perception SMIRNOFF format.75 No refit was performed at
this point; it was solely a representation of this older force field in
using SMIRNOFF spec described above. Although not an
advance in force field quality, it was an important conceptual
advance demonstrating the implementation and ease of use of
direct perception concepts.

Following SMIRNOFF99Frosst, we released our first actually
refit force field, OpenFF 1.0.0 “Parsley”. SMIRNOFF99Frosst
was used as a starting point for fitting of Parsley, with significant
optimization of the valence parameters through fits to
geometries and energetics from an extensive set of QM
calculations.85 Since both GAFF and Parsley share roots in the
AMBER family of force fields, this meant that their nonbonded
parameters were virtually identical.85,101 The fixed charges used
the AM1BCC-ELF10 charge model,102 with both AmberTools
and OpenEye AM1BCC charging workflows being recognized
as acceptable choices to generate these charges, despite the fact
there can be some small differences between the two programs
in the implementation.

Parsley serves as the code name for the entire OpenFF 1.x
series force fields, and subsequent releases in this series included
several important updates and bug fixes. Parsley 1.1.0 included
the addition of additional nitrogen-centered improper torsion
terms to better describe key planar and pyramidal structures that
can be difficult to differentiate.103,104 Parsley 1.2.0105 included a
major redesign of quantum chemical training data sets to
improve diversity and coverage and better represent core
chemistry, followed by a full valence parameter refit to this new
data set. Updated training data106 resulted in significant
improvement in relative conformer energies, optimized geo-
metries, and torsional profiles with respect to accurate high-level
ab initio data when compared to Parsley 1.0.0. Parsley 1.3.0
added new torsion parameters for dialkyl amides to improve
amide torsional energy profiles107 and in Parsley 1.3.1 we
corrected a minor regression for sulfonamides accuracy.108

The OpenFF 2.0 release was code-named “Sage” and
incorporated a continued refinement of valence terms and a
refit of LJ parameters.39 Sage included substantial new work
retraining the valence parameters used in Parsley, but the largest
update was retraining of select Lennard-Jones (LJ) parameters
to physical properties. Previous OpenFF LJ parameters were
inherited from predecessor force fields (AMBER parm99109 and
parmFrosst100). In Sage, LJ parameters were optimized against
condensed phase physical properties, including enthalpies of
mixing and densities measured for both pure and binary
mixtures. We found these mixture properties to result in better
force fields than optimizing to pure properties and heats of
vaporization alone (Figure 3).110 Fitting to mixture properties

that included water used TIP3P as the water model, meaning
Sage should be used with the TIP3P water model, though future
work is expected to change this (see discussion about co-
optimization of the water model below). We also tested Sage on
cross-solvation free energies (transfer between solution environ-
ments),39 as some other researchers have done;111 such data
may be interesting for fitting in the future, though it remains
somewhat sparse for many regions of chemical space. Overall,
Sage remains essentially an AMBER-family small molecule force
field, and thus AMBER force fields for proteins and nucleic acids
are tested and recommended with OpenFF small molecule force
fields.39

In the Sage series, our OpenFF 2.1 release made a number of
further improvements. Previously, the OpenFF objective
function had optimized torsional parameters primarily based
on torsion drive data, ignoring dihedral deviations used in
optimized geometries. We updated our fitting process to include
dihedral deviations observed in optimized geometries, resulting
in improved performance on validation data sets (Figure 4). We
also incorporated new initial guesses of parameters derived from
the modified Seminario method (discussed further below)
which improved accuracy and gives more physical values for
valence geometries and force constants. We also began to fit
improper torsion parameters, observing significant benefits for

Figure 3. Selected categories of physical property training data, before
and after LJ optimization. These plots show parity between experiment
and simulation for physical properties in the training set, before (Parsley
1.3.0), and after LJ training. “MSE” in the panel legends refers to the
mean signed error (bias) of the data set. Panel a shows correction of
systematic error in bromide density prediction, particularly in data-
based reduction in [#35:1] Rmin/2. Panel b shows correction in ΔHmix
of alcohol/ester mixtures after training to mixture data. As the ester
group is a hydrogen bond donor but not acceptor, optimization of
energy and density of pure esters would not recognize the need to create
favorable interactions with hydrogen bond donors; only by including
thermodynamic properties of liquid mixtures in fitting can we properly
treat complex mixtures of molecules. Figure adapted from ref 39.
Copyright 2023, American Chemical Society.
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molecular geometries, as observed by RMSD and torsion
fingerprint deviation while maintaining generally good ener-
getics.112 Overall, these improvements improve accuracy relative
to our QM benchmarking data substantially.

Overall progress across several OpenFF force field versions
(on benchmark data, not training data sets) is shown in Figure 4
for RMSDs. Additional benchmarking data is available,
including in internal industry tests on proprietary chemistries.79

2.2. Advances in Science. 2.2.1. Training Data Selection.
As mentioned, a key distinction of OpenFF force fields is their
broad coverage of chemical space with relatively few parameters.
The selection of data to use in parameters fitting is crucial for the
quality of the results. Important choices include the balancing
between data set size and the breadth and depth of coverage of
chemical space, as well as which properties to use as targets.

The Parsley 1.2.0 force field was fit to a high-level QM training
data specifically curated with the goal of increasing chemical
diversity and parameter coverage. Recent version of Sage line of
force fields, Sage 2.1.0, used optimized conformers of less than
1600 unique small molecules and one-dimensional torsion scans
of less than a 1000 unique small molecules. Even with these
smaller curated sets of molecules, which represent the
pharmaceutically relevant chemical space, the performance is
comparable to other small molecule force fields and ML
potentials.

The QM data used by OpenFF in force field fitting is
generated using the B3LYP-D3(BJ)/DZVP method and basis
set. This choice113 was initially based on benchmark studies of
conformer energies of neutral peptides and macrocycles,114,115

as well as a comparison of relative torsion profile energies on a
set of 15 one-dimensional torsion scans. We recently carried out
a more comprehensive benchmark of 20 combinations of
functionals and basis sets across Jacob’s ladder of chemical
accuracy, comparing relative energies across torsion profiles and
dipole moments.86 The data set considered 59 molecules
selected to represent chemical diversity, including variations in
central bonds, formal charges, elements, and intramolecular
interactions. As such, this data set included molecules with

nonzero formal charges, strong internal interactions, conjugated
central rotatable bonds, and halogens. Gratifyingly, we found
that the B3LYP-D3(BJ)/DZVP level of theory yielded the best
balance between computational expense and the accuracy
necessary for force field fitting.

Likewise, we carefully considered which properties to use in
retraining Lennard-Jones (LJ) parameters. Historically, LJ
parameters are often trained to experimental physical properties,
commonly a combination of density and heat of vaporization
(ΔHvap) measurements.116−118 However, issues such as low
availability of ΔHvap data and the necessity of simulating two
different polarization states (i.e., the liquid and gas phases) with
the same fixed charge force field complicated training, to ΔHvap
in particular.

OpenFF has so far focused on training to mixture data such as
densities of mixtures and enthalpies of mixing. Liquid mixture
data do not require simulating in multiple phases, or including/
correcting for effects of changes of polarization upon transfer
between phases. More specifically, the change in polarization on
phase change (gas-to-solution, such as gas-to-water) is much
larger than the change in polarization on transfer between
solvents (e.g., water to a nonpolar solvent), so transfer within the
same phase requires fewer corrections than transitions across
phases. Moreover, mixture properties can allow the addition of a
range of complexity into the training data; mixture properties
can capture interactions between the two components that pure
properties cannot, across a range of different compositions,
which is much more like the environment encountered in
simulations of biomolecules at realistic conditions. Finally, many
more data points are readily available for mixture properties than
for pure ones. We compared training LJ parameters to four
combinations of pure and mixture physical property data in
order to systematically compare the performance of training a
force field to those data sets.87 We found that training to mixture
property data resulted in statistically significant improvements
on benchmarks such as solvation free energies over training to
pure liquid (or phase change) data only. The LJ parameters in
Sage 2.0.0 were therefore trained to a mixture data set of

Figure 4. Quality of optimized geometries relative to QM reference data on our benchmark data set. Shown is a cumulative distribution function
(CDF) assessing what fraction of QM optimized geometries are predicted correctly (within a given RMSD cutoff) by MM optimizations for molecules
in OpenFF’s public industry benchmarking set, consisting of 9847 molecules with a total of more than 70K conformers. A higher CDF is better. The
QM reference approach is B3LYP-D3BJ/DZVP. Different colors/styles compare different OpenFF versions beginning with version 1.0, and for
reference, GAFF 2.11 with AM1BCC charges is shown for comparison. The inset zooms in on the boxed portion of the CDF. Adapted from ref 112.
Available under a CC-BY 4.0 license. Copyright Mobley, Wagner, Wang and the Open Force Field Initiative, 2023.
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densities and enthalpies of mixing, resulting in improved
performance on both aqueous and nonaqueous solvation free
energies relative to the previous Parsley 1.3.0 force field.
2.2.2. BespokeFit. As discussed, one of the benefits of the

OpenFF direct chemical perception approach is the compact-
ness of the resulting force fields. For example, the Sage force field
contains 167 torsion parameters, in comparison to around 150 K
such parameters in the OPLS3e library,119 with small or
negligible differences in accuracy over large scale protein−ligand
binding tests.120 Torsion parameters, however, might be
expected to be less transferable than other valence parameters,
since they must account for a range of stereoelectronic and steric
effects, and there are numerous examples in the literature of
discrepancies between the potential energy surfaces of classical
force fields and quantum mechanics.121,122 To complement the
transferable force field libraries, we have therefore developed
OpenFF BespokeFit as a tool to automate the optimization of
custom torsion parameters against reference quantum chemistry
data for SMIRNOFF-style force fields in collaboration with the
Cole group at Newcastle University.52

Custom parameter assignment can historically be a time-
consuming and error-prone task, but OpenFF BespokeFit
automates all stages from molecular fragmentation to reference
data generation and parameter optimization. Fragmentation of
larger molecules can reduce the cost of quantum chemistry
reference calculations, and reduce the risk of hysteresis in the
energy profiles. It is important not to oversimplify the chemical
environment, however, and we have found that the Wiberg bond
order is an effective surrogate measure of the disruption of the
potential energy surface caused by a proposed fragmentation.123

Once the rotatable bonds for reparametrization are identified,
BespokeFit makes use of the TorsionDrive package with
wavefront propagation and geomeTRIC for performing one-
dimensional torsion scans.124,125 Importantly, an interface with
the QCEngine package126 offers access to a suite of quantum
chemistry, semiempirical and machine learning potential
reference data methods through a single interface. In keeping
with the OpenFF open science philosophy, we have additionally
developed QCSubmit as a tool for scheduling quantum
chemistry data sets at-scale, and aggregating the results for
storage on public (such as QCArchive96) or private repositories.

Using QCSubmit to curate the calculations, and the
ForceBalance software56 to optimize the torsion parameters,
we have demonstrated the utility of BespokeFit in deriving
custom parameter sets for a large data set of 490 molecular
fragments.52 Across this set, the root-mean-square error in the
potential energy surface, relative to the quantum chemistry
reference, was reduced from 1.1 kcal/mol using the baseline,
transferable force field, to 0.4 kcal/mol with BespokeFit.
Importantly, we have also shown that the resulting force fields
can yield benefits in alchemical free energy calculations.
Correlation between theory and experiment for a set of 16
congeneric inhibitors of the TYK2 protein was increased from
0.72, using the baseline force field, to 0.93 using the bespoke
version.52 We also saw encouraging accuracy, intermediate
between the baseline force field and full QM, using the
computationally less expensive GFN2-xTB semiempirical
method127 to generate the reference potential energy surfaces.
Whether these observations hold across a wider range of protein
targets and ligands will require further benchmarking. A subset
of this BespokeFit workflow has been implemented within the
Cresset Flare software,128 and since publication OpenFF-
BespokeFit has been used to parametrize a custom force field

to study possible degradation mechanisms in modified nucleic
acids.129

2.2.3. Using the Modified Seminario Method for Initial
Values. Force field fitting must begin from some initial guess of
parameters, especially as the force field must cover diverse
chemistries and be fit to a variety of different physical and
computed properties. Equilibrium bond lengths and angles can
be estimated to be close to the mean reference values of the
training set of molecules, but bond and angle force constants are
difficult to obtain from molecular geometries alone. The
optimizer may get stuck in local minima if the starting point is
far away from the global minimum resulting in physically
nonsensical force constants such as double bonds having a lower
force constant than single bonds. The modified Seminario
method130 utilizes the QM Hessian data of the training set of
molecules. By projecting the eigenvectors of partial Hessian
matrices onto bond and angle vectors for the atoms involved, the
method enables the selection of initial bond and angle force
constants. These parameters have been shown to closely
reproduce quantum mechanical normal-mode frequencies,130

and provided us with physically relevant bond and angle
parameters that enabled us to significantly improve the force
field. Table 1 shows the stark difference in bond parameter force

constants with using a modified Seminario starting point. This
can also help in choosing appropriate priors that may keep
parameter values closer to the initial values during optimization.
This automated choice helps remove the human element in
picking the right initial force constant for bonds and angles.

The choice of what type of properties to use in training is also
important. Removing vibrational frequencies as a training target
in Sage 2.0.0 improved accuracy over previous generations of
Parsley since the difficulty in correctly matching the vibrational
modes between QM and MM was avoided. In the Sage 2.0.0 and
2.1.0 releases, valence parameters were trained only to a
combination of optimized geometries and torsion energy
profiles and a careful application of priors eliminated previously
observed pathologies such as errors in sulfonamide angles.
2.2.4. Probing Alternative van der Waals Functional

Forms. Historically, choices in force field design strategy are

Table 1. Bond Force Constants Are Physically More Intuitive
with Starting the Force Field Fitting from the Modified
Seminario Method Estimated Values for Bond and Angle
Parametersa

Sage 2.0.0 Sage 2.1.0

Bond SMARTS k (kcal/mol/ang2) k (kcal/mol/ang2)

[#7X2:1] − [#7X2:2] 675 473
[#7:1] − [#7:2] 845 578
[#7X3:1] − [#7X2:2] 830 620
[#7:1]:[#7:2] 732 662
[#7:1] = [#7:2] 698 1089
[#7 + 1:1] = [#7 − 1:2] 766 2440
[#7:1]#[#7:2] 760 3237

aThe single bonded, aromatic, double bonded and triple bonded
nitrogen bond parameters are listed in ascending order of force
constants as expected from QM in Sage 2.1.0, when compared to Sage
2.0.0 values. While the Sage 2.0.0 values are the legitimate result of a
fit, they appear unintuitive, especially for triple bonds, likely because
the optimizer pushed them to those values since in multi-objective
optimization there can be a number of solutions reaching the same
minima.
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made early on and become “baked in”, typically for many
decades. One such example is the choice of the Lennard-Jones
12−6 potential that describes nonbonded repulsion at short-
range and attractive dispersive interactions at longer range. The
functional form of this potential is not entirely physically
consistent;131,132 while the r−6 term was chosen to model the
physical shape of the long-range attractive tail, the repulsive r−12

potential was chosen in part due to computational motivations,
as it is simply calculated by doubling the r−6 term.133 However, it
has persisted because rewriting molecular modeling software
and refitting force fields to test other functional forms would
previously have been impractical. To enable easy optimization of
parameters using novel van der Waals functional forms, we
wrote Smirnoff-plugins as an interface to extend the OpenFF
software stack to support custom nonbonded functional
forms.36

As a proof-of-concept, we experimented with replacing the
Lennard-Jones potential with a double exponential (DE)
functional form,134 which has a physically motivated exponential
decay at short-range and an additional parameter to control the
decay of the attractive potential at long-range. Using the
Smirnoff-plugins interface to the OpenFF stack, we cotrained a
DE-based small molecule and water transferable force field (DE-
FF) on over 1000 physical properties.36 As well as improve-
ments over the LJ-based Sage force field on the training set, we
also saw improved metrics when DE-FF is benchmarked on
transfer free energies (RMS errors of 0.85 kcal/mol, r2 = 0.93).
In this way, new force field hypotheses can be made and tested in
a matter of weeks, rather than the years of human time that
would have been required before OpenFF.

This project represents an early demonstration of our
community building efforts. Our infrastructure drives commun-
ity innovation by enabling the rapid prototyping, implementa-
tion, and derisking of ideas before they are brought into full
production. For example, if the proof-of-concept work on DE-
FF force fields continues to show value, this may drive mainline
force fields to move in this direction, as their natural soft core
and promising accuracy has the potential to benefit free energy
calculations.
2.2.5. Automated Chemical Perception Using Binary

Encoded SMARTS. Since the original description of the
SMIRNOFF format,135 a key motivation has been to automate
direct chemical perception using SMARTS patterns78 to extend
and build general small-molecule force fields. The difficulties
associated with extending small-molecule atom types has been
previously discussed.75 The use of SMARTS patterns as the
perception model in the SMIRNOFF format simplifies the
process of adding new parameters. However, experience has
shown that determining general SMARTS patterns by hand can
still be very difficult. We have seen some success with designing
SMARTS patterns that are specific to relatively narrow
chemistries to help avoid specific pathologies; for example, we
introduced new SMARTS for amides in 1.3.0 and sulfonamides
in 2.1.0. In the 1.3.0 release (see the release notes at https://
github.com/openforcefield/openforcefield-forcebalance/
releases/tag/v1.3.0) we investigated an energy cusp in the
torsion profile of N-methyacetamide, resulting in MM
disfavoring the flat conformation, whereas the QM reference
torsion profile indicated that the flat conformation was stable.
The problem was fixed by splitting the SMARTS patterns t69
and t70 in 1.2.0 to t69 and t69a, and t70 to t70b-d.
Examining these splits show that 69a splits off torsions for
diakyl amides, R�C(�O)N(R′)(R′′), from

(a torsion linking (trivalent nitrogen or negatively charged
divalent nitrogen) by a nonring bond to a trivalent carbon) to

which is a torsion linking a trivalent nitrogen to a trivalent
carbon that is connected to an oxygen, nitrogen or sulfur.

Following this, the parameter t70 was split to differentiate
the pattern

(a torsion linking central atoms consisting of a trivalent nitrogen,
single bonded to a trivalent carbon, where the carbon is double-
bonded to a nitrogen, oxygen or sulfur) to the three more
specific patterns

which specify that the central bond is a nonring bond and specify
the identity of other atoms involved in the torsion or adjacent to
the trivalent carbon. The first and second patterns specify that
the other atom connected to the trivalent carbon is a carbon; in
the third pattern, it is a nitrogen. In the second pattern, the first
of the four atoms involved in the torsion is a hydrogen.

A subsequent parameter fit with these new parameters
successfully corrected the cusp. In the newly split SMARTS
patterns for t70, for the third atom, the nonring carbon, the
neighbor atoms were made more specific covering the cases of R
in R�C(�O)N(R′)(R′′) being a carbon, hydrogen, or a
nitrogen. And, the difference between the first and second splits
was in the first atom being a wild card and a hydrogen,
respectively. It is to be noted that the parameter t69 is still the
most general with wild cards for atoms 1 and 4, and subsequent
specific parameters were introduced below it according to
SMIRNOFF hierarchy, where the most specific parameter gets
assigned over a general parameter. In the 2.1.0 release, we
modified an angle SMARTS pattern to fix distorted sulfonamide
geometries (see the release notes at https://github.com/
openforcefield/sage-2.1.0). To fix this, we modified angle
parameter a32, represented by the SMARTS pattern,

which specifies a generic angle (involving single bonds only)
around a tetravalent sulfur or trivalent neutral sulfur, to

to separate [*]-[S]=[*] from [*]=[S]=[*]. Notice the
bond change between the second and third atoms from a single
bond to any bond represented by tilde. Prior to this fix, O�S�
O and N−S�O used to get the same parameter and N−S−N
has a separate parameter. In this case, the O�S�O equilibrium
angle was generally 120 degrees while the others were near 100
degrees. The subsequent fit with this modified SMARTS pattern
was able to fix the distorted geometry. It is important to note that
these SMARTS patterns were developed by a human expert and
the final improvements came through after a number of
iterations of human-in-the-loop development.
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Because of the complexity of deriving patterns by hand, we are
extremely interested in ways to automatically sample SMARTS
patterns, but finding a solution has thus far proven difficult.
ChemPer was developed to sample SMARTS using a Monte
Carlo algorithm and works by partitioning a group of molecular
fragments into two or more groups/parameters.81 However, this
random sampling approach proved to be too computationally
expensive for general force field development, as the sampling is
done on an exponentially growing chemical space. Additionally,
there are many ways to write a SMARTS pattern to match the
same substructures, meaning that the search space is highly
redundant. Regardless, the ChemPer approach has been a
valuable tool and is heavily used in BespokeFit for determining
SMARTS patterns that isolate individual torsions for custom
parameter fitting.

We have laid out a theoretical framework for sampling
SMARTS patterns in a direct, iterative manner using binary-
encoded SMARTS (BESMARTS).136 ChemPer seeks to find
SMARTS patterns that discriminate between specific groups of
molecules or chemistries, whereas BESMARTS inverts the
problem and instead provides a list of rapidly computable
SMARTS that each induce a partitioning of the input data, then
determines which of these partitionings are useful. These
SMARTS patterns can be individually evaluated as candidate
parameters in a force field fit, and highly performing candidates
(evaluated based on which proposed new parameters results in
the largest improvement in the objective function) can be
included in the chemical perception model.

Because the BESMARTS approach searches SMARTS
patterns in a breadth-first-like search, candidate SMARTS are
as general as possible while still pinpointing salient molecular
features that are important for improving force field perform-
ance. For example, a list of potential candidate splits from a
generic sp3 carbon bond ([#6X4]-[#6X4]) could be
[#6X4H3]-[#6X4] (a tetravalent carbon with three protons
connected to another tetravalent carbon), [#6X4r]-[#6X4]
(a tetravalent carbon in a ring connected to another tetravalent
carbon), and [#6X4H0]-[#6X4] (a tetravalent carbon with
no protons connected to a tetravalent carbon). While these are
equally general in terms of SMARTS, [#6X4r]-[#6X4]
(which specifies the first carbon is in a ring) would split out
cyclic molecules and possibly lead to a better parameter over the
other two candidates, especially if this process is applied to
torsions (Figure 5). Automating this type of search should
facilitate the further development of general, small-molecule
force fields.

We have used these concepts and an in-house, prealpha
BESMARTS implementation as a copilot to guide the
development of the sulfonamide patterns found in OpenFF
2.1.0. Additionally, early applications of the automated
parameter search also uncovered areas in our small-molecule
force field that could be extended due to multimodal
distributions in the underlying QM geometries; in particular
how we treat bond and angle parameters for 3-, 4-, and 5-
membered rings. This was accomplished by generating various
SMARTS patterns and looking at the mean equilibrium bond/
angle values for each split SMARTS, where ring systems were
found to have substantially different mean values. Importantly,
these differences can also be found in examining the bond and
angle force constants for such rings versus their linear
counterparts. Such mixing of different chemical moieties in a
force field fit can be problematic if there is an uneven
distribution of data where the parameters drift toward the

dominating case, or worse if the distribution is multimodal and
the parameters optimize to some unreasonable mean value as a
best-effort compromise. In an automated parameter search,
multimodal cases can be discovered and fixed as each split will
subsequently fit to each mode in the data distribution
individually, leading to an accurate set of parameters.

Due to the complexity and variety of edge cases involved when
manipulating SMARTS patterns at the detailed level needed for
force field parameter search, our BESMARTS implementation is
still under heavy development at https://github.com/
trevorgokey/besmarts. The design of BESMARTS is targeted
to the general case of clustering molecules by SMARTS patterns,
and as such should be useful not only to force field chemical
perception modeling, but to any application requiring a
clustering method that labels a group of molecular fragments
with an aggregate SMARTS pattern. For example, it is possible
to generate a list of SMARTS that mimic the chemical
perception model of non-SMARTS based methods. Two
interesting examples where this could be applied are atom-
typed models, such as GAFF, where a mapping of SMARTS to
types is sought, or even ML potentials, where SMARTS patterns
are sought which cluster parameters such as bond force
constants that are similar in value. Creating SMARTS models
for such examples can be helpful to describe how their
underlying chemical perception models work and provide a
method to compare force fields with otherwise disparate
chemical perception models using the common language of
SMARTS.
2.3. Infrastructure Advances and Interoperability.

2.3.1. OpenFF Toolkit. The OpenFF Toolkit is the central
library in OpenFF’s software infrastructure. It provides a
reference implementation of the SMIRNOFF specification. It
is written in Python and is primarily distributed as a conda
package. Documentation, including installation instructions, is

Figure 5.General approach of BESMARTS parameter search. For each
parameter, the chemical environments that matched are combined into
a single pattern. The combined pattern identifies SMARTS primitives
that have multiple values that are then used to derive new patterns. Each
new pattern is based on the original parameter ([#6X3:1]
[#6X3:2]) with one or more primitives (represented as bits)
added. In this example, the bonds that matched, when combined, show
that bonds in 5-membered rings and 6-membered rings matched the
original parameter. This offers the r5 and r6 primitives as a means to
split, and the new candidate parameters [#6X3r5:1] [#6X3:2]
and [#6X3r6:1] [#6X3:2] are generated and subsequently
evaluated for performance. The splits can take multiple bits
simultaneously, can additionally search the local environment for
additional primitives to find more specialized splits. Image adapted
from Gokey and Mobley.136 Available under a CC-BY 4.0 license.
Copyright 2023, Gokey and Mobley.
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available online at docs.openforcefield.org. This page also
provides several Jupyter notebooks showcasing core function-
ality that can be run in-browser on Google Colab.

Broadly, the OpenFF Toolkit focuses mainly on parsing
SMIRNOFF force fields and applying SMIRNOFF force fields
to chemical topologies. However, it also provides utilities to
manipulate force fields, as well as to bring molecules in from
standard cheminformatics toolkits and export parameters
suitable for simulation in several standard modeling tools.

For most users, the primary use of the OpenFF Toolkit is to
apply an existing force field to their molecules of interest and
then to run a simulation. The OpenFF Toolkit aims to make this
use case as streamlined as possible, and automatically handles
complex tasks like partial charge assignment, SMIRKS based
matching, and simple molecule sanitization. The output of a
standard user workflow using the OpenFF Toolkit is an
OpenMM System object, which can easily be used to begin a
simulation. More complex workflows, including conversions to
and from other ecosystem formats, can be made using the
OpenFF Interchange object.

The toolkit is based around a Molecule class with a rich
internal representation of a molecule. Molecules can be loaded
from a variety of sources into OpenFF Molecule and
Topology objects. Currently, these sources include file
formats like MOL/SDF, SMILES, and some PDB files.
Additionally, the OpenFF Toolkit interfaces with the RDKit
and OpenEye Python APIs and can interconvert with molecule
representations in those packages.

An OpenFF Molecule is a graph representation of a
molecule that consists of, at a minimum, atoms defined by
element, formal charge, and stereochemistry, and bonds defined
by integer bond order and stereochemistry. These are the
minimum pieces of information needed to perform SMIRNOFF
parameter assignment. Optionally, there may be additional
information stored on Molecules, such as conformers, partial
charges, and name, and on Atoms, such as name, residue, and
chain.

The OpenFF Molecule class includes methods for input
from and export to common file formats and data models such as
SDF files, SMILES patterns, or QCSchema models used by
QCArchive. There is a high-level API for common chemical
operations such as partial charge assignment and conformer
generation. These operations are handled by wrappers around
existing toolkits (currently OpenEye Toolkits, the RDKit, and
AmberTools).

The OpenFF Toolkit now includes first-class support for
loading biopolymers, including loading proteins from PDB files.
Previous versions lacked this functionality because PDB files
lack chemical information required for OpenFF’s representation
of molecules, which include bond order and stereochemistry. To
bridge this gap, a library of known chemical substructures is
matched against residue metadata in PDB files and added to the
internal representation of the PDB file after loading. The first
release (version 0.11.0) only supported loading single peptides
in vacuum, but the current release 0.13.0 introduced Top-
ology.from_pdb for loading multicomponent PDB files.
This enables interoperability with more complex PDB files
containing multiple proteins, multichain proteins, solvent and
crystal water, common ions, and ligands, if also provided extra
information such as an SDF file or SMILES pattern.

The OpenFF Toolkit has three primary areas intended for
easy extension by outside developers:

• The ToolkitWrapper plugin interface registers
wrappers around external cheminformatics toolkits. For
e x a m p l e , c a l l s l i k e
Molecule.generate_conformers() perform
a complex task on native OpenFF objects by delegating to
external toolkits such as RDKit or OpenEye, while
keeping the ecosystem-specific details of the object
conversions away from the user. Currently, OpenFF
provides wrappers around important functionality from
AmberTools, RDKit, and OpenEye. External developers
can create custom ToolkitWrapper classes and add
them to the global registry at runtime, where they will
automatically be used for background cheminformatics
operations by various parts of the OpenFF Toolkit.

• The ParameterHandler plugin interface allows for
parsing of nonstandard fields from a SMIRNOFF-format
force field, enabling experimentation with different
functional forms such as nonharmonic bonds or non-
Lennard-Jones nonbonded interactions. Plugins are also
free to change how parameter assignment is performed,
allowing experimentation with alternatives like machine-
learning based parameter assignment or the creation of
virtual sites.

• The smirnoff_force field_directory Python
entry point can be extended by any Python package and
enables discoverability of additional SMIRNOFF force
fields. This entry point is intended to enable anyone to
distribute SMIRNOFF force fields as Python packages
such that they are immediately loadable by the OpenFF
Toolkit, without requiring users to run separate down-
loads or manage relative paths.

2.3.2. OpenFF Interchange. The toolkit provides an API for
interacting with SMIRNOFF force fields, molecules, and
topologies composed of multiple molecules. OpenFF Inter-
change is a data model and Python package that captures the
state resulting from applying a force field to a topology. From
here, one can export to common simulation engines like
OpenMM, GROMACS, Amber, and LAMMPS. Interchange is
not limited to only SMIRNOFF force fields; it currently
provides an interface from Foyer force fields138 and can also
import existing systems prepared with other force fields and
stored in OpenMM or GROMACS files. It fully supports the
features of the SMIRNOFF specification, including features not
yet present in mainline OpenFF force fields, such as virtual sites,
biopolymer parameters, implicit solvent interactions via GBSA,
and WBO-interpolated valence parameters. Its API provides
robust access to all interaction parameters contained in a system,
which enables more advanced features such as exports to
vectorized representations as are useful in machine learning
optimization approaches. With the 0.11.0 release of the OpenFF
Toolkit, OpenFF Interchange is now used as the backend for
creating OpenMM systems.
2.3.3. OpenFF Evaluator. In addition to fitting against large

quantities of high-quality quantum chemistry data, OpenFF’s
force fields are also fit and benchmarked against condensed-
phase physical property data. These calculations are orders of
magnitude slower than single-molecule geometry optimizations
and necessitated the development of an automated approach.
OpenFF Evaluator87 is a fully automated, highly scalable
framework for evaluating physical properties and their gradients.
It is released as a Python package which handles parsing data
from experimental databases, running molecular simulations,
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caching simulation data, estimating physical properties via a
multiscale approach, and computing gradients of these proper-
ties with respect to force field parameters. It was used for fitting
vdW parameters in both Parsley85 and Sage39 and has been used
to benchmark these force fields against each other and some
versions of GAFF. It supports estimating liquid density,
enthalpies of vaporization and mixing, dielectric constants,
excess molar volumes, solvation free energies, and host−guest
binding free energies. The Python API supports plugins which
can enable the estimation of other physical properties as well.
2.4. Science Advances Enabled by Open Force Field

Infrastructure. 2.4.1. Tuning Potential Functions to Host−
Guest Binding Data. Although a prime application of
simulation force fields is the prediction of small molecule-
protein binding affinities (i.e., binding free energies) for drug
discovery, the experimental data sets typically used to adjust
force field parameters do not include binding free energies, and
protein−ligand binding free energies are generally still too
computationally costly to include in a parameter optimization
cycle. However, in recent years, calculations of the standard (or
“absolute”) binding free energies (ABFE) of host−guest systems
have grown more efficient and automated, and these systems are
compact enough that one can integrate them into the force field
parameter optimization loop.

We demonstrated the feasibility of this tactic by using
OpenFF infrastructure and a data set of 126 aqueous host−guest
systems, spanning cyclodextrins, cucurbiturils, and deep cavity
cavitands, to retrain and test a generalized Born implicit solvent
model.139 To accomplish this, we implemented a feature in
OpenFF Evaluator87 to estimate host−guest ABFEs. Initial
benchmarks against experiment, using the Sage force field and a
generalized Born implicit solvent model, showed that the
binding free energies were grossly overestimated, particularly for
cucurbituril complexes, with RMS errors on the order of 20 kcal/
mol. We then used OpenFF Evaluator and ForceBalance to
optimize five generalized Born cavity radii against a host−guest
training set, and found that the optimized radii performed
extremely well on the test set, with RMSE falling to about 2 kcal/
mol. The trained GB parameters also markedly reduced the
tendency of the model to overestimate protein−ligand binding
free energies in a separate test set.

However, this study surfaced a hitherto unknown trade-off in
generalized Born parametrization between getting binding free
energies right and getting hydration free energies right, because
the cavity radii that give accurate binding free energies lead to
overestimation of hydration free energies i.e. they were too
negative. It is thus of high interest to develop implicit solvent
models that are more globally applicable and therefore more
transferable and accurate. This work also sets the stage for
potential future use of host−guest binding data to adjust
nonbonded parameters such as Lennard-Jones σ and ϵ in the
context of the explicit solvent models typically used in protein−
ligand binding free energy calculations.
2.4.2. A Fast, Convenient, Polarizable Electrostatic Model

for Molecular Dynamics. The force fields most widely used for
biomolecular simulations�including current OpenFF ver-
sions�do not include an explicit treatment of electronic
polarizability, but instead handle it implicitly, through empirical
adjustment of other parameters. This approach has worked quite
well for many years, but is still expected to limit accuracy,
especially in settings where the electrostatic fields felt by
molecules change markedly in the course of a simulation and
thus polarize them to a greater or lesser degree. Important

progress has been made in integrating explicit representations of
polarizability into force fields,35,55,140−143 but nonpolarizable
force fields are still used much more widely, presumably because
the improvements in accuracy polarizable force fields provide
have not seemed consistent or large enough to merit the
associated increase in computational cost. In addition, there are
few tools to assign polarizable force field parameters to new
molecules.

Wang and co-workers have now used OpenFF data sets and
capabilities to prove the principle of a facile approach to
including electronic polarizability in simulations, with the goal of
gaining much of the potential increase in accuracy at a modest
computational cost.144 The method includes a set of typed
polarizability parameters; i.e., atom-centered point polar-
izabilities that are assigned to a new molecule based on its 2D
structure, rather than by using bespoke QM calculations. These
polarizabilities were fitted to changes in the QM electrostatic
potentials (ESPs) of a training set of molecules, and have been
typed both by element and by LJ type. It also includes a new set
of bond-charge corrections (BCCs) that, when combined with a
traditional population-based AM1 partial charge assignment,
yields a final set of charges that integrate properly with the
polarizabilities in the sense of generating accurate QM ESPs
around training-set molecules. This framework thus allows facile
assignment of a polarizable electrostatics model to a new
molecule of interest. The model comprises atom-centered
partial charges (generated by AM1 and the tuned BCCs) and
typed atom-centered point-polarizabilities. In addition, for the
sake of computational speed, the model was parametrized using
the direct approximation,145 in which the point-polarizabilities
feel only the partial charges, not the induced dipoles on other
atoms. This work made use of optimized molecular geometries
from the OpenFF BCC Refit Study COH v2.0 data set to
compute QM ESPs at the MP2 level on suitable grid points using
the OpenFF Recharge library. The BCC types used the same
SMARTS patterns as used by the original AM1-BCC method,
and the BCCs were trained with a version of the OpenFF
Recharge package that was modified to handle polarizability.

The polarizabilities and BCCs were obtained by training
against a subset of the OpenFF ESP Fragment Conformers v1.0
data set. The resulting electrostatics model, termed AM1-BCC-
dPol, used new BCCs trained with OpenFF Recharge. The
multipole and induced dipole (MPID) SMIRNOFF plugin
supports simulations with AM1-BCC-dPol in OpenMM, and
thus allows parametrization of polarizable OpenFF force fields
via the OpenFF Toolkit or OpenFF Interchange and
comparisons with experiment via OpenFF Evaluator. AM1-
BCC-dPol has given encouraging results in initial benchmark
studies, even without further adjustment of e.g. LJ parameters to
match it. In particular, AM1-BCC-dPol maintained the accuracy
of densities of organic liquids and provided a marked
improvement in the accuracy of their dielectric constants.144

Planned further studies of this approach include development of
a water model and retraining of Lennard-Jones parameters
within this paradigm, making it possible to provide quantitative
evidence for what regimes might require treatment of polar-
izability for accuracy.
2.4.3. Parameterization of General Organic Polymers

within the Open Force Field Framework. One significant
issue with parametrization schemes for small molecules is
extending them to larger polymers. Two main issues with
loading and parametrizing polymers with force fields is that the
output of many polymer building tools do not contain as much
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chemical information as is generally contained in small molecule
workflows. We have recently developed and published a
schema146 for reading in PDB (or other coordinate file formats)
for long polymers, and inserting in the necessary information
such as bond order and formal charges using customizable
monomer templates based on SMARTS strings. With this
information injected into the molecular topology, the entire
polymer system can then be easily parametrized using the
existing OpenFF toolkit. This process is essentially a general-
ization of approaches typically used for loading proteins from
PDBs and has been tested and validated over dozens of polymer
systems with a wide range of chemical functionality and sizes.

Another key problem with parametrization of polymers is that
the methods for determining partial charges, such as AM1-BCC,
scale extremely poorly for larger molecules, potentially taking
hours for molecules of more than 100 heavy atoms, and thus
becoming essentially unusable. The standard approach is to
develop template charges which is a relatively intensive manual
process. We have developed a workflow along a two-pronged
approach.146 First, we have developed a workflow for producing
such template charges for monomers within polymers. Although
producing charges very close to full AM1-BCC for long
oligomers, such a process is still relatively slow and occasionally
prone to errors. As a longer term solution, we have developed
tools to incorporate graph neural network charges, initially with
espaloma-charge147 and the in-house OpenFF NAGL
package (https://github.com/openforcefield/openff-nagl), de-
scribed below, which reduces the time to determine partial
charges of a large polymer system to seconds. Although our
initial testing indicates a small amount of additional tuning may
be necessary to make such partial charging schemes as accurate
as AM1-BCC, the rapid advance in such approaches suggests
that they will be a useful and perhaps the best option in the very
near future.

Overcoming the obstacles to parametrizing polymers within
the OpenFF framework opens the door to use OpenFF to
investigate a range of biotechnological applications such as small
molecule interactions in polymer formulations, proteins with
noncanonical amino acids, proteins with post-translational
modifications, nucleic acids with chemical modifications, and
polymer−protein conjugation, as well as a wide range of soft
material science applications. Additional data on validation and
examples for polymer templates can be found at https://github.
com/openforcefield/polymer_examples), with further
OpenFF-based polymer setup tools being developed at
https://github.com/shirtsgroup/polymerist.
2.4.4. Graph Neural Network-Based Force Fields. One of

OpenFF’s key developments has been the reenvisioning of the
perception of local chemical environments in order to better
assign atomistic parameters via direct chemical perception. But
there may be limits to how well discrete atom types can match
the accurate molecular diversity, and optimization of a discrete
space in parameter types is significantly more complicated than
optimization of parameters themselves. OpenFF has been
investigating ways to further expand the perception of molecular
environments in assigning parameters.

Graph neural networks�neural models aggregating and
updating node (atom) and edge (chemical bond) representa-
tions in a permutation-invariant manner148,149�can play a
similar role to molecular mechanics atom typing schemes.61 As
such, they can replace discrete, human-derived atom embed-
dings with continuous representations, avoiding the need for
exponentially more discrete atom or parameter types, as

increasingly precise interaction parameters are required.
Espaloma,60,61 for example, designed using the infrastructure
and data pipeline of Open Force Field, demonstrates that such a
force field can be trained in an end-to-end differentiable manner
to reproduce the quantum chemical energy landscape.
Furthermore, although not directly trained on these targets,
they also accurately reproduce quantum mechanics (QM)
minima locations, NMR coupling constants, and experimental
protein−ligand binding free energies.

This effort demonstrates a promising path forward for the
flexible and efficient curation of an MM force field�an
Espaloma-type force field takes around one GPU day to
optimize from properly curated QM data, compared to tens of
engineer years for the legacy, atom-typing-based counterparts.
Furthermore, the gradient can flow freely to the chemical
perception stage of the MM curation, enabling us, theoretically,
to optimize force fields based upon ensemble observables such
as physical properties.

OpenFF plans to explore the area of differentiable FFs further,
as we anticipate that a wholly differentiable fitting framework
will greatly improve efficiency and scalability. We are
investigating how necessary certain targets are to our force
field accuracy, such as fitting to optimized geometries, which
remain slow even in differentiable fitting frameworks. Packages
such as the recently published DMFF64 may further streamline
fitting to challenging targets, such as physical properties. This
remains an active area of research. Frameworks like Espaloma or
DMFF can likely be employed to build the foundation models
for MM force fields, upon which more fine-tuned versions can be
tailored toward an individual user’s needs.
2.5. Validation against Protein−Ligand Binding Free

Energies. Many industry users of force fields are motivated by
the goal of accurately modeling and predicting protein−ligand
interactions, so such predictions provide a key test ground for
force field accuracy. At the same time, accurate calculations and
predictions of binding are not solely a test of force fields, as
accuracy with respect to experiment is a function of the method,
system preparation, sampling, and even experimental accuracy
itself.150 Still, benchmarking of force fields in the context of
binding free energy calculations (often alchemical calcula-
tions151) has begun to be seen in the field as a key test and goal of
force fields.

Performance on ligand-binding affinities, as with performance
of any other physical observable, depends critically on the choice
of benchmark set. We have worked with a diverse set of
researchers to try and identify standards for choosing systems for
inclusion in protein−ligand binding benchmarks,152 and our
work in this space is open for community contributions and
further refinement as the format allows for updates. This work of
Hahn et al. attempts to lay out standards for inclusion, including
quality of experimental data, dynamic range, availability and
quality of protein−ligand bound structures, etc. However, much
more work remains to be done to curate high quality binding
benchmark sets, as apparent accuracy often depends as much on
preparation of the system to be modeled (choice of protonation
states, binding pose, etc.) as it does the force field or free energy
method of choice.151−153 Additionally, there are still relatively
few systems for which free energy calculations can be so
convincingly converged that the systems serve as a true test of
force fields alone.150 Thus, benchmarking studies, and bench-
mark set curation, are likely to be an ongoing process to which
continual community contributions are needed.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.4c01558
J. Phys. Chem. B 2024, 128, 7043−7067

7057

https://github.com/openforcefield/openff-nagl
https://github.com/openforcefield/polymer_examples
https://github.com/openforcefield/polymer_examples
https://github.com/shirtsgroup/polymerist
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.4c01558?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Given these caveats, though, several recent studies have
assessed the performance of OpenFF force fields in binding free
energy studies. Recent work of Hahn et al. on binding free
energy calculations,153 and a predecessor study by Gapsys et
al.154 assessed performance of several public force fields on a
diverse set of 598 ligands spanning 22 different protein ligand
targets. Overall OpenFF performed quite well among public
force fields, though a consensus approach (averaging across free
energy results from diverse force fields) performed slightly
better. One particularly noteworthy result, however, came from
cross-comparing binding free energy calculations computed
across OpenFF versions, going from OpenFF 1.0 to OpenFF 2.0.
In a careful test, the researchers were able to find that the change
in force field version had clear effects on force field accuracy.
Particularly, after significance-testing changes in binding free
energies, focusing in on specific parameters which changed
across versions, and narrowing the search only to parameters
which were used in multiple calculations across multiple protein
targets, it was possible to examine accuracy changes directly
attributable to force field differences. In Figure 6 of that work,

the researchers showed that most parameter changes from
OpenFF 1.0 to 2.0 resulted in improvements of binding free
energy accuracy, typically for specific functional groups, though
roughly three functional groups actually had worse accuracy
with OpenFF 2.0 (Figure 7). To our knowledge, this is the first
example where significance-tested results appear to indicate
clear differences across force fields, when otherwise identical
system preparation and sampling is used.

Independently, a separate study focusing on a multistate
method for efficient calculation of binding free energies applied
OpenFF and several other force fields across four different
kinases with considerable success. In a number of cases, OpenFF
outperformed other public force fields, though overall they did
not observe clear superiority of one force field relative to
others.155 This seems consistent with the work of Hahn et al.,
who argued that in many cases, the largest errors may be due to

other factors (perturbation size, inadequate input preparation
(e.g., handling of missing loops or residues, selection of
protonation states, selection of ligand pose, insufficient
sampling) rather than force field accuracy.153

As the Open Force Field Initiative develops further, we will
continue to work with developers of benchmarks to validate
force fields for ligand binding. Although not the only measure,
clear measures of performance on protein−ligand binding and
other tests of real-world applications are key metrics needed to
demonstrate not only the improvement of force fields, but their
true utility in realistic tasks, though as noted, other factors can in
some cases obscure force field accuracy.

3. FUTURE WORK
3.1. Extension of OpenFF to Protein Force Fields. The

Open Force Field Initiative is actively working to develop force
fields that are fitted self-consistently for simulations of both
proteins and small molecules, including proteins with chemical
modifications (such as covalently bound ligands or fluoro-
phores) and with non-natural amino acids. Such force fields can
easily�ideally with no reduction in accuracy�be applied to
such “mixed” systems. Specifically, self-consistency means that
the parameters assigned to a protein side chain (e.g., that of
serine) will be similar to those assigned to chemically related
model compounds (e.g., ethanol), and any differences will be
solely due to the remaining chemical context of that group. More
broadly, parameters should be assigned only based on the
surrounding chemical context, not based on arbitrary human-
made classifications of molecules. To sufficiently match the wide
variety of protein experimental data may require additional
optimization of parameters, as well as further specifications and
subdivision of parameter types for the chemical environments
found in proteins. However, any such changes would then be
used for any small molecules with these same chemical
environments as found in the biomolecules, rather than
maintaining distinct parameters for protein and nonprotein
environments.

Because OpenFF optimizes parameters against experimental
data directly related to the noncovalent interactions of small
molecules (e.g., the density of mixtures of organic liquids, and
their heat of mixing with other organic liquids and water), we
anticipate that such force fields will be well-suited to the key
application of calculating the binding free energies of proteins
with drug-like ligands. At the same time, it will be essential to
check that simulations of peptides and proteins using these
parameters generate conformational distributions consistent
with available experimental data. As recently reviewed156 by a
group of experts in comparison of simulated and experimental
protein data, there are a number of clear opportunities for direct
comparison of protein simulations to experiment. In particular,
these include NMR shifts and scalar couplings of small peptides,
folded proteins, and disordered proteins, which we are currently
using with large scale validation tests of trial OpenFF protein
force fields. In the future, we hope to also optimize or assess
protein force fields via a direct comparison with crystallographic
data.157

3.2. Extension of OpenFF toOther Biomolecules. In the
same way that we have been working to extend Open Force Field
coverage from small molecules to proteins, we have also been
working to extend to other biomolecular systems and systems of
biophysical significance. In the upcoming year, we hope to work
on self-consistency for lipids and nucleic acids and simple ions
(Group 1 and Group 2 cations, and halogen and small organic

Figure 6. Software workflow for iterative improvement of force fields.
An initial force field is implemented by the openff-toolkit, and
the molecular systems needed for fitting the targeted observables are
built from this force field. The force field parameters are optimized
using regularized least-squares with ForceBalance, with QM data
coming from stored calculations in QC Archive, and experimental
condensed phase data coming from several different data sets.
Condensed phase simulations are carried out using OpenFF Evaluator,
and included in the optimization, though usually we optimize terms on
condense phase properties after valence parameters are optimized. This
produces a force field that can than then be validated. Adapted from ref
137. Available under the CC-BY 4.0 license. Copyright 2023,
Boothroyd, Mobley, Wagner and the Open Force Field Initiative.
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polyatomic anions), working with force field experts to develop
consistent approaches, benchmark sets and parameters. Our
recent developments, making it simple to parametrize arbitrary
polymers,146 will help significantly in efforts to parametrize
biopolymers such as nucleic acids and carbohydrates.
3.3. Neural Network Charges. Most classical fixed-charge

force fields model electrostatics using static point charges
centered at each atom. The electrostatic energy of the system is
then typically calculated as pairwise Coulomb interactions
between these partial charges. As such, generating or “assigning”
well-behaved partial charges is crucial in obtaining good
performance in simulation, and a number of methods have
been developed to generate partial charges. One common
approach is to fit partial charges to reproduce a property
extracted from quantum mechanics (QM) calculations, most
popularly the electrostatic potential (ESP) around the molecular
surface. OpenFF force fields currently use one such method to
assign charges: the AM1-BCC charge model, which produces
charges by combining semiempirical AM1 population charges
with bond-charge corrections that have been empirically fit to
reproduce HF/6-31G*ESPs.102 However, AM1-BCC is victim
to the flaws of many QM-based approaches: 1) poor scaling with
molecular size, precluding easy application to macromolecules
such as proteins, and 2) the charges generated can vary widely
depending on the geometry of the conformer used in computing
the ESP.

To address these issues, OpenFF plans to move toward using
a graph convolutional neural network framework for assigning
partial charges in the future. Initially this effort will focus on

reproducing our existing AM1-BCC charge model. We have
trained a model using the GraphSAGE inductive framework that
generates charges based on a modified version of the charge
equilibration scheme proposed by Gilson and co-workers.158 In
our model we predict an initial partial charge q0,i, the
electronegativity ei and the hardness si. The model is fitted to
a multitarget loss function, considering both actual charges and
properties such as dipole moments and the ESP projected by the
charges. The model, codenamed NAGL, is orders of magnitude
faster than using existing cheminformatic toolkits, e.g. OpenEye
or antechamber, to generate AM1-BCC charges for large
molecules. A release candidate model is already available for
public use with the OpenFF Toolkit from version 0.14.4 onward,
and a NAGL model will be used as the canonical charge model
for a future release of the Rosemary protein force field.
3.4. Virtual Sites. As discussed above, OpenFF force fields

currently model electrostatics using a set of AM1-BCC point
charges located at the center of atoms. However, atom-centered
charges alone cannot accurately capture anisotropies in the
electrostatic potential.159 The use of additional off-center
charges, or virtual sites, can alleviate this issue.160−164 OpenFF
plans to release a set of force fields, containing virtual sites
around moieties that cannot be well-represented using atom-
centered charges alone. These virtual sites will be fit to best
reproduce the electrostatic potential surface around each
molecule. The initial focus will be on halogen σ-holes and
lone pairs on pyridine.165 In future iterations, we will include
additional virtual sites on sulfur and nitrogen groups, as well as

Figure 7.How parameter differences affect binding free energy accuracy. (a) Shown are differences in accuracy (RMS error) between OpenFF 1.0 and
OpenFF 2.0, for converged relative binding free energy calculations. Only statistically significant (95% CI) changes are shown, for parameters which
are used in multiple ligands across multiple targets. Stars in front of parameter identifiers indicate significant parameter changes, with more stars
indicating larger changes. Upward bars indicate accuracy (relative to experiment) was decreased by the force field change, and downward bars indicate
accuracy was improved. (b) and (c) show specific example relative binding free energy calculations where results changed substantially across force
fields. Figure adapted from ref 153, where it is described in more detail. Available under the CC-BY 4.0 license, Copyright 2023, Hahn et al.
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investigating using higher and more accurate levels of theory for
generating electrostatic potentials.
3.5. Water Co-optimization. Fundamentally, simulated

properties in aqueous solution are functions not just of the
quality of the force fields of the molecules dissolved, but the
water model as well. Many water models have been developed
that give improved behavior in the bulk phase compared to older
water models, but models like TIP3P, with relatively egregious
deficiencies in bulk water properties over temperature and
pressure, have still been in use in the majority of biopolymer
studies. This is due to both some fortuitous cancellations of error
in interactions with small molecules and TIP3P,166 as well as
development of most protein models to have proper behavior in
TIP3P water,33 though some biomolecular force fields are now
working to move beyond this limitation.167

Rigorous co-optimization of both water and small molecule
parameters has been challenging. However, with the software
infrastructure framework provided by OpenFF, such large scale
optimization efforts with multiple thermodynamic properties
are now feasible. In fact, co-optimization of van der Waals
parameters and water has already been carried out in the
development and testing of the double exponential potential for
van der Waals parameters with demonstrated accuracy
benefits;36 OpenFF is engaged in further testing and general-
ization in order to release force fields consistent across solution
chemistry and biomolecules with co-optimized water models.
3.6. Using Physical Property Surrogate Models to

Perform Accelerated Multifidelity Optimization of Force
Field Parameters. One of the biggest challenges of using
experimental thermodynamic information to optimize force
fields is that it requires an enormous number of simulation.
Simple thermodynamic observables, such as densities or
enthalpies (either of vaporization or mixing87) are individually
relatively cheap, but a extremely large number of simulations are
often needed to perform full parametrizations; first to simulate
large numbers of molecules in a single evaluation of a force field,
and then to repeatedly evaluate force field performance during
the process of a large, multidimensional optimization.

At the present time, we have used OpenFF Evaluator to
rapidly perform hundreds of small molecule simulations at a
time. This OpenFF framework has allowed optimizations over
dozens of Lennard-Jones parameters over hundreds and even
thousands of small molecule thermodynamic calculations
possible through tens of iterations of regularized least-squares
optimization.39 However, robust optimization in a rugged force
field objective function requires searching through possible
parameters some orders of magnitude more efficiently.

One such strategy is that of surrogate modeling, which has
been developed for a number of optimization problems,168−170

and recently has started to be used for force field
optimization.171,172 As part of the OpenFF effort, we have
tested surrogate modeling to optimize van der Waals parameters
to reproduce densities as a function of composition as well as
heats of mixing with Gaussian process surrogate modeling.173 In
particular, we use adaptive multifidelity modeling, where
exhaustive searches in Gaussian processes models fit to
experiment are interspersed with additional simulations to
both refine and broaden the surrogate model of thermophysical
properties as a function of force field parameters. Using this
technique on two previously studied training sets, containing up
to 195 physical property targets, we refit a subset of the LJ
parameters for the OpenFF 1.0.0 force field, and found a
multifidelity technique can find improved parameter sets

compared to a purely simulation-based optimization by
searching more broadly and escaping local minima. Additionally,
this technique often finds significantly different parameter
minima that have comparably accurate performance. In most
cases, these parameter sets are transferable to other similar
molecules in a test set, with the most transferable force fields
being the ones that used the largest and most diverse physical
data set for fitting.

Over the next few years, we plan on expanding the capabilities
of the main Open Force Field optimization framework to more
routinely incorporate multifidelity surrogate modeling ap-
proaches, including extensions such as Bayesian optimization.
Such extensions will make it much faster to perform more
extensive and rigorous force field optimization and answer, more
quantitatively, questions about whether a given force field is
better than others. For example, surrogate models of
thermodynamic properties as a function of force field
parameters, if sufficiently accurate, would make it possible to
perform Bayesian analysis with the resulting likelihood function
and compare force fields in a robust statistical way.
3.7. The Design Space between Molecular Mechanics

(MM) andMachine Learning Potentials. Recently, machine
learning force fields174−178 have risen to become a popular
alternative to traditional MM force fields. A common technique
is to use a (sometimes universal) E(3) or SO(3) equivariant
graph neural network179 to model the mapping from the joint
space of semantic representation and geometry to a scalar-
valued energy. Automatic differentiation is usually used to come
up with force predictions from energy predictions, ensuring the
conservation thereof. Even in low-energy regions, the energy
disagreement between MM and QM models usually surpasses 1
kcal/mol�the empirical threshold termed chemical accuracy
beyond which a model can faithfully reproduce the qualitative
behavior of physical systems�whereas that between machine
learning potentials and QM is usually less than 0.1 kcal/mol on
popular benchmark data sets. On the other hand, machine
learning potentials are usually an order of magnitude slower than
MM force fields and can suffer from numerical instability due to
their sophisticated functional forms;180 these functional forms
can apparently create high-energy configurations unvisited in
training which can cause stability issues. Another source of error
may be deficiencies in capturing long-range interactions, for
example in potentials that do not incorporate message-passing.

There have been efforts to cross or remove the boundary
between MM-based and machine learning potential-based
molecular dynamics.181 In the next decade, we believe, with
the development of modern hardware and middleware, more
methods like this will emerge. We are interested in the design
space between MM and machine learning models�simple yet
flexible functional forms balancing interpretability and flexibility,
stability and expressiveness, and speed and accuracy. For
instance, one can construct highly expressive (or even universal)
functional forms using only dot-product scalarizations on
equivariant features176,182 without employing spherical harmon-
ics. Alternatively, Class II force fields183−185 can be enriched and
expanded to incorporate highly flexible terms. We hope that the
data and infrastructure developed at Open Force Field will keep
contributing to the development of force fields of high utility.

4. CONCLUSIONS
The OpenFF Initiative is a network of academic and industry
researchers working together to advance science and infra-
structure required for building the next generation of small
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molecule and biomolecular force fields and, perhaps more
importantly, force field building infrastructure. The shared goal
of these efforts is to develop automated and systematic data-
driven techniques to parametrize and assess new generations of
more accurate force fields. Software and data are released under
open licensing agreements to enable rapid application,
validation, extension and any kind of modification by users
and contributors in the field. In addition, the Initiative aims to
build and support a strong community of users and contributors
from industry and academia, while exploring different pathways
to sustainability.

OpenFF seeks to accelerate force field science by ensuring our
data and fitting infrastructure can be reused by diverse
researchers across the field, allowing a democratization of
force field progress and science. As authors, we hope for a future
where diverse researchers from a variety of scientific fields can
easily experiment with fitting force fields of a variety of
functional forms and domains of applicability, choosing to
systematically vary choices such as

1. Type and diversity of fitting data

2. Fitting procedure and fitting targets/objectives

3. Force field functional form or class

4. Balance of experimental vs computational reference data
for fitting

and many other aspects, performing fitting experiments to
determine exactly how these choices impact force field accuracy
and transferrability for selected application domains. This will
only be possible to the extent that the field begins to standardize
around force field representation and portability, and works to
ensure that putative force field tests actually hold the
computational method fixed and only vary the choice of force
field.

The work of Conflitti, Raniolo and Limongelli186 neatly
summarizes the need for both openness and standardization in
this area as follows: “...we believe existing and new FFs should be
developed following the principles of data openness. Most FFs
use diverse definitions for residue names, atom names, or types,
which may confuse a novice user. In addition, they have different
parametrization routines, which often involve diverse pools of
model compounds... Developing standardized FFs with
improved physicochemical description, uniform parametriza-
tion protocols, unified validation tests, and reproducible results
over a wide array of functional groups would be advantageous for
accurately predicting kinetic data and MD calculations... In this
context, abandoning the historical classification of atomic
entities into atom types, which unnecessarily complicates
present FFs due to redundancy issues, in favor of alternative
approaches such as the one presented by [OpenFF] could
support the development of a gold standard. A first step in this
direction could be the development of public repositories of
model compounds with theoretical and experimental data for
the parametrization of FFs to avoid discrepancies in the
reference data pools. To date, the Open Force Field initiative
is the only consortium to host the complete data set employed
for the parametrization of its FF in an openly accessible form.”

We indeed hope that the OpenFF Initiative can help further
these goals that as a field, we can openly share and collaborate on
open force field standards, data sets, and tools in order to
accelerate progress in this vital area underlying so much of
molecular modeling.
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