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Appearance Constrained Semi-
Automatic Segmentation from 
DCE-MRI is Reproducible and 
Feasible for Breast Cancer 
Radiomics: A Feasibility Study
Harini Veeraraghavan  1, Brittany Z. Dashevsky  2,3, Natsuko Onishi3, Meredith Sadinski3, 
Elizabeth Morris3, Joseph O. Deasy1 & Elizabeth J. Sutton3

We present a segmentation approach that combines GrowCut (GC) with cancer-specific multi-
parametric Gaussian Mixture Model (GCGMM) to produce accurate and reproducible segmentations. 
We evaluated GCGMM using a retrospectively collected 75 invasive ductal carcinoma with ERPR+ 
HER2− (n = 15), triple negative (TN) (n = 9), and ER-HER2+ (n = 57) cancers with variable presentation 
(mass and non-mass enhancement) and background parenchymal enhancement (mild and marked). 
Expert delineated manual contours were used to assess the segmentation performance using Dice 
coefficient (DSC), mean surface distance (mSD), Hausdorff distance, and volume ratio (VR). GCGMM 
segmentations were significantly more accurate than GrowCut (GC) and fuzzy c-means clustering (FCM). 
GCGMM’s segmentations and the texture features computed from those segmentations were the most 
reproducible compared with manual delineations and other analyzed segmentation methods. Finally, 
random forest (RF) classifier trained with leave-one-out cross-validation using features extracted from 
GCGMM segmentation resulted in the best accuracy for ER-HER2+ vs. ERPR+/TN (GCGMM 0.95, expert 
0.95, GC 0.90, FCM 0.92) and for ERPR + HER2− vs. TN (GCGMM 0.92, expert 0.91, GC 0.77, FCM 0.83).

Breast cancer is one of the most commonly diagnosed cancers in women and the second most common cause 
of cancer-related deaths1. Although the increasing availability of novel treatment options has helped to improve 
survival among patients, robust tools are critically needed to effectively monitor treatment response2. Miranikova 
et al.3 have shown that tumour volumes measured on magnetic resonance imaging (MRI) predict treatment 
response in neoadjuvant settings. However, accurate and reproducible tumour segmentation is crucial for evalu-
ating breast cancer response to treatments4 and to improve surgical outcomes5.

Accurate and reasonably fast segmentation is critical for radiomics analysis6 which consists of extracting 
image features from large datasets with the purpose of identifying non-invasive image-based surrogates for diag-
nosis (differentiating disease aggressiveness) and for predicting treatment response. Radiomics analysis of breast 
cancers have been used for predicting cancer treatment outcomes7–9 and for differentiating between breast can-
cers by molecular subytpe10–13 or for classifying cancers by their aggressiveness14,15.

The first and crucial step in extracting the various texture measures is segmentation of the cancer. With the 
exception of11,15, the vast majority of works have employed manual tumour segmentation for radiomics anal-
ysis due to the difficultly in ensuring accurate computer segmentations. However, manual delineation is time 
consuming. Therefore, majority of works12–14 including ours10,16 have used manual segmentation of one or a few 
representative slices. Recently, semi-automatic segmentations including GrowCut (GC)17 have been reported 
to produce more reproducible texture features compared with features computed from manually delineated 
lung tumors18, thereby, underscoring the importance and utility of computer-generated segmentations for 
high-throughput radiomics.
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Interactive segmentation methods19,20 model the user input to generate more accurate segmentations than 
fully automatic methods. Thus, the interactive GC method has been shown to produce reasonably accurate seg-
mentations for brain gliomas17 and more repeatable segmentations than expert users21 for lung cancers. However, 
as an interactive method adapts its segmentation to user’s inputs, it generates highly variable segmentations, 
thereby, introducing another source of variability for radiomics and longitudinal analysis of cancers. Previous 
works, which include22–25 have incorporated machine learning to reduce segmentation variability. For example, 
Veeraraghavan and Miller23 developed an active learning-based approach to improve the consistency of segmen-
tation while reducing the number of required user interactions to generate reasonably accurate segmentations of 
brain cancers. However, repetitive interactions resulting either from the algorithm itself which present as queries 
or from users can become time consuming particularly for high-throughput radiomics analysis. This in turn 
limits the applicability of such methods for high-throughput analysis in comparison to fully automatic methods 
such as unsupervised fuzzy clustering26.

We report an approach to improve the accuracy and reproducibility of interactive GC. Specifically, we devel-
oped an approach that combines the cancer-specific appearance modeling using multi-parametric Gaussian mix-
ture models (GMM) with GC to constrain the GC segmentation, called GCGMM. Our approach eliminates the 
need for repetitive user interactions by generating a probabilistic segmentation. The user can select from among 
multiple segmentations by changing the segmentation probability (or confidence).

The goals of this study were to: (a) develop a reasonably accurate and reproducible approach to generate 
breast cancer segmentation with variable user inputs, and (b) to assess the feasibility of features extracted from 
computer-generated segmentation over manual delineation for radiomics-based classification of breast cancers. 
We compared the results of our approach with the GrowCut (GC) and fuzzy c-means (FCM) clustering26. FCM 
was chosen for benchmarking the performance of GCGMM as the former method has previously been used in 
radiomics analysis of breast cancers.

Results
We evaluated the reproducibility of manual delineations produced by multiple users using six consecutive cases 
with two from ER-HER2+, two from ERPR + HER2− and two from triple negative cancers to benchmark seg-
mentation performance. All raters produced highly variable segmentations. The segmentation concordance 
measured using the various performance metrics was: Dice overlap coefficient (DSC) (0.78 ± 0.10), mean sur-
face disance (mSD) (1.23 mm ± 0.67 mm), 95% Hausdorff distance (5.04 mm ± 5.9 mm), and volume ratio (VR) 
(0.16 ± 0.10).

GCGMM segmentations were significantly more accurate compared with other methods.  
Figure 1(a) shows segmentations produced using the grow-cut (GC), GCGMM, and FCM methods together 
with expert delineation for two different tumours. As shown, GCGMM segmentations closely corresponded to 
the expert delineation while the GC and FCM methods resulted in under- and over-segmentations, respectively. 
Overall, GCGMM produced significantly higher DSC; significantly smaller mSD, smaller HD95 and lower VR 
compared with other methods (Fig. 1(b), Table 1).

Only the GCGMM method achieved a better segmentation performance than the inter-rater segmentation 
concordance using all the performance measures. Furthermore, GCGMM segmentations were more accurate 
compared with GC and FCM methods for both mild and marked background parenchymal enhancements 
(Table 1), and for cancers that presented as masses. Finally, GCGMM produced more accurate segmentation of 
ER-HER2+ cancers compared with both FCM and GC (P < 0.001) using all performance metrics.

Fifty one percent of all tumours generated using GCGMM had volumes similar to expert delineation 
(−0.1< = VR < 0.1) with 8% under- (VR < −0.1) and 41% over-segmented. In comparison, GC and FCM 
resulted in 11% and 14% close to expert delineation; 33% and 18% under-segmentations and 56% and 68% 
over-segmentations, respectively.

GCGMM produced reproducible segmentations. GCGMM resulted in the most reproducible segmen-
tations (Table 2) using all the performance metrics, including segmented volumes. The precision errors computed 
using GCGMM segmentations were smaller for all the performance metrics compared with manual delineations. 
Additionally, FCM that requires minimal user input such as a region of interest (ROI) placed around the tumor 
still resulted in higher precision errors compared with GCGMM. Similarly, GC, an interactive segmentation 
method resulted in the largest precision errors shown by both larger %CVRMS and SDRMS using all the performance 
metrics.

Figure 2(a) shows the inter-rater segmentation variability for an example case. Computer generated segmenta-
tions for GC, FCM, and GCGMM computed using three different user inputs are also shown for comparison. As 
seen, the GCGMM and FCM segmentations show lower variability compared with either the GC or multi-rater 
segmentations. As shown in Fig. 2(b), (Table S1), overall, GCGMM achieved more consistent segmentation per-
formance compared with all the analyzed methods.

We measured the reproducibility of the textures extracted from the various segmentations generated using the 
various methods and with multiple user inputs by computing the intraclass correlation coefficient (ICC) between 
the texture features. The inter-rater manual segmentations were the least reproducible and achieved the lowest 
ICC with a median of 0.65 (IQR 0.550.79). The features computed from GCGMM segmentations were the most 
reproducible with highest ICC with a median of 0.89 (IQR 0.790.925) compared with ICC of features computed 
from GC median of 0.72 (IQR 0.680.78) and FCM median of 0.73 (IQR 0.660.82). Thirty four out of the 36 fea-
tures computed using GCGMM method had higher ICC compared with inter-rater manual delineations with the 
exception of MRI pre-contrast intensity and pre-contrast standard deviation features. Similarly, 33 and 31 features 
computed using GCGMM had higher ICC compared with FCM and GC method, respectively.
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The time required for generating segmentations using GCGMM was 148 secs ± 108 secs compared with FCM 
(38 secs ± 12 secs) and GC (55 secs ± 25 secs) methods using a HP Z820 PC. Only the GC algorithm was opti-
mized for speed using multi-threading using implementation in C++. The tensor computation was also imple-
mented in C++ for speed. The rest of the algorithm, particularly, Gaussian mixture modeling is implemented in 
Matlab.

Classifiers trained using features extracted from computer-generated segmentations were 
comparable to classifiers trained using features extracted from expert delineations. Classifiers 
trained using features extracted from GCGMM segmentations achieved the best accuracy for differentiating 
between the breast cancer molecular subtypes (Table 3, Fig. 3). Furthermore, GCGMM-based classifiers outper-
formed classifiers that used features computed from expert delineated tumors.

The ranking of features varied across classifiers (Table 4). Only the features extracted using GCGMM and 
expert delineation showed significant differences between ERPR + HER2− vs. TN (Table 4). When using the 
expert delineations, TN cancers had a significantly higher contrast texture compared with ERPR + HER2− can-
cers (Fig. 3(b)). TN cancers also had a significantly lower first-post contrast MRI correlation (Fig. 3(b)). Four 
of the top five features computed using GCGMM were significantly different between the two cancers. The TN 
cancers had significantly lower kurtosis from the second, and third post-contrast MRI, and significantly higher 
skewness from the second post-contrast MRI (Fig. 3(c).

Discussion
We developed an appearance constrained interactive segmentation method, which generated accurate for 
breast cancers with three different molecular subtypes as well as with different tumour presentations (mass and 
non-mass) and background parenchymal enhancement (mild and marked). GCGMM produced reproduci-
ble segmentations with least precision errors compared to manual, FCM, and GC segmentation methods. Our 
method was significantly more accurate than GC20 and FCM26 both of which have been used in various radiomics 
applications including the lung21 and breast cancers11,15.

GCGMM resulted in lowest %CVRMS and lowest SDRMS using all performance metrics compared with other 
segmentation methods. The volume precision errors using GCGMM were the lowest (%CVRMS = 14.5%) com-
pared with all methods including inter-rater segmentations. Similarly, the Hausdorff distance errors were also 
the lowest with (%CVRMS = 20.7%) using GCGMM compared with (%CVRMS = 48.6%) when using manual delin-
eations. The precision errors computed using the GC method were high and more comparable to the inter-rater 
delineations than the FCM or GCGMM methods, clearly underscoring the fact that an interactive method such 
as GC is impacted by variability in user inputs. Finally, texture measures computed from GCGMM were more 

Figure 1. Performance of segmentation methods. (a) Example segmentations produced using GrowCut(GC), 
GC combined with Gaussian mixture models (GCGMM), fuzzy c-means clustering method (FCM) and 
volumes produced using all methods overlaid with expert delineated volume and (b) overall performance of the 
segmentation methods for all analyzed tumours. The inter-rater segmentation concordance computed using the 
various metrics is shown for reference using dashed lines.
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reproducible compared with GC and FCM segmentations as well as inter-rater delineations and resulted in the 
highest ICC. Ultimately, features computed using the GCGMM segmentations produced the best classification 
accuracy in a radiomics classification task involving cancer molecular subtypes and only the features computed 
using GCGMM besides the expert delineation were able to capture significant differences between the studied 
breast cancer molecular subtypes. Our results demonstrate that GCGMM is a feasible method for generating 
accurate and reproducible segmentations for breast cancer radiomics analysis. GCGMM method took longer 
to compute compared with the GC or the FCM method. However, the computation time on average was under 
3 mins. We did not perform any code optimization while computing the run times.

Our method resulted in fewer over- or under-segmentations compared with either GC or FCM. We developed 
an in-house GUI for interactive selection of the appropriate volumetric lesion segmentation, which enables simul-
taneous radiologist validation. Given the evidence of the importance of tumour volumes in assessing treatment 
response in neoadjuvant chemotherapy3 and for improving surgical outcomes5, an approach such as ours can 
potentially benefit the translation of computer-aided techniques into clinical settings. We are currently evaluating 
our approach among a different cohort of breast cancer patients imaged prior to and following treatment with 
neoadjuvant chemotherapy.

Repeated interactions as needed in GC20 can be especially cumbersome when segmenting large datasets. Fully 
automatic methods3,8,9,26,27 need little to no user interaction but may lead to less accurate results as they fail to 
match the expert’s assessment of tumour boundary. In this report, we improved the performance, in both accu-
racy and reproducibility of an interactive method while limiting user input (brush strokes or rectangular ROI 
enclosing the tumour) by using a simple cancer-specific appearance modeling approach in favor of voxel-wise 
shallow learning28–30 and more recent deep learning methods31–33. Our approach takes advantage of the tem-
poral variability in the lesion appearance and derived image representations such as the temporal difference13 

Analysis

FCM GC GCGMM

DSC mSD HD95 |VR| DSC mSD HD95 |VR| DSC mSD HD95 |VR|

Overall mean 0.66 1.85 5.55 0.27 0.69 2.97 7.38 0.21 0.81***,*** 1.08**,*** 4.82**,*** 0.12***,***

SD 0.15 1.31 3.41 0.16 0.15 12.29 14.18 0.18 0.07 0.59 3.67 0.08

Mild BPE mean 0.65 1.89 5.43 0.29 0.70 1.73 8.58 0.20 0.80***,*** 1.11*,*** 5.27 ns,ns 0.13*,***

SD 0.15 1.19 3.15 0.16 0.12 1.41 20.98 0.15 0.06 0.62 4.61 0.08

Marked BPE mean 0.68 1.74 5.73 0.25 0.68 3.48 6.41 0.24 0.81***,*** 1.01ns,*** 4.44ns,ns 0.10***,***

SD 0.15 1.41 3.88 0.17 0.15 14.84 4.53 0.19 0.07 0.58 2.82 0.07

Mass mean 0.66 1.93 5.63 0.27 0.70 2.34 5.73 0.21 0.82***,*** 1.02***,*** 4.24ns,ns 0.12***,***

SD 0.16 1.39 3.66 0.17 0.14 8.49 4.10 0.16 0.07 0.45 2.49 0.08

Non-mass mean 0.68 1.64 5.32 0.27 0.66 4.57 11.64 0.23 0.78ns,* 1.24ns,ns 6.31ns,ns 0.11***,ns

SD 0.14 1.06 2.66 0.15 0.17 18.84 25.63 0.21 0.07 0.84 5.42 0.08

ER-HER2+ mean 0.67 1.77 5.36 0.27 0.69 2.78 7.94 0.22 0.81***,*** 1.03***,*** 4.92ns,ns 0.10***,***

SD 0.16 1.32 3.07 0.16 0.14 11.90 16.6 0.17 0.06 0.61 3.88 0.07

TN mean 0.65 2.03 5.15 0.29 0.73 5.41 6.78 0.19 0.82ns,ns 1.21ns,ns 4.63ns,ns 0.14*,*

SD 0.14 1.26 2.34 0.16 0.19 20.65 5.85 0.22 0.09 0.52 2.50 0.09

ERPR + HER2− mean 0.65 2.06 6.59 0.29 0.69 2.01 5.54 0.22 0.79ns,ns 1.18ns,ns 4.55ns,ns 0.15ns,ns

SD 0.14 1.27 4.91 0.17 0.15 2.06 3.72 0.19 0.07 0.52 3.52 0.09

Table 1. Segmentation accuracies generated using GC, GCGMM, and FCM presented using mean and 
standard deviation (SD). FCM Fuzzy c-means clustering; GC GrowCut; GCGMM GrowCut with Gaussian 
Mixture Models. DSC Dice coefficient; mSD mean surface distance; HD95 95th percentile of Hausdorff 
distance; |VR| absolute volume ratio. Significant differences between GCGMM vs. FCM and GCGMM vs. GC 
are indicated above each metric for the corresponding analysis after adjusting for multiple comparisons using 
Bonferroni-Holm correction. ns P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001.

Method

SDRMS %CVRMS

DSC mSD (mm) HD95 (mm) |VR| Volume (cc) DSC mSD HD95 |VR| Volume (cc)

Manual 0.084 0.063 4.6 0.10 1.08 11.1 48.3 48.6 62.6 29.4

FCM 0.06 0.91 2.38 0.06 2.46 13.6 31.9 29.7 33.5 36.1

GC 0.10 12.3 13.5 0.14 37.6 19.6 50.0 26.7 64.2 43.8

GCGMM 0.038 0.31 1.33 0.057 1.75 5.07 21.2 20.7 54.3 14.5

Table 2. Reproducibility of segmentations generated using multiple raters and by algorithms (GC, FCM, 
GCGMM) using different user inputs. SDRMS Root mean square of standard deviation; %CVRMS Percentage 
coefficient of variation in the RMS value for a specific metric FCM Fuzzy c-means clustering; GC GrowCut; 
GCGMM GrowCut with Gaussian Mixture Models. DSC Dice coefficient; mSD mean surface distance; HD95 
95th percentile of Hausdorff distance; |VR| absolute volume ratio.
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and tensor-derived scalar images inspired by34,35 that seek to differentiate the tumour’s appearance from its 
background. Our results show that our approach generates consistently accurate segmentations for a variety of 
tumour molecular subtypes, patterns of enhancement, and BPE. Prior works on breast cancer segmentation typ-
ically focused on specific tumour types such as ER(+), node negative tumours as in28 or tumours with specific 
appearance including mass and non-mass enhancing patterns as in30, datasets with malignant and benign breast 
cancers34,36.

Prior works including18,21 showed that GC segmentations were more repeatable than manual delineations 
produced by different users both in terms of segmentation variability and texture feature reproducibility. Our 
work went a step further to improve the reproducibility of GC using GCGMM and assessed the performance 
difference in a radiomics task when using features computed from the different segmentations. Our results show 
that features computed from any of the analyzed algorithmic methods produced similar results as manual deline-
ations and can in fact yield better results, as in the case of GCGMM. Furthermore, our work illustrates the utility 
of using volumetric measurements for improving classification accuracy. Previously, we used a different cohort of 

Figure 2. Segmentation variability for the different methods. The inter-rater delineations, and the segmentations 
generated using three different user inputs are shown in (a). The segmentation accuracies achieved by the different 
methods for the three different user inputs is shown in (b) and the segmentations with significantly different 
accuracies using a given measure are identified, where *P < 0.05 and **P < 0.01. The p-values are reported after 
adjusting for multiple comparisons using Bonferroni-Holm method. The intra-class correlation coefficient (ICC) 
of the texture measures computed from the generated segmentations are shown in (c).

Method

ER-HER2+ vs. ERPR + HER2−/TN ERPR + HER2− vs. TN

TPR TNR FPR FNR AUC (95% CI) TPR TNR FPR FNR AUC (95% CI)

Expert 0.85 0.91 0.09 0.15 0.95 (0.91–0.97) 0.78 0.91 0.09 0.22 0.91 (0.79–0.97)

FCM 0.85 0.85 0.15 0.15 0.92 (0.87–0.96) 0.74 0.83 0.17 0.26 0.83 (0.67–0.91)

GC 0.79 0.79 0.21 0.21 0.90 (0.86–0.94) 0.70 0.78 0.22 0.30 0.77 (0.61–0.90)

GCGMM 0.93 0.81 0.19 0.07 0.95 (0.92–0.98) 0.83 0.96 0.04 0.17 0.92 (0.82–0.97)

Table 3. Classifier accuracies using features computed from different segmentations. TPR - true positive rate, 
TNR - true negative rate, FPR - false positive rate, FNR - false negative rate, AUC - area under the curve.
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Figure 3. Performance of classifiers trained with textures extracted from different segmentations. (a) ROC 
curves for classifiers trained using features extracted from various segmentations for distinguishing between 
ER-HER2+ vs. ERPR + HER2−/TN and ERPR + HER2− vs. TN cancers. The five most relevant features and 
their differences between ERPR + HER2− vs. TN cancers for expert delineated (b) and GCGMM segmented 
tumors (c) are also shown.

Expert p-Value FCM p-Value GC p-Value GCGMM p-Value

ER-HER2+ vs. ERPR+/TN

Post2 I 0.74 Post3 Kurt 0.56 Post1 Skew 1.00 Post1 I 1.00

Post2 Skew 0.31 Pre Kurt 0.36 Pre Kurt 1.00 Post3 I 1.00

Post1 I 1.00 Post2 Kurt 0.56 Pre Contrast 1.00 Post2 I 1.00

Post1 Corr 1.00 Post1 Kurt 0.56 Post1 Kurt 1.00 Pre Energy 0.19

Post1 Entropy 1.00 Post3 SD 0.56 Post2 Skew 1.00 Post3 Skew 1.00

ERPR + HER2− vs. TN

Expert p-Value FCM p-Value GC p-Value GCGMM p-Value

Post1 Contrast 0.04 Post3 Kurt 0.27 Post3 Homogeneity 0.71 Post3 Kurt 0.01

Post3 Contrast 0.02 Post3 SD 0.65 Post3 Skew 0.71 Post2 Kurt 0.01

Post2 Contrast 0.04 Post2 Skew 0.65 Post2 Skew 0.58 Post3 Skew 0.01

Pre Contrast 0.08 Post1 Kurt 0.32 Pre SD 1.00 Post1 Kurt 0.16

Post1 Corr 0.04 Post1 Skew 0.65 Post2 I 1.00 Post2 Skew 0.01

Table 4. Results of Wilcoxon test to assess the difference between ER-HER2+ vs. ERPR + HER2−/TN and 
ERPR + HER2− vs. TN cancers using top five-most relevant (determined using Gini importance) features 
extracted using RF classifiers and trained using features generated from the different segmentation methods. 
P-values are reported after adjusting for multiple comparisons using Bonferroni-Holm method. FCM: Fuzzy 
c-means; GC: Grow-Cut; GCGMM: Grow-Cut with Gaussian Mixture Models Pre: Pre constrast MRI; Post1: 
first post-contrast MRI; Post2: second post-contrast MRI; Post3: third post-contrast MRI I: intensity; skew: 
skewness; corr: correlation; kurt: kurtosis; SD: standard deviation.
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patients10 to differentiate between the breast cancer subtypes and our results clearly demonstrate the performance 
improvement.

Four out of five top ranked features extracted using GCGMM and expert delineation were significantly dif-
ferent between ERPR+ and TN cancers. Similar to the findings from11,12 which found TN cancers to be more 
heterogeneous, our results show that using both expert delineated and GCGMM segmentations, TN cancers were 
associated with higher heterogeneity, namely, larger contrast and lower kurtosis. Finally, it is interesting to note 
that classifiers trained using different segmentations resulted in different ranking of features.

Our work has the following limitations. First, the dataset was imbalanced between the different molecular 
subtypes which required data balancing using the SMOTE technique43. Second, experts generated delineations 
in consensus which prevented us from studying the variability of auto-generated segmentation with respect to 
inter-rater variability. We tried to address this issue by benchmarking the inter-rater variability using a small 
number of randomly chosen cases. Nevertheless, we evaluated our approach on a reasonably diverse set of 
tumours and performed a systematic evaluation starting from auto-generated segmentation to assessing feasibil-
ity of features extracted from such segmentations in a radiomics task.

Methods
Study design and patients. Our institutional review board approved our HIPAA-compliant retrospective 
study. A retrospective cohort of 75 patients diagnosed with pathologically-proven invasive ductal breast carci-
noma between 2006–2011 were analysed. Tumour subtypes were identified through immunohistochemistry with 
known ER, PR, and HER2/neu receptor status. Inclusion criteria were: (i) preoperative bilateral breast MRI, (ii) 
no prior history of cancer, (iii) no known BRCA mutation, and (iv) no current use of hormonal therapy. Our 
study population consisted of 56 HER2 receptor positive (HER2+, n = 56), 15 estrogen positive (ER) and pro-
gesterone receptor (PR) positive, and 9 triple negative (TN, n = 9) tumours. Thirty-six patients used in this study 
overlapped with those used in10 and all the 15 ERPR+ patients overlapped with those used in16.

Sagittal T1-weighted, fat-suppressed 2D multi-slice (40–50 slices) images were acquired with a 1.5-T MRI 
system (Signa or Signa HDX; GE Medical Systems) using a dedicated 8-channel surface breast coil before and 
continuously at three times after the intravenous administration of 0.1 mmol gadopentetate-dimeglumine per 
kilogram body weight (Magnevist) using the following scan parameters: repetition time (ms)/echo time (ms), 
7.4/4.2; flip angle, 10°; bandwidth, 32 kHz; field of view 18–22 cm; acquisition matrix 256 × 192; slice thickness, 
3 mm; temporal resolution 90 s.

A radiologist (EJS) with six years of experience reading breast MRIs who was blinded to cancer molecular 
subtype classified all tumors as having mass or non-mass enhancement (NME). BPE was also assessed as mild or 
marked BPE. Tumours classified by the radiologist as having both mass and non-mass enhancement were classi-
fied as NME for the purpose of analysis. Two radiologists (EJS, BZD) generated volumetric manual delineation 
of the tumours using the first post-contrast T1w MRI in consensus using ITK-SNAP37 software which served as 
the ground truth segmentation.

User inputs for segmentations. The goal of the user input experiment was to study the robustness of the 
algorithms in generating volumetric segmentations with varying user inputs. Therefore, we used the following 
strategy to evaluate the segmentation performance. Three users (two radiologists and computer scientist) pro-
duced inputs for the segmentation method. User EJS traced a contour delineating the tumor on a single slice. The 
second user input was placed to roughly enclose the tumor. The main difference between the first and second 
input was that while the first user carefully followed the tumor boundary including spiculations, the second input 
was a rough polygonal region of interest (ROI) that did not follow the exact tumor boundary and simply enclosed 
the tumor. The third input (tumor/background) consisted of a contour drawn within the tumor. Additionally, the 
third user placed a background contour outside the tumor. The users’ inputs are shown in (Fig. 4(i)).

GC20 employs competitive region growing starting from user interactions to produce segmentations according 
to user preference. Our implementation available in 3DSlicer17 for scalar images can use multiple rounds of user 
inputs to produce a final segmentation. We restricted the user inputs to be presented once during initialization to 
a single representative slice to make the inputs as close to a fully automatic method as possible. Furthermore, we 
implemented an automatic background stroke extraction to limit user effort to providing only a rectangular ROI 
enclosing the tumour.

Our method automatically converted the ROI and contour inputs to extract foreground and background 
strokes as follows. Foreground strokes were computed from the user contour by extracting the morphological 
skeleton using r − 1 iterations, where r corresponds to the half of maximum equivalent contour diameter. The 
background labels were extracted by subtracting two sets of automatically extracted ROIs computed by dilating 
the original user-drawn ROI (or contour) using (d1 = r) and (d2 = max(2, r − 2)) iterations. The user input enclos-
ing the tumor for the contour and ROI inputs were subjected to one iteration of morphological erosion to ensure 
that the extracted foreground strokes were contained within the tumour. Next, the foreground strokes were drawn 
as perpendicular lines extending from the centroid and till the minor axis length of the eroded ROI. The three 
inputs for an example case are shown in Fig. 4(i).

The inputs for the FCM method consisted of a rectangular ROI extracted by computing the bounding box 
enclosing the background strokes.

Segmentation Method. Eight feature images consisting of pre, and three post-contrast MRI, three tempo-
ral difference images (computed per voxel as, εt = (It(x) − I0(x))2, where, It was the post-contrast image at time t 
and x the voxel location), and a trace image computed from tensor representation of the DCE-MRI were used in 
the analysis. A voxel-wise tensor was computed from a voxel-wise covariance matrix
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where, ti was the intensity of a voxel at time t. Eigen decomposition of A using the top three eigenvalues produced 
the temporal tensor at each voxel from which the trace image was computed. The trace image summarized the 
variation in the contrast uptake within the tumour and in the normal parenchyma.

All eight feature images were used for producing segmentation using GC, FCM, and GCGMM methods. FCM 
clustering used the same parameter settings as used in26.

The GCGMM method produced tumour segmentation through a weighted combination of GC segmentations 
from individual feature images with GMM-based voxelwise classification using:

L
N

S G1 (1 ) ,
(1)i

N

i
1

∑ γ γ ω= × − + × >
=

where, Si is the GC segmentation for feature image i, G the GMM model-based segmentation, N the number of 
feature images, and ω = 0.6 is an empirically chosen default confidence threshold. The parameter γ weights the 
contribution of GMM and GC segmentation. It corresponds to the Fβ=0.5 measure38 that emphasizes precision 
over recall to account for large data imbalance between cancer and normal voxels. One GMM model is trained 
per tumor where the GMM model contains all the features as a vector. Therefore, the γ values were chosen per 
tumor. In general, the γ values ranged between 0.09 to 0.75 with mean value of 0.37 ± 0.16 for all the analyzed 
cases.

The final segmentation was produced by the weighted sum of GC segmentations for each feature image with 
the GMM-based voxel-wise classification. An alternative approach would be to produce a single GC segmentation 
by using all the feature images simultaneously (with equal weights) and combining that with the GMM-based 
classification. We chose the former approach as we hypothesized that the latter approach where all features are 
weighted equally would result in an under-segmentation as only voxels that are highly similar to the user-labeled 
tumor voxels and with largest feature distances from background voxels would be labeled as tumour.

We developed a graphical user interface in Matlab (Fig. 4(iii,iv)) that allows a user to dynamically change the 
confidence threshold ω and produce the desired segmentation.

Figure 4. Workflow diagram. (i) Inputs used for generating segmentations, (ii) confidence map computed from 
GCGMM using region of interest refined input from (i) c, and segmentations generated using two different 
confidence thresholds (iii,iv) for a triple negative breast cancer.
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Multi-Parametric Gaussian Mixtures Model-based Tumour Extraction. Multi-parametric Gaussian Mixture 
Models (GMM) were extracted from the feature images using tumour and background input labels. The GMM 
model parameters, namely, the mean (μ), covariance (Σ), mixing weights (w), and the number of components 
(n), were automatically extracted from the data. Akaike Information Criterion (AIC) was used to select the appro-
priate number of mixture components for each GMM from (n = 2, 3, 4). Three was the most frequently selected 
number of components for tumour and background. GMM models for the tumour and background were com-
puted using expectation maximization (EM) algorithm. The extracted GMM model was then used to produce 
voxel-wise labelling throughout the entire image. A voxel x was assigned tumour or background label to produce 
a GMM label image G using,

=





>G x tumour
background

( ) if k (x, T) k(x, B),
otherwise, , (2)

where k x T k x B( , ), ( , ) are the similarity distances of a voxel x computed with respect to the tumour T and the 
background B models. To limit the number of false positives, we required that the tumour probability k(x, T) > τ, 
where τ = 0.75.

Metrics for evaluating segmentation accuracy. Algorithm generated segmentations A were compared with radi-
ologist delineated segmentation G using spatial overlap computed using the Dice coefficient = ∩

∩ ∪
∗

+( )DC A G
A G A G

2
( )

, 

a volume-based measure called the absolute volume difference ratio | | = | − |
. ∗ +( )VR v A v G

v A v G
( ) ( )

0 5 ( ( ) ( ))
 and two distance 

measures namely, mean surface distance (mSD) and the 95% Hausdorff distance (HD95). HD95 was defined as 
95th percentile distance over all point distances in contour X to its closest point in contour Y:

=






 ∀ ∈

∈
HD d x y x X95 95% min ( , ) ,

(3)y Y

where d(x, y) is the distance between the points x and y in X and Y, respectively. The mean surface distance 
between two contours X and Y is defined as:

∑=
| | ∈| | ∈

mSD X Y
X

d x y( , ) 1 min ( , )
(4)x X y Y

Large values of the Dice and small values of mSD, HD95, and |VR| indicate high accuracies. The 95th percentile 
Hausdorff distance was used as this is more robust to outliers as explained in39.

Metrics for evaluating segmentation reproducibility. Segmentation reproducibility resulting from the various 
methods using multiple user inputs was measured by computing the root mean square (RMS) of the coefficient of 
variation (%CVRMS) and the RMS of standard deviation (SDRMS) in the segmentation metrics and as described 
in40,41. We used the %CVRMS as this measure has been shown to be a conservative measure of segmentation repro-
ducibility in41. CV is a measure of relative variability and is defined as the ratio of the standard deviation to the 
mean. The %CV measures for each method i  and patient p  using a segmentation metric 
M j DSC mSD HD VR{ , , 95, }j = = | |  were computed as,

= ∼ ×CV M
M

M
% ( ) 100,

(5)
p

j p
j

p
j

where, Mp
j is the standard deviation in the metric Mj for the multiple user input trials in a given patient p, and Mp

j∼
 

is the mean value of that metric for those same trials and patient. The RMS value for the %CV for each segmenta-
tion metric was then computed as,
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The RMS SD for each segmentation metric was computed as,
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Radiomics feature extraction and classification. Thirty-six texture features were computed from the 
DCE-MRI consisting of four first order textures (mean, standard deviation, kurtosis, and skewness) and five 
second order Haralick texture measures (energy, entropy, correlation, homogeneity, and contrast) from each MR 
image sequence. The Haralick textures were computed from a gray-level co-occurrence matrix after rescaling 
the images (0–255) and using 24 histogram bins. Texture measures were computed within the volumetrically 
segmented tumours using manual, FCM, GC, and GCGMM methods for all the trials resulting in 27000(36 × 3 
× 3 × 75 + 36 × 75) texture values. Reliability of the computed textures resulting from segmentations generated 
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by using multiple user inputs was measured by computing the intra-class correlation coefficient (ICC) as used in 
previous studies18.

Random forest classifiers42 (with 100 trees and default parameters) were computed using texture measures 
extracted using each segmentation generated from stroke inputs for distinguishing between (a) HER2+ vs. 
ERPR+/TN, and (b) ERPR+ vs. TN. Datasets were balanced using the synthetic minority oversampling tech-
nique (SMOTE)43. Classifier accuracy was evaluated using leave-one-out cross-validation (LOOCV).

Statistics. Associations between categorical measures (segmentation method, user input trial, molecular 
subtype, enhancement) and continuous variables (DSC, mSD, and VR) were studied using Kruskal-Wallis tests. 
Paired associations between continuous variables were analyzed using Wilcoxon rank sum test. P values of <0.05 
were considered to be statistically significant. Bonferroni-Holm correction was applied to account for multiple 
comparisons. All statistical analysis was computed using R statistical software44.

Data availability statement. All of the generated segmentation metrics and texture measures are available 
in supplementary data. The R code used for performing the statistical analysis is available from the github repos-
itory https://github.com/harveerar/SciRepStatAnal/.

Conclusions. We developed a cancer-specific appearance constrained interactive segmentation method for 
generating volumetric delineations of breast cancers from DCE-MRI. We performed a systematic evaluation 
of the method starting from segmentation performance, the influence of multiple user inputs on segmentation 
differences, and its utility for a radiomics task. Our results show that the GCGMM segmentations were accurate, 
reproducible and a classifier trained using features extracted from those segmentations were as good or better 
than classifier trained using features extracted from expert delineations for differentiating between breast cancer 
molecular subtypes.
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