
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Scheduling real-time disk transfers for continuous media applications

Permalink
https://escholarship.org/uc/item/7jd8k924

Authors
Long, DDE
Thakur, MN

Publication Date
1993

DOI
10.1109/mass.1993.289755

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7jd8k924
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Twelfth IEEE Symposium on Mass Storage Systems

Scheduling Real-Time Disk Transfers for Continuous Media Applications
Darrell D. E. Long, Madhukar N. Thakur

University of Califomia
Santa Cruz, Califomia

Abstract

We study how continuous media data can be stored and
accessed in the Swift distributed IIO architecture. We
provide a scheme for scheduling real-time data transfers
that satisfies the strict requirements of continuous-media
applications. Our scheme allows large data objects to be
stored and retrieved concurrently from multiple disks to
satisfy the high data rate requirements which are typical
of real-time video and audio data. To do this, data
transfer requests are split into smaller requests which are
then handled by the various components of Swif.

We study on-line algorithms that respond to a data
request by promising to either satisfy or reject it. Each
response must be made before the next request is seen by
the algorithm. We discuss two different performance
measures to evaluate such algorithms and show that no
on-line algorithm can optimize these criteria to less than
a constant fraction of the optimal. Finally, we propose an
algorithm for handling such requests on-line and the
related data structures.

Introduction

Advances in high speed networking and storage tech-
nology will soon make it possible to use data in the form
of continuous media (CM), such as real-time digital audio
and video, in computing applications. The characteristics
of CM data are vastly different from those of the I/O
streams that the current generation of distributed systems
are capable of supporting.

As the term continuous media indicates, the storage and
retrieval of such data must be continuous in real-time.
This requires the file system, along with the storage
media, to be fast enough to guarantee the data transfer
rates that the application demands. Typically, continuous
media applications require large data transfer rates, which
may vary from 1.2 megabytetdsecond for DVI compressed
video to 90 megabytedsecond for uncompressed, full-
frame color video. Architectures like Swift [l , 21 and
RAID [3] stripe files over several disks, and drive the
disks in parallel to achieve high data rates. Continuous
media data also have large file sizes. A file system dealing
with such files must provide mechanisms for manipulating
large data objects. For example, ten minutes of video at 30
frames per second and one megabyte per frame requires a
file size of 18 gigabytes.

1051-9173193 $3.00 01993 IEEE 227

We study how an array of disks and associated I/O agents
can guarantee to read or write data at the transfer rates
required by an application. In the past, researchers have
investigated other aspects of the design of an operating
system to handle CM applications. Govindan and
Anderson [4] investigated CPU scheduling and IPC
mechanisms for operating systems for CM applications.
Little and Ghafoor [5] studied formal specification and
modeling of multimedia objects using a logic based on
temporal intervals and Petri Nets.

Our aim is to study how the Swift [l , 21 architecture can
be used efficiently to read and write CM data objects.
Swift is designed to support high data rates in a general-
purpose, distributed system. It is built on the notion of
striping data over multiple storage agents and driving
them in parallel. It assumes that data objects are produced
and consumed by clients and that the objects are managed
by the several components of Swift. In particular, the
distribution agents, storage mediators, and storage agents
are involved in planning and actual data transfer opera-
tions between the client and an array of disks, which are
the principal storage media. We refer the reader to
references [I] and [2] for details of the functionality of
these components of Swift.

A client application, when reading or recording CM
objects, decides on its data demands in advance and
makes a request to pre-allocate I/O resources. This request
is called a client-job. The client-job is successively broken
down into smaller tasks called braids, ropes, and strands.

An implementation of Swift operates as follows: when a
client issues a client-job, the storage mediator responds to
the request by promising to either satisfy or reject it. In
the case of acceptance, the storage mediator creates a
transfer plan, which is executed by the distribution agent
at the appropriate time.

A transfer plan is a sequence of braids with some
pertinent timing information. There is one braid per stor-
age agent. A braid, in turn, consists of smaller data
transfer specifications, called ropes, one rope per disk. A
rope is further split into strands, a strand is the smallest
unit of specification in our model. It contains the details
for the actual transfer of one block of data. A rope is
simply a collection of strands requiring data transfer from
the same disk.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 22,2021 at 00:55:11 UTC from IEEE Xplore. Restrictions apply.

Twelfth IEEE Symposium on Mass Storage Systems

228

A strand is satisfied if the request can be honored by the
IIO system subject to all its constraints. We say that a rope
is satisfied if all the strands in it are satisfied. Similarly, a
braid is satisfied if all ropes in it are satisfied. The I/O
system commits to satisfy all the braids, or refuses, in
which case the application must pursue a different course
of action. It is essential that the I/O system keeps its
commitments.

A good algorithm will also try to satisfy as many client-
jobs as possible. Since the client-jobs, and hence the
braids and ropes, arrive in an on-line fashion, the
algorithm is required to make a commitment on a rope,
before the next rope arrives. Later, we discuss the
measures of performance of on-line algorithms in general,
and the reason why every on-line algorithm for this
problem can be far away from the optimal in the worst
case.

Data Transfer in Swift

A client-job is a request by a client to initiate a data trans-
fer. Each client-job contains the name of the file, a start-
ing position, the number of bytes to be transferred, and
whether the request is to read or write. It also contains
three other parameters, Tcljent, the time at which to start
the data transfer, RClient, the average transfer rate, and b,
the block size. The client will read data one block at a
time; the block size could reflect the natural granularity in
CM data.

Time is assumed to be discrete and measured in steps of
appropriately small units such as microseconds. The I/O
subsystem can consume or produce data at rates vastly
different from the desired rate when measured over small
intervals of time. This is due to the jitter in the data trans-
fer rate. But at the end of a period equal to the time
required to transfer a block, the client expects one block
of data.

Depending on the block size and the amount of memory
available to the distribution agent, the storage mediator
decides the number of buffers, each holding one block.
More buffers allow for better scheduling the strands by
the disk controller. These buffers, denoted Bo, . . ., Bk-,,
are managed by the distribution agent, and are co-resident
with the client. The goal of the transfer plan is to keep Bi
full with the appropriate block of data when the client
expects to read it, or to store Bi when the client is finished
writing to it. Data is transferred between the buffers and
the storage agents over a fast network.

A transfer plan is simply a sequence of braids, and a braid
is broken down into finer specifications called ropes and
strands. A strand is a specification to transfer a specific
block of data to given buffer. Each strand contains the
block size, the disk address of the block, a buffer identi-
fier, and whether the request is to read or write. It also

contains two time specifications: Tstart, the earliest time
that the strand can be serviced, and T e d , the time by
which the service must be complete.

Given a client-job, we describe how a storage mediator
computes the braids necessary to satisfy it. Let n be the
number of blocks of data to be read or written by the
client. The storage mediator first constructs a sequence of
n strands, one for each block. Using the layout of the data
object, the storage agents and the disks they manage, the
storage mediator computes the start address of each block.
The ropes and the braids are then composed from these
strands.

The buffers are used in a circular manner. These buffers
allow the client to read or write at its own pace without
being affected by the variations in the transfer rate pro-
vided by the disk. They also allow the disk the flexibility
to schedule data transfer in a wider time window.

We assume that the time taken to transfer one byte of data
over the network is bounded by a constant D. The
underlying network protocols are assumed to provide for
a uniform transfer time without significant variance [6].

We describe next how to compute Tstart and Tend for each
strand. We consider the read and write cases separately
for this computation. In the following discussion, strand i
relates to buffer Bj, with j = i mod k and the block i of
data. Let a be the time taken by the client to process one
buffer of data.

In the case where the client is reading data, it is essential
that the buffers are available to the I/O subsystem for a
period before the client reads the first block of data, that
is, before Tcljenr This period is used to fill the buffers
before the client reads them. To allow for a general
framework, we introduce an initial delay, Tinit, which is at
least as long as the time required to fill the first buffer.
This is decided by the storage mediator when it starts
computing the specifications of a transfer plan. Hence the
time to start execution of the plan is Tplan = Tclient - Tjnit
- bD, where bD is the time taken to transfer a block over
the network.

The client expects a buffer Bj to be read after processing
all the other k-1 buffers once. Since, it takes a time units
to process one buffer of data, the client will access the
buffer Bj after every ka time units. When the client is
reading data from the buffer for the first time (that is for
block i, 0 f i f k-I) , the system should load the buffer af-
ter the time Tplan and before the client reads it. For
subsequent reads of the buffer Bj, the system should load
data after the client has read it once and before it reads it
again after ka time units. These constraints allow us to
compute the times Tstart and Tend for the strand i .

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 22,2021 at 00:55:11 UTC from IEEE Xplore. Restrictions apply.

Twelfth IEEE Symposium on Mass Storage Systems

In the case when the client is writing data, Tplan = Tclienr,
the system can store the data from a particular buffer, say
Bj, to the disk after the client has written to it and before it
starts writing into Bj, again after ka time units. In case the
client is writing to Bj for the last time, the system should
store Bj to the disk before it is no longer available to the
client. To allow for time to copy the buffers, we introduce
Tclean, a clean up time which is at least as long as the time
required to copy a buffer Bi to the disk. Again, using these
constraints, we can compute the times Tstart, T e d during
which the system has to start and finish writing to the disk
the block i of the data.

We have specified above, how a client-job is broken down
into smaller and more specific tasks by the storage
mediator and how to compute the attributes of a strand,
which is the smallest unit of data transfer. The storage
mediator rejects the client-job if it is unable to fulfill all
the requirements specified by the client. In case of accep-
tance, the storage mediator presents a transfer plan to the
distribution agent. In order to accept the client-job, the
storage agents must promise to satisfy the requirements of
the braids presented to them. The storage agents can make
such a promise if they can obtain a promise from all their
disks to satisfy the ropes presented to them. The decision
of the disk controller is the key to acceptance or rejection
of the client-job. It has to be consistent with the promises
made in the past: any promise to accept a rope must not
invalidate previous promises.

The disk controller needs an on-line algorithm to reply to
a rope. The algorithm is on-line because the reply must be
made without knowing the future ropes that it may
receive. A reply once made cannot be countermanded.

Guaranteeing Good Service from the Disk

To check if an arriving strand is satisfiable, an algorithm
must know the time required for the disk to transfer one
block of data. For this, it needs information about the disk
layout and other disk parameters. Depending on the disk
model used, we can derive estimates of time required to
read m bytes from a disk. We denote by T(m) the time
taken to transfer m bytes of data to or from a disk. It may
be difficult to accurately model disks analytically, and so
simulation studies may provide the best method to obtain
an estimate of T(m) [7].

Circular buffering at the disk controller

If the disk controller commits to satisfy a strand and
actually starts data transfer at some time, say To, the
controller must guarantee to transfer a block of b bytes
starting at To, (Tstart I To) and ending before To + T(b).
This data transfer has to be achieved in spite of disk jitter.
The actual time taken to transfer b blocks of data could
vary from the computed value because the actual disk

parameters could be slightly different from the ones used
to compute T(m) above.

One way to practically deal with this problem is by
buffering the data at the disk controller and have
synchronization during the data transfer process. This will
ensure that the appropriate buffer of the distribution agent
experiences the data flow at the proper time and without
large variations in the data rate. In our opinion, this is the
best strategy to deal with the variance in the disk transfer
rate because we are interested in providing guaranteed
service to the client. Once a transfer plan is presented to
the distribution agent, all its strands must meet the
demands specified for them. Buffering data at the disk
controller and presenting it to the storage agent will
provide the required guarantees unless the variation in the
disk transfer rate is high.

We use buffers Do, D I , 3 each of the size c, where c is
the size of a cylinder in bytes. The number of buffers is
chosen depending on the size of memory available and the
amount of variation in the disk transfer rate. The storage
agent transfers data across the network, from the buffers
Di in a circular fashion to the buffers Bj managed by the
distribution agent.

As a concrete example, we consider how two buffers Do
and DI are used and the generalization to more buffers is
straightforward. For the case, when the strand is a request
to read data from the disk, the disk controller fills up first
buffer Do, in c/T(b) time duration, starting at To - c/T(b). It
then transfers the data to the distribution agent across the
network. The storage agent waits for c/T(b) time units and
then it starts reading the data from Do. If the disk is
transferring data faster than expected, it could fill up
buffer Do in less than T(b) time units and then it could go
ahead and fill buffer D I . But it should not fill up the
buffer Do until the storage agent has finished reading the
data from there, which it will, at time To + c/T(b).
Similarly, the data is read into D I , and then into Do again
in a circular way.

The disk controller manages synchronization with the
storage agent at the appropriate points in time. Initially if
the disk takes less than T(b) time units to read data into
the buffer Do, it could take more time to read the next c
bytes of data, as long as the total time taken to read 2c
bytes is 2T(b). This allows for the small variation in the
disk transfer rate.

Writing is similar to the process of reading. In this case,
data is copied from the distribution agent's buffers Bi to
the buffers Dj maintained by the disk controller and even-
tually onto the disk. The buffers Dj, in this case too, serve
to avoid data loss in case of jitter in the disk transfer rate.

229

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 22,2021 at 00:55:11 UTC from IEEE Xplore. Restrictions apply.

Twelfth IEEE Symposium on Mass Storage Systems

On-Line Scheduling Algorithms

On-line or real-time algorithms have been studied theoret-
ically, with an aim of proving performance bounds. We
briefly discuss on-line algorithms in general, different
measures of performance of such algorithms, and then
propose one such algorithm to satisfy a rope.

Abbott and Garcia-Molina [8] have studied real-time
scheduling of transactions with deadlines on a single
processor memory resident database system. Shih, Liu
and Liu [9] worked on the problem of real-time schedul-
ing periodic jobs which have deferred deadlines.
Dertouzos and Mok [101 have studied the problem of on-
line scheduling of real-time tasks in a multiprocessor
environment. They also show that optimal scheduling
without a priori knowledge of the input is impossible.

On-line algorithms have also been studied analytically in
other contexts [1 I . 121. Many data structure problems are
on-line, including scheduling problems, caching prob-
lems, and others. Karlin, Manasse, Rudolph, and Sleator
[131 studied on-line algorithms for caching problems.
They also coined the term e-competitive algorithm, to
refer to an on-line algorithm which always performs
within a constant multiplicative factor, c, of the optimum
on any sequence of requests.

Informally, an algorithm A is c-competitive with respect
to some performance measure, if for any input sequence,
A always achieves performance that is within a constant
(multiplicative) factor c, of that achieved by a best off line
algorithm. Stated another way, if B is an off-line algo-
rithm, the ratio of the performance of A to the
performance of B is always bounded by a constant. This
definition does not specify the actual performance
measure, but gives us a way of comparing the perfor-
mance of two algorithms in general. The performance
measure that is chosen depends on the criteria deemed
important to the problem under consideration.

It is our interest to study on-line algorithms for the rope
satisfiability problem, which is to respond to a rope. The
algorithm must check whether the individual strands, in
the rope presented to it, are satisfiable given the current
set of commitments made by the algorithm. It should
commit to satisfy the rope if every strand can be satisfied.
While, seemingly, there has been some related work
[14,9] on real-time scheduling of tasks, we cannot use
their techniques because we have to schedule ropes which
not only have a deadline, but also an earliest time before
which they cannot be scheduled. In short, the abstract
scheduling problem that arises from the rope satisfiability
problem, is to schedule tasks within a time window.

We discuss next two performance measures for the rope
satisfiability problem and show, using adversary argu-
ments, that no algorithm can be e-competitive, for any

constant c, with respect to either of these performance
measures. For the worst case examples required in our
adversary arguments, we need only ropes with a single
strand.

An interesting performance measure is the number of
ropes that can be satisfied by a given on-line algorithm C.
We argue that C is not a c-competitive algorithm, for any
constant c. Let B be the best off-line algorithm. To show
this, assume that there is an adversary generating the
sequence of ropes. The first rope that the adversary
presents is such that it must start at time I , requires time
c+2 to satisfy, and, therefore, must be completed by time
c+3. If algorithm c commits to satisfy this rope, then the
adversary will present a sequence of c+2 ropes, all of
which require unit time to service, and which follow one
another sequentially starting at time 1. Since C is busy in
the interval [l, c+3/ it must refuse these ropes. Then the
ratio of the performances of A and B is less than llc.

On the other hand, if C refuses to satisfy this first rope,
then the adversary ends the sequence immediately with
this rope. While B satisfies the sequence, C does not, and
so the ratio of the performances of A and B is 0. This
argument shows that any on-line algorithm c cannot be a
c-competitive algorithm for any constant c.

As a result, there is no good on-line algorithm for this
problem, as long as the performance is measured as the
number of ropes satisfied. To investigate if this
pessimistic scenario is just due to the objective function,
or is partly due to some deeper nature of the on-line set-
ting of this problem, we have studied on-line algorithms
with respect to another performance measure.

We let the performance measure be the total time for
which the disk is busy when the algorithm C satisfies the
sequence of ropes. As before, let c be an algorithm that
accepts a sequence of ropes on-line and commits or
refuses to satisfy each rope. Using similar arguments as
above, we can prove that C is not a c-competitive
algorithm, for any constant c. Results such as these give
strong evidence that this problem of satisfying ropes is
inherently intractable in the on-line setting, as ignorance
about the future leads to on-line algorithms that are not c-
competitive for any constant c.

An on-line algorithm for the rope satisfiability
problem

Below is a simple on-line algorithm to respond to a rope
which is a sequence of strands [S I , s2, . . ., sk]. The algo-
rithm checks if the individual strands are satisfiable given
the current set of commitments made by the algorithm. It
commits to satisfy a rope if every strand in it is satisfiable.
So, we need only describe the algorithm to satisfy a single
strand.

230

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 22,2021 at 00:55:11 UTC from IEEE Xplore. Restrictions apply.

Twelfth IEEE Symposium on Mass Storage Systems

We say a disk is busy during a time interval for a strand if
it has to be involved with data transfer at any point during
that interval to satisfy another strand that the storage agent
has committed.

As no algorithm can be c-competitive, we take a simple
minded approach and use the algorithm a described
below. This is a first-fit algorithm that commits or refuses
to satisfy a strand s with block size b and start and end
times denoted by Tstart and Tend respectively.

Algorithm A.
Input: A strand s.

1.
2.

3.

Compute T(b) for the strand s.

Find the earliest sub-interval of [Tstart, T e d]
which is not busy and of duration T(b).
If such an interval is found, commit to satisfy s,
else refuse.

If we let the performance measure be the number of
strands accepted by an algorithm, then we can show,
using simple arguments, that the worst case (over all
sequences of strands) competitive factor of our algorithm
is a function of the smallest data transfer time required by
any strand in the sequence and the total time the disk is
kept busy by the algorithm. This is not bounded by any
constant independent of the sequence of strands.

The algorithm a needs efficient data structures to store
and access information about the time intervals, when the
disk will be busy. We store the set of time intervals when
the disk is busy in a height balanced 2-3 tree and call it
the busy tree. The leaves of this tree store the time inter-
vals and are joined in a doubly linked list. The time
intervals are ordered according to their start times, that is,
[al, b,] I [a2, b2] if and only if a, I a2. On receiving a
strand s requiring block size b and start and end times
given by Tstart and T e d respectively, the First Fit
algorithm a computes T(b) using an appropriate disk
model or obtains its value from simulation studies. To
find the first interval of duration T(b) fully contained in
the interval [Tstart, Tend, algorithm a accesses the busy-
tree using the following procedure b.

Periodically, we also clean up the busy-tree. The clean up
operation deletes all intervals [a,a’], such that a’ is before
the current time. This prunes the tree of unnecessary
information from the past.

hcedure b.

1. In the busy-tree find the first interval [a,a‘], such
that a 2 Tstarl.

if a 2 Tstart + T(b) then 2.
Commit to satisfy strand s starting at time Tstart.
Insert [Tstartt Tstart + Vb)I
in the busy-tree.
return.

fi

Try to find the next available time interval at which
strand s can be committed. Starting at [a,a’], scan
the doubly linked list of leaves of the busy-tree till
one of the following occurs:

There are two neighboring (in the linked list)
intervals [cl,dl 1, [c2,d2], such that

In this case, commit to satisfy strand s
starting at time dl.
Insert [d,, dl + T(b)] in the busy-tree.

The end of the list is reached or we find [c,d],
such that c > Tend - T(b).
In this case, refuse to satisfy the strand s.

3.

~2 - dl 2 T(b) and dl I Tend- T(b).

Concluding Remarks and Future Work

We have studied scheduling time requests to access data
from disk. However, in any system there will also be data
requests generated by applications that are not dealing
with continuous media data. Such requests may not have a
time duration during which they have to be scheduled. It
is easy to incorporate such requests in our scheme. Such a
request to transfer b bytes of data from a disk is handled
by the First Fit algorithm A as a special case of satisfying
a strand with Tstart being the current time and T e d being
unbounded.

We have studied the problem of on-line scheduling of CM
application ropes on a disk. We modeled the problem and
found that if we try to maximize the number of ropes
scheduled, or the disk utilization, then there is no c -
competitive algorithm possible. Hence, we decided to
work with a simple minded approach and proposed a First
Fit algorithm. Though we have studied this in the context
of the Swift architecture, the work is general and could be
used in any distributed system.

In conclusion, we suggest that practical considerations
may be more important than theoretical worst case bounds
for this problem. An average case analysis of the
algorithms and data structures involved, with proper
probabilistic assumptions should be attempted. It is our
opinion that this will be quite difficult and if simplifying
assumptions are made, it may be too far from reality to be

23 1

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 22,2021 at 00:55:11 UTC from IEEE Xplore. Restrictions apply.

Twelfth IEEE Symposium on Mass Storage Systems

useful. Simulation studies, with good data, may be a better
approach. We would need traces of the client job activity
and the disk accesses made for the simulation model to be
realistic. With such information, we feel it is possible to
provide probabilistic guarantees that a client job once
accepted will be honored.

In our current work, we haven't allowed for the possibility
that a strand once scheduled, could be rescheduled within
the appropriate time bounds. Such rescheduling could
satisfy another strand that arrived later in time that would
otherwise go unsatisfied and could improve the perfor-
mance of the First Fit algorithm. We leave it to future
work to study how rescheduling will affect the
performance of the algorithm.

Other open problems are to study ways to handle changes
in the specifications of a client-job, once it has been
scheduled. The client could change the rate R,lienr after
the transfer plan has been made by the storage mediator,
or the client could change the required data rate during
processing of data. This could happen when in an interac-
tive session, the viewer of a real-time video segment
decides to view parts of the video in slow-motion or uses
the fast-forward mode. Such actions will cause drastic
change in the data rate requirements. It is left to future
work to at least provide degraded performance to such an
application.

Acknowledgments

We wish to thank Luis-Felipe Cabrera, Jeffrey Keller,
David Levy, Vikram Sahai, and K. B. Sriram for useful
discussions and comments on the earlier drafts of the
paper.

This research was supported in part by the National
Science Foundation under Grant NSF CCR-9 1 1 1220 and
by the Institute for Scientific Computing Research at
Lawrence Livermore National Laboratory.

References

[I] L. F. Cabrera and D. D. E. Long. Using disk striping to
provide multiple high U0 data rates. Computing
Systems, 4(4):407-438, December 1991.

L. F. Cabrera and D. D. E. Long. Swift: A storage
architecture for large objects. In Proceedings of the 1 1 th
Symposium on Mass Storage Systems, pages 123- 128,
Monterey, California, October 1991. IEEE.

[2]

D. Patterson, G. Gibson, and R. Katz. A case for
redundant arrays of inexpensive disks (RAID). In
Proceedings of the ACM SIGMOD Conference, pages
109-1 16, Chicago, June 1988. ACM.

R. Govindan and D. P. Anderson. Scheduling and IPC
mechanisms for continuous media. In Proceedings of the
13th ACM Symposium on Operating Systems Principles,
pages 68-80. Association for Computing Machinery
SIGOPS, October 1991.

T. D. C. Little and A. Ghafoor. Synchronization and
storage models for multimedia objects. IEEE Joumal on
Selected Areas in Communications, 8(3):4 13-427, April
1990.

C. Osterbrock, D. D. E. Long, and L. F. Cabrera.
Providing performance guarantees in an FDDI network.
Submitted for publication, 1992.

C. Ruemmler and J. Wilkes. Disk shuffling. Technical
Report HPL-CSP-9 1-30, Concurrent Systems Project,
Hewlett Packard Laboratories, October 1991.

R. Abbott and H. Garcia-Molina. Scheduling real-time
transactions: A performance evaluation. In Proceedings
of 14th VLDB Conference, 1988.

W. K. Shih, J. W. S. Liu, and C. L. Liu. Modified rate
monotone algorithm for scheduling periodic jobs with
deferred deadlines. Real-time Systems Newsletter, 7(1 -
2): 17-23, Winter-Spring 1991.

M. L. Dertouzos and A. K. Mok. Multiprocessor on-line
scheduling of hard-real-time tasks. IEEE Transactions on
Software Engineering, 15(12): 1497- 1506, December
1989.

M. S. Manasse, L. A. McGeoch, and D. D. Sleator.
Competitive algorithms for server problems. Joumal of
Algorithms, 11:208-230, 1990.

D. D. Sleator and R. E. Tarjan. Amortized efficiency of
list update and paging rules. Communications of the
ACM, 28(2):202-208, 1985.

A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D.
Sleator. Competitive snoopy caching. Algorithmica,
3:79-119, 1988.

S. K. Dhall and C. L. Liu. On a real-time scheduling
problem. Operations Research, 26(I) : 127- 140, 1978.

232

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 22,2021 at 00:55:11 UTC from IEEE Xplore. Restrictions apply.

