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Abstract

Narrative Encoding for Computational

Reasoning and Adaptation

by

Sarah M. Harmon

Narratives provide a powerful means of making sense of our world. They are cognitive

tools that we use to examine and shape ourselves, as well as the environment around

us. Every day, we seek out and tell stories to reflect on our past, navigate our present,

and direct our future.

Because narratives embed the complexity of the universe as we know it, it is

challenging to develop a complete representation of narrative meaning. Some proposed

theories focus on the perceptions and interactions of narrative agents. Others emphasize

the communicative impact that a narrative has on its audience. Many more interpreta-

tions have been explored, but relatively little work exists that seeks to reconcile these

multiple definitions and applications of narrative.

Narrative models may reflect more about their creators and their unique sce-

narios than the elusive tangles of meaning they are meant to capture. They are, after

all, stories we are telling about stories. Each presents a lens in which to view, and

subsequently define, narrative for a particular context. Regardless, perhaps we can

learn from these diverse perspectives. Their congruence illuminates key features of

story, while their discrepancies progressively carve out the rich, explorable space of all
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possible narratives. Although we may never reach the boundaries of that space, our

explorations could give rise to new insights in narrative understanding.

This thesis seeks to determine whether we can devise a framework that can

usefully encode multiple narrative representations in a human-readable format. To

do so would promote annotation, comparison, and sharing of narrative data among

researchers. Further, a framework that can express distinct narrative representations

should also reveal methods for automatically transforming their fundamental units. I

will provide examples for how this type of adaptation may be useful for personalizing

human-computer interaction scenarios which rely on narrative structures.
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Chapter 1

Introduction

“People think that stories are shaped by people. In fact, it’s the other way around.”

— Terry Pratchett

The customer ahead of me was a kindly gentleman, although any bystanders

probably wouldn’t have thought so. He had a sour look on his face, and was harrumphing

up and down about the crowded nature of the grocery store.

“Students!” he grumbled to me. “That’s the problem, you know. They take

up too much space in this town! And not one of them knows a decent day’s work!”

That was more or less what he said, although I have spared you the expletives.

Rest assured that he was passionate enough about the matter to elaborate in a lengthy

and colorful way.

I expressed my sympathies, and, in an attempt to lighten the mood, then

directed the topic toward his own career. That was a gamble, of course. For all I knew,

he might have despised his job as much as the students in town.
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Still, I had to try something. The customers at thumb’s length were beginning

to stare.

“What is it you do, sir?” I ventured.

“Oh, I’m an author. I write books!”

The anger in his face subsided, and his chest noticeably puffed out of a slouch.

Encouraged, I pressed on.

“What kind of books?”

“A bit of everything,” he said. “Children’s books, mostly. Lately, though, I’ve

become more of a novelist.”

“A novelist!” I said, and now it was his turn to see my delighted expression.

Stories were a not-so-secret love of mine, as I had traveled to Santa Cruz to learn

about them. When he mentioned he was looking for a new editor, I offered my services

accordingly, and he agreed my qualifications appeared satisfactory for the job. At that

point, he rightly inquired of my present vocation. I replied that I was, in fact, one of

the dreadful students that he so abhorred.

“Oh!” the gentleman said simply, and grew quiet. Cogs spun inside his head,

revising the situation. Only after a lengthy pause did he speak again.

“To have an editor who is a student at the same time - why, that would be

great!” he said. “The main character in my story could learn a lot from you!”

I was amazed, and somewhat nonplussed. Here was a gentleman who had gone

from condemning students to considering them worthy and helpful. I entertained the

possibility that he was simply being polite, but his tone and manner were genuine, and
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- as I confirmed through later discussions - he was not one to hide his true feelings.

Perhaps it was enough to get to know one of these bothersome students, and put a

face to the abstract concept of them in his mind. The mental representations he had -

indeed, the stories he was telling himself about students - were rewritten, and reread.

Soon thereafter, he began to recall his own fond memories of school. In a

matter of seconds, hatred had transformed into respect and wistful nostalgia. The

gentleman and I became friends.

Such is the power of the stories we tell ourselves, and each other. To match

our surroundings, we adapt and transform our mental narratives of the world. These

narratives, in turn, serve as guiding lights for our everyday decisions. In so doing, they

can transform our thoughts, feelings, and behaviors.

How do these stories work? What are they made of, and how do we transform

them to help us as we go about our daily lives? How might we change our lives for the

better through new and adaptive storytelling technologies? These are the questions I

have sought to answer with this thesis. To begin, let’s take a closer look at the functions

and effects of storytelling.

1.1 How Stories Transform Us

Narratives are powerful modes of communication, and influence our daily lives

in many ways. For instance, stories help us to understand and organize our personal

experiences [18]. Through telling and attending to stories, we gain insights for inter-
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preting the world. We can also use stories to express and entertain ourselves. They

allow us to convey our personal emotions, experiences, and identities. Simultaneously,

they can delight and immerse us, and help us strengthen social bonds.

Narratives would not be useful if they could not emboss lasting impressions

on our minds. We are able to map story information to analogous real-world scenarios,

resulting in facilitated problem-solving [47, 48]. We are also mentally and emotionally

affected by stories, which has led to several discoveries in using narrative to promote hu-

man health. Notably, research suggests that writing and narrative therapy are effective

treatments for abuse [88], depression [77, 78], PTSD [1], and psychosis [95], as well as

useful for resolving family, workplace, and school conflicts [14]. Narratives can empower

us and inspire action as well. As an example, Perrier et al. demonstrated that disability

narratives encouraged individuals with spinal cord injury to pursue rehabilitation [99].

Ultimately, we use stories to inform our decisions, construct our identities, and reflect

on our past mistakes and possible futures. As anthropologist Mary Catherine Bateson

would say, we use our experiences with narratives to compose our own lives [10].

By studying and building resources for narrative adaptation, we learn how to

better support each of these functions in the real world. In this thesis, we will focus on

how narratives can be used to organize information to interpret a variety of contexts.

By exploring how to represent and re-organize narrative content in multiple contexts,

we provide a foundation for new systems that aid in positive life composition.
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1.2 Problem

Researchers often divide the study of narrative into content (what is told)

and presentation (how it is told). This idea is echoed in Todorov’s terms histoire and

discours [117], Benveniste’s l’enonce and l’enonciation [12], Genette’s diegetic level and

extradiegetic level [46], as well as the terms fabula and syuzhet in Russian formalism. Bal

defines three levels [5]. First, she names the fabula, which specifies the precise events

and which are “logically and chronologically” related. She then suggests two levels of

presentation: story, which results when a narrator applies a lens to and organizes a

fabula, and text, which are the signs produced to convey the narrative itself.

In this work, I will consider narrative to be a report of at least two connected

events presented in sequence [73]. The fabula are these events, and the story is, similar

to Bal, how this fabula is organized, selected, and interpreted by the narrator. The story

is not constrained by medium, and may be told by any manner of creativity, including

(but not limited to) speech, literature, gameplay, music, or transmedial combinations

thereof. The storyworld is the contextual model of the universe within which the story

takes place.

Given these definitions, we now begin to understand that narratives can be

adapted in many ways. One might make adjustments to the fabula itself, by inserting,

removing, or changing the connected events. One may also influence the presentation of

the fabula, by shifting the point of view, voice, structure, style, theme, form, genre, or

other elements of expression. One may also make adjustments to the storyworld, which,
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although not necessarily a narrative itself, can influence the story and its telling.

There have been many proposed representations for narratives in computer

science, but none are hailed as satisfyingly all-encompassing and complete. As van Dijk

and Kintsch have stated, searching for an all-purpose representation is an “elusive and

deceptive goal” [28]. As such, this thesis does not pretend to enable the encoding of all

possible narratives. Instead, we will define a means to encode and adapt the concepts

behind a given fabula, story, or storyworld for many distinct classifications of narrative.

This work enables comparison among representations of meaning, and demonstrates

how a multitude of narratives can be adapted for useful purposes automatically.

1.3 Contributions

This thesis seeks to provide several resources and analyses of use to researchers.

The primary contributions are:

1. The construction of a cross-platform knowledge representation framework (“Rensa”)

which enables adaptation for multiple classifications of narrative.

2. An in-depth analysis of how Rensa can be used in the example subdomain of

narrative simplification. This analysis includes:

(a) A specification of conceptual relations which organize narrative events, ac-

tions, and beliefs and how they are connected (SimpREL).

(b) A set of algorithms for reasoning over these relations, empowering the system

to make inferences based on its understanding.
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3. A review of approaches for automatically extracting narrative concepts from nat-

ural text, which can then be used with the Rensa framework.

4. A discussion of existing systems which use Rensa, demonstrating how the frame-

work can be used in various contexts.

5. A corpus of Rensa encodings, which includes concepts present in fairy tales, film

scripts, games, poems, music, recipes, and short fiction.

The pursuit of this work has led to a number of steps toward improved narrative

understanding. The Rensa framework can encode a variety of narrative structures,

which opens the door for the comparison of models and systems. Rensa encodings

are also written in a human-readable format in line with modern goals of information

retrieval. Consequently, humans and machines should be well-equipped to annotate

Rensa-like data. The included corpus provides additional examples for how to write

SimpREL encodings, and also functions as a dataset for future projects in machine

learning.

This work motivated the development of the first system that measures narra-

tive skill progress [60] as specified by Petersen et al.’s measure [100]. SimpREL can also

be used to transform narratives from one skill level to another, as will be discussed in

Chapter 7. I am hopeful that these contributions will act as stepping stones, and raise

awareness in the computer science community about the need for these kinds of tools.

Improved narrative comprehension and assessment resources would greatly benefit not

only our schools, but our society in general.
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Beyond supporting methods for assessing and transforming narrative complex-

ity, Rensa has inspired a number of human-computer interaction applications that aim

to benefit society in some way. These include a responsive, educational game generator

as well as various systems that produce customized narrative experiences.

1.4 Outline

This thesis is structured as follows: Chapter 2 will describe the theory and

related work which provide the foundation for this dissertation. Chapter 3 explores

the advantages and limitations of a pre-existing narrative representation designed for

accessibility and expressive power (the Story Intention Graph). The Rensa framework

is introduced in Chapter 4. A formal specification of one Rensa encoding format (Sim-

pREL) is described in Chapter 5, with supplementary SimpREL examples in Appendices

A and B. Chapter 6 makes use of SimpREL to demonstrate how Rensa can support ex-

isting narrative representations. In Chapter 7, I demonstrate how Rensa can be applied

to the problem of narrative simplification. An exploration of other existing Rensa ap-

plications is presented in Chapter 8. Lastly, Chapter 9 offers directions for future work

and closing remarks.
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Chapter 2

Theoretical Foundations

“Aren’t you a computer scientist? So, why are you talking about stories?”

— Graduate student at the University of California, Santa Cruz

In order to adapt narratives, we must understand the primitive units of fabula,

story, and storyworld. To do so, we will first consult with cognitive and social psychology

to understand how we process narrative. Then, we will discuss a history of how narrative

models have attempted to formalize this process.

2.1 Cognitive and Social Psychology

2.1.1 Levels of Discourse Comprehension

Researchers in cognitive psychology and narratology seek to define the cogni-

tive mechanisms which underlie narrative production and comprehension. Most define

five levels of discourse comprehension: surface code, textbase, situation model, text genre,

and communication level [55, 96].
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The surface code layer refers to the exact wording and phrasing used in the

narrative, and is analogous to Bal’s text layer [5]. In most cases, readers will retain only

the most recent clause processed in memory [56].

The textbase is a set of “explicit text propositions in a stripped-down form that

preserves meaning, but not the exact wording and syntax”, as well as “a small number

of inferences that are needed to establish local text coherence” [56]. These propositions

are states, events, or actions, and may be real or imaginary. Each proposition contains

a predicate (such as a main verb, adjective, or connective) and one or more arguments

(such as nouns or embedded propositions). Each of the arguments has a functional role

in the narrative (e.g., it is an agent, location, object, or patient). Graesser et al. present

the following sentence as an example [55]:

A mushy, brown peach is lifted from the garbage and placed on the table to
pinken.

Given this narrative, the textbase would be:

PROP 1: lift (AGENT = X, OBJECT = peach , SOURCE = from garbage)

PROP 2: brown (OBJECT = peach)

PROP 3: mushy (OBJECT = peach)

PROP 4: place (AGENT = X, OBJECT = peach , LOCATION = on table)

PROP 5: pinken (OBJECT = peach)

PROP 6: [in order] to (PROP 4, PROP 5)

PROP 7: and (PROP 1, PROP 4)

The meaning of Props 1, 4, and 7 is that an unknown agent is lifting the

peach object from the garbage, and placing it on the table. Props 2 and 3 specify
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properties of the peach (“brown” and “mushy”). Props 5 and 6 specify that the agent’s

action in Prop 4 was done to cause the peach to pinken. Representing meaning with

propositions and their relationships in this way is a well-known format accepted by

linguists and philosophers in addition to psychologists. Similar representations have

also been explored by researchers in computer science, which we will discuss in the next

section.

Another important level of discourse comprehension is the situation model.

The situation model is a level of memory representation for the storyworld, which the

reader constructs by interpreting the propositional content. This representation typi-

cally includes events, individuals, actions, and - broadly - the narrative situation. It

may include previous experiences and textbases to describe the story world [28].

The remaining two levels are both factors of presentation. The text genre is its

structural category, e.g., narration, exposition, persuasion, and so on. Communication

level refers to the context of how the text is conveyed, and is reminiscent of Bal’s story

layer [5].

All discourse comprehension models assume that, at minimum, readers will

generate the textbase and situation model to cognitively represent a text [96]. Neuro-

scientific research has also suggested that specific regions in the brain correspond to the

textbase (e.g., [62]) and situation model (e.g., [30, 39]) levels.
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2.1.2 Narrative Interpretation

There are a number of other well-founded psychological theories with signifi-

cant implications for narrative comprehension. Theory of mind (ToM), the ability to

attribute and understand the mental states of others, is believed to be closely tied with

narrative cognition. There is considerable evidence that language and social develop-

ment give rise to ToM skills [4, 44]. In turn, brain regions involved in ToM and working

memory appear to be heavily involved in story comprehension and production [83, 84].

Theories that describe how we organize data are also of great relevance to

narrative modeling. Schemata theory, for instance, was introduced by Bartlett in 1932 to

describe reconstructive memory and perception [9]. He showed that participants would

interpret and recall narratives based on expectations derived from their mental models

(schemata). Crucially, he demonstrated that these schemata evolve with experience.

Schemata are often compared with frames, another influential concept in psy-

chology. Gregory Bateson popularized the term frame as a concept that defines or

delimits a set of messages. According to Bateson, frames are metacommunicative: they

provide signals to the receiver as to how to interpret the messages in-frame. Frames can

communicate information by being exclusive (including certain messages implies that

others are excluded) or inclusive (excluding messages means others are included). He

related these ideas to figure-ground organization in Gestalt psychology, which states

that we separate an image into figure (the main object(s) in the image) and ground

(the remaining background of the picture) during perception. Bateson imagined that
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frames around messages - not unlike a frame around a picture - directed the receiver to

attend to certain aspects of the messages. Researchers in the social sciences as well as

in artificial intelligence found framing theory attractive, as we shall see in Section 2.2.3

of this chapter.

2.2 Computational Models

2.2.1 Narrative Functions

Propp is well known as one of the early pioneers in modeling narrative. In 1928,

he defined a set of 31 event and 7 character functions (stereotypical patterns or roles)

[102]. He then described how Russian folktales could be described as a combination of

these functions. While highly influential, Propp’s functions are restricted to the Russian

folktale domain and do not scale to sufficiently express other types of narratives.

2.2.2 Grammars

Later work in narrative representation included the development of a context-

free grammar model for connecting discourse [105]. In Rumelhart’s model, stories consist

of a setting (time, place, and introduction to the main characters) and an episode (an

event followed by some reaction to that event). This grammar was extended by several

researchers [27, 66, 116], but ultimately abandoned due to limited expressivity and the

fear that story grammars could not adequately model cognitive mechanisms [41]. Lang

revisited these ideas during the implementation of his own declarative grammar, which
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could describe goal-directed behavior and used temporal logic to represent states and

events [74]. He acknowledged that, while novel, his model suffered the same inflexibility

in terms of representing a wide range of stories.

2.2.3 Frames

Minsky is recognized as the first to relate Gregory Bateson’s frames to gen-

eral artificial intelligence. For Minsky, a frame was a set of nodes and relations that

represented a “stereotyped situation” - essentially, a template that an AI could fill in

when certain events or scenarios occurred. He described four levels of frames: surface

syntactic (“Mainly verb and noun structures. Prepositional and word-order indicator

conventions.”), surface semantic (“Action-centered meanings of words. Qualifiers and

relations concerning participants, instruments, trajectories and strategies, goals, con-

sequences and side-effects.”), thematic (“Scenarios concerned with topics, activities,

portraits, setting.”), and narrative (“Skeleton forms for typical stories, explanations,

and arguments. Conventions about foci, protagonists, plot forms, development, etc.,

designed to help a listener construct a new, instantiated Thematic Frame in his own

mind.”). Unlike the dynamic, adaptive schemata proposed by Bartlett, a given Minsky

frame was always fixed for some scenario.

The concept of frames generated a considerable buzz in the artificial intelligence

community. Fillmore independently developed frame semantics as an extension of his

earlier case grammar, using Minsky-like frames in terms of how words in a sentence

are characterized and interact with each other [40]. Schank and Abelson also looked to
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use Minsky-like frames in a more localized context. They found the notion of Minsky’s

frames promising, but believed the concept was too generic for real-world application.

Together, they developed a frame-based representation that is now termed the Schankian

script [108]. Scripts encode situations with slots that can be filled like frames, but focus

expressly on encoding social events rather than broad directions for AI processes.

2.2.4 Plot Units

In contrast to the event-centric approach of scripts, Bremond [16] devised an el-

ementary sequence representation based on Propp’s [102] folktale analysis that included

character motivations and emotional impacts. This work inspired the development of

new interactive storytelling systems [107, 19], as well as new representations of story.

Bremond’s model is now likened with the plot unit formalism developed by

Lehnert [76]. Similar plot units are used in Elson’s Story Intention Graph, a model

founded in ToM that is meant to represent narrative in the context of analogy and so-

cial connectedness [32]. Representations like the plot unit tend to be semantically rich

and expressive. Elson’s model, in particular, draws attention to the overlap between

ToM and narrative comprehension seen in neuroscience research. However, because

such models require implicit information (such as components of character mental mod-

els) for a complete encoding, they are typically difficult to extract from natural text.

Researchers are currently exploring how these types of representations might be auto-

matically learned from corpora [54].
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Model Main Idea Focus Purpose ToM

Narrative Functions [102] Russian fairy tales contain
a stereotypical set of char-
acters and events.

Patterns Comparison N

Story Grammar [105] Stories can be described
with syntactic (structure)
and semantic (interpreta-
tion) rules.

Events,
Characters

Summarization N

Scripts [108] Stories can be an event se-
quence containing slots to
fill.

Events Understanding N

Elementary Sequence [17] Stories always have a goal,
an action/event toward the
goal, and an outcome.

Characters,
Patterns

Comparison Y

Plot Unit [76] Events can be represented
as mental and affect states
for each character involved.

Characters,
Patterns

Comparison,
Summarization

Y

Story Intention Graph [34] Stories can be compared
based on patterns of rela-
tions.

Patterns Comparison Y

Doxastic Preference [79] Stories are about time,
preferences, and beliefs.

Characters Characters Y

Narrative Event Chain [20] Stories are modeled as
sets of temporally-ordered
events that share a protag-
onist.

Events Understanding N

Social Network [3] Novels can be represented
as social networks.

Characters Comparison N

Formal Ontology [8] Stories can be described as
a formal ontology.

Events,
Concepts

Comparison,
Information
Retrieval

Y

Table 2.1: A comparison of proposed narrative models and their philosophies. All
models shown feature some manner of concepts and the relations between them, but
differ in terms of their underlying principles. The last column indicates explicit support
for theory of mind (Y=support, N=no explicit support).

2.2.5 Specialized Partial Models

Several models have been developed to represent one or more key aspects of

narrative in particular. Specialized models tend to be much easier to extract from
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natural text, but lack the rich implicit data other models might provide.

Social Graphs [3] are one example of a highly specialized narrative model.

This representation considers only how characters interact over the course of a story. In

particular, social graphs map the frequency of spoken interactions between characters

and mutual presence (if characters occur in the same paragraph). The underlying

principle of this model is that novels are akin to societies, which are representative of

both the author and genre of the text.

Another specialized model is the Doxastic Preference Framework (DPF) [79].

This representation uses game trees to describe narratives. Tree nodes indicate character

beliefs about preferences (their own, or those of others) for event outcomes. Although

DPFs are similarly expressive and support ToM like plot unit representations, they are

likewise difficult to interpret with high annotator reliability [82].

Unlike DPFs, the Narrative Event Chain (NEC) was developed to ignore im-

plicit information completely [20]. NECs are simply event sequences that relate to a

common protagonist. This representation was inspired by hand-coded scripts and built

to efficiently predict and extract information relating to narrative events.

2.2.6 Formal Ontologies

Most recently, Bartalesi et al. have attempted to organize narratives into a

formal ontology founded in description logic [8]. This ontology is composed of concepts

and relations. According to their model, fabula events may be real (recorded information

such as that from a witness), hypothetical (e.g., suggested events in an attempt to recon-
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struct some part of history), or fictional (constructed using the writer’s imagination).

Events are connected by three types of relations: mereological, temporal occurrence, and

causal dependency. A mereological relation signifies that one event is part of another

(for example, the event of someone’s birth is irrefutably part of their life). A temporal

occurrence relation associates events by when they occur. The Bartalesi model employs

Allen’s formal theory of temporal logic, which includes a set of “mutually exclusive

primitive relations that can hold between temporal intervals” [2]. These relations are

depicted in Table 2.2. Finally, a causal dependency relation connects two events wherein

one, either indirectly or directly, gives rise to another. This relation is deemed reflexive

(each event causes itself) and transitive (if Event A causes Event B, and Event B causes

Event C, then Event A causes Event C). A distinction is made between textual units

that narrate an event (narrative fragments) and events of the fabula. The text itself is

connected to its narrator by an is authored by relation.

Interestingly, the idea of concept relations is echoed in knowledge representa-

tions for artificial intelligence and interactive systems founded in rhetoric. Intelligent

playable experiences, for instance, often seek to encode aspects about the game state or

the player, and the relationships that occur as a result of interaction and time. Although

game AI models tend to emphasize planning and prediction over a particular narrative

structure, it is plausible that they bear similarities to those of narratology. We can tell

stories about interactions that take place in a game, just as we might of a text-based

narrative.

A prime example of using concepts and relations for general AI research is the
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Relation Symbol Inverse Symbol Pictorial Example

X before Y < > XXX YYY

X equal Y = = XXX

YYY

X meets Y m mi XXXYYY

X overlaps Y o oi XXX

YYY

X during Y d di XXX

YYYYYY

X starts Y s si XXX

YYYYY

X finishes Y f fi XXX

YYYYY

Table 2.2: Thirteen primitive relations for temporal intervals [2].

OpenCog framework, which is meant to be an open source cognitive architecture [51].

The basic unit of the framework is the Atom, which loosely represents an atomic formula

in mathematical logic. Atoms can have a variety of types, although there are two major

classes: Nodes (an Atom with a name) and Links (an Atom with no name that connects

other Atoms). Each Atom has a truth value (e.g. fuzzy, probabilistic, etc.), although

the formalization of these types is currently not yet complete [50]. Generally, Atoms

and their interactions with each other can be described as a hypergraph: a graph in

which an edge can join any number of vertices. The hypergraph structure has also been

proposed to represent computer narratives [121].

In order for these structures to be useful for an intelligent system, they must

contain some module for logically reasoning over them. First-order logic is a common

standard in this regard, and allows programmers to declare facts and concepts and rela-
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tions between them. Unsurprisingly, computer science narratologists are often interested

in using their models to advance research in natural language processing, which likewise

involves a reasoning component. Elson built a corpus of SIG encodings in Prolog, a

language designed for AI and linguistics, with this in mind [33].

Given that narratives are integral in human understanding and perception, it

is unsurprising to see parallels between narrative and artificial intelligence models. As

advances are made in each field, it is possible the region in which they overlap will

increase further.

2.2.7 Surface-Level Adaptation

The representations discussed thus far are largely concerned with semantic en-

coding, reasoning, and adaptation of the fabula. While the primary focus of this thesis is

also at the level of fabula, frameworks that enable adaptation at the surface-level are also

useful. Curveship [93], for instance, is a system that allows interactive fiction authors

to change certain aspects of a narrative’s style. This includes the capability to specify

focalization (the way that information available to the narrator is regulated), time of

narrating (the temporal relationship between the narration and the story events), and

the order of events. Another example is PERSONAGE [81], which can vary the per-

sonality features for a narrative speaker. The same type of variations that are possible

with each of these systems could be encoded within the Rensa framework (introduced

in Chapter 4) as future work.
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2.3 Discussion

In this chapter, we have unearthed key structural units of narrative that are

salient for readers. We also have described existing attempts for formalizing these units

into a computational model. These foundations imply that any model for narrative

adaptation must employ several key features. First, we must permit our model the

capacity to conceptualize narrative primitives, including story characters, events, goals,

actions, and affect. Secondly, we need a means for connecting these primitives with

relationships. These relationships include temporal ordering, causal dependencies, and

mereological relations. However, formalizations also demand relationships to classify

primitives, such as whether they are real or imaginary. Relationships should be shareable

and easily layered or embedded within each other. For example, goals may belong to

multiple agents or be nested to form bigger goals. They also must be able to be related

to actions, outcomes, and affectual impacts.

Additionally, narrative and artificial intelligence research suggest the need for

a bridge between the representation and formal logic. Because specific categories and

relationships for generalized representation have not yet been fully determined, it is

likewise important that a computational model of narrative be as flexible as possible to

support the encoding of the unknown.
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Chapter 3

Case Study: Story Intention Graphs for

Narrative Reasoning

“What kind of model can best capture the essence of a story? ...Can we define a set

of intratextual relations specific to our idea of the essence of narrative discourse?”

— David Elson

By now, we have considered a brief history of narrative representations, with

a particular focus on reasoning about the fabula. This chapter will examine one of

these existing models - the Story Intention Graph - to explore the limitations of current

representations in narrative processing.

The SIG is a relatively new model with considerable expressive power. Orig-

inally, SIGs were designed to express and compare thematic content [32]. Early work

did not suggest their application as a formalism for narrative generation. Nevertheless,

a later publication demonstrated that SIGs could be used to generate distinct tellings

[104].
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This fact highlights an impressive quality of the SIG formalism: its capacity

to transcend predetermined boundaries. I decided to pursue several case studies to

determine if the SIG would also be amenable to my goals for an expressive, human-

accessible encoding format. Specifically, I was interested in how the SIG would fare in

applications relating to narrative generation, adaptation, and assessment.

3.1 Creative Story Generation

Elson et al. had already demonstrated that the SIG formalism had potential

for generating distinct tellings [104]. A natural course of action, then, was to explore

how the SIG model could improve upon existing narrative generation systems.

An early system in modeling human authoring was Minstrel, which utilized

a case-based reasoning approach to incorporate a model of computerized creativity

[119]. To reconstruct old stories into new ones, Minstrel relied on twenty-five heuristics

called TRAMs (Transform-Recall-Adapt Methods). As an example, Minstrel contained

a default TRAM called Standard-Problem-Solving which simply looked for a pre-existing

solution in memory. If no solution existed, the TRAM would fail. The TRAM also would

fail if any found solutions had already been used, because such solutions were deemed

boring by the Minstrel system. Whenever a given TRAM failed, the problem would

be transformed and Minstrel had to search for a case that best matched the newly

transformed problem.

I revisited this creative generation mechanism through the extension of a con-
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temporary rational reconstruction of Minstrel called Skald [115]. As part of this work,

I organized the underlying Skald narrative representation and mapped the result to

the SIG formalism. These refinements enabled generated stories to be transformed at

the level of thematic patterns, and thus expanded the creative authoring space. Three

primary phases were necessary for the system: event ordering, node construction, and

chain construction.

3.1.1 Event Ordering

Skald generates a natural language story with events told out of order. While

not every narrative generation system may require event ordering, I included a module

for this purpose so that any story generated by Skald would be told in the proper

sequence. The Event-Ordering Module (EOM) used knowledge of preconditions and

consequences to reorder events in the timeline.

3.1.2 Node Construction

The Node Constructor (NC) unit categorized each graph element as a Propo-

sition (P), Goal (G), or Belief (B) node. Skald already labels frames as states, goals,

and actions. This greatly simplified the labeling process, as P nodes included states and

actions that occurred in the fabula timeline. Using these labels, every element of the

output graph was translated into a discourse relation and annotated with the correct

agents, objects, and any other related entities. Because Beliefs and Goals are frames

containing content, they were labeled and filled with one or more Interpretive Propo-
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sition (I) relations. In Skald, the affectual impact of a P node or actualized I node is

merely implied based on event-consequence pairings and whether goals are achieved. To

create a proper SIG encoding, Affectual (A) nodes were created for each character of

the story.

Figure 3.1: A SIG encoding derived from Amelia’s Story. Amelia’s Story follows the
Backfire pattern shown, coupled with an ultimate gain after a new Desire to Aid Self
goal. In the story, a wizard named Amelia is injured. To make herself well, she tries
eating some lamb, but the lamb is poisoned. Undaunted, she uses magic to restore
herself to full health.

3.1.3 Chain Construction

Once all nodes were established, they needed to be linked to complete the SIG

encoding process. This process was ensured by the Chain Constructor (CC) module,

which reviewed the given event-consequence pairings to make decisions about how P and

I nodes (including Goals and Beliefs) were linked. Links were defined in accordance with

Elson [32]. The system connected each I node to corresponding A nodes by considering

the effects of that I on each agent’s goals. If a goal was met for an agent when an I node

was carried out, a provides-for link was established between an agent and that node.

Conversely, a damages link was created when the current I node thwarted an agent’s
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Figure 3.2: Alternate tellings of Amelia’s Story.

goal. If any A nodes contained no links by the end of the chain construction process,

they were removed from the final graph.

3.1.4 Results

By providing Skald with a SIG case library and specifying rules for SIG-based

transformations, we can apply the TRAM procedure to the SIGs themselves. For in-

stance, consider Amelia’s Story (Figure 3.1). Nodes and links may be removed from the

Backfire sub-encoding by following variations of Ignore TRAM templates, resulting in

different tellings (Figure 3.2). In the Unintended Harm telling, the storyteller empha-
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sizes only how Amelia mistakenly came to harm herself by eating the lamb. In contrast,

the Perseverance encoding tells the story of how Amelia continued to eat poisoned lamb

in an attempt to make herself well.

Figure 3.3: An excerpt from Vonnegut’s Deadeye Dick [122], which includes full recipes
as part of the novel’s telling.

3.1.5 Reflection

Regardless of whether SIGs are extended as a formal representation for creative

narrative systems, they possess key properties that satisfy the provision of semantic plot

information and a bridge towards linguistic generation. Most significantly, SIGs have

inherent event-ordering properties and may be transformed, as demonstrated by this

work. Any representation which provides this level of detail is useful for imaginative

recall systems. SIGs also map well to plan-based and plot graph-based story generation
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systems.

Scheherazade [34], an interface for manually annotating SIGs, is capable of real-

izing SIG encodings into natural text. However, this realization is not very customizable

or guaranteed to be correct. It is important to also note that, like other representations,

SIGs are designed with a certain type of narrative in mind. For example, authors such

as Kurt Vonnegut have inserted recipes inside their novels as a storytelling technique

(Figure 3.3). One might attempt to use SIGs to describe the result, but to neatly com-

municate the layers of meaning that emerge is challenging. Additionally, while we can

transform stories or compare generations in terms of SIG patterns, the SIG may not

enable us to comfortably express or perform all types of adaptations, such as altering

the presentation of the fabula or medium. These observations reveal the SIG is not well

suited for combining different storytelling techniques or models.

3.2 Measuring Narrative Complexity

While the SIG may not be able to model all modes of storytelling, it is capable

of encoding deep semantic information present in narratives. This begs the question

of whether SIGlike structures might be used to support the automation of intricate

semantic or thematic narrative analyses.

Consider, for example, the fact that complex narratives are difficult to create

and understand even for humans. Individuals may face additional obstacles that hinder

their progress in narrative development, which, in turn, can deeply impact their aca-
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demic, social, and cultural skills [90, 94] as well as their health [13, 15, 72]. It is thus

important that we devise a suitable assessment procedure to provide insightful feedback

for learners.

Some years ago, the index of narrative complexity (INC) was proposed to

serve as a measure of narrative development for children and individuals with language

disorders. The INC scoring system examines thirteen narrative elements: character,

setting, initiating event, internal response, plan, action/attempt, complication, conse-

quence, formulaic markers, temporal markers, causal adverbial clauses, knowledge of

dialogue, and narrator evaluations [100]. Each category is associated with a weighted

score which reflects its importance in terms of narrative production skills. Evaluation

of the INC scoring system suggested that its assessments are consistent and strongly

correlate with the Test of Narrative Language [49]. However, a rich understanding of

the narrative text is required to perform each assessment, which is a time-consuming

process for educators.

3.2.1 The Automated INC Scoring Process

To determine if SIGs could assist in the automation of INC assessment, I

created a system that provided a score for twelve of the original thirteen INC narrative

elements. The system required the full text and SIG encodings of the story. The

following sections will explain how the system scored each element in more detail.
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3.2.2 Character

A character is a reference to the subject of a clause. Following previous work

[36, 97], part-of-speech tagging and WordNet categories were used to determine if a

particular entity was displaying signs of animacy. For example, the subject of a clause

may have engaged in dialogue, made a plan using a cognitive verb (e.g., “think”), or

taken an animated action (e.g., “walk”). If the same subject contained a reference that

used capital letters (such as “Tin Soldier” or “Little Tuk”), the system considered the

reference a name.

If no character was found, or ambiguous pronouns (“he”, “they”) were used, the

system assigned a score of zero points. One point was awarded if the narrative included

at least one frequent actor with nonspecific labels (“Once, there was a knight.”), and

two if that character had a name (“Once, there was a knight named Mary.”). If more

than one named character took frequent action, three points were awarded.

3.2.3 Setting

The setting is any reference to a place or time. Setting references were identified

using WordNet’s location and time categorization lexnames. To improve the accuracy of

the system, state abbreviations that have common duplicate meanings (such as “OH”,

“OR”, “US”, and “ME”) which WordNet marks as locations were not counted as setting

references. Zero, one, and two points were respectively awarded to no, one, or multiple

setting references in the text.
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3.2.4 Initiating Event

An initiating event is a reference to any event or problem that is likely to

elicit a character response. Because identifying any sort of problem for a character is a

complex narrative understanding problem, the system designated any event in the SIG

timeline which prompted a character goal as an initiating event. To determine whether

a goal was prompted by an event, the system checked if the two were connected by an

actualizes link.

Critically, the system must also discover if characters reacted to the initiating

event. These reactions may be internal responses or attempts (refer to the following

sections). If an internal response was marked using WordNet, it was also marked in

the SIG encoding during its portion of the timeline. If the internal response directly

followed the initiating event in the graph, the system considered it to be a reaction.

If no initiating events occurred, zero points were awarded. One point was

awarded if characters did not appear to respond to one or more initiating events. Two

points were awarded if at least one event elicited a response, and three if two or more

distinct initiating events elicited a response.

3.2.5 Internal Response

Internal responses encapsulate information about a character’s psychological

state, such as their emotions and desires. The system first used WordNet to deter-

mine whether each word expressed (or had a synonym that expressed) a basic emotion.

This procedure identified explicit statements of emotion, such as “The video made him
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angry”. The Stanford parser [25] was used to determine whether these emotions were

related to specific entities. If so, two points were awarded. Otherwise, zero or one points

were respectively given to no references or a single reference to emotion.

3.2.6 Plan

A plan always includes a cognitive verb that indicates an intent by a character

to act on or solve an initiating event. WordNet was used to identify cognitive verbs

as well as several exceptions that indicate intention (“want”,“hope”,“desire”). The

Stanford parser was also used to determine whether each instance of a cognitive verb

was associated with a main character, i.e., the most frequent actor or speaker. Zero,

one, two, and three points were respectively awarded to no, one, two, or three cognitive

verb references in the text.

3.2.7 Action/Attempt

An attempt occurs when a main character acts in response to the initiating

event. An action may be taken by a main character that is not directly related to

the initiating event. The system examined the SIG encoding for instances of acts with

the intent to influence goals associated with the initiating event. These acts must be

subsequent to the initiating event itself. If links such as actualizes, ceases, prevents,

attempt to cause, or attempt to prevent existed between the action and the goal, the

system considered the character to be making an attempt with respect to the initiating

event. If the character merely acted with no clear connection to the initiating event, it
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considered these actions. If neither actions nor attempts were pursued, zero points were

awarded by the system. Instances of only actions taken resulted in one point awarded.

Two points were awarded if at least one attempt was made.

3.2.8 Complication

A complication is either (1) an event that prevents the execution of a plan

or attempt, or (2) a second initiating event. To determine if the latter was present,

the system checked for a second instance of an event that beget a character response

(see Initiating Event). The system determined if the former occurred by analyzing the

SIG encoding for the presence of a ceases (or prevents) link that was associated with

a tagged plan or attempt. No, one, or two points were rewarded for zero, one, or two

complications, respectively.

3.2.9 Consequence

A consequence is the result of an action or attempt on the initial problem. Such

a consequence does not need to resolve the problem, but it must be related to the initi-

ating event and explicitly stated. We can thus make the assumption that consequences

arise because the plans of a main character have been achieved or thwarted. To identify

such cases, the system searched for Proposition nodes that were connected with initi-

ating event-prompted character goals via actualizes, ceases (or prevents), and implies.

No, one, two, or three points were awarded for zero, one, two, or three consequences,

respectively.
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3.2.10 Formulaic Markers

Formulaic markers, such as “once upon a time” or “they lived happily ever

after” indicate the beginning or end of a narrative. The system used pattern matching

techniques to determine if a formulaic marker was present. Zero, one, or two points were

assigned for no instance, a single instance, or two (or more) instances of a formulaic

marker.

3.2.11 Temporal Markers

Temporal markers (e.g., “before”, “instantly”, “once”) indicate time. Like for-

mulaic markers, they may be assessed by simply identifying these key words or phrases.

For each type of these elements, the system assigned zero points for no instance of the

element, one point for a single instance, and two points for two or more instances of the

element.

3.2.12 Causal Adverbial Clauses

Causal adverbial clauses are words or phrases in a sentence which indicate

cause (e.g., “because”, “since”, “so that”). For each type of these elements, the system

assigned zero points for no instance of the element, one point for a single instance, and

two points for two or more instances of the element.
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Narrative Element Accuracy

Character 80%

Setting 80%

Initiating Event 75%

Internal Response 55%

Plan 85%

Action/Attempt 85%

Complication 80%

Consequence 90%

Formulaic Markers 95%

Temporal Markers 95%

Causal Adverbial Clauses 100%

Knowledge of Dialogue 95%

Table 3.1: Evaluation of the automated narrative complexity assessment system.

3.2.13 Knowledge of Dialogue

To determine how many characters are engaging in conversation, we must

identify the speakers in the text. In accordance with He et al.’s work [63], the sys-

tem extracted speakers by targeting speech verbs (“say”, “speak”, “talk”, “ask”, “re-

ply”,“answer”, “add”, “continue”, “go on”, “cry”, “sigh”, “think”) proximal to the

utterance. If none of these verbs occurred, any verb preceded by a name, personal

pronoun, or animate character was chosen. If the story included named characters, the

closest name preceding the pronoun or character label was selected as the speaker. The

reference to the speaker was generally extracted by parsing the fragment containing the

speech verb, and by following a deterministic method based on syntactic rules. This

reference was then matched to known speakers and their associated labels. For example,

if the current speaker was “Harry”, and “he” was the next speaker, the system would
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assume “he” referred to “Harry”. If no speech verb and character reference was found

in the vicinity of the utterance, it was assumed that the quotation marks were used to

denote an expression other than dialogue, such as a title. If no dialogue was present,

zero points were assigned by the system. If one speaker was present, one point was

awarded. If there were two or more characters engaging in conversation, two points

were assigned.

3.2.14 Evaluation

To evaluate our system, twenty excerpts were randomly selected from open-

domain fairy tale texts [61]. Each selection was at least 200 characters in length, and was

manually annotated and scored in terms of its index of narrative complexity [100]. These

scores were then compared with the system’s assessments (Table 3.1). The number of

points awarded by the system for each narrative element had to agree exactly with the

annotation to be considered accurate.

3.2.15 Reflection

The development of a SIG-based narrative complexity assessment system re-

vealed several properties of the SIG as an encoding scheme. First, SIGs are expressive

enough to capture meaningful information about events and the character reactions

they inspire. A future system might even use a SIGlike structure to improve automated

assessment of internal response.

While researchers are working on automatic extraction of SIGs from natural
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text, this achievement has yet to be realized. As a result, SIG encodings had to be

manually annotated as input for the system presented here. Annotation options at

the time this system was devised included using the Scheherazade interface [34] or

programming in Prolog directly. These annotations had to also conform to the finite

set of relations, entities, actions, qualities, and so on as detailed by the specification.

Because the SIG annotation process is relatively subjective, multiple annota-

tions per source text would ideally be needed for this type of assessment system to

compute a reliability score. This subjectivity further suggests that consistent results

may not always be guaranteed when using SIGs as the basis for the system.

3.3 Discussion

This chapter examined the advantages and challenges that ensued when using

SIGs in several narrative processing applications. Notably, it was shown that SIGs could

be used to support reasoning in narrative generation systems and enable transformations

on the level of narrative patterns. Moreover, these case studies revealed that SIGs are

expressive enough to capture internal states of agents, as well as how events are related

to other events, agent perceptions, and agent behavior. All are useful for assessing

narrative complexity. Unlike other representations such as plot units, SIGs can also

express hypothetical events, which serves to clarify how plans and goals are connected

in the story.

Although SIGs were designed to be simple enough for lay readers to annotate
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encodings, the annotation procedure was simultaneously awkward and restrictive. One

had to either understand the Prolog language, or mentally reduce their model of the

narrative to fit the vocabulary and elements known to Scheherazade. Elements of story

that were based fundamentally in concepts, rather than traditional story elements, were

difficult to express. Finally, SIG structures could be realized into natural text, but these

realizations were not always accurate or sufficiently tunable within Scheherazade.

Taken together, these findings suggest that a representation with greater ac-

cessibility and expressive power is needed for our purposes. In the next chapter, we

will use these insights to guide the design of a framework for encoding and adapting

narrative structures.
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Chapter 4

The Rensa Framework

“Here we go!”

— Mario

4.1 Goals

In Chapter 2, we explored the history of modeling narrative structures. Nar-

rative representations tend to require, in some shape or form, the existence of concepts

and how they are related to one another (relations). These units build into encodings

of explicit text coherence and meaning (textbase) and the overall storyworld (situation

model). Each representation, however, may have distinct assumptions and approaches

surrounding these related concepts. There is no single accepted set of concepts, nor

relations, and any we have established for either may continue to evolve as our language

and narrative representations change.

Several existing resources have been designed to encode concepts and rela-
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tions. ConceptNet [114] has been proposed as an extractable representation for seman-

tic knowledge, but generally supports binary relations without nesting, and is meant for

sharing a large wealth of commonsense data rather than encoding local, client-specific

data. A more flexible project is OpenCog [51], which represents the idea of concepts

and relations as nodes and links. However, OpenCog is a heavy development endeavor

for general artificial intelligence, and requires its users to possess a substantial amount

of knowledge in computer science and logic.

These observations, in addition to what we have learned from the previous

chapters, highlight a number of goals for our adaptable narrative representation frame-

work. Ideally, our representation should be designed in such a way that encodings can

be easily extracted from input data. This feature would reduce the need for heavy man-

ual annotation of narrative structures. The representation should also be accessible for

research, application development, and classroom use. Programmers (and ideally, non-

programmers) should be able to read and easily annotate or edit encodings manually.

Encodings should be stored in a cross-platform format to further expand accessibility.

Lastly, the representation should have high expressive range, and be able to perform

basic adaptations for many types of stories.

The following sections will describe Rensa, a framework designed to meet these

goals. We will define a general specification for Rensa and explore its applicability in

Chapters 5-8.
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4.2 Framework Overview

In Rensa, a brain contains a set of assertions, each of which are an unordered

set of name/value pairs (attributes).1 A name is a string literal that represents the label

for the value. A value can be an array, a Boolean, a number, a string literal, or another

assertion. These structures can be nested.

A Rensa concept represents some unit(s) of knowledge that can be related to

others. When we use this term, we might mean the value (or part of the value) of an

assertion, a subset of attributes inside an assertion, or an entire assertion.

Within these conditions, we can specify any name or value for a Rensa at-

tribute. This helps us build assertions that are specific to a certain model or system. The

assertions themselves are encoded using JSON, a lightweight and platform-independent

format for storing and exchanging data. JSON is relatively straightforward for non-

expert humans and machines to interpret, unlike other more formal logical languages.

4.3 Querying Brains

One may add, edit, or remove assertions associated with a particular brain, or

check if a brain contains an assertion. Rensa also contains functions that enable:

• Brain comparisons (“Are these brains equal? What exact assertions do they

share?”)

1Please note I do not claim that brains in the real world work this way. I am simply borrowing the
term.
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• Retrieval of assertions that have a specified tag (e.g., “Find me all assertions that

are tagged with protagonist.”)

• Retrieval of assertions which contain certain attributes (e.g., “Find me all asser-

tions that contain an attribute named relation with the value father of.”).

• Retrieval of all assertions that are related to a particular concept, and how they

are related (“Find me all assertions related to prince and tell me which part of

the assertion contains prince.”)

• Retrieval of individuals that comprise a given group (e.g., “Find me all concepts

that are in the group male” might return all male individuals known to the brain).

4.4 Bridge to Formal Logic

Rensa is meant to represent simple relations of narrative meaning as opposed

to formal logic rules. However, there is some support for logical statements, which

will be covered in the next chapter. Additionally, Rensa can translate assertions into

first-order logic. Any JSON file of assertions can be converted into a Prolog file, and

users can request certain queries of the file through Rensa. These queries might include

whether a statement is true, what properties an entity has, the value of those properties,

and so on. This functionality provides a bridge between logic reasoning systems and

semantic narrative planners.

42



4.5 Surface Realization

Rensa provides some basic surface realization support for an encoding format

which will be discussed in the next chapter (SimpREL). To realize an assertion, Rensa

takes a Boolean flag and a brain as additional inputs.

The Boolean flag indicates whether the statement should be realized as a sen-

tence fragment (True) or a standalone sentence (False). The brain parameter is a set of

facts that Rensa can reference when trying to make sense of the assertion. To illustrate,

consider if we were to ask Rensa to realize an assertion about an individual with a unisex

name. To select a pronoun for the individual, Rensa first can refer to the given brain

to determine if the person is known to be associated with a certain pronoun. Rensa

can thus use knowledge based on some known set of facts to modify how a sentence is

presented. This may especially come in handy if we would like to realize dialogue from

the perspective of different actors with distinct brains.

4.6 Automated Visualization

Rensa can generate images that represent assertions or visualize assertions

in the browser. When paired with the ability to translate logic code into semantic

structures, Rensa can help developers visualize the underlying mechanics of interactive

experiences (as in [85]). Beyond visualizing assertions and their interactions, Rensa

can be coupled with an authoring interface for one to navigate and edit a given story,

or create their own for the computer to understand. An example screenshot of this
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Figure 4.1: A screenshot of Rensa’s story authoring interface. The information displayed
is extracted from the film script for Disney’s The Little Mermaid. The left section
displays the story assertions realized into natural text. Users can click to edit any part
of the story, and the realized text will update accordingly. Facts about concepts that
aren’t necessarily explicitly realized as part of the telling (such as an actor’s gender)
may be edited as well. Stories can be created from scratch, loaded from JSON files, or
exported into JSON format for use in another system.

authoring interface is shown in Figure 4.1.

4.7 Summary

This chapter introduced the Rensa semantic framework, which stores knowl-

edge about narrative concepts and concept relationships. Rensa can represent and

adapt narrative data and automatically realize this knowledge into natural text. The

data itself is stored in an open-standard format (JSON), which promotes accessibility
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for developers. We will discuss the challenge of automated encoding extraction as well

as how Rensa can represent other story representations in the next two chapters.
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Chapter 5

SimpREL: A Simple Rensa Encoding

Method

“It had been startling and disappointing to me to find out that story books had been

written by people, that books were not natural wonders, coming up of themselves like

grass.”

— Eudora Welty

5.1 Encoding with Rensa

Rensa is designed to handle many different ways of encoding narrative struc-

tures. We will discuss how Rensa supports existing narrative representations in the next

chapter, but let us first consider an example syntax for Rensa encodings. To do so will

help us (1) become familiar with how Rensa can map concept relationships, and (2)

provide a common language to which we can refer later on.

One such encoding method is SimpREL (pronunciation: [sIm."prEl]), an op-

tional syntax supported by the Rensa framework. The name refers to simple relations,
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or - alternatively - the Simple Rensa Encoding Language. SimpREL can represent

many common narrative structures that have appeared in novels, song lyrics, and

recipes, among other works. A corpus of encodings is available at https://github.

com/RensaProject/simprel_corpus.

The remainder of this chapter will outline the specifications for SimpREL. To

begin, recall that a Rensa value may take the form of a string literal, array, Boolean,

number, or another assertion. We will define SimpREL assertions in a moment, but for

now, let’s examine how we would express a name-value pair in formal notation.

I Definition 1. A unary relation expresses the idea that some Rensa attribute named

φ has some value x, and is written φ(x).

Example. To specify the idea that we are using the interrogative grammatical mood, we

can use the unary relation grammatical mood(interrogative).

Unary relations build into more complex expressions: binary relations and

assertions. In SimpREL, a binary relation is a relationship between two concepts, and

an assertion is a binary relation with additional attributes.

I Definition 2. A binary relation describes a relationship with value ψ existing between

two values x and y, and is written ψ(x, y).

Example. The statement Bilbo lives in the Shire may be expressed as lives in(Bilbo, the

Shire).

I Definition 3. In SimpREL, an assertion is described as an unordered set of unary

relations {φ1(x1), ...φn(xn)}. It is typically understood as a logical conjunction of a
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binary relation τ(λ, ρ) and zero or more unary relations.

{l(λ), relation(τ), r(ρ), φ1(x1), φ2(x2), ...φn(xn)} ⇔ τ(λ, ρ)∧φ1(x1)∧φ2(x2)...∧φn(xn)

Remark. Here, the symbols λ and ρ denote the values of the left-hand (l) and right-hand

(r) concepts of the assertion, respectively. The symbol τ represents the value of the

relationship between them, which is named relation.

Relation Definition Example

is a / type of A hyponym λ is a type of hypernym ρ
(class inclusion).

is a(bird, animal)

instance of λ is a specific, named instance of ρ (class
membership).

instance of(Charlotte, spider)
instance of(princess, hero)1

part of A meronym (constituent) λ is a part of
a holonym (entity) ρ (composition).

part of(wheel, automobile)
part of(book, library)

member of A meronym (member) λ is a member of
a holonym (container) ρ (containment).
ρ cannot exist without λ.

member of(element, set)
member of(student, class)

has a A holonym (whole) λ has a meronym
(part) ρ. ρ can exist without λ (aggre-
gation).

has a(library, student).

Table 5.1: Classic SimpREL relation types.

5.2 Relations

We have established that each SimpREL assertion involves a unary relation

relation(τ). In this section, we will discuss a number of relation types, i.e., standard

values for τ .

1In this case, princess is the only name we have for the person in question. Many characters (including
protagonists!) in old fairy tales lack proper names, but still have some keyword that describes their
essence.
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Relation types that correspond with traditional relationships in knowledge

representation are called classic relations (Table 5.1). For example, an aggregation

relationship may be expressed using a has a relation. Beyond has a, Rensa provides

support for more specific possession relationships. Namely, any λ can has x ρ, where x

can be any noun phrase represented as a string with all spaces replaced with underscores.

Examples are listed in Table 5.2.

Relation Definition

has λ has a prop ρ.

has property λ is ρ.

has name λ’s name is ρ.

has gender λ’s gender is ρ.

has belief λ has the belief ρ.

has goal λ has the goal ρ.

has intention λ has the intention ρ.

Table 5.2: Example SimpREL variable relations of the form has x.

Any has x relation can be paired with a find x relation. For instance, consider

has shoe size(Cinderella,perfect). One might imagine that Prince Charming has the

goal to find shoe size of Cinderella. As another example, perhaps someone wants to

find identity of a superhero. These types of expressions (variable relations) provide for

greater expressive range and ease for automated interpretation. Further examples of

variable relations include set x, x for, and x of relations. Let us consider each of these

categories in turn.

The set x relation is used to specifically set the value of a property. We could

set favorite color to blue, for example. If we were building a system that could be issued
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commands, this assertion could be transformed into a has x assertion (has favorite color

blue).

The used for relation is likely the most frequent example of x for. The relation

used for specifies the function of a concept (e.g., a spoon is used for scooping).

We have already seen several x of relations such as part of or type of. One

may use any x, of course, but several common x of relations are capable of (λ can ρ),

symbol of (λ represents ρ), and reminds of (λ is reminiscent of ρ).

Another variable relation that can be used is location x. In this case, x specifies

how λ is located with respect to ρ. For example, location at(λ, ρ) translates to λ is

located at ρ, while location on top of(λ, ρ) translates to λ is located on top of ρ.

Comparison relations help us form comparative structures. These often take

the form of x than or more x than, given some comparative x. For example, greater than,

stronger than, and more interesting than are all examples of x than comparison rela-

tions. All assertions with x than relations may use attributes of num relation and rela-

tion unit to specify the amount and unit type of the distinction between λ and ρ. This

allows us to encode constructions such as the potato is heavier than the carrot by 50-150

grams or there are two more apples than pears.

The x as relation can be used when two concepts are similar. If λ and ρ are

identical, for instance, we could say same as(λ, ρ). If, however, we wish to specify how

λ and ρ are similar, we could use a more precise term for x, such as popular, soft, or

intelligent. With this relation, we can represent ideas like he smiled as calmly as the

moon in the midst of night.
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Beyond classic and variable relations, one may use the relation action to specify

that λ is taking action ρ. Attributes that further explain the details of action assertions

will be explored in Section 5.4.1. SimpREL also recognizes relations which correspond

with directed arcs of discourse (Table 5.3) in a manner similar to Elson [32].

Relation Definition

causes The effect of λ is ρ.

ceases λ prevents ρ.

implies λ infers ρ.

interpreted as λ is equivalent to ρ.

precondition for λ is necessary for ρ’s actualization.

precondition against λ is necessary for ρ’s prevention / cessation.

harms λ negatively impacts ρ.

helps λ positively impacts ρ.

Table 5.3: Example SimpREL discourse relations.

5.3 Basic Concepts

The relations we have defined so far have given us great expressive power.

With them, we can categorize concepts or link them together. Let’s now consider some

of the basic concepts we may want to define and relate over the course of a story.

Many stories are about notable people, animals, things, or places. To make

this observation, we need look no further than the titles of popular books for young

adults. The Lord of the Rings, Harry Potter and the Sorcerer’s Stone, and Charlotte’s

Web all clearly state that they involve a central thematic character as well as one or

more objects. The Secret Garden is an example of a narrative which centers around a
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notable place.

In SimpREL, places are termed locations. People, animals, and things are all

subclasses of entities. An entity is any thing that exists - abstractly or physically - in the

storyworld. A person may be an entity, just as much as a book, or an idea. An entity

is typically referred to by a string literal, which is either a name (such as “Smaug”) or

a keyword in lieu of a name (e.g., “dragon”).

An actor is an entity that is capable of having intentions and performing

actions, as in [69]. Notice that actors are not confined to being human: they may be a

non-human species, or even something that we normally think of as an object (such as

a gingerbread man).

To define an actor a in SimpREL, we can say:

{

"l":["a"],

"relation ":" instance_of",

"r":[" actor "]

}

Rensa now will understand that there exists an actor with the name a, and

will predict the actor’s gender based on this information. You can override the gender

prediction by specifying that a has gender g, for some desired gender g.

A Story object recognizes that every actor is associated with a name, a set

of pronouns (personal, object, and possessive), relationships with other actors, and

assertions to which they are personally connected. Additionally, each actor may have

their own brain containing assertions. This means that actors may understand facts
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about each other and the storyworld.

5.4 Attributes

We can now define actors and other entities in our story, but we still lack the

means to encode how, where, and when they interact. This section will define additional

SimpREL attributes that let us add detail to our encodings. In other words, we will

examine some standard values for φ and x in a SimpREL assertion.

5.4.1 Common Attributes for Actions and Conditions

Any given assertion may have the owner attribute, whose value is a string

array containing all actors that contain this assertion in their brain. If the owner of an

assertion is not specified, Rensa assumes it is common knowledge for everyone. Similarly,

one may specify values for x owner, given some other attribute named x. The value of

this attribute is a list of actors to which x’s value belongs. For example, an assertion

with the following name-value pairs:

{

"l":[" shoes"],

"relation ": "has_property",

"r": ["blue","suede"],

"l_owner ":[" Carl"]

}

...would be realized as Carl’s shoes are blue and suede.

As we’ve seen, one may use the relation action to specify that λ is taking
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action ρ. The attributes listed in Table 5.4 may be used to provide more detail about

the action being performed. Names used for the actions themselves are encouraged to

be as simple as possible (as in all parts of a SimpREL encoding). Often, these are a verb

in infinitive form without the “to” particle. The setting and quantitative conditions of

an assertion, action or otherwise, are also important to encode. SimpREL attributes

that further specify place, time, and amount are listed in Table 5.5.

Name Definition Example

with property Indicates how the action is per-
formed.

Ariel sadly gave her voice to Ur-
sula.2

action object Specifies the object to which the ac-
tion is being applied.

Ariel gave her voice to Ursula.

action object owner Specifies whose action object it is. Ariel gave her voice to Ursula.3

action recipient Specifies the receiver of an action.
These constructions often involve
the preposition to.

Ariel gave her voice to the sea
witch.
Ariel gave her voice to Ursula.

x property Indicates properties that are pos-
sessed by x, where x is any other
attribute. Examples for x include
action recipient, action object, and
so on. (This attribute can also be
used with non-action assertions.)

Ariel gave her beautiful voice to
Ursula.
Ariel gave her voice to the terrify-
ing sea witch.

method Specifies the means by which an
action (or other assertion) is per-
formed.

Ariel gave her beautiful voice to Ur-
sula by singing and signing the
contract.

Table 5.4: Common SimpREL attributes to specify action.

2The value of with property can be expressed as either [“sad”] or [“sadly”] in the assertion, although
the former is favored because it is concise. This attribute may also be used if the relation in question
is a verb.

3Here, the action object owner would be specified as [“Ariel”]. Rensa then substitutes “her” in the
realization by using knowledge about Ariel’s possessive pronoun.
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Name Definition Example

location x Similar to the location x relation. Indi-
cates the relative location(s), usually of
an action, and the relative location ob-
ject.

We looked on top of the refrigerator.

frequency How often this assertion occurs (e.g., of-
ten, always, twice, twice daily).

He smiled often.

time x Specifies a relative time or duration. Ex-
amples for x include begin, end, at, after,
before, and for.

Boil the egg for three minutes.

condition x Specifies conditions for the assertion,
where x is a preposition or conjunction.
Examples for x include if, until, unless,
without, and during.

Bake until the bread is golden
brown.
Boil the egg unless you have a boiled
egg.

num x Specifies the number of x, where x is any
other attribute. Examples for x include
l, r, and action object.

I have two strawberries.

x unit Specifies the unit for x, where x is any
other attribute.

Preheat the oven to 350 degrees
Fahrenheit.

Table 5.5: Common SimpREL attributes to specify place, time, and amount.

5.4.2 Story Attributes

In SimpREL, we can organize assertions into Story objects. Story objects

contain an array of known actors and a list of scenes. Each scene is associated with an

optional setting, and actors present in the scene. The setting may contain information

regarding time of day (such as “morning” or “9AM”), location (such as “the library”),

and a more general location (such as “exterior”, “interior”, or both).

Narrative assertions may contain an optional name/value pair which specifies

local event ordering within a scene. The name in this pair is called storypoints. Sto-

rypoints allow us to specify which assertions are added, removed, present, or absent

in a particular scene. The value of a storypoints pair is a list of assertions, each of
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which either specify a single time point or an interval of time in a scene. The end time

point may be specified as “infinity”, which indicates the assertion occurs until the end

of the scene. If no storypoints are specified for a narrative assertion, it is assumed that

assertion is true for all time points.

Other story-specific attributes include discourse, which exactly specifies what

an actor says if they are speaking, and text, which contains the original natural lan-

guage (or other signs) used to convey the encoding. When using discourse, there is an

additional attribute spoken with a single Boolean value. If true, the discourse will be

realized as speech (“I do really wish to destroy it!” cried Frodo). Otherwise, Rensa will

realize the discourse as prose (Frodo cried that he did really wish to destroy it).

SimpREL also recognizes attributes that provide additional control over Story

realization. The grammatical mood attribute indicates the grammatical mood for a

realized assertion. By default, the value of this attribute is indicative. However, one

may specify further moods, including imperative and interrogative. Similarly, the tense

attribute specifies the grammatical tense for a realized assertion. The value of this

attribute is present by default. Other values for tense include past and present participle.

5.4.3 Belief Attributes

Over the course of a story, actors may be thinking about ideas (beliefs) or how

ideas are connected (linked beliefs). In SimpREL, the belief attribute specifies a single

belief object of an assertion. In the statement Saruman wants Gandalf to believe he is

trustworthy, the bolded portion represents the value of the belief.
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Linked beliefs are described using attributes named linked belief nodes and

linked belief edges. The value of the former is a list of assertions representing a graph of

beliefs, such that each assertion is associated with a node label. The value of the latter

is a list containing each edge specification between linked belief nodes. For a detailed

example of how belief attributes are used and realized, refer to Appendix A.

5.4.4 Miscellaneous Attributes

One useful SimpREL attribute we have yet to mention is tags, which lets us

search assertions by non-hierarchical terms. The value of tags is a list of strings.

Another handy attribute is prefix. The value of this attribute is treated as if

it were appended to the start of the relation. For example, any has relation can be

preceded by can to indicate that λ has the capability to have ρ. Values for the prefix

attribute include: can, not, try, and might. Multiple prefixes may be used in a single

assertion.

Other attributes may be added to provide model-specific support using similar

conventions to those mentioned here (as in the usage of variable relations). The primary

rule of SimpREL is to be simple.

5.5 The Empty Slot Variable

Sometimes, we may want to specify that the value of an attribute is empty.

To indicate this concept in SimpREL, we use the value SVAR x, where x is the unique

name of the variable. SVAR stands for slot variable or space variable.
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It may be that we simply wish to use a SVAR as a filler value. A SVAR

may also be used to indicate that something more concrete should fill the space. As one

example, consider an actor named Hermione in the domain of the Harry Potter universe.

We might wish to give Hermione the knowledge that many wizards are afraid of saying

Voldemort’s name, without stating precisely the wizards to whom this assertion applies.

Listing 5.1 shows one SimpREL method for encoding this statement. Note that we can

specify the qualities that apply to SVAR 1 using other attributes, such as the condition x

attribute.

Attributes that specify SVAR qualities also permit us to search, if we wish,

for an appropriate concrete value to replace the SVAR. We could, for example, ask

Hermione to think of all the actors that could fill the space of SVAR 1. The first search

condition specifies that any SVAR 1 must be an actor, and - furthermore - a wizard. The

condition that SVAR 1 has property plural suggests that the answer demands either a

name representing a group of actors, or a list of more than one actor. The remaining key

search condition specifies that Albus Dumbledore and Harry Potter are not acceptable

values for SVAR 1.

In this fashion, any SVAR may be filled with some response appropriate to the

call (search conditions). This idea is quietly reflected in the term svar itself, which is

the imperative form of to respond in Swedish.
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Listing 5.1: A SimpREL encoding that translates to Many wizards (except for Harry
Potter and Albus Dumbledore) are afraid of saying Voldemort’s name.

{

"l": [" SVAR_1"],

"relation ":" action"

"r":[" fear"],

"action_object ":[

{

"l":[" SVAR_1"],

"relation ":" action",

"r": ["say"],

"action_object ":[" name"],

"action_object_owner ":[" Voldemort "]

}

],

"condition_given ":[

{"l": [" SVAR_1 "]," relation ":" instance_of ","r":[" actor", "wizard

"]},

{"l": [" SVAR_1 "]," relation ":" has_property ","r":[" plural "]},

{"l": [" SVAR_1 "]," relation ":" has_generic_num ","r":[" many"]},

{"l": [" SVAR_1 "]," relation ":" has_name","r":[" Harry Potter","

Albus Dumbledore "]," prefix ":[" not"]},

]

}
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5.6 Referencing Other Assertions

Rensa automatically assigns an ID to each assertion added to a brain. ID

assignment takes the form of a linear sequence: the first assertion is assigned an ID of

1, the second, 2, and so on. Hence, the nth assertion added to the brain will have an ID

of n. We can refer to IDs in a SimpREL assertion by using the syntax “$(x)”, where x

is the ID of the desired assertion.

We can also assign custom IDs to assertions by setting the value of an attribute

named myID to the desired string. These custom IDs can be referenced in the same

way as automated IDs.

5.7 Logic Support

Although SimpREL is meant to represent simple narrative concepts and their

relationships, there is some support for more complex logical expressions. The value

of the relation attribute could be any logical operator (e.g., “AND”, “OR”, “XOR”).

Furthermore, some types of logical expressions can be represented more concisely. As

you may have surmised, a list of values in SimpREL is equivalent to an expression that

connects each value by the Boolean operator AND (Listing 5.2).
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Listing 5.2: A SimpREL encoding for blueberries and strawberries are types of fruit.

{

"l":[" blueberries", "strawberries "],

"relation ": "type_of",

"r": ["fruit "]

}

We can include inner list structures to represent each set of expressions to

be connected by an OR operator. Any individual concept can be enclosed by a set of

parentheses preceded by an exclamation point to signify the NOT operator. An example

of OR and NOT usage is provided in Listing 5.3.

5.8 Automated Extraction Support

By now, we have investigated the SimpREL encoding scheme and seen a few

examples of how we might use it. As mentioned in the previous chapter, Rensa helps

users to automatically realize SimpREL encodings into natural text. The reverse process

- extracting SimpREL assertions from text - is another useful task to consider.

Generally, the process of extracting information to use within the Rensa frame-

work involves formalizing an input document D = 〈Cd, Rd〉 as a set of concepts Cd =

〈cd0, cd1, ...cdn−1〉 and relationships Rd = 〈rd0, rd1, ...rdm−1〉. Researchers in knowledge

and open information extraction are currently studying how to optimize this process

[37, 35, 124]. While the pursuit of a perfect information extraction system is well beyond

the scope of this thesis, we will discuss some current achievements as well as baseline
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algorithms included within the Rensa framework for the casual user.

Listing 5.3: A SimpREL encoding for make a pie with blueberries, or a pie with straw-
berries and no rhubarb.

{

"l":[" chef"],

"relation ":" action",

"r":[" make"],

"action_object ":[" SVAR_2"],

"condition_given ":[

{"l":[" SVAR_2 "]," relation ":" instance_of ","r":[" pie"]},

{

"l":[[" blueberries "],[" strawberries ","!( rhubarb)"]],

"relation ":" part_of",

"r":[" SVAR_2 "]

}

],

"grammatical_mood ":" imperative"

}

Several concept relation extraction tools exist, including Alchemy, CiceroLite,

FRED, and ReVerb. Table 5.6 provides Gangemi’s analysis of these tools [42]. There

is no commonly-accepted technique for relation extraction; hence, these tools make

different assumptions about the task and identify different types of relation patterns.

Alchemy and ReVerb assume that relationships are always binary: they gather more

weapons becomes gather(they, more weapons). CiceroLite takes a slightly more com-

plex approach, striving to first guess the relation’s arity before producing gather(they,
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Tool p r F1 a

Alchemy .69 .25 .37 .30

CiceroLite .90 .20 .33 .25

FRED .84 .82 .83 .82

ReVerb .67 .23 .34 .27

Table 5.6: A comparison of relation extraction tools by one of the creators of FRED
[42]. Each tool was assessed by computing precision (p), recall (r), F-measure (F1), and
accuracy (a).

weapons) as the extracted relation.

In contrast to the other three tools, FRED relies on neo-Davidsonian semantics,

which produces an event-centric graph representation. Using the same example of they

gather more weapons, FRED defines the event gather 1, which is associated with an

agent thing 1 and theme weapon 1. Event, agent, and theme can then be associated

with more concepts. For example, weapon 1 is defined as having the quality More, and

has the type MoreWeapon, which is a subclass of Weapon (Figure 5.1).

Figure 5.1: The graph produced by FRED [43] for the example they gather more
weapons.
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These types of tools may prove to be useful for Rensa or a Rensa-like frame-

work in the future. For now, however, there is much to be improved, especially when

more complex sentences are encountered. Consider Gangemi’s proposed example for

comparison: it plans to blacklist the Nusra Front as a terrorist organization. This sen-

tence contains ambiguity and multiple arguments (among other complexities), making

it difficult for tools to extract usable information. In this case, ReVerb does not extract

anything. The results for the remaining tools are as follows:

• Alchemy:

– plans to blacklist(it,the Nusra Front as a terrorist organization)

• CiceroLite:

– plans to blacklist(it,front,(AS) a terrorist organization)

• FRED:

– experiencer(plan 3,United States)

– theme(plan 3,blacklist 3)

– agent(blacklist 3,United States)

– patient(blacklist 3,NusraFront)

– as(blacklist 3,organization 3)

– TerroristOrganization(organization 3)

Gangemi concluded that such tools were promising, but called for improved knowledge

extraction benchmarks.
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While these approaches and evaluation methods are being perfected, I have

included several baseline functions in Rensa for SimpREL extraction from natural text.

These functions scan the text for combinations of certain parts of speech in the form of

rules. For example, assume the common linguistic tags for adverbs (RB), verbs (VB),

possessive pronouns (PRP$), adjectives (JJ), and nouns (NN). Then, one rule is “n was

(DT) (RB) JJ”, where n ∈ A, the set of all actors identified in the text, and any tag

in parentheses is optional. Actors are identified by searching the text for known proper

names, or by recognizing that a noun has actor properties (e.g., gender or animacy).

Tags in parentheses mean that an instance of that tag is optional in a matched sentence.

This rule will match a construction such as Samwise was brave, resulting in the SimpREL

assertion:

{

"l": [" Samwise"],

"relation ": "has_property",

"r": [" brave"]

}

Any extracted assertion is also given values for the storypoints and tense at-

tributes. Tense is determined by assessing the original grammatical tense of the matched

verb. In this case, the tense will be assigned a value of past. The assertion is also consid-

ered to be at a storypoint value equal to how far we are in the story by using a sentence

counter.

A more complex rule is “n (RB) VB (PRP$) (JJ) NN to m”, where n,m ∈ A.

This example matches constructions such as Marinette excitedly presented her incredible
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plan to Daniel. This construction is then translated into its corresponding SimpREL

assertion:

{

"l":[" Marinette"],

"relation ": "action",

"r":[" present"],

"action_object ":[" plan"],

"action_object_property ":[" incredible "],

"action_object_owner ":[" Marinette"],

"action_recipient ":[" Daniel"],

"with_property ":[" excited "]

}

The value for action object owner is only assigned if the possessive pronoun

appears to match with what the system knows or can infer about Marinette. That

is, if she has been explicitly assigned a gender, the system confirms that the pronoun

matches that gender before making the assignment. Otherwise, it will guess Marinette’s

gender using historical data about baby names. If the prediction corresponds with the

extracted possessive pronoun, the assignment will take place.

To demonstrate how this kind of simple concept extraction can be useful, I

investigated how one might automatically classify protagonists from antagonists. Vari-

ous prior work has focused on categorizing story actors by extracting story information.

Some have proposed using frequency of occurrence to rank actors by importance [22],

but this method, while useful and efficient, does not employ full semantic understand-

ing. Declerck and others introduced a hand-crafted ontology-based method for character
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type detection in fairy tales via analysis of nominal phrases, but these results are not

easily generalized to other types of stories [26]. Meanwhile, Goh and others proposed

identifying the main protagonist by means of syntactic features and a semantic lexi-

con, but did not extend the method to categorizing any other story actors [52]. In

response, Karsdorp and Bosch introduced a system that ranks character importance by

using direct and indirect speech [69]. However, their system did not categorize actor

types - such as the distinction between a protagonist and antagonist - which is useful

for understanding underlying intentions and behaviors over the course of the story. In

contrast, Bamman and others proposed latent variable models for learning character

types from movie plot summaries, which are packaged with actor descriptions such as

”rebel leader Princess Leia” [6]. Their method included relying on agent verbs (verbs

for which the entity is an agent argument), patient verbs (verbs for which the entity is

the patient, theme, or other argument), and attributes (adjectives and common noun

words that relate to the mention).

These approaches inspired me to explore how Rensa could support actor clas-

sification. I first labeled 207 actors from a corpus of 53 film scripts as “protagonist”

(anyone the audience is supposed to support), and “antagonist” (any villain who gets in

the way of a protagonist). For each script, I found the most frequent actor mentioned,

which served as the baseline for protagonist detection (as in [22]). I then extracted

attributes that were associated with those actors, similar to [6], to determine if such

methods would apply to film scripts in addition to movie plot summaries. This process

helped to identify clusters of adjectives that were commonly associated with each actor
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type (Figure 5.2).

Figure 5.2: Generated word cloud that depicts the major clusters of adjectives associated
with protagonists (blue) and antagonists (red) as extracted from 53 openly available
film scripts in the action/adventure genre from The Internet Movie Script Database
(www.imsdb.com). In this corpus, antagonists are often described as huge. Protagonists
tend to be described with references to their age (such as “young”), suffering (e.g.,
“poor”, “ragged”), or a temporary state of debilitation (e.g., “unconscious”).

To understand how these adjectives assist in actor role classification, consider

the script of The Lord of the Rings: Return of the King. The leading protagonist,

Frodo, is easily classified as a protagonist because his name appears the most frequently.

However, the rest of the protagonists’ names were not listed as often - some even less than

unnamed antagonists, such as the Orcs. To identify their actor types, we can examine

words associated with them. For example, Frodo calls his friend Samwise “dear”. Sam

also can be mapped to the pitiable cluster, since Frodo expresses his pity for him (“I’m

so sorry, Sam....”). Orcs, in contrast, are associated with words that describe their

enormous size (“huge”, “massive”), which is a trait commonly linked with antagonists.

In this way, a system relying on Rensa assertions was able to predict that, in the film,

Sam is a protagonist while orcs are antagonists. Results of the actor role classification

experiment are displayed in Table 5.7.
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Actor Type
Baseline Experimental

p r F1 p r F1

Protagonist 1.00 0.23 0.38 0.97 0.94 0.96

Antagonist 0.35 1.00 0.52 0.87 0.93 0.90

Table 5.7: Results of actor role prediction (p=precision, r=recall, F1=F-measure). The
best results using the baseline and the attribute extraction method were found using
Naive Bayes and a decision tree, respectively.

Beyond deducing actor roles, film scripts generally require setting information

to be explicit, which is useful for building story objects automatically. Information par-

ticular to each scene in the film script corpus was obtained by extracting all descriptions

and discourse that occurs between scene marking notes (e.g., “INT.” and “EXT.”). The

lines containing such markers specify the setting, which includes the time and place of

the scene. In this way, the Rensa-based system identified setting references by using

text processing techniques combined with WordNet’s time categorization lexnames to

delineate scenes, locations, and times with accuracies of 99%, 100%, and 93%, respec-

tively.

Film scripts, of course, are only one type of narrative from which we can learn

information, and the usefulness of rule-matching approaches is limited. It is promising

that researchers are interested in finding improved methods to derive concept relations

from natural text. However, it is also encouraging that we can automatically encode

and infer so much from simple extraction techniques. Beyond assisting in intelligent

reasoning and prediction, this type of concept extraction enables Rensa assertions to
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be encoded using a higher-level format than JSON, i.e., through simplified natural text

sentences. Future research will likely expand and improve on existing machine learning

methods for Rensa-supported concept extraction.

5.9 Discussion

We have discussed the SimpREL encoding scheme as one means of encoding

knowledge with Rensa. SimpREL provides a simple means of representing both meaning

(textbase) and storyworld (situation model). Theory of mind is supported through actor

brains and assertion nesting. Furthermore, the goals of research in open information

extraction are closely aligned with deriving structures that can be encoded in SimpREL

format, which signifies that a robust bridge between Rensa encodings and natural text

may be possible in the future.
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Chapter 6

Support for Existing Representations

“A tremendous amount of knowledge is needed to understand even a simple sentence.”

— David L. Waltz

We observed in Chapter 2 that there are many competing theories of narrative

structure. One of the primary goals for Rensa’s development is to be able to express and

transform distinct narrative representations to advance research in understanding and

comparing them. As such, the following sections will discuss how Rensa can support

the encoding of some existing representations for narrative and natural text.

6.1 Grammars

6.1.1 Story Grammars

Each component of a story grammar may be expressed via Rensa relations. We

will consider Thorndyke’s approach [116] first because it is the simplest. His grammar

described the parts that make up a Story:
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Story -> Setting + Theme + Plot + Resolution

Similarly, he defined the Setting, Theme, Plot and Resolution in terms of their

respective components:

Setting -> Characters + Location + Time

Theme -> (Event)* + Goal

Plot -> Episode*

Episode -> (Subgoal) + (DesiredState) + Attempt + Outcome

Attempt -> Event* or Episode

Resolution -> Event or State

Outcome -> Event* or State

State -> Characters or Location or Time

DesiredState -> Subgoal or Goal

In this notation, the symbol “+” indicates the combination of elements in

sequential order. The parentheses around Event denotes that the element is optional.

Finally, the asterisk suggests that the associated element may occur more than once.

As an example, a plot is defined as a series of episodes.

Rules like these can be expressed using a part of relation in SimpREL. For

example, we could write the rule for Theme as:

{

"l": ["( Event)*","Goal"],

"relation ": "part_of",

"r":[" Theme "]

}

Similar assertions can be constructed for the remaining element definitions.
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An Attempt, for example, could be represented as:

{

"l": [[" Event *"],[" Episode "]],

"relation ": "part_of",

"r":[" Attempt "]

}

Story grammars beyond Thorndyke’s approach include semantic relations in

addition to the syntactic relations we have just discussed. For example, Mandler and

Johnson’s method requires that Attempts cause Outcomes. In SimpREL, we could

express this as:

{

"l": [" Attempt"],

"relation ": "causes",

"r":[" Outcome "]

}

Because Rensa allows any string to encode a relation type, we are free to use

any further name for a relation as we wish.

6.1.2 Universal Dependencies

The notion of dependency in linguistics is the idea that words - or other units

of language - are connected to each other with directed links (dependencies). Rensa

generally supports this idea by allowing strings or sets of strings to be connected by

relations, and permits elaboration of these relationships via the addition of optional

model-specific attributes. The direction of the relation is assumed to be from the left-
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hand concept to the right-hand concept, but could be further specified in an additional

attribute.

Dependencies are heavily used in narrative representations. As one example,

the Universal Dependencies (UD) project was founded to advance research in multilin-

gual parsing and learning [24]. Generally, a UD tree or graph can be reduced to a set,

where each member of the set is a relation between left-hand and right-hand concepts.

6.1.3 DSyntS

The DSyntS (Deep-Syntactic Structure) is a unordered syntactic dependency

tree that can be realized into natural text using the RealPro system [75]. Through

their PERSONAGE system, Walker et al. have produced surface-level distinctions in

DSyntS format [104]. Thus, if our framework can support DSyntS encodings, it may

also support surface-level narrative transformations.

The DSyntS tree is composed of labeled nodes and arcs that may be nested.

Each node structure can be represented as a Rensa assertion, with labeled syntactic

relations as attributes. Each node may have an attribute nodes which contains a list

of inner nested nodes represented as assertions. An example is shown in Listings 6.1

and 6.2.
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Listing 6.1: A DSyntS representation for the utterance I don’t believe it.

<dsyntnode class ="verb" lexeme =" believe" polarity ="neg">

<dsyntnode lexeme="<PRONOUN >" number ="sg" person ="1st" rel="I"/>

<dysntnode lexeme ="it" rel="II"/>

</dsyntnode >

Listing 6.2: The SimpREL equivalent for Listing 6.1.

{

"class": "verb",

"lexeme ": "believe",

"polarity ":"neg",

"nodes": [

{" lexeme ":"<PRONOUN >", "number ":"sg", "person ":"1st", "rel": "I"},

{" lexeme ":"it", "rel", "II"}

]

}

6.2 Frame-Based Models

Frames and scripts (a sub-type of frames) rely on the assumption that for a

given situation, there is a template with slots that must be filled in order to understand

the situation. A frame is a data structure that can be represented as a network of

nodes and relations [91], which can neatly map to Rensa encodings. Each slot in a

frame template can have values including entities (references to an object in the world)

and pointers to other frames. In SimpREL, we can represent entities by their name or

75



keyword, and reference other assertions by their ID number. Listing B.1 in Appendix B

provides a complete example of how a SimpREL-like format could encode the restaurant

script, a classic example of Schank’s script theory.

6.3 Plot Unit Representations

6.3.1 Bremond’s Approach

Bremond suggested that narratives contain at least one elementary sequence

consisting of a goal, an action or event towards the goal, and an outcome [16, 17].

Similar to grammars, we can use the part of relation to describe this idea in SimpREL.

A narrative may then take place by finding and requesting each part of the narrative to

execute.

Agents may have goals and can take actions that may affect the outcome.

Given some a ∈ A, where A is the set of all actors, one may represent the former in

SimpREL by has goal(a,b), where instance of(b,goal). An actor a taking an action c

can be represented as action(a,c), and c can be associated with some new outcome

state via a causes relation. Agents also have affect states and relationships, which can

be designated via has x relations. They can interact with each other in a number of

ways, including intervention, negotiation, aggression, retribution, sacrifice, and punish-

ment. These types of interactions can be specified via action assertions that indicate

an action recipient and any associated consequences.
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6.3.2 Plot Units

Plot units contain structure hierarchies which build toward narrative patterns

[76, 53]. The lowest level components are three types of affect states: positive (+),

negative (-), and mental or neutral (M) states. Each affect state can be categorized

as such with a type of relation and associated with an entity of type actor who has

that state at any given storypoint. These affect states build into primitive structures,

which “consist of two affect states associated with the same character and a causal link

between them” [53]. Such primitives may be represented in Rensa as a binary relation

causes(a,b) where has affect state(c,[a,b]), given that instance of(c, actor) and also that

type of([a,b], affect state). If a single event affects multiple characters, the affect states

may be associated with a list of entities of type actor, rather than a single actor. These

primitive structures may then be connected by additional assertions to construct the

full story graph.

6.3.3 Doxastic Preference Frameworks (DPFs)

Doxastic preferences represent character expectations over the course of a nar-

rative [80, 79]. A game tree structure is used to describe which outcomes the characters

believe they and others would prefer. This representation demands a theory of mind

approach as well as a means of expressing nested beliefs, which can be achieved in Rensa

by nesting assertions that are attributed to actors. Refer to Listing B.2 in Appendix

B for an example of how a DPF analysis might be represented using the SimpREL

encoding format.
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6.3.4 Story Intention Graphs (SIGs)

A SIG consists of three subgraphs (layers): textual, timeline, and interpretative.

The textual layer represents the original utterances as a linear vector of nodes, which is

then translated to a list of events and statives (proposition nodes) that occur over time

in the timeline layer. The interpretative layer encodes the cognitive events of the text,

as in the situation model recognized by cognitive psychology. Here, nodes and relations

encode beliefs, intentions, goals, plans, and affectual impacts based on how the story is

understood by some audience. Connections between nodes may occur within or between

layers.

To support SIG encodings, SimpREL enables any generic assertion (or set of

nested assertions) to be related to another assertion or set. Actors may be related

to cognitive events via has relations (has belief, has goal, etc.). Temporal connections

may be described via relations (e.g., followed by) or through storypoints for additional

flexibility. Many of Elson’s original discourse relations are also recognized as standard,

including causes, precondition for, attempt to cause (by combining the prefix try with

the causes relation), and provides for (which is written as helps). There is also a bridge to

first-order logic (as discussed in Chapter 4, Section 4), which is particularly useful in the

case of the SIG because Elson created a corpus of SIG encodings in Prolog (DramaBank)

[33]. An example SIG analysis is presented along with its SimpREL interpretation in

Appendix B.
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6.4 Narrative Event Chains (NECs)

A NEC is a partial temporal ordering of narrative events that share a com-

mon protagonist [21], inspired by frame-based models. Although NECs do not contain

implicit information like plot unit representations (beliefs, goals, plans, etc.), they can

be easily extracted from natural text [20].

Formally, a NEC is a set of narrative events e1, e2, ..., en. Each narrative event

is a tuple with typed dependencies that specify an event (the simplest representation

of which is a verb) and its participants. Any pair of events (ei, ej) may be connected

by a temporal relation B, which is true if ei occurs before ej in time. SimpREL can

represent the simple NEC events proposed by Chambers and Jurafsky via providing the

capability to relate two sets of actors (which may be distinct, overlapping, or equivalent)

with some string representing the event. Events (represented by their name, or assertion

containing the full event) may then be connected temporally via a B relation. The NEC

representation also makes use of an empty slot, which is represented by a SVAR in

SimpREL.

6.5 Social Graphs

Ardanuy and Sporleder extracted characters and generated networks that de-

scribed when interactions occurred between them [3]. In similar social graphs, each

character may be represented as an entity of type actor in SimpREL. The frequency

and type of interaction can be expressed by using the num and unit attributes, respec-
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tively. These encodings may then be used to produce frequency network graphs.

6.6 Bartalesi’s Ontology and OWL

Bartalesi’s formal ontology uses the Web Ontology Language (OWL), which

has also been used to support user modeling [64]. In OWL, we define a class to be a

set that contains members (individuals) which all share one or more properties. We can

state relationships between individuals or from individuals to values with properties.

This idea is similar to the has property relation in SimpREL.

To create class and property hierarchies, we can establish subClassOf and sub-

PropertyOf relationships. Additional relations can be used to describe classes (equiv-

alentClass, unionOf, complementOf, intersectionOf, disjointWith, oneOf), properties

(equivalentProperty, range, domain, hasValue, inverseOf, TransitiveProperty, Symmet-

ricProperty, FunctionalProperty, InverseFunctionalProperty), and individuals (sameAs,

differentFrom, AllDifferent). Relations also exist to restrict how properties can be used

with respect to a class (allValuesFrom, someValuesFrom, minCardinality, maxCardi-

nality, cardinality, intersectionOf). Each of these types of relations are supported by

SimpREL’s left-relation-right encoding format.
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Listing 6.3: An OWL encoding stating that two URI references are the same people.

<rdf:Description rdf:about ="# Theodor_Seuss_Geisel">

<owl:sameAs rdf:resource ="# DrSeuss"/>

<rdfs:comment >Theodor Seuss Geisel and Dr. Seuss are the same person

.</rdfs:comment >

</rdf:Description >

Listing 6.4: A SimpREL equivalent for Listing 6.3.

{

"l":[" Theodor Seuss Geisel"],

"relation ":" same_as",

"r":["Dr. Seuss"],

"l_rdf: "about",

"r_rdf: "resource",

"rdf": "Description",

"text": "Theodor Seuss Geisel and Dr. Seuss are the same person ."

}

6.7 ConceptNet

ConceptNet is a semantic network that represents commonsense relationships

between words and phrases, along with associated metadata. These relationships take

the form of binary relations, which map exactly to the left-hand concept, right-hand

concept, and relation attributes in SimpREL. The metadata is in the form of name-value

pairs, and can also be neatly mapped to a Rensa assertion as model-specific attributes.
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Figure 6.1: Example SimpREL concept mapping for one of the micro-rhetorics used by
Game-o-Matic [118].

6.8 Game-o-Matic

Thus far, this thesis has focused largely on models of narratology (the study

of narrative and its underlying structure) rather than rhetoric (the art of discourse).

Rather than commit to a particular model of narrative structure, rhetoricians concern

themselves more deeply with the interaction between storyteller and audience. This

perspective is significantly distinct from the narratology view, but is useful to consider

because it often plays a role in the development of interactive systems. Hence, let’s

examine how Rensa might be used to support a project founded in the theory of rhetoric:

Game-o-Matic.

The Game-o-Matic project defined a game generation process that involved

combining the rhetorical affordances of game mechanics with thematic elements to create
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micro-rhetorics [118]. These micro-rhetorics represent a unit of the gameplay which

could be supported by a meaning derivation: a formal hierarchical justification for the

unit’s interpretation and representation as an idea. Figure 6.1 shows how one might map

an example micro-rhetoric to a SimpREL representation. Together, micro-rhetorics can

be assembled and organized to form a larger game recipe, which can be expressed by

linking micro-rhetoric concept objects together and specifying consequences of assembly.

6.9 Discussion

Rensa assertions can encode a variety of narrative representations as well as

structures that are useful beyond traditional narratology, including game mechanics,

user modeling, and ontology knowledge. This expressiveness permits the development

of a translator between Rensa and other story representations. As a result, we can

potentially expand a given annotation library automatically, and provide a source of

comparison between representations.
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Chapter 7

Narrative Simplification

“Simplicity is about subtracting the obvious and adding the meaningful.”

— John Maeda

We have already established that narrative supports us in many different ways,

such as by helping us to interpret the world around us and to express our unique

perspectives. Among all of the use cases for narrative representations, we have not yet

investigated narrative simplification: the process of reducing a narrative’s complexity

while preserving meaning. This is an important type of narrative reorganization that

can help us communicate information in a more understandable and memorable way.

In computer science, narrative simplification is an important area of research

to pursue because simplified texts are generally easier for automated systems to under-

stand. Simplifying texts automatically also helps us gain insight into the most important

units of narrative information to extract, which is useful for personalized summariza-

tion. Additionally, current models of machine translation perform worse with increased
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complexity, and information retrieval systems that rely on content-based indexing may

benefit from improved text simplification techniques. Text simplification has also been

argued to be useful in increasing parser throughput and reducing timeouts by eliminat-

ing ambiguity [113].

Although text simplification systems exist, simplifying narratives on par with

a human requires a rich interpretation of the original text, a representation of the target

text, and a mapping between the two. Hence, narrative simplification is a compelling

operation for us to consider, especially with a framework that combines the expressive

power of multiple narrative representations in our toolbox.

7.1 The Index of Narrative Complexity

Research by Petersen et al. suggests that we can evaluate the progress of

narrative learning by examining thirteen narrative elements in a student’s story [100].

These elements have been combined into a formal measure called the Index of Narrative

Complexity (INC). Enabling a computer to understand these elements and how they

can be complex or simple is useful not only to eliminate redundancies for a machine,

but to aid in automatically measuring narrative development. As detailed in Chapter

3, I demonstrated this idea by building the first narrative skill assessment tool based

on the INC measure [60]. This system used the Rensa framework to encode and rea-

son over Story Intention Graph representations of input text. Parts of the story were

tagged using these encodings in addition to the original text. The relationships between
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the resulting constructed networks were used to identify cognitive complexities such as

actions, consequences, and complications.

To review how the system works, let’s examine how it identifies several narra-

tive elements recognized by the INC measure. First, we must define a few key terms.

According to Petersen et al., an initiating event is an event or problem that elicits a

response from an actor [100]. We will assume that an initiating event is always an in-

stance of an event. Further, we will assume that for an actor to respond to an initiating

event, there must be some inspired goal which prompts the response.

I Definition 4 (Initiating Event, Inspired Goal). Let E and G be the set of all events

and goals in the input narrative, respectively. Assume e ∈ E, g ∈ G, and the SIG

assertion actualizes(e, g). Then, e is an initiating event and g is an inspired goal.

Remark. If distinct initiating events exist beyond e, these (excluding e) are each con-

sidered narrative complications. Complications can also arise in several other ways, as

detailed by Figure 7.1.

Experts in natural language processing have extensively addressed surface-level

lexical and syntactic complexities [11, 23, 45, 65, 68, 71, 98, 101, 103, 106, 111, 112, 123].

However, work that considers more abstract, cognitive complexities such as the INC

narrative elements is considerably more infrequent. To do so is difficult because it

requires a deeper understanding of the story beyond traditional analysis of explicit

discourse features. The pursuit of understanding these complexities is fruitful, especially

because these basic features exist even in relatively simple, well-known stories, such as

fairy tales and Aesop’s fables.

86



Figure 7.1: A simplified flowchart for identifying the occurrence of plans, attempts,
actions, and certain kinds of complications. Let r be a relation such that r is one
of actualizes, ceases, prevents, attempt to cause, or attempt to prevent. If some story
character performs an act a, we must then consider if the description of the act contains
a cognitive verb. If so, and if the act is related to an inspired goal h such that r(a, h),
then the act is tagged as a plan. If not, but r(a, h), then a is an attempt; otherwise, it
is an action. If a is an attempt or plan, any event f such that prevents(f, a) is deemed
a complication.

In the next sections, we will examine how Rensa might be used to identify and

reduce these cognitive complexities. Specifically, we will consider two types of redun-

dancies based on narrative elements recognized by the Index of Narrative Complexity:

characters and complications.
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7.2 Narrative Simplification with Rensa

7.2.1 Characters

A narrative character is a reference to the subject of a clause in a narrative.

The INC measure specifically evaluates how a storyteller includes main characters with

a story. This is done by noting how many main characters there are, and how the

storyteller refers to their main characters. One may refer to a main character by am-

biguous pronouns (such as “he”), nonspecific labels (e.g., “boy”), or specific names

(e.g., “Harry”). We can represent main characters in Rensa by using entities, or - more

specifically - actors.

As I hinted in the introduction to this chapter, we can find examples of narra-

tive complexity even in very short stories, such as fables. For example, consider Aesop’s

fable of The Lion, the Fox, and the Beasts:

The goat, sheep, and calf believed the lion was dying. They all visited the
lion. The lion asked the fox to visit him, too. The fox refused because he
said the goat, the sheep, and the calf didn’t return.

Note that the goat, sheep, and calf all serve the same purpose for the story.

This fable is an example of actor redundancy, i.e., a scenario in which the entire set

of an actor’s (or several actors’) contributions are contained within that of another

actor. More generally, it is evidence of greater entity density, which is related to text

readability [38]. Let us now consider how we can use Rensa to eliminate redundant

actors from a story.

F Algorithm 1 (Simplify Redundant Actors). Let H be the set which contains all
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actors in a narrative N with assertions [n0, ...nm], and let hk, hg ∈ H such that hk 6= hg.

Let G and K be the set of assertions that contain hg and hk, respectively. Replace any

instances of hg with a SVAR in each element of G, and label the resulting set G′.

Similarly, replace all instances of hk with the same SVAR in every element of K to

form K ′. If G′ ⊆ K ′, then hg is a redundant actor, and G may be removed from N.

Remark. A non-redundant actor may not be essential to the plot, but participates in

one or more assertions in a unique way.

When applied to The Lion, the Fox, and the Beasts, Algorithm 1 results in the

following simplified story:

The goat believed the lion was dying. He visited the lion. The lion asked the
fox to visit him, too. The fox refused because he said the goat didn’t return.

In other words, we eliminate all actors whose only associated assertions are a subset of

another actor’s assertions. This general method for simplifying redundant actors has

been validated by Mazeika [89]. We will discuss her Rensa-based system in the next

chapter.

7.2.2 Complications

As previously mentioned, a complication is either an extra initiating event, or

an event that prohibits the execution of a plan or attempt. Once all initiating events

are identified, reducing the former is trivial. To reduce the latter type of complications,

we must find all pairs of story concepts that cease the same plan or attempt. If one of

the concepts in the pair is only associated with assertions that are a subset of the other

concept’s assertions, we can eliminate the former concept.
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F Algorithm 2 (Simplify Redundant Complications). Let G be the set of all plans

and attempts in a narrative N , and let g be an element of G. For all g, if a, b ∈ the

set of all story concepts C such that ceases(a, g) and ceases(b,g), then let A and B

be the set of assertions that contain a and b, respectively. Replace any instances of a

with a SVAR in each element of A, and label the resulting set A′. Similarly, replace all

instances of b with the same SVAR in every element of B to form B′. If A′ ⊆ B′, then

a is a redundant complication, and A may be removed from N .

Aesop’s fable of The Lion in Love provides an example of redundant compli-

cations:

A lion fell in love with a maiden, and asked to marry her. The girl’s father
agreed, on the condition that the lion would cut its claws and remove its
teeth. When the lion did so, the father chased it away.

In this story, the lion’s teeth and claws are both complications which prevent the father

from chasing away the lion. A simplified version might include only the lion’s teeth (or

only its claws) being an obstacle for the father.

7.3 Discussion

In this chapter, we have demonstrated that the Rensa framework is expressive

enough to represent and reason about factors which contribute to narrative complexity.

Rensa’s expressive power enables researchers to isolate narrative features and determine

how each contributes to narrative complexity, as well as how to transform each to

simplify narratives.
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Eliminating redundancies does not always imply clarity and reader satisfaction,

and simplification techniques should always be applied thoughtfully. As an illustration

of why this is important, consider The Lion in Love. One might decide claws and

teeth are both dangerous aspects of the lion, and thus, both integral to the story.1 In

this case, the reader might be confused or unsatisfied if we removed either redundant

complication.

Another example is Aesop’s fable of The Fox and the Cat. In this story, a

Fox imagines several different ways he might escape a pack of hounds, and takes so

long in deliberation that he does not escape them. Had the Fox only imagined one

means of escaping the hounds, he might have had time to escape. To prevent a loss

of coherence, at least two redundant assertions and their subgraphs must be preserved

during iteration through these hypothetical events. Alternatively, if only one imagined

method is preserved, the story should emphasize that the Fox took enough time in his

contemplation to result in his downfall. Regardless, a system that is looking to eliminate

redundancies must not do so blindly.

Repetition may also be used to create rhythm, supply emphasis, or provide a

sense of unity in narratives. Previous work has suggested the perceived clarity and pref-

erence of generated text may be correlated [58], but there is no clear algorithm to ensure

them consistently. There are likely more factors at play, such as the reader’s expecta-

1Note that these types of decisions may be highly subjective. Another reader might decide that
removing one of the complications would be acceptable. Alternatively, perhaps yet another reader might
conclude that the lion would still be dangerous until its muscles are weakened, or its size is somehow
reduced. Neither of these qualities are described in the original story. Adaptation and generation
systems alike must decide how to manage these user-specific design challenges.
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tions [29] and previous experience with similar stories or language. Further investigation

is needed to determine precisely which narrative features influence perception, and how

they do so. This, in turn, will lead to improved narrative adaptation systems.
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Chapter 8

Existing Applications

“Stories...are the making of something, and that something is soul. Anytime we feed

soul, it guarantees increase.”

— Clarissa Pinkola Estés

One of the best ways to assess a new computer science tool is to examine its

use in solving real-world problems. In this chapter, I will enumerate several existing

applications of the Rensa framework.

8.1 Fairy Tale Adaptation

Mazeika [89] used Rensa to adapt fairy tales into Walt Disney-style narratives.

Each narrative included a set of actors with a name, gender, narrative role (e.g., protag-

onist, villain, sidekick, etc.), and miscellaneous attributes. Throughout the narrative,

actors could perform actions, move to a new location, acquire a prop, or gain or lose a

property. Time steps were encoded using the storypoints attribute.

To transform a fairy tale into one with the style of Disney, Mazeika used a
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rules-based system. These rules were:

1. Every actor must have a name.

2. The hero must have an animal companion as a sidekick.

3. A maximum of two actors who serve identical narrative functions can exist.

4. The villain must be defeated.

5. No excessively violent actions may occur.

The first two rules possess relatively simple implementations. For the first,

an actor is granted a proper name if one is not encoded. Similarly, the second rule

is followed by checking if a sidekick is already encoded. If not, and a set of animals

exists within the narrative already, one is chosen at random to be the hero’s sidekick.

Otherwise, a random animal is chosen.

To obey the third rule, all actors who perform the same action at the same

storypoint are identified, and all but two are selected for removal. All assertions that are

associated with the selected actors are removed as well. This method was inspired by

my approach for simplifying actors presented in Section 7.2.1, and represents a limited

version of the same method. If the villain is defeated in the original fairy tale, the fourth

rule is satisfied. Otherwise, an action is chosen that would result in the villain’s defeat.

The system then selects an actor to perform the action, who must be in an appropriate

state and time to be able to do so. If the action requires any prerequisite assertions,

the system revises the narrative until they are successfully added.
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The system enforces the fifth rule by identifying actions that are tagged as

violent. If one is found, a replacement action with the same set of encoded consequences

is identified. As with the fourth rule, any prerequisites for this replacement action must

be added to the narrative.

Although dependent on a hand-crafted ontology, Mazeika’s work demonstrates

that Rensa can be used to apply new styles to short stories by transforming the fabula.

Future work should be able to identify and apply these kinds of rules to encodings

without relying on manual authoring.

8.2 Game Generation

In [85], Martens et al. used Rensa to visualize and support the formalization

of proceduralist argumentation as logic programs. Proceduralist readings are a method

of deriving meaning from games based on the underlying interactions between game

mechanics, dynamics, aesthetics, and cultural knowledge. Rensa was used to encode

and represent these interactions, resulting in improved understanding of what makes

for meaningful game generation.

By coupling Rensa with a constraint solver that generates games, we can au-

tomatically visualize the interactions as well as the results. We can also realize the

underlying rules into an actual game. This method was explored in Martens et al.’s

later work [86]. During game generation, an answer set programming (ASP) solver was

used to determine the basic ideas behind a proposed game. Rensa encoded these ideas
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and reorganized their content based on specified constraints. The transformed assertions

were realized into JavaScript code for the game. While the game was played, Rensa was

used to communicate ideas between the gameplay and the narrative modules.

We accomplish two main goals by encoding the concepts behind a generated

game using Rensa. First, Rensa helps developers to better understand, visualize, and

debug their code and its outputs. Second, Rensa encodings provide a means for rep-

resenting and reasoning over the game. This assists with initial game generation and

adaptation of the game mechanics, aesthetics, and dynamics, as well as any associated

narrative during play. Taken together, these accomplishments illustrate the value of

using Rensa to adapt narrative structures beyond those found in natural text.

8.3 Dilemma Generation

A dilemma is a literary device which forces a person to make a difficult decision

between two or more alternatives. Dilemma scenarios have been used extensively in

classical and modern literature, and have become an important component of digital

games and game design [125, 87]. These scenarios may be encountered or observed. A

player that encounters a dilemma during play is able to analyze real-world conflicts

while avoiding stereotypical thought patterns [70]. Conversely, someone who observes a

second party undergo a dilemma personalized to their moral values may gain empathy

and respect for that person [120]. The development of a system which is able to reason

about and generate personalized dilemmas with identifiable values in real time should
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Figure 8.1: A generated visualization that represents several mechanic interactions in
The Free Culture Game [92] according to developer specifications [85]. In this game,
entities that represent new ideas roam the screen freely as floating particles. There
are three types of agents: producers, consumers, and the vectorialist. Throughout the
game, the vectorialist takes ideas out of the creative commons to commodify them for
consumers. The player’s goal is to herd the new ideas toward the producers to keep
them inspired, which causes new ideas to form. If a producer becomes uninspired, they
turn into a passive consumer.

be able to support these dynamics.

In [59], I describe an expressive dilemma generation model that extends prior

work [7]. This system combines Schwartz’s universal theory of values [109, 110] with an

analysis of dilemma scenario factors derived from examining the dilemma’s producer(s),

audience, context, and the space of possible dilemmas. We can use Rensa encodings
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to embed the resulting model within an interactive narrative. We will briefly present

one method here, although it should be noted that there are many different ways of

encoding the model with Rensa.

For a dilemma to take place, there must exist a decider (the entity that resolves

the dilemma) and a giver (the entity that presents the dilemma). Let us assume that the

player is always the decider in our interactive experience, which could be represented as

instance of(player, decider). The giver could be any entity in the narrative, including the

player. We can further characterize the player and their properties, either permanent or

temporary, via has relations. We can also model the surrounding actors and environment

to provide a sense of context.

During the dilemma, the decider can choose to help, harm, or ignore a set

of values, which may be in the form of an entity or another action. The system can

understand the player’s choice by specifying each of these as action relations, where

the left-hand concept is the player, the right-hand concept is the action taken, and the

set of values can be expressed within action object or action recipient attributes. Each

action the player takes can lead to a set of consequences, which may be expressed as

assertions that are linked to the action assertion by discourse arc relations.

Through a preliminary study, a Rensa representation appeared to reasonably

express contemporary game dilemmas to the satisfaction of human judges, especially

when compared with a prior dilemma categorization model. Taken together with the

preceding sections of this chapter, we see that not only can Rensa provide a means

for expressing different aspects of a narrative, but it can express that narrative using
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multiple lenses of detail. One may encode high-level information about a story, or

dig deeper, even to examine the minute details of a single literary device. This kind of

authorial control exemplifies Rensa’s robust nature as a narrative adaptation framework.
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Chapter 9

Conclusion

“We’re all stories, in the end.”

— Steven Moffat

9.1 Summary

This thesis has presented a new framework for modeling narrative: Rensa.

Although many narrative representations exist, limited progress has been made toward

human-readable encodings that can express and easily transform the inherent storiness

of diverse media and use cases. This work is a first step toward addressing this challenge.

Rensa is designed to possess several key properties as a narrative transforma-

tion framework. First, Rensa is meant to be accessible for computers, programmers, and

non-programmers. Assertions are stored using JSON, which is an open-standard for-

mat that is easy for both humans and machines to read. An online annotation interface

exists that helps users upload, visualize, edit, and save SimpREL encodings. Basic Sim-
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pREL encodings may also be constructed automatically from natural language inputs,

which promotes accessibility for non-programmers. Rensa is also expressive in that it

can support many distinct models of text and narrative, which we have demonstrated by

using the example SimpREL encoding format. This permits its applicability to diverse

human-computer interaction scenarios. Finally, Rensa encodings were designed to be

retrievable. Research in open information extraction seeks to derive Rensa-like struc-

tures, supporting a bridge from natural text to encoded narrative meaning. Together,

these qualities promote the encoding and adaptation of many kinds of narrative.

9.2 Future Work

Overall, we have explored how Rensa can be useful for a wide variety of ap-

plications. Future work should determine its robustness in these and other scenarios

which demand the processing and adaptation of meaning.

Ongoing work in using Rensa for text generation includes the personalization

of medical forms. I have designed an online service currently in development for this

purpose. In addition to automatically performing lexical and syntactic simplifications,

this service is capable of using Rensa to extract concepts from input documents to

determine the final adaptation. These concepts might include the narrative content,

such as the message a section of text is meant to convey. The system may also attempt

to extract knowledge about the contents of the document itself. For example, consider

the fact that an input document in PDF format may not contain styling information.
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To support readability, the service identifies header text and uses Rensa assertions to

describe how it should be displayed (e.g. in boldface, titlecase, and larger font than

body text) in the final result. It also can identify text that represents key sections of

typical consent documents (such as the suggested treatment, risks of the procedure, and

signature sections), and can use this information to stylize and reorganize the document.

Beta testers found the system itself to be “exciting” and “a good step for-

ward.” One of the users, a health policy expert, noted that the system had the ca-

pacity to “increase compliance with treatment advice...build trust between doctors and

patients...[and] to establish a foundation for dialogue.” These comments suggest that

this system (and/or similar systems) may be of use to the medical community in the

future.

Intelligent game generation is another domain in which Rensa has already

made a significant contribution. In the future, researchers could use Rensa not only to

guide development and interpret game knowledge, but to provide player feedback. As

one example, Rensa could help supply instructions to the player by reasoning over the

current state of the game. For example, if the system notices that Looking under the

hat might cause the player to win, i.e.:

{

"l": [

{

"l": [" player"],

"relation ": "action",

"r": ["look"],
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"location_under ":[" hat"]

}

],

"relation ": "causes",

"r": [{"l": ["game"], "relation ": "set_mode", "r": ["win"]}],

"prefix ": "might"

}

...it might generate the following assertion as a hint for the player:

{

"l": [" player"],

"relation ": "action",

"r": ["look"],

"location_under: ["hat"],

"grammatical_mood ": [" imperative "]

}

Once automatically realized into natural text, this assertion reads as Look under the

hat.

Many more applications are possible for the Rensa framework. Other example

domains include:

• Data visualization. Rensa has already helped developers to automatically vi-

sualize data in real time. Future systems may also be able to use this bridge to

better inform or understand their work.

• User modeling and interaction. It is impossible to predict the requirements

of all users, and understanding the complexities involved in interaction demands
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considerable social and contextual knowledge. More responsive systems could

be developed by encoding and modifying narrative structures that represent a

particular user and interaction scenario.

• Meaningful generation and analysis. Knowledge engineering and computa-

tionally creative systems may be able to benefit from a framework like Rensa that

can encode and reason over many types of concepts and their relationships.

• High-level encoding of complex data. Some researchers have proposed using

a high-level narrative language for more efficient encoding of formal notations and

mathematical expressions (e.g., [57, 67]). By providing support for these types of

encodings, Rensa may be able to provide a foundation for more intuitive coding

environments for scientists.

9.3 Closing Remarks

Rensa was built to fulfill several design goals. First, it can encode, delete, and

edit narrative knowledge and, in so doing, provides a foundation for systems that require

responsive intelligence. Second, it is expressive enough to encode multiple narrative

representations, including formal schemata founded in theory of mind such as the Story

Intention Graph. Finally, it is sufficiently understandable and able to be extracted from

natural text to the point that other researchers, developers, and non-technical experts

can annotate data. As a result, narrative data can be more easily realized and shared.

Narrative is fundamental to human experience: our lives are weaved together
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by stories, and much of who we are would cease to be without them. It is my hope that

the work presented in this thesis enables researchers - including those who specialize in

a field other than computer science - to find value in encoding narrative structures, and

to learn about the ways that narrative can heal and transform us.
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Appendix A

Key SimpREL Examples

The following is a sampling of SimpREL encodings for common narrative struc-

ture types, and their natural text counterparts. Additional encodings in SimpREL

format can be found at https://github.com/RensaProject.

A.1 States

Bilbo has Gollum’s ring.

l [“Bilbo”]

relation “has”

r [“ring”]

r owner [“Gollum”]
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Eric, Grimsby, and the sailors were on the king’s ship.

l [“Eric”,“Grimsby”,“sailors”]

relation “location on”

r [“ship”]

r owner [“king”]

tense “past”

“Look out, lad!” the sailors sang.

l [“sailors”]

relation “action”

r [“sing”]

discourse “Look out, lad!”

tense “past”

spoken True

King Triton entered the scene dramatically.

l [“King Triton”]

relation “action”

r [“enter”]

action object [“scene”]

with property [“dramatic”]

tense “past”
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A.2 Beliefs

Recall that if you load an assertion into an actor’s brain, they are the owner

of that assertion by default.

Frodo knows he has a ring.

owner [“Frodo”]

believer [“Frodo”]

l [“Frodo”]

relation “has”

r [“ring”]

Frodo knows everyone knows he has a ring.

owner [“Frodo”]

believer [“SVAR everyone”]

l [“Frodo”]

relation “has”

r [“ring”]

condition given [{“l”: [“SVAR everyone”],“relation”:“instance of”,“r”:[“actor”]},

{“l”: [“SVAR everyone”],“relation”:“has property”,“r”:[“all”]}]

127



Sam knows everyone knows Frodo knows he has a ring.

owner [“Sam”]

believer [“SVAR everyone”]

l [“Frodo”]

relation “has belief”

r [{l: [“Frodo”], relation: “has”, r: [“ring”]}]

condition given [{“l”: [“SVAR everyone”],“relation”:“instance of”,“r”:[“actor”]},

{“l”: [“SVAR everyone”],“relation”:“has property”,“r”:[“all”]}]

A.3 Goals and Intentions

Ariel wants to explore land.

l [“Ariel”]

relation “has goal”

r [{l:[“Ariel”], relation:“action”, r:[“explore”], action object:[“land”]}]

Ariel needs to become human before she can explore land.

l [{l:[“Ariel”], relation:“is a”, r:[“human”]}]

relation “precondition for”

r [{l:[“Ariel”], relation:“action”, r:[“explore”], action object:[“land”]}]

128



If Ariel gave her voice to Ursula, she might become human.

l [{l:[“Ariel”], relation:“action”, r:[“give”], action object:[“voice”],

action object owner:[“Ariel”], action recipient:[“Ursula”]}]

relation “causes”

r [{l:[“Ariel”], relation:“is a”, r:[“human”]}]

prefix [“might”]

A.4 Imperatives

Mince the onion and the garlic.

l [“chef”]

relation “action”

r [“mince”]

action object [“onion”,“garlic”]

grammatical mood “imperative”
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Quickly pour the milk into the medium bowl that contains the sugar.

l [“chef”]

relation “action”

r [“pour”]

action object [“milk”]

location into [“bowl”]

location into property [“medium”]

with property [“quick”]

condition if [{l:[“sugar”], relation:“located in”, r:[“bowl”]}]

grammatical mood “imperative”

Use the spoon for scooping the ice cream.

l [“spoon”]

relation “used for”

r [{l:[“spoon”], relation:“action”, r:[“scoop”],

action object:[“ice cream”]}]

grammatical mood “imperative”
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Bake the bread until it is golden brown.

l [“chef”]

relation “action”

r [“bake”]

action object [“bread”]

condition until [{l:[“bread”], relation:“has property”, r:[“golden brown”]}]

grammatical mood “imperative”

Boil the egg for three minutes.

l [“chef”]

relation “action”

r [“boil”]

action object [“egg”]

time for [“three minutes”]

grammatical mood “imperative”

Set the oven to 350 degrees Fahrenheit.

l [“oven”]

relation “set value”

r [350]

r unit “degrees Fahrenheit”

grammatical mood “imperative”
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Appendix B

SimpREL Encodings that Demonstrate

Support for Existing Representations

B.1 The Classic Schankian Restaurant Script

Listing B.1: An example SimpREL encoding for a variation of a popular Schankian
script which describes scenes at a restaurant. In this example, the customer and server
are entities of type actor, performing actions with optional action object attributes for
encoding props.

[

{

"l":[" customer"],

"relation ":" action",

"r":[" enter"],

"action_object ":[" restaurant "],

"script_act ":[" PTRANS"],

"scene":1,

"storypoints ":[{"at":1}] ,
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"text": "The customer enters the restaurant ."

},

{

"l":[" customer"],

"relation ":" action",

"r":[" look at"],

"action_object ":[" tables"],

"script_act ":[" ATTEND"],

"scene":1,

"storypoints ":[{"at":2}] ,

"text": "The customer looks at the tables ."

},

{

"l":[" customer"],

"relation ":" action",

"r":[" choose"],

"action_object ":[" myTable"],

"action_recipient ":[" customer"],

"condition_given ":[

{

"l":[" myTable"],

"relation ":" instance_of",

"r":[" table"]

},

{

"l":[" myTable"],

"relation ":" has_property",

"r":[" available "]
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}

]

"script_act ":[" MBUILD"],

"scene":1,

"storypoints ":[{"at":3}] ,

"text": "The customer chooses a table."

},

{

"l":[" customer"],

"relation ":" action",

"r":[" move to"],

"action_object ":[" myTable"],

"script_act ":[" PTRANS"],

"scene":1,

"storypoints ":[{"at":4}] ,

"text": "The customer moves to the table of their choosing ."

},

{

"l":[" customer"],

"relation ":" action",

"r":[" sit"],

"script_act ":[" PTRANS"],

"scene":1,

"storypoints ":[{"at":5}] ,

"text": "The customer sits."

},

{

"l":[" customer"],
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"relation ":" action",

"r":[" take"],

"action_object ":[" menu"],

"script_act ":[" PTRANS"],

"scene":2,

"storypoints ":[{"at":1}] ,

"text": "The customer picks up the menu."

},

{

"l":[" customer"],

"relation ":" action",

"r":[" read"],

"action_object ":[" menu"],

"script_act ":[" MTRANS"],

"scene":2,

"storypoints ":[{"at":2}] ,

"text": "The customer reads the menu."

},

{

"l":[" customer"],

"relation ":" action",

"r":[" choose"],

"action_object ":[" myFood"],

"script_act ":[" MBUILD"],

"condition_given ":[

{

"l":[" myFood"],

"relation ":" instance_of",
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"r":[" food"]

},

{

"l":[" menu"],

"relation ":" has_entry",

"r":[" myFood "]

},

{

"l":[" customer"],

"relation ":" likes",

"r":[" myFood "]

},

]

"scene":2,

"storypoints ":[{"at":3}] ,

"text": "The customer chooses food to order."

},

{

"l":[" customer"],

"relation ":" action",

"r":[" signal to"],

"action_recipient ":[" waiter"],

"script_act ":[" MTRANS"],

"scene":2,

"storypoints ":[{"at":4}] ,

"text": "The customer signals to the waiter ."

},

{
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"l":[" waiter"],

"relation ":" action",

"r":[" move to"],

"action_object ":[" table"],

"action_object_owner ":[" customer"],

"script_act ":[" PTRANS"],

"scene":2,

"storypoints ":[{"at":5}] ,

"text": "The waiter moves to the customer ’s table."

},

{

"l":[" customer"],

"relation ":" action",

"r":[" request"],

"action_recipient ":[" waiter"],

"action_object ":[" myFood"],

"script_act ":[" MTRANS"],

"scene":2,

"storypoints ":[{"at":6}] ,

"text": "The customer asks the waiter for food."

},

{

"l":[" waiter"],

"relation ":" action",

"r":[" move to"],

"action_object ":[" location"],

"action_object_owner ":[" chef"],

"script_act ":[" PTRANS"],
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"scene":2,

"storypoints ":[{"at":7}] ,

"text": "The waiter moves to the chef ’s location ."

},

{

"l":[" waiter"],

"relation ":" action",

"r":[" request"],

"action_recipient ":[" chef"],

"action_object ":[" myFood"],

"script_act ":[" MTRANS"],

"scene":2,

"storypoints ":[{"at":8}] ,

"text": "The waiter asks the chef for the chosen food."

},

{

"l":[" chef"],

"relation ":" action",

"r":[" give"],

"action_recipient ":[" waiter"],

"action_object ":[" myFood"],

"script_act ":[" MTRANS"],

"scene":3,

"storypoints ":[{"at":1}] ,

"text": "The chef gives the food to the waiter ."

},

{

"l":[" waiter"],
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"relation ":" action",

"r":[" move to"],

"action_object ":[" table"],

"action_object_owner ":[" customer"],

"script_act ":[" PTRANS"],

"scene":3,

"storypoints ":[{"at":2}] ,

"text": "The waiter moves back to the customer ’s table."

},

{

"l":[" waiter"],

"relation ":" action",

"r":[" give"],

"action_object ":[" myFood"],

"action_recipient ":[" customer"],

"script_act ":[" ATRANS"],

"scene":3,

"storypoints ":[{"at":3}] ,

"text": "The waiter gives the food to the customer ."

},

{

"l":[" customer"],

"relation ":" action",

"r":[" eat"],

"action_object ":[" myFood"],

"script_act ":[" INGEST"],

"scene":3,

"storypoints ":[{"at":4}] ,
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"text": "The customer eats the food."

},

{

"l":[" waiter"],

"relation ":" action",

"r":[" give"],

"action_object ":[" check"],

"action_recipient ":[" customer"],

"script_act ":[" ATRANS"],

"scene":4,

"storypoints ":[{"at":1}] ,

"text": "The waiter gives the check to the customer ."

},

{

"l":[" customer"],

"relation ":" action",

"r":[" give"],

"action_object ":[" money"],

"action_recipient ":[" waiter"],

"script_act ":[" ATRANS"],

"scene":4,

"storypoints ":[{"at":2}] ,

"text": "The customer gives money to the waiter ."

},

{

"l":[" customer"],

"relation ":" action",

"r":[" exit"],
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"action_object ":[" restaurant "],

"script_act ":[" PTRANS"],

"scene":4,

"storypoints ":[{"at":3}] ,

"text": "The customer leaves the restaurant ."

}

]

B.2 DPF Analysis of Engagement

Engagement is an example of a short, branching narrative. The story, as first

presented by Lehnert [76], may be told as follows:

John was thrilled when Mary accepted his engagement ring. But when he
found out about her father’s illegal mail-order business, he felt torn between
his love for Mary and his responsibility as a policeman. When John finally
arrested the old man, Mary called off the engagement.

Part of this story is shown in Figure B.1, and encoded using SimpREL (Listing B.2).

Notice that, as in many story examples, there could be multiple ways to represent the

Engagement story in SimpREL. For instance, we could also represent the tree using

hypothetical assertions with causes relations.
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Figure B.1: DPF game tree of the Engagement story [82].

Listing B.2: An example SimpREL encoding for Figure B.1.

[

{

"myID ":"v0",

"l":[" John"],

"relation ":" action",

"r":[" discover"],

"action_object ":["mail -order business"],

"action_object_owner ":["Mary ’s father"],

"action_object_property ":[" illegal"],

"children ": ["$(t0)","$(v1)"]

},

{

"myID ":"t0",
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"l":[" John"],

"relation ":" action",

"r":[" arrest"],

"action_object ":["Mary ’s father"],

"prefix ":[" not"]

},

{

"myID ":"v1",

"l":[" John"],

"relation ":" action",

"r":[" arrest"],

"action_object ":["Mary ’s father"],

"children ":["$(t1)","$(t2)"]

},

{

"myID ":"t2",

"l":[" Mary"],

"relation ":" action",

"r":[" call off"],

"action_object ":[" engagement "],

"action_recipient :[" John"]

},

{

"myID ":"t1",

"l":[" Mary"],

"relation ":" action",

"r":[" call off"],

"action_object ":[" engagement "],
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"action_recipient :[" John"],

"prefix ":[" not"]

},

]

B.3 SIG Analysis of The Wily Lion

Fables and folktales have been conventionally used as examples for narrative

analyses because they are brief and straightforward. The Wily Lion is one of Aesop’s

fables, and can be told as follows:

A Lion watched a fat Bull feeding in a meadow, and his mouth watered
when he thought of the royal feast he would make, but he did not dare to
attack him, for he was afraid of his sharp horns. Hunger, however, presently
compelled him to do something: and as the use of force did not promise
success, he determined to resort to artifice. Going up to the Bull in friendly
fashion, he said to him, “I cannot help saying how much I admire your
magnificent figure. What a fine head! What powerful shoulders and thighs!
But, my dear friend, what in the world makes you wear those ugly horns?
You must find them as awkward as they are unsightly. Believe me, you
would do much better without them.” The Bull was foolish enough to be
persuaded by this flattery to have his horns cut off; and, having now lost his
only means of defense, fell an easy prey to the Lion.

In this section, we will describe how to encode the SIG representation this story, as

displayed in Figure B.2.
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Figure B.2: SIG analysis of The Wily Lion [31].

Listing B.3: A SimpREL encoding for the SIG representation in Figure B.2. Assertion
IDs are only shown for easier reading.

[

{

"id": 1,

"node ":[" Proposition "],

"l":[" lion"],

"relation ": "action",

"r": "watch",

"action_object ":[

{

"l":[" bull"],

"relation ":" action",

"r":[" feed"],

"location_in ": "meadow"

}

],

"tense": "past",

"storypoints ":[{"at":1}] ,
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"text": "A Lion watched a fat Bull feeding in a meadow ."

},

{

"id": 2,

"node ":[" Proposition "],

"l":[" mouth"],

"relation ": "action",

"r": "water",

"l_owner ":[" lion"],

"tense": "past",

"storypoints ":[{"at":2}] ,

"text": "His mouth watered ."

},

{

"id": 3,

"node ":[" Proposition "],

"l":[" bull"],

"relation ": "instance_of",

"r": ["prey"],

"r_owner ":[" lion"],

"tense": "past",

"storypoints ":[{"at":3}] ,

"text": "(The Bull) fell an easy prey to the Lion."

},

{

"id": 4,

"l":[" bull"],

"relation ": "has_goal",
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"r":["$(5)"]

},

{

"id": 5,

"node ":[" Interpretative "],

"l":[" bull"],

"relation ":" action",

"r":[" eat"],

"action_object ":[" grass"]

},

{

"id": 6,

"l":[" lion"],

"relation ": "has_goal",

"r":[

{

"l": ["$(7)"],

"relation ": "precondition_for",

"r": ["$(8)"]

]

},

{

"id": 7,

"node ":[" Interpretative "],

"l":[" bull"],

"relation ": "action",

"r":[" remove"],

"action_object ":[" horns"],
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"action_object_owner ":[" bull"]

},

{

"id":8,

"node ":[" Interpretative "],

"l":[" lion"],

"relation ": "action",

"r":[" eat"],

"action_object ":[" bull"]

},

{

"l": ["$(1)"],

"relation ":" implies",

"r": ["$(4)"]

},

{

"l": ["$(1)"],

"relation ":" interpreted_as",

"r": ["$(5)"]

},

{

"l": ["$(2)"],

"relation ":" implies",

"r": ["$(6)"]

},

{

"l": ["$(3)"],

"relation ":" ceases",
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"r": ["$(5)"]

},

{

"l": ["$(3)"],

"relation ":" implies",

"r": ["$(8)"]

},

{

"l": ["$(5)"],

"relation ":" helps",

"r": ["bull"]

},

{

"l": ["$(8)"],

"relation ":" harms",

"r": ["bull"]

},

{

"l": ["$(8)"],

"relation ":" helps",

"r": ["lion"]

}

]
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