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Scheduling Real-Time Disk Transfers for Continuous Media Applications 
Darrell D. E. Long, Madhukar N. Thakur 

University of Califomia 
Santa Cruz, Califomia 

Abstract 

We study how continuous media data can be stored and 
accessed in the Swift distributed IIO architecture. We 
provide a scheme for scheduling real-time data transfers 
that satisfies the strict requirements of continuous-media 
applications. Our scheme allows large data objects to be 
stored and retrieved concurrently from multiple disks to 
satisfy the high data rate requirements which are typical 
of real-time video and audio data. To do this, data 
transfer requests are split into smaller requests which are 
then handled by the various components of Swif. 

We study on-line algorithms that respond to a data 
request by promising to either satisfy or reject it. Each 
response must be made before the next request is seen by 
the algorithm. We discuss two different performance 
measures to evaluate such algorithms and show that no 
on-line algorithm can optimize these criteria to less than 
a constant fraction of the optimal. Finally, we propose an 
algorithm for handling such requests on-line and the 
related data structures. 

Introduction 

Advances in high speed networking and storage tech- 
nology will soon make it possible to use data in the form 
of continuous media (CM), such as real-time digital audio 
and video, in computing applications. The characteristics 
of CM data are vastly different from those of the I/O 
streams that the current generation of distributed systems 
are capable of supporting. 

As the term continuous media indicates, the storage and 
retrieval of such data must be continuous in real-time. 
This requires the file system, along with the storage 
media, to be fast enough to guarantee the data transfer 
rates that the application demands. Typically, continuous 
media applications require large data transfer rates, which 
may vary from 1.2 megabytetdsecond for DVI compressed 
video to 90 megabytedsecond for uncompressed, full- 
frame color video. Architectures like Swift [ l ,  21 and 
RAID [3] stripe files over several disks, and drive the 
disks in parallel to achieve high data rates. Continuous 
media data also have large file sizes. A file system dealing 
with such files must provide mechanisms for manipulating 
large data objects. For example, ten minutes of video at 30 
frames per second and one megabyte per frame requires a 
file size of 18 gigabytes. 
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We study how an array of disks and associated I/O agents 
can guarantee to read or write data at the transfer rates 
required by an application. In the past, researchers have 
investigated other aspects of the design of an operating 
system to handle CM applications. Govindan and 
Anderson [4] investigated CPU scheduling and IPC 
mechanisms for operating systems for CM applications. 
Little and Ghafoor [5 ]  studied formal specification and 
modeling of multimedia objects using a logic based on 
temporal intervals and Petri Nets. 

Our aim is to study how the Swift [ l ,  21 architecture can 
be used efficiently to read and write CM data objects. 
Swift is designed to support high data rates in a general- 
purpose, distributed system. It is built on the notion of 
striping data over multiple storage agents and driving 
them in parallel. It assumes that data objects are produced 
and consumed by clients and that the objects are managed 
by the several components of Swift. In particular, the 
distribution agents, storage mediators, and storage agents 
are involved in planning and actual data transfer opera- 
tions between the client and an array of disks, which are 
the principal storage media. We refer the reader to 
references [ I ]  and [2] for details of the functionality of 
these components of Swift. 

A client application, when reading or recording CM 
objects, decides on its data demands in advance and 
makes a request to pre-allocate I/O resources. This request 
is called a client-job. The client-job is successively broken 
down into smaller tasks called braids, ropes, and strands. 

An implementation of Swift operates as follows: when a 
client issues a client-job, the storage mediator responds to 
the request by promising to either satisfy or reject it. In 
the case of acceptance, the storage mediator creates a 
transfer plan, which is executed by the distribution agent 
at the appropriate time. 

A transfer plan is a sequence of braids with some 
pertinent timing information. There is one braid per stor- 
age agent. A braid, in turn, consists of smaller data 
transfer specifications, called ropes, one rope per disk. A 
rope is further split into strands, a strand is the smallest 
unit of specification in our model. It contains the details 
for the actual transfer of one block of data. A rope is 
simply a collection of strands requiring data transfer from 
the same disk. 
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A strand is satisfied if the request can be honored by the 
IIO system subject to all its constraints. We say that a rope 
is satisfied if all the strands in it are satisfied. Similarly, a 
braid is satisfied if all ropes in it are satisfied. The I/O 
system commits to satisfy all the braids, or refuses, in 
which case the application must pursue a different course 
of action. It is essential that the I/O system keeps its 
commitments. 

A good algorithm will also try to satisfy as many client- 
jobs as possible. Since the client-jobs, and hence the 
braids and ropes, arrive in an on-line fashion, the 
algorithm is required to make a commitment on a rope, 
before the next rope arrives. Later, we discuss the 
measures of performance of on-line algorithms in general, 
and the reason why every on-line algorithm for this 
problem can be far away from the optimal in the worst 
case. 

Data Transfer in Swift 

A client-job is a request by a client to initiate a data trans- 
fer. Each client-job contains the name of the file, a start- 
ing position, the number of bytes to be transferred, and 
whether the request is to read or write. It also contains 
three other parameters, Tcljent, the time at which to start 
the data transfer, RClient, the average transfer rate, and b, 
the block size. The client will read data one block at a 
time; the block size could reflect the natural granularity in 
CM data. 

Time is assumed to be discrete and measured in steps of 
appropriately small units such as microseconds. The I/O 
subsystem can consume or produce data at rates vastly 
different from the desired rate when measured over small 
intervals of time. This is due to the jitter in the data trans- 
fer rate. But at the end of a period equal to the time 
required to transfer a block, the client expects one block 
of data. 

Depending on the block size and the amount of memory 
available to the distribution agent, the storage mediator 
decides the number of buffers, each holding one block. 
More buffers allow for better scheduling the strands by 
the disk controller. These buffers, denoted Bo, . . ., Bk-,, 
are managed by the distribution agent, and are co-resident 
with the client. The goal of the transfer plan is to keep Bi 
full with the appropriate block of data when the client 
expects to read it, or to store Bi when the client is finished 
writing to it. Data is transferred between the buffers and 
the storage agents over a fast network. 

A transfer plan is simply a sequence of braids, and a braid 
is broken down into finer specifications called ropes and 
strands. A strand is a specification to transfer a specific 
block of data to given buffer. Each strand contains the 
block size, the disk address of the block, a buffer identi- 
fier, and whether the request is to read or write. It also 

contains two time specifications: Tstart, the earliest time 
that the strand can be serviced, and T e d ,  the time by 
which the service must be complete. 

Given a client-job, we describe how a storage mediator 
computes the braids necessary to satisfy it. Let n be the 
number of blocks of data to be read or written by the 
client. The storage mediator first constructs a sequence of 
n strands, one for each block. Using the layout of the data 
object, the storage agents and the disks they manage, the 
storage mediator computes the start address of each block. 
The ropes and the braids are then composed from these 
strands. 

The buffers are used in a circular manner. These buffers 
allow the client to read or write at its own pace without 
being affected by the variations in the transfer rate pro- 
vided by the disk. They also allow the disk the flexibility 
to schedule data transfer in a wider time window. 

We assume that the time taken to transfer one byte of data 
over the network is bounded by a constant D. The 
underlying network protocols are assumed to provide for 
a uniform transfer time without significant variance [6]. 

We describe next how to compute Tstart and Tend for each 
strand. We consider the read and write cases separately 
for this computation. In the following discussion, strand i 
relates to buffer Bj, with j = i mod k and the block i of 
data. Let a be the time taken by the client to process one 
buffer of data. 

In the case where the client is reading data, it is essential 
that the buffers are available to the I/O subsystem for a 
period before the client reads the first block of data, that 
is, before Tcljenr This period is used to fill the buffers 
before the client reads them. To allow for a general 
framework, we introduce an initial delay, Tinit, which is at 
least as long as the time required to fill the first buffer. 
This is decided by the storage mediator when it starts 
computing the specifications of a transfer plan. Hence the 
time to start execution of the plan is Tplan = Tclient - Tjnit 
- bD, where bD is the time taken to transfer a block over 
the network. 

The client expects a buffer Bj to be read after processing 
all the other k-1 buffers once. Since, it takes a time units 
to process one buffer of data, the client will access the 
buffer Bj after every ka time units. When the client is 
reading data from the buffer for the first time (that is for 
block i, 0 f i f k-I ) ,  the system should load the buffer af- 
ter the time Tplan and before the client reads it. For 
subsequent reads of the buffer Bj, the system should load 
data after the client has read it once and before it reads it 
again after ka time units. These constraints allow us to 
compute the times Tstart and Tend for the strand i .  
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In the case when the client is writing data, Tplan = Tclienr, 
the system can store the data from a particular buffer, say 
Bj, to the disk after the client has written to it and before it 
starts writing into Bj, again after ka time units. In case the 
client is writing to Bj for the last time, the system should 
store Bj to the disk before it is no longer available to the 
client. To allow for time to copy the buffers, we introduce 
Tclean, a clean up time which is at least as long as the time 
required to copy a buffer Bi to the disk. Again, using these 
constraints, we can compute the times Tstart, T e d  during 
which the system has to start and finish writing to the disk 
the block i of the data. 

We have specified above, how a client-job is broken down 
into smaller and more specific tasks by the storage 
mediator and how to compute the attributes of a strand, 
which is the smallest unit of data transfer. The storage 
mediator rejects the client-job if it is unable to fulfill all 
the requirements specified by the client. In case of accep- 
tance, the storage mediator presents a transfer plan to the 
distribution agent. In order to accept the client-job, the 
storage agents must promise to satisfy the requirements of 
the braids presented to them. The storage agents can make 
such a promise if they can obtain a promise from all their 
disks to satisfy the ropes presented to them. The decision 
of the disk controller is the key to acceptance or rejection 
of the client-job. It has to be consistent with the promises 
made in the past: any promise to accept a rope must not 
invalidate previous promises. 

The disk controller needs an on-line algorithm to reply to 
a rope. The algorithm is on-line because the reply must be 
made without knowing the future ropes that it may 
receive. A reply once made cannot be countermanded. 

Guaranteeing Good Service from the Disk 

To check if an arriving strand is satisfiable, an algorithm 
must know the time required for the disk to transfer one 
block of data. For this, it needs information about the disk 
layout and other disk parameters. Depending on the disk 
model used, we can derive estimates of time required to 
read m bytes from a disk. We denote by T(m) the time 
taken to transfer m bytes of data to or from a disk. It may 
be difficult to accurately model disks analytically, and so 
simulation studies may provide the best method to obtain 
an estimate of T(m) [7]. 

Circular buffering at the disk controller 

If the disk controller commits to satisfy a strand and 
actually starts data transfer at some time, say To, the 
controller must guarantee to transfer a block of b bytes 
starting at To, (Tstart I To) and ending before To + T(b). 
This data transfer has to be achieved in spite of disk jitter. 
The actual time taken to transfer b blocks of data could 
vary from the computed value because the actual disk 

parameters could be slightly different from the ones used 
to compute T(m) above. 

One way to practically deal with this problem is by 
buffering the data at the disk controller and have 
synchronization during the data transfer process. This will 
ensure that the appropriate buffer of the distribution agent 
experiences the data flow at the proper time and without 
large variations in the data rate. In our opinion, this is the 
best strategy to deal with the variance in the disk transfer 
rate because we are interested in providing guaranteed 
service to the client. Once a transfer plan is presented to 
the distribution agent, all its strands must meet the 
demands specified for them. Buffering data at the disk 
controller and presenting it to the storage agent will 
provide the required guarantees unless the variation in the 
disk transfer rate is high. 

We use buffers Do, D I ,  3 each of the size c, where c is 
the size of a cylinder in bytes. The number of buffers is 
chosen depending on the size of memory available and the 
amount of variation in the disk transfer rate. The storage 
agent transfers data across the network, from the buffers 
Di in a circular fashion to the buffers Bj managed by the 
distribution agent. 

As a concrete example, we consider how two buffers Do 
and DI are used and the generalization to more buffers is 
straightforward. For the case, when the strand is a request 
to read data from the disk, the disk controller fills up first 
buffer Do, in c/T(b) time duration, starting at To - c/T(b). It 
then transfers the data to the distribution agent across the 
network. The storage agent waits for c/T(b) time units and 
then it starts reading the data from Do. If the disk is 
transferring data faster than expected, it could fill up 
buffer Do in less than T(b) time units and then it could go 
ahead and fill buffer D I .  But it should not fill up the 
buffer Do until the storage agent has finished reading the 
data from there, which it will, at time To + c/T(b). 
Similarly, the data is read into D I ,  and then into Do again 
in a circular way. 

The disk controller manages synchronization with the 
storage agent at the appropriate points in time. Initially if 
the disk takes less than T(b) time units to read data into 
the buffer Do, it could take more time to read the next c 
bytes of data, as long as the total time taken to read 2c 
bytes is 2T(b). This allows for the small variation in the 
disk transfer rate. 

Writing is similar to the process of reading. In this case, 
data is copied from the distribution agent's buffers Bi to 
the buffers Dj maintained by the disk controller and even- 
tually onto the disk. The buffers Dj, in this case too, serve 
to avoid data loss in case of jitter in the disk transfer rate. 
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On-Line Scheduling Algorithms 

On-line or real-time algorithms have been studied theoret- 
ically, with an aim of proving performance bounds. We 
briefly discuss on-line algorithms in general, different 
measures of performance of such algorithms, and then 
propose one such algorithm to satisfy a rope. 

Abbott and Garcia-Molina [8] have studied real-time 
scheduling of transactions with deadlines on a single 
processor memory resident database system. Shih, Liu 
and Liu [9] worked on the problem of real-time schedul- 
ing periodic jobs which have deferred deadlines. 
Dertouzos and Mok [ 101 have studied the problem of on- 
line scheduling of real-time tasks in a multiprocessor 
environment. They also show that optimal scheduling 
without a priori knowledge of the input is impossible. 

On-line algorithms have also been studied analytically in 
other contexts [ 1 I .  121. Many data structure problems are 
on-line, including scheduling problems, caching prob- 
lems, and others. Karlin, Manasse, Rudolph, and Sleator 
[ 131 studied on-line algorithms for caching problems. 
They also coined the term e-competitive algorithm, to 
refer to an on-line algorithm which always performs 
within a constant multiplicative factor, c, of the optimum 
on any sequence of requests. 

Informally, an algorithm A is c-competitive with respect 
to some performance measure, if for any input sequence, 
A always achieves performance that is within a constant 
(multiplicative) factor c, of that achieved by a best off line 
algorithm. Stated another way, if B is an off-line algo- 
rithm, the ratio of the performance of A to the 
performance of B is always bounded by a constant. This 
definition does not specify the actual performance 
measure, but gives us a way of comparing the perfor- 
mance of two algorithms in general. The performance 
measure that is chosen depends on the criteria deemed 
important to the problem under consideration. 

It is our interest to study on-line algorithms for the rope 
satisfiability problem, which is to respond to a rope. The 
algorithm must check whether the individual strands, in 
the rope presented to it, are satisfiable given the current 
set of commitments made by the algorithm. It should 
commit to satisfy the rope if every strand can be satisfied. 
While, seemingly, there has been some related work 
[14,9] on real-time scheduling of tasks, we cannot use 
their techniques because we have to schedule ropes which 
not only have a deadline, but also an earliest time before 
which they cannot be scheduled. In short, the abstract 
scheduling problem that arises from the rope satisfiability 
problem, is to schedule tasks within a time window. 

We discuss next two performance measures for the rope 
satisfiability problem and show, using adversary argu- 
ments, that no algorithm can be e-competitive, for any 

constant c, with respect to either of these performance 
measures. For the worst case examples required in our 
adversary arguments, we need only ropes with a single 
strand. 

An interesting performance measure is the number of 
ropes that can be satisfied by a given on-line algorithm C. 
We argue that C is not a c-competitive algorithm, for any 
constant c. Let B be the best off-line algorithm. To show 
this, assume that there is an adversary generating the 
sequence of ropes. The first rope that the adversary 
presents is such that it must start at time I ,  requires time 
c+2 to satisfy, and, therefore, must be completed by time 
c+3. If algorithm c commits to satisfy this rope, then the 
adversary will present a sequence of c+2 ropes, all of 
which require unit time to service, and which follow one 
another sequentially starting at time 1. Since C is busy in 
the interval [l, c+3/ it must refuse these ropes. Then the 
ratio of the performances of A and B is less than llc. 

On the other hand, if C refuses to satisfy this first rope, 
then the adversary ends the sequence immediately with 
this rope. While B satisfies the sequence, C does not, and 
so the ratio of the performances of A and B is 0. This 
argument shows that any on-line algorithm c cannot be a 
c-competitive algorithm for any constant c. 

As a result, there is no good on-line algorithm for this 
problem, as long as the performance is measured as the 
number of ropes satisfied. To investigate if this 
pessimistic scenario is just due to the objective function, 
or is partly due to some deeper nature of the on-line set- 
ting of this problem, we have studied on-line algorithms 
with respect to another performance measure. 

We let the performance measure be the total time for 
which the disk is busy when the algorithm C satisfies the 
sequence of ropes. As before, let c be an algorithm that 
accepts a sequence of ropes on-line and commits or 
refuses to satisfy each rope. Using similar arguments as 
above, we can prove that C is not a c-competitive 
algorithm, for any constant c. Results such as these give 
strong evidence that this problem of satisfying ropes is 
inherently intractable in the on-line setting, as ignorance 
about the future leads to on-line algorithms that are not c- 
competitive for any constant c. 

An on-line algorithm for the rope satisfiability 
problem 

Below is a simple on-line algorithm to respond to a rope 
which is a sequence of strands [ S I ,  s2, . . ., sk]. The algo- 
rithm checks if the individual strands are satisfiable given 
the current set of commitments made by the algorithm. It 
commits to satisfy a rope if every strand in it is satisfiable. 
So, we need only describe the algorithm to satisfy a single 
strand. 
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We say a disk is busy during a time interval for a strand if 
it has to be involved with data transfer at any point during 
that interval to satisfy another strand that the storage agent 
has committed. 

As no algorithm can be c-competitive, we take a simple 
minded approach and use the algorithm a described 
below. This is a first-fit algorithm that commits or refuses 
to satisfy a strand s with block size b and start and end 
times denoted by Tstart and Tend respectively. 

Algorithm A. 
Input: A strand s. 

1. 
2. 

3. 

Compute T(b) for the strand s. 

Find the earliest sub-interval of [Tstart, T e d ]  
which is not busy and of duration T(b). 
If such an interval is found, commit to satisfy s, 
else refuse. 

If we let the performance measure be the number of 
strands accepted by an algorithm, then we can show, 
using simple arguments, that the worst case (over all 
sequences of strands) competitive factor of our algorithm 
is a function of the smallest data transfer time required by 
any strand in the sequence and the total time the disk is 
kept busy by the algorithm. This is not bounded by any 
constant independent of the sequence of strands. 

The algorithm a needs efficient data structures to store 
and access information about the time intervals, when the 
disk will be busy. We store the set of time intervals when 
the disk is busy in a height balanced 2-3 tree and call it 
the busy tree. The leaves of this tree store the time inter- 
vals and are joined in a doubly linked list. The time 
intervals are ordered according to their start times, that is, 
[al, b,]  I [a2, b2] if and only if a, I a2. On receiving a 
strand s requiring block size b and start and end times 
given by Tstart and T e d  respectively, the First Fit 
algorithm a computes T(b)  using an appropriate disk 
model or obtains its value from simulation studies. To 
find the first interval of duration T(b) fully contained in 
the interval [Tstart, Tend, algorithm a accesses the busy- 
tree using the following procedure b. 

Periodically, we also clean up the busy-tree. The clean up 
operation deletes all intervals [a,a’], such that a’ is before 
the current time. This prunes the tree of unnecessary 
information from the past. 

hcedure b. 

1. In the busy-tree find the first interval [a,a‘], such 
that a 2 Tstarl. 

if a 2 Tstart + T(b) then 2. 
Commit to satisfy strand s starting at time Tstart. 
Insert [Tstartt Tstart + Vb)I  
in the busy-tree. 
return. 

fi 

Try to find the next available time interval at which 
strand s can be committed. Starting at [a,a’], scan 
the doubly linked list of leaves of the busy-tree till 
one of the following occurs: 

There are two neighboring (in the linked list) 
intervals [cl,dl 1, [c2,d2], such that 

In this case, commit to satisfy strand s 
starting at time dl. 
Insert [d,, dl + T(b)] in the busy-tree. 

The end of the list is reached or we find [c,d], 
such that c > Tend - T(b). 
In this case, refuse to satisfy the strand s. 

3. 

~2 - dl 2 T(b) and dl I Tend- T(b). 

Concluding Remarks and Future Work 

We have studied scheduling time requests to access data 
from disk. However, in any system there will also be data 
requests generated by applications that are not dealing 
with continuous media data. Such requests may not have a 
time duration during which they have to be scheduled. It 
is easy to incorporate such requests in our scheme. Such a 
request to transfer b bytes of data from a disk is handled 
by the First Fit algorithm A as a special case of satisfying 
a strand with Tstart being the current time and T e d  being 
unbounded. 

We have studied the problem of on-line scheduling of CM 
application ropes on a disk. We modeled the problem and 
found that if we try to maximize the number of ropes 
scheduled, or the disk utilization, then there is no c -  
competitive algorithm possible. Hence, we decided to 
work with a simple minded approach and proposed a First 
Fit algorithm. Though we have studied this in the context 
of the Swift architecture, the work is general and could be 
used in any distributed system. 

In conclusion, we suggest that practical considerations 
may be more important than theoretical worst case bounds 
for this problem. An average case analysis of the 
algorithms and data structures involved, with proper 
probabilistic assumptions should be attempted. It is our 
opinion that this will be quite difficult and if simplifying 
assumptions are made, it may be too far from reality to be 
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useful. Simulation studies, with good data, may be a better 
approach. We would need traces of the client job activity 
and the disk accesses made for the simulation model to be 
realistic. With such information, we feel it is possible to 
provide probabilistic guarantees that a client job once 
accepted will be honored. 

In our current work, we haven't allowed for the possibility 
that a strand once scheduled, could be rescheduled within 
the appropriate time bounds. Such rescheduling could 
satisfy another strand that arrived later in time that would 
otherwise go unsatisfied and could improve the perfor- 
mance of the First Fit algorithm. We leave it to future 
work to study how rescheduling will affect the 
performance of the algorithm. 

Other open problems are to study ways to handle changes 
in the specifications of a client-job, once it has been 
scheduled. The client could change the rate R,lienr after 
the transfer plan has been made by the storage mediator, 
or the client could change the required data rate during 
processing of data. This could happen when in an interac- 
tive session, the viewer of a real-time video segment 
decides to view parts of the video in slow-motion or uses 
the fast-forward mode. Such actions will cause drastic 
change in the data rate requirements. It is left to future 
work to at least provide degraded performance to such an 
application. 
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