UC Berkeley
UC Berkeley Previously Published Works

Title
Continuous Measurement of a Non-Markovian Open Quantum System

Permalink
https://escholarship.org/uc/item/7if1k83{

Journal
Physical Review Letters, 112(11)

ISSN
0031-9007

Authors

Shabani, A
Roden, ]
Whaley, KB

Publication Date
2014-03-21

DOI
10.1103/physrevlett.112.113601

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/7jf1k83t
https://escholarship.org
http://www.cdlib.org/

arxiv:1307.2101v2 [quant-ph] 26 Apr 2014

Continuous M easurement of a Non-Markovian Open Quantum System

A. Shabani, J. Roden, and K. B. Whaley
Berkeley Center for Quantum Information and ComputatioerkBley, California 94720 USA
Department of Chemistry, University of California, Bedgel California 94720 USA

Continuous quantum measurement is the backbone of varietisodts in quantum control, quantum metrol-
ogy, and quantum information. Here, we present a genedafmenulation of dispersive measurement of a
complex quantum systems. We describe the complex system@sen quantum system that is strongly cou-
pled to a non-Markovian environment, enabling the treatméa broad variety of natural or engineered com-
plex systems. The system is monitored via a probe resonatmied to a broadband (Markovian) reservoir.
Based on this model, we derive a formalismSibchastic Hierarchy Equations of MotigSHEM) describing
the decoherence dynamics of the system conditioned on tlasurement record. Furthermore, we demon-
strate a spectroscopy method based on weak quantum measaitenneveal the non-Markovian nature of the
environment, which we termweak spectroscopy

Introduction —Generalized or weak quantum measurement Cavity (Resonator) Homodyne detection
has become increasingly important in the last decade due to e ~
its application in quantum feedback contral [1, 2], quantum —~
metrology [1], quantum information [3-5], and the study of System NN /KL_.\
guantum-classical transitions [6, 7]. The existing thesri e roniisanii
consider continuous weak measurement of simple open quan- Harmonic Oscillators JJ Reservoir ~ Detecter

(Environment)

tum systems with Born-Markov decoherence models |[5, 8-

10]. However, there is a lack of theoretical formalism to ex- Coa .

tend the exceptional capacities of weak measurement meth F4G: 1 A single mode cavity resonator probes an quanturesyst
P P %gupled to a bosonic environment. A detector continuousigsares

for system identification and control to complex natura|][11 yhe photons leaking out of the cavity that carry informatitout the
or engineered_[12, 13] systems, i.e., systems that are, larggystem dynamics.

possibly disordered and interacting strongly with theivien
ronment. The present letter addresses the demand for such

advanced theories. regime the oscillator is realized by a single mode of a cavity
Cavity quantum electrodynamics (CQED) is a well estab-with mirror walls [8], in the microwave regime by a 1D [5]
lished paradigm to implement weak quantum measuremendr 3D [21] cold electrical resonator. The oscillator, whigh
protocols|[5| 8]. In this paper, we develop a CQED theory forshall refer to from now on as the cavity, is designed to be im-
continuous measurement of an arbitrary quantum system coperfect and to have photon loss. The leaked photons carry in-
pled to a bosonic environment. In this framework, we deriveformation about the phase and amplitude of the cavity mode,
a set of coupled stochastic differential equations, SHEMt t quantities that per se encode some system information. An
describes the system conditional evolution in the presefice appropriate detection scheme can therefore indirectiaeit
non-Markovian and possibly strong decoherence effects. Asome system information by measuring the leaked photons.
an application of our theory, we propose a simple experimenthe photon detection occurs in real-time, leading to a oenti
tal spectroscopic procedure to diagnose the non-Markovianous measurement of the quantum system. In the following,
nature of the decoherence dynamics via continuous measurge present a full formulation of the measurement scenario fo
ment. Our theory can be applied in any frequency regimea quantum system with an arbitrary internal structure, ighat
given the appropriate parameters setting. We shall thexefo coupled to a cavity mode and is also free to interact with an ad
use the term CQED to refer to both cavity (optical) and circui ditional bosonic environment. Physical examples of sugh sy
(microwave) QED systems. tems include double quantum dots probed by a microwave res-
We should emphasize that the current SHEM formalism deenator [22], superconducting qubits with undesired coupli
scribes a different measurement paradigm than the measuri 3D cavity modes [22, 23], and atoms in an optical resonator
ment interpretations of non-Markovian stochastic Schmgjer ~ [8]. Note that gaussian fluctuations with fermionic natuse c
equations|[14—19]. The latter, originally developed to mlod be also effectively modeled as a bosonic bath|[24, 25].
decoherence dynamics in presence of a bosonic environmentA complex system coupled to a cavitensider a quan-
[14-+17], under certain conditions, describe direct mamtp  tum system with Hamiltoniaitls coupled to a single cavity
of the environment [18. 19]. In the measurement setting conmode with Hamiltonian/c = w.a'a at frequencyw.., where
sidered in this letter, we avoid such a direct environmental; is the mode lowering operator. We consider a system-cavity
monitoring, rather we use an independent cavity coupled to goupling H;,,; = ji(a + a') for some Hermitian system op-
broadband reservoir to probe only the system. eratorji. This model captures a range of couplings, includ-
In CQED, a quantum harmonic oscillator acting as theing electric dipole-electric field, spin-magnetic field,more
measurement probe interacts with the system. In the opticalomplicated engineered couplings|[5, 20]. The total system
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cavity Hamiltonian is then We shall index the modes of the electromagnetic reser-
voir by 0r and the modes of the environment by with
Hsc = Hs +wea'a+ fi(a+ al) (1)  m > 1. The environmentE is then treated as a sum

] ) ) of local baths of harmonic oscillators, fig.(1), with Hamil-

A desired system-probe coupling suitable for weak measurggnian Hp = Y wo bt b where b... denotes
1 - >1,r YmrYmr¥mry mr
ment has the forndsa’a [1,126]. One can then measure the 4,0 lowering operé&ﬁr'gf thémr)th mode at frequency.
observablé)s by direct measurement of the cavity phase con—rpq system-environment coupling is of the forfy —
jugate to the operatarfa. In the dispersive regime where the S ot G (b + b1,) S, for some system operatafs,
. . . m N
cavity is r_elat_lvely far off de_tuned from the system resa®n gnq ‘coupling strengthg,.... The effect of such a bath is usu-
frequencies, i.e., A . Ulalk)] < |“C__ (,Qk_ﬂj” W'th ally captured by its spectral densify, (w) = > g2, 6(w —
the spectral degomposgdms :hz.aﬂjwéjl* the k'jam”t(l)'_ wmr). We model the photon leakage process by including
nian Hscl.cag d.e turned into tf's esigre _orm ))/(a?p YINY 3 reservoir of electromagnetic moddér = S worbd, bor,
° Tgenera|ze sReree tg:ins ormatiip = exp[Xa' — 5t is also linearly coupled to the cavity modélcy —
— J y - .

X'lal, WhereX. = 2jk w0y —Q |])<k|.and al terms up to S, gor(bor + b),)Sm. We emphasize that coupling to the
second order in¥" are retained. Applying the rotating wave electromagnetic reservoir is desirable, since this allsorae
approximation and neglecting two photon creation and anniphotons and therefore some information to leak out of the cav
hilation processes results in the dispersive Hamiltonian ity, while coupling to the environment is usually undesleab
I t D i ; since this destroys the coherence needed for quantum infor-
Hge = UpHscUp =~ Hg +weala+Osa'a (2)  mation processing [3].

with modified system Hamiltoniall? = Hg — 3(Xti + Now, we have to solve for the dynamics of a 4-component
1X). Now the effective system-cavity coupli@sa’a is ~ System,S,C, E, and R which possesses only 2-body inter-
of the desired form, wittOs = 1[4, XT — X]. The sys- actions in the laboratory framé(sc, Hsr, Hor), but the
tem operatoiOg serves as an adjustment to the cavity fre-transformation into the dispersive frame generates some pe
quency, i.e.ch = w, + Og, and therefore measuring the turbative 3-body couplings. Specifically, the Hamiltonian
phase of the leaking photons reveals information about thélcr becomes

system. Such measurement is not generally nhon-demolition . ;

unless[H2, Os] = 0 [2€]. We will see later thaOs is the HER = gor(bor + bj,) Fo, (4)
primary but not the only component of the total observable. r

We can now induce dynamics by a classical cavity drivewith Fy = (a +a®)(1 + A) — (X + XT).

1 i H _ —iwpt
with multiple frequency components, i.€(t) = &ye + Theterm(bOTergr)(XJrXT) in Eq.[2) shows that the dis-

>, E,e7 4t The detuning between system and cavity in the . . . .
ai S‘I arsive regime allows these to be individually addrisesa  PETSVE transformation has introduced a new reservoirmlan
P 9 y for system decoherence, together with higher order system-

The componené, with frequency, that is near resonance cavity-reservoir termég,.a’ A, Such modification of the sys-

\Q/Itsrleo:; f(: (ralviser:r;ﬁascz\(llg\l/;/svﬁlecgrrfosrqg%}} tf)loeiiii :Eg tem decoherence channels leads to a Purcell type effeatin th
Y N P dispersive regime [8]. The change of frame also modifies the

system. The Hamiltonian for such a multi-frequency drive is interaction between the system and the environment, yigldi

Hd[:‘iue = g(t)UDaTUz) + h.c. ~ .
—iw —iw -
gp€ ptaT(l + A) - qu€ at xt + h.c. (3) HSI?E = Z ng(me + binr)(sm + QmaTa +Gm) (5)
! m>1,r

H D _ 1 ~
and is added 8l . HereA = 5[XT, X, andh.c.standsfor iy 5, _ 5, — 1{X1X, 5.} + X18,.X, Quy = (DIX] +
ermitian conjugate. D[XT])S,, andG,, = —[X T, Spula +[X, Sm]al. The super-
System decoherence and cavity leakagéie dynamics of  gperatorD is defined a®[A]B = ABAT — %{ATA, B}. The

the system and cavity is further influenced by two sourceg,herators,, represents the effective system and environment
of ambient interactions: a broadband electromagnetlcr-resecoup”ng' We interpret the second term with i, opera-

voir R that couples to the cavity, causing photon leakage, angh, 45 5 cavity-state dependent decoherence of the sysagm th
an environmeng thgt induces decoherence via its coupllng_wi" show up explicitly in the master equation. We analyze
to the system, see figl(1). The latter could be, e.g., a@ustihe gynamics in the frame rotating witc. Accordingly,

phonons in a quantum dot [27] or intramolecular vibrationaline |ast term in Eq.[{5), which contains a sum over contribu-

modes of chromophores [29]. A master equation descriptio'ﬁonngr(bmr + b} )G,n for each environmental moder
of these process can be derived in the Born (weak coupling);ecomes mr

Markov (no-memory) regime [1, 9, 10]. Here we present a
detailed microscopic derivation of these processes with ne Z G (b + b:rrn)(_[XT’ Sple”“ta + X, Sm]ei%t(ﬂ)(e)
ther Markovian nor perturbative approximation. m>1,r
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Here we assume the environment has negligible modes &br the system. The noisy current of a detedt@) = dQ/dt
the cavity frequency,, i.e., J..(fw.) = 0. This is a le- with efficiencyn can be described by![1, 9]
gitimate assumption when the environmental cutoff frequen ‘ .
cies are smaller or comparable to the cavity-system detun- dQ o< 2k (e Pa+ e'?al)dt + /2nrdW; (8)
ing, which can be the case for e.g., phonons in quantum dots i ) _
[27] and vibrational modes of proteins in photosynthetimeo ({.) means expectation value) for a local oscillator with phase

plexes [20]. Neglecting EqLI(6), yields the following Hamil The parameter_@ i; .the_ caviFy leakage rate determined
tonian for the system-environment and cavity-reservagrin  2Y Jo(w), and the infinitesimal incrememiV; represents a
actions Wiener process. The latter results in a measurement back-

action term in the system-cavity dynamics (see below) that
HD. + HE, = Z Gy (b + b5 V. (7) Is stochastically conditioned on the instantaneous ouécam

m>0.r the detector. In the case of Markovian leakage, such random

changes allow a stochastic unravelling of the correspandin

The full (S, C, R, E) Hamiltonian is thenH %, + HY, . + Markovian master equation![L, 9]. We show in appendix B
HEP.+HE5. Incorporation of Eq.[{6) will only perturbatively that such an unravelling is possible even in the presence of a
modiy the decoherence dynamics, while its non-Markoviamon-Markovian decoherence process described by the HEOM.
effect on the cavity mode is dominated by the strong Marko-

vian leakage process that is describedf,. Tracing out only the quantum state of the system, we shall consider the

the SL_Ierunding bosonic field% and E, yields a combined bad cavity regime in which the cavity state slavishly folkw
description of the photon leakage and decoherence dynarﬂ1

) i ne system|[20, 36]. In this regime the leakage tirte!
ics. The common approach to describe such open system PR smaller than the time scale of the system dynamics and

. _ i i [e . . - . .
CESSES 1S tﬁ aprijl};fthe Born Marl;ovhapprog(émaﬁon I3, 10]'we may adiabatically eliminate the cavity mode, in both op-
Herg we take a di grent approach that avol st €S€ approfi,| [20] and microwave [36] regimes (details are given in
imations and relies instead only on assuming Gaussmsstatlappendix C). A good criterion for applicability of the bad
tics for the fluctuations of the bosonic fields. This is the ap-__ . L 2

. . . t t (@) 1 , Wh

proach of the hierarchy equations of motion (HEOIM)| [28], cavity parameter regime i > ||Os|[L(1 + lal"), where

s : ; la = &,/ik) is the bare cavity coherent state for = w,,.
which we employ her_e with the Drude-Lorentz for_m ENVIFON- 15 adiabatic elimination leads to our main result, whhi
mental spectral density],,,(w) = 2)\m'ymﬁ with cou-

) set of stochastic hierarchy equations of motion (SHEM) that

pling strength,,, and cut-off frequency,. describe the dynamics of a quantum system under continu-
The HEOM approach has recently been generalized to ineus measurement with non-perturbative coupling to a non-

clude arbitrary parameterized bath correlation functitors  Markovian bath. For temperaturgs! larger thany,,, a par-

both bosonic and fermionic environments|[23, 30]. As an ex+icularly simple form is found, namely

act solution, HEOM can treat any level of non-Markovianity

or system-bath coupling strength and is therefore is a gfover  do™ = L3 [0"]dt — Z N Ymo " dt — 1 Z [Fpp, 0, 41)dt

tool for dynamical simulation of quantum systems with com- m>1 m>1

plex environmental interactions. HEOM has produced suc- i\ - = .

cessful results in modeling various systems such as quantum ~ + Z Tm 3 [Fms O —1] + Am¥m{ Fmy o, 1 })dt

In order to ensure that the detection information reflects

dots [31], nano-devices [32], Kondo systerms| [33], and pho- mz1
tosynthetic complexes [34]. The full HEOMs describing the 20, g n
system dynamics with all leakage and decoherence processes ?H[ ae” " Osla"dW, ©)

included are described in the appendix. We emphasize that

our analysis employs an exact treatment of the influencesof thcorresponding to the detector record

(non-Markovian) environment while treating the reservoir ~

R as a broadband (Markovian) field. This description is well 92 2n|al{Os)dt + /2nkdWy (10)

suited to the properties of many current implementations of ~Os = sin(¢ — arg(a))Os + k cos(¢ — arg(a))A  (11)

optical or microwave resonators. While non-Markovian cav- . .

ity leakage processes have been propased [35], from the pé’l"-'th HIA]. = A = Tr[A]. + hc., Fp = Sy + Qmlaf,

spective of quantum measurement there is however no knowdNdLs. = —i[H§ — Zq(gqe_wthT +he)+al?Os, [+

benefit from such generalization. (la?/ 32 nmym)D[Os]. + #D[X]. Here A. denotes action of
Continuous MeasurementEgq.(2) shows that coupling to the_map A on an operator. The g_enera_ll forT" of the SHEM for

the system modifies the effective frequency of the cavityn-Co arbitrary temperature anek. # w, is derived in the appendix.

sequently, photons leaving the cavity carry informatioawth The subscripta is a matrix of non-negative indices,,,

the system that is encoded in their phase. Measurement of thieat defines one tier of the full coupled set of equations. The

phase of the photons and hence indirect measurement of tisgstem density matrix corresponds to index z@—= on—o

system may be made by homodyne detection[1, 9]. A continand the rest of operatoss,o are auxiliary operators that cap-

uous flow of photons thereby allows us to continuously moniture non-Markovian effects. The index,, + 1 denotes in-
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resenting non-Markovian dephasing with strength_,) =
A = 0.05 at temperaturg—! = 20. We choose the remaining
parameters to be similar to those in Ref.([41]): a totalxela
ation rater, = 0.05 that includes the reservoir induced damp-
ing kD[X], and measurement parametgrgy/+/x = 0.36,
n =1, and¢ — arg(ar) = —m/2. The qubit is driven at Rabi
frequencyQr = 3 and the power spectrum is obtained by
averaging ovei0° trajectories. The spectruisi(w) plotted
in Figure[2 clearly shows a shift of the peak frdbg and a
broadening, both of which are monotonically enhanced as we
raise non-Markovian effects by lowering,,_) = ~ from 50
to 5. We also observed a shift by keepingonstant and in-
1 11 12 creasing\. In general, the shift can be blue or red depending
w/QgR on parameter values.
More detailed discussion and analysis of the dependence
FIG.2: A qubit coupled to a non-Markovian environment ugess ~ Of the detector spectrum on temperature and on the spectral
Rabi oscillations on driving at frequend¥z. The plot shows the density parameters andy are given in appendix D.
spectrum of the detector current that continuously measheequbit The spectrum peak shift is due to the environmentally in-
population. The spectrum is monotonically shifted and deved as ,ced Jamb shift [42]. In principle the power spectrum can
the enwronment bandwidth degreases. Due to the finite tlmg range be obtained by evaluating the time autocorrelation fumctio
over which the detector current is calculated, the spectrasra finite . . ) - .
frequency resolution, i.e., it consists of discrete points from a smgle experimental run [4_10], while a time discrete
tomographic approach such as in Ref.[42] asks for many
runs. The nonzero offset of the spectrum in Figlite (2) is due
to the unavoidable detector noise [[43]. Such a weak spec-

crease or decrease of the indey,. In practice, one trun- . . .
cates Eq.9) at finite indices:’, } whens" nt troscopy experiment may be cgrned outina coupl_ed quantum
. ) ma m=la_malma — dot-resonator system, where it would allow probing of non-
is much larger than the system frequencies. Therefore, thﬁ] : o r

arkovian contributions to decoherence|[22].

SHEM can capture a higher level of non-Markovianity merely Discussion and Outlook We presented a microscopic de-

by including more a_umhary_operator:sn. N(_)t|ce that the scription of CQED-based continuous measurement of a quan-
strength ofS E couplings),, is an unconstrained parameter . . .
tum system coupled to a bosonic environment that resulted in
that enables SHEM to handle strong decoherence. Another I : . )
. : . . a stochastic hierarchy of equations of motion (SHEM). While
interesting feature is the non-Markovian nature of the mea: e . .
. . 9 the explicit analysis was presented here for an environwfent
surement back-action that derives frapm, |«|=. . L
o A local baths with Drude-Lorentz spectral density, it isigfiné

The measured observaldlg; is not limited to the result of o4 to relax these assumptions and derive the SHEM for
the direct system-cavity coupling, i.e., @s. An additional ey general spectral densities[23, 130, 44]. Spin enviremts
componeni\ appears as a result of the 3-body system-cavityyresent more significant challenges for this analysis [48] a
reservoir coupling bgcommg effective in the dispersiafe o nqtitute another interesting direction for future reska
(see above). In Ref.[39], we discuss how the effective abSer e theory presented here is for a single quantum system.
able Os can be e_nglneered by varying t_he cavity frequency\Norking with an ensemble allows a higher signal to noise ra-
we, the local pscﬂlatora, or the cavity drive ppasé. That [37]. However the associated inhomogeneous broadening
enables continuous quantum state tomograp y[39]. as well as coupling between individual ensemble members,

Weak spectroscopy for detection of non-Markovian dynaminduced virtually by the dispersive transformation g, (&)
ics — Spectroscopy can provide useful dynamical informa-roduces additional dephasing effects.
tion about atomic and molecular systems by analyzing cor- The fundamental nature of the observable engineering de-
relations in measurement outcomes. We show here that th%k)ped in this work has revealed a novel Spectroscopic ca-
non-destructive nature of weak measurement can empow@gbility of quantum weak measurement to probe the non-
spectroscopy, in particular, that it allows detection & ton-  Markovian nature of the environmentin an open quantum sys-
Markovian nature of the decoherence dynam|cs. We term thigem. This suggests that a new generation of spectroscopy tec
general approach “Weak Spectroscopy’l [38]. niques might be possible with this approach. Measurement-

Consider a single qubit driven in resonance with amplitudebased feedback control [1] is another area where SHEM can
Qg while the observabl®s = yo. = x(|0){(0] — |1)(1]) lead to significant developments. Feedback control of quan-
is continuously measured. With Markovian decoherence, thtum systems has thus far been limited to systems with weak
power spectral density of the detector current [40]w), is  and Markovian decoherence dynamics. The SHEM approach
bell shaped with a peak aroufiti;. A non-Markovian envi- provides the necessary tools to develop feedback contvol no
ronment modifies the detector spectrum. In the SHEM equafor open quantum systems with non-Markovian and non-
tions, the qubit coupling is made with,,,—;y = 0., rep-  perturbative decoherence effects. It thereby opens a route

Detector Output Spectrum

0.8 0.9



to use of quantum feedback control for mitigating effects of

(2012).

non-Markovian quantum noise and a performance compari24] F.K. Wilhelm, M.J. Storcz, U. Hartmann, M.R. Geller,

son with methods such as dynamical decoupling [4].
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APPENDIX

A. System and Cavity Combined decoherence dynamics

We consider the following Hamiltonian for the system andityawmteractions with the surrounding environmentand elec-
tromagnetic reservoiR, all in the dispersive regime (see Egs. (2,3,7) in the paper)

HECER = ch + Hg«ive + Z G (bmr + bjnr)Fm (12)

m>0,r

We employ a Drude-Lorentz spectral density for batendR, i.e., J,,(w) = 2)\m'ymﬁ, where)\,,, and~,, represent the

coupling strength and cut-off frequency for the environtmandem. The correlation function corresponding to the Drude-
Lorentz model is

o0

<Tbm (t)bm (O)>E orR — Z Cma exp(_'Ymat) (13)
a=0

wherey,,o = v, and fora > 1, v, = 27a/ 5 are Matsubara frequencies. The coefficients are

Amim [eot(£2m) — 4], a = 0
Cma = { (14)

(2A_7” YmYma a>1

B (Va—2)"

The summation EgL(13) will be truncated at a numbdarge enough that,,,;, exp(—vmrt) & 5(t).

The combined system and cavity dynamics has an exact solgitien by the HEOM. The HEOM is a special case where
the total bath consists of a non-Markovian environment afdibgkovian reservoir. In this situation we may use the hybrid
Markov-HEOM equations developed in Ref. [48]. These yidle following equations for the system-cavity dynamics,ahhi
are valid for any temperature:

dan(t)
3 (Lsc + Licak — Vn)on(t) — WZ:I Lon[Fon, [,y on(t)]]
L L
_Z Z Z[F'”“ O—nwna+l(t)] - l Z Z nma(cmaFmO—nwna_l (t) - c:nao'nwna_l (t)Fm)’ (15)
m>1a=0 m2>1a=0

With v = 3,51 30 o NmaYmar Tm = (1/8%m0 — 1/2)Am — Yo Cma/Yma @dLsc. = —i[HE, + HY . ] + kD[X]..
The second termD[X] is the Purcell type of system decoherence modification aatsis a part of the measurement back-
action. The superoperatdi..r. = «D[a(l + A)] denotes the modified cavity leakage process. The subsciigpg matrix

of indicesn,,,, > 0 and the index:,,, £+ 1 denotes increase or decrease of the indgx. The system-cavity density matrix
corresponds to index zerpsc = on—o, the remaining operatoes, o constitute a set of auxiliary Hermitian operators. These
hierarchical equations continue to infinite In practice, however, one can truncate them at a finitexfigwhich is given by the
condition

L
U = Z anna'}’ma >, wsc (16)
m>1a=0

wherewgé is the largest time scale in the system-cavity dynamics [PBis inequality follows from requiring the approximation
TeV(t=9) ~ §(t — s) be satisfied.

B. Unravelling the HEOM

We describe a consistent unravelling of the set of dynaneigaations[(15) as a result of continuous homodyne measateme
of the cavity mode. Although the HEOM describes a non-Mai&oevolution, mathematically it has an inherent Markovian
property. EqS[(TI5) are clearly a set of linear equationsiiedended variabl&€ = [og, 01, ..., on]. Therefore, we can express
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the HEOM in a compact form & = (® + IN ® Liear )=, With a super-operatap representing all other terms in Hg.{15). The
HEOM can then be formally solved as

(1]

(t) = e(@HIN®Licar)tz(() = lim (e®/" I @ eFreart/m)nZ(0) (17)
where the second equality is an application of Lie-TroKate product formula [47]. Eq.(17) facilitates a separagatment of

the photon leakage process and the decoherence dynamémfifiitesimal dynamical mag®/” is the unobserved part of the
system-cavity dynamics while the infinitesimal mappifig++*/™ is the one being unravelled by the photo-detector. Homodyne
detection is based on mixing the cavity signal with a strargal oscillator with amplitudg and phase. We can follow the
steps in Ref.[1] and represent the the infinitesimal wfap**/" by a Kraus map

L1t/ o [ 4 Lieant/n. = Eo(t/n).Ej(t/n) + Ei(t/n).El (t/n), (18)

with Kraus operators
Eo(t/n) = \/t/n[a(l + A) + Be' (19)
Ei(t/n) =1— (t/n)[B(ae™ —ale’®) (1 + A) + ;( T(1 4+ A) + Be ) (a(l + A) + Bei®)]. (20)

The unnormalized superoperai®y. = Ei(t/n).EZT (t/n) refers to no-photon (single photon) detection process$of (i = 1).
For a history of detector record$, i», ...}, the HEOM Eq[(1l7) is unraveled as

Elirin, () = lim eIy @ F,)e®/"(Iy ® Fi,)Z(0) (21)

n—00

whereZy;, ;, . 3(t) is the unnormalized conditional state variable.

We obtain the continuous limit of the discrete picture in B2 by using the well-known stochastic description of hoyre
detection induced dynamics |1, 9]. For a bare cavity, carttirs homodyne detection of the leakage progiess- «D[a]pc is
described by the following stochastic differential eqoasi (SDES) of the photo-detector current

dQ = 2nk(e”%a + eal)dt + \/2nkdW, (22)
together with the associated conditional state of the gavit
dpc = —ilwe, pcldt + kDla]podt + \/2nsH[e™ P a] pcdW. (23)

The solution of the SDE_(23) for one particular realizatidrthee Wiener procesdW is equivalent to a sequence of super-
operations..F;, F;, Fi,. Thereby, we arrive at the following stochastic HEOM to diszthe homodyne measurement of the
system and cavity such that the trajectory described byiZl).i¢ a solution for one particular photo-detector record:

don = (Lsc + Lieak — Vn)ondt — Z Con[Eom, [Fon, on]]dt — i Z Z Fo,on,,,+1]dt

m>1 m>1a=0

L
—i Z Z Noma(CmaFmTn,y o1 = CoaOnno—1Fm)dt +1/2n6H[e ™ Pa(1 + A)]|ondW. (24)

m>1a=0

The detector current can be written accordingly as
dQ = 2nr((1+ A) (e ®a+ e®al))dt + B\/2nkdW. (25)

C. Cavity Mode Elimination and the general SHEM

The next step is to eliminate the cavity mode in the parantegme where the cavity state reaches to equilibrium wigh th
system state in a negligible time. In another words, theesydtas an adiabatic evolution in compare to the cavity dyosami
Such behavior can be obtained with a relatively high leakbyefinesse) cavity. In the following we use the standardrapph
as described in Refs. [20,/36] to eliminate the cavity mode.
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Under cavity driving by the fieldf,e~%»?, it is biased to the coherent steady-stat¢ = | — i&,/(iA + k)), where
A = w. — wp. Elimination of the cavity mode then proceeds as follows.

1- Write Egs. [(2#.25) in the frame rotating with the drivequencyw,,.

2- Project the cavity to the ground state by the transfomnati — D(—a)p.D(«) whereD(«) is the displacement operator
D(a) = exp(aa’ — a*a).

3- Represent the system-cavity density matrixas= >, o7;.|1)(k|, where|l) is the cavityl photon state in the displaced
framework,D(—«).D(«), ando}}, is the corresponding system operator. Expand the densityxmac to the second order
of the perturbative parameters= L max{(|Os| + A)(1 + |a[?), 3,1 Dl |Qml|, 3> [2*Al|@m ]} The high leakage
condition corresponds then ¢o< 1. B B

We begin by writing the system-cavity statg- and the auxiliary states, as

on = 00|0)(0] + (7o 1) (0 + h.c.) + o7y [1) (1] + (05[2) (O + h.c.) (26)

We assume the matrix element§ scale asc/**, consistent with the following perturbative analysis. Wisert the
perturbative solution EqL(26) into Eq._{24) to find the equa fordo?.,.. Our ultimate goal is to find the dynamics of the
system density matriz}}, = 0§, + oy that are obtained by solving}, ands}|, as a function o&¢, ando7,;. To this end, we
shall dissect different terms of the SHEM, Hg.l(24). Howeshowing this detailed analysis we first present the finalltdésr
the SHEM at an arbitrary temperature. In the body of the pajeshowed only the high temperature limit of these equations
for both a resonant cavity and resonant drite= 0.

Stochastic Hierarchy Equations of Motion:

iA|a)?
(K +vn)? + A2

(K + va)lal?
(K4 vn)? + A2

L L
+ Z FmD[Fm]Undt —1 Z Z[Fma O'nma-ﬁ-l]dt -1 Z Z nma(cma(ﬁ‘m)o—nma—l - c:nao'ﬂma—l(ﬁ‘m))dt

m>1 m>1a=0 m>1a=0

do™ = LG[o"]dt — vpo"dt + D[Os|o™dt + (0%, o™]dt

e — 2 (i(1 + A)Os + kA2 o™ dW 27)
K+ iA
Detector Current:
dQ = B[2n|a|<WﬂA2(l + A)[sin(0)Os + K cos(8)A)dt + /2nkdW] (28)

whereF,, = S,, + Q..|al? andd = ¢ — arg(a) — arctan(A /).

As an extension of this analysis, it would be interestingansider a cavity with a higher quality factQr = w./x and to use
the the cavity mode elimination technique developed in [B3if.In the latter case, we can expect reach a higher signabite
ratio.

D. Adiabatic Elimination Calculations

Part |

First we calculate the action 0E5¢ + Licar) ON o = 000]0)(0] + a10|1)(0] + 14 [0) (1] + 011 [1)(1].

[Lsc + Licaklo = Lso —i[(Epal + Ea)(L+A),o] - ilaTa(Os + A), 0] + kDla(1 4+ A)]o (29)
whereA = [XT, X] and

Lso = —i[HE =) Ee ™! XT - "&re™a' X, 0] + kD[X]o (30)

q q



After the transformation — D(—a)oD(«)

[LSC + ﬁleak]g —
L%0 —i[(Epal + Eya)(1+A),o] — i[(a'a + a*a + aa')(Os + A), 0] + kD[(a + a)(1 + A)]o

(31)

for L20 = Lso —i(Epa* +EFa)[A, 0] —i|a*[(Os + A), o]. Next we apply the superopera®gc + Licar 0N all terms of:

A. Termogp|0)(0]:
L2]000]|0)(0] — ((1€,(1 + A) + ia(Os + A) + k(1 + 2A))o00|1) (0] + h.c.)
B. Termo0|1)(0]:

L3[o10][1)(0] = (i€; (1 + A) +ia™(Os + A))o10]0) (0] + 010(i€, (1 + A) +ia™ (Os + A))[1)(1]
+raFo10(1 + 2A)[0)(0] — i(Og + A)a1o|1)(0] — k(1 4 2A)a10]1)(0] — ka*o10(1 + 2A)|1)(1]
V2010(iE* (1 + A) +ia(Os + A) — ka* (1 4 A)?)[0)(2|

C. Termoq1]1)(1]:

LoD 1] + (011 (i6,(1 + A) + il Os + AN1IO] + k(1 + 2A)o11[1)(0] + h.c.)
—i[(Os + A), o11][1)(1] + 26(1 4+ A)o11 (1 + A)[0)(0] — s{o11, 1+ 2A}1)(1]

D. Termog|2)(0):

L3[020]12)(0] = iV2(E; (1 4+ A) + o™ (05 + A)) a0 |1) (0] — 120" (O + A)oa0[2)(0]
+2v2ka* (1 + A)ogo(1 + A)[1)(0] — V2ka* (1 4 A)2090[1) (0] — 26(1 + A)209[2)(0)

Part 11

The nextterm iD(—a)H[e~*a(1 + A)]joD(a) = Hle ¥ (a + a)(1 + A)]o

A. Termogg|0)(0]:

(eii“baAaoo + ei¢a*000A)|O> <O|
—T'f‘[eiiqbaA(Uoo + 011) + ewa*(aoo + 0'11)A + eiiqb(l + A)O’lo + eiqu'IO(l + A)]0'00|0> <O|

B. Termo0|1)(0]:

e (14 A)o10]0)(0] + e Aoyoal1)(0] 4+ e*®oipAa*|1)(0]
—Tr[efwozA(aoo +o11) + ewoz*(aoo +o11)A+ eiiqb(l + Aoy + ewaio(l + A)]o10|1)(0|

C. Termoq1]1)(1]:

(e "Pahors + ea’or A)1) (1] + (€7 (1 + A)o11 [0)(1] + €11 (14 A)[1)(0])
—Tr[e_i¢aA(000 + 011) + ei‘z’a* (UOQ + 0'11)A + 6_i¢(1 + A)Ulo + 6i¢0'10(1 + A)]O’ll |1><1|

D. Termog|2)(0):

V2e (1 4 N)ogo|1)(0] 4 (a1 + A)ogg + €' Pa*aa0(1 + A))|2)(0]
—T’f'[e_w)OéA(O'QO + 011) + €i¢04*(0'00 + 0'11)A + €_i¢(1 + A)Ulo + 6i¢0'10(1 + A)]O’ll |2><0|

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)
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Part 111

The next term requiring the perturbative treatmenths,, o] for F,,, = S + Qma’a with operatorsS’m = Sy —
HXTX, 50} + X1, X andQ,,, = D[X]S,, + D[XT]Sp.

(S 4+ Quml?, 0] + [Qm(a’a + aa* + aTa), o] (40)

A. Termag|0)(0]:
[Sin + Qmlal?,600][0) (0] + Qmacoo|1)(0] — g00Qma™[0)(1] (41)

B. Termayo|1)(0):
(S + Qulal?, 10| 1)(0] + Q@10 1)(0] + a* Qum10]0) (0] — 710Quma™ [1)(1] + V2aQuma10[2) (0] (42)

C. Termoy|1)(1]:
S + Qulal*, o)1) (1] + (@, o] 1) (1] + " Qo1 [0)(1] = 711 Qmar|1)(0)] (43)

D. Termoag|2)(0]:
[ + Qulal?,020][2) (0] + 2Qum020[2) (0] + " V2Qum20/1) (0] (44)

Part 1V

We also have the double commutator operatiop, [F,., o]] that is expanded to the second orde€lf

(S, 0] + [Qulal?, 0] + [@m(a’a + aa” + ala), o] (45)
A. Termogp|0)(0]:

([Sm» [Sm> 000]] + [Sms [Qunlcr|*, 500]] + (@], [Sm 700]]) [0)(0] + [Qun @[S, 700][1) (0] =[S 700] Q™ [0) (1]
+[Sim, Qunacoo]|1) (0] = [Sm, 000Qma]|0) (1| (46)

B. Termoy0|1)(0]:

[Sim + Qmlal?, [Sm, 10])|1) (0] + QS 910][1)(0] + & Qun[Sm, 710]0){0] = [Sin, 710] @™ [1) (1] + V24Qu [Sim, 910]12) (0]

+[Sm, [Qmlal?, o10]]11){0] + [Sim, Quno10][1)(0] + [Sms & Quno10]|0) (0] = [Sns 10Qum@*]|1) (1] + V2[Srm, aQmorno][2) (0AT)

C. Termoq1|1)(1]:

+ Qs [ oL + 0" QulSin, 11 J0)(1] = [Spsmil@mal O] (48)
(s [Qus 1t (1] + (S, 0" Qs J0) 1] = [ 011 @l O] (49)

[Sm + Qmlal?, [Sm, o ]]1)(1
+[Sm, [@mlal?, o11]][1)(1

D. Termog|2)(0]:

[Sn + Qulal, [Sm, 020]][2) (0] + 2Qum[Sim, 020]12) (0] + " V2Qi[S, 720] | 1)(0)
+[Sm (@, 720]]12) (0] + 2[Sm, Quno20][2) (0] + " V2[Si, Qunr20][1)(0) (50)

Part V

The nextterm i F,,,, o'}
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A. Termog,|0)(0]:

{Sm + Qulal?, 700} 0){0] + {Qmacoo|1)(0] + G00Quma™[0)(1])} (51)

B. Termao|1)(0):
{Sm + Qulal?, 010} [1)(0] + Quuar1o| 1) (0] + a* Quna10[0) (0] + T10Qma”[1)(1] + V2aQuma10[2) (0] (52)

C. Termoy|1)(1]:
{Sm + Qulal, o131 (1] + {Qums 011 1) (1] + a” Qmo11|0) (1] + 011 Qmal1)(0) (53)

D. Termo[2)(0]:
{Sm + Qmlal®,020}12) (0] + 2Quno20[2) (0] + " V2Qm020[1) (0] (54)

Part VI

Wrapping up the above calculations in parts I-V, we find tHiowang hierarchical equations for different componeritg g
ando,

A. |0)(0] component:

dogy = L[oge]dt — vmogedt —i(E,A + a*OS)a{‘Odt + ia?g (EpA + aOg)dt + 260" oA + 2/@@/\0;‘5
+26(1+ Ao (1+A) + > T DFnloedt + > Ton(a* Qu[Sm, o] — alSm, 010]1Qum + h.c.)dt

m>1 m>1
L

—i DS ([Fons 0957+ i Re(ema) o ]+ 0 Qun (0557 T 4 i Re(cma) ol )

m>1a=0
—a(olym ™+ e Re(Cna )ty Q) dt

§ : n Noma—1 Noma—1 Trma—1
- {Fm7 nmao' } + o anmaalo + anmao' e Qm
m>1

2nk(e " Paholy + ePat oy A + e (1 4 A)oly + ewaig(l + A))dW
—V20RTrle" P aloly + e a* ol A + e TP (1 + A)oPy 4 e?ol8 (1 + A) + e Pado® + e ?a*o™ AloB dW(55)

B. |1){(0| component:

doly = LE[o7p)dt — vmoTydt — (iaOg + kaA — iAN)ogydt — i(Og + A)oTydt — k(1 + 2A)oTydt
+ Z F D Ulodt QO [gma 0'?0] - I‘m [gma Qmo?o] - Fman [gma 0'(1310] - Pma[gma Qma(?o]

m>1

+ Z Fmo‘[‘gma o11]Qm + Fmo‘[gmv 011Qm] — Fm\/ia*Qm[S’ma 0510] I V2a* (S [ ms UQOQm]

m>1
Y S (s of T maelema)o ]+ 0@ 05+ e Belema)ofi )
m>1a=0
+Qum (075 ™ £ e Re(Cma)o s ™) — a(a? T 4+ npa Re(Cma) ooy ™) Qum
+a*V2Qum (055 ™ + nmaRe(cma)ogge ™)) dt

=Y e By 015 1+ na Q@015 T+ 0 QoG 4+ a0 17T Qo 4 N V2Qm o5 !
m>1

V2nE(eT P Ao + e o Aot + v2e (1 4 A)oly)dW
—\/2nKTr[e” P alofy + e a* ol A + e "Poty + ei‘i’aig + e ®alo? + eat ol AlprodW (56)
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C. |1)(1| component:

doly, = LZ[oT]dt — vpolydt + (a{‘o(ic‘)*A + ia*OS) + h.c)dt — k{oTy, 1+ 2A}

+ Z Lo D[Fppo® dt — Z Lo @[Sy 024 ]Qum 4 a*[Spm, 05 Q] + h.c.)dt

m>1 m>1
Z F Qma ms 011]] [ my [Qm7 011 —1 Z Z Fm7 U?ImGJrl + Re( nma )] + [va U?lmaJrl + Re(o?lma 1)]
m>1 m>1a=0

— (o7 ™ + Re(075 ™)) Qma™ + Qum(olg™ ™ + Re(olgm™ ™))

- Z nma{Fma U?lma 1} + nma{Qma Ullma 1} + nmaa*a?(;na 1Qm + nmaanUTnma !

m>1
+ 277f$(e_i¢A0{‘1a + o Aa*)dW
2kTrle”Paholy + e®a* oy A + e ol + o T + e Palo?) + eato Aot dW (57)

D. |2)(0| component:

do%y = L3[o%]dt — vaoSydt — 20 (0s + A)oydt — V2ka(l + 2A)oin
Z T D[F]o5odt + 2Qum[Sm, 03] + 2[Sm, Qmoso] + V2aQum [Sm, oTg] + V2a([Sy, Qmoty)))dt

m>1

L
—i 3" (B 05 + R0 ™ )] + [Qus o™ + Re(oggr )]

m>1a=0
2Qum (o7t + Re(o75 ™)) + V2aQum (0181 + Re(alime—1)))

ma— ma= ma— 1
= nmad Fn 057 A o { Qs 077 T+ Mna 0 075 T Qo + Mana 0Qumo g™
m>1

- Z nma{Fma O'nma 1} + 2nman0ﬂma ! + \/_anmanal et
m>1
1/ 2nk(e T (1 4+ Aol + ot (14 A))dW
2kTrle” P ahaly + ePa* oA+ e ol + ewalo + e PaNo? + eat o AloS,dW (58)

Inthe limit of largex > {|Os|(1+ |al?), 3,51 TmnllQmll; 32,51 [a*Al|Qml |} the off-diagonal term$pio, p20, 0Ty, 05, }
decay faster than diagonal terms. We can then solve!for
1

ok = ——————(iaOg + kal)aby + ot

: 2
T A (1aOg + kal) + O(e”) (59)

1
K+ vn + 1A
Now we are ready to put everything together and find the finptession for the system only dynamical equation. We sum
up the above equations fde(j, anddo?; to find the SHEM:

iAla)?
(k+vn)2+ A2

(£ + vn)laf®

do® = LB[o"]dt — vao™dt + [0%,0"]dt + > T, D[Fp]o™

m>1
L _ L _ ~
—1 Z Z[Fma Onppa+1]dt — i Z Z Nma(Cma(Fm)0npma—1 = CraOnma—1(Fm))dt
m>1a=0 m>1a=0
_ —ip & . 2\1.-n
v/ 2nkH]e A (i1(1+ A)Og + kA®)|o™dW (60)
The associated detector signal is
dQ = Bl-2nk{(1 + A)( T pio + €0 ply))dt + \/2nrdW]
= [2n|a|< A2 (14 A)[sin(0)Og + K cos(Q)A)dt + \/2nrdW ] (61)
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FIG. 3: A, B, and D: averaged power spectral densities of #iealor current for different parametersind A of the Drude-Lorentz environ-
ment spectral density and temperatiitévalues indicated in the figure). C: Drude-Lorentz enviremispectral densities for four different
values of~ (values indicated in the figure; all for the samhewhich is simply a global prefactor). The vertical linecat= 1 marks the
transition energy of the two-level system.

wheref = ¢ — arg(«a) — arctan(A/k).

E. Weak spectroscopy analysis of the system-environment coupling

The Weak Spectroscopy results presented in the paper &Bushow a clear blue shift of the peak that depends on the
cut-off frequencyy of the environment. Decreasing the cut-gffieads to a stronger non-Markovianity of the environment.
Thus, the peak shift, which becomes larger for decreasitguld serve as an indicator for the degree of non-Markatyiawe
show here how the spectra change when we vary notgnbut also the parameterthat scales the strength of the coupling
to the environment, as well as the temperature. Considen agaenvironment spectral density of the Drude-Lorentmfor
J(w) = 2)\7#. This spectral density is shown In Figlide 3 tfor four differealues of the cut-off energy.

Figured8 A and B show the detector spectra for the same valuest-off v and temperature as previously used for the
calculations shown in the paper (Figure 2). However, thepbog to the environment is made stronger by factor of 5 iruFe3
A, and by a factor of 20 in Figuffd 3 B, i.e., the coupling stittngarameter takes the valugs= 0.25 and\ = 1, respectively.

All other parameters of the calculation are the same as fBigare 2 in the paper. Figuké 3 A shows that for a moderateasz

in coupling strength, the peaks are broader compared te ihdke paper (Figure 2), but the shifts of the peak maximanem
roughly the same. We can relate this behavior to the spetgradities for the correspondingsalues shown in Figufd 3 C. In the
neighborhood of the transition energy of the two-levelsgstmarked with the vertical line, the spectral density grasaeny is
decreased, in a similar fashion as it would grow on incre&agwhich is just a prefactor in the Drude-Lorentz spectralgifgn.
Accordingly, the peaks in the detector spectra broaden whelecreased or whexis increased, due to the stronger coupling
of the two-level transition to the environment. Beyond thiswever, a shift of the peak in the detector spectrum ooghen
the cut-off energyy of the spectral density is reduced and approaches the twebttansition. That gives additional information
about the character of the coupling to the environment, itiquaar, of the degree of non-Markovianity.

In Figurd3 B, the coupling strengthis further increased and the peaks become even broadetoaddy, now for the smaller
values ofy, the spectral densiy in the neighborhood of the two-leaidition is so large that the coupling to the environment
damps out the oscillations in the detector current, leattngery broad peaks at zero frequency in the detector spadou
~ = 5,10. This damping of the oscillations was already apparent énribe of the low energy contributions in Figdde 3 A.
Further investigations show that increasing the tempegdéiads to additional broadening of the peaks in the detspiectra.

As an example, in Figuilld 3 D we show detector spectra for adeatyre that is higher by a factor of 25. For this example we
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choose a large cut-off = 500, since for smallery the peaks would be excessively broad. Increasing the aauptrength\

now shows a similar broadening of the peaks and subsequentinig of the oscillations as seen above for decreasginthese
observations are consistent with the above explanatioedoais the form of the environment spectral density in refateothe
position of the two-level transition.

F. Details of the simulations

The detector output spectra in the paper (Figure 2] and 3 eadcalated using the general SHEM equations up to the second
order in Ito form Eq[(I5). We calculate the stochastic detezurrent of the weak measurement over time by solving thEN8
equations with a Runge-Kutta method (of order 1 and 1.5)dhats strong solutions. The numerical integration partwf o
simulation uses Fortran 90 routines partly based on rosifimevided by Ref.[49]. For the calculation of the power $gc
density of the detector current we use the Python routinglottib.mlab.psd. To calculate the averaged power spleérasities
of the detector current, shown in the paper (Figure 2)[@ndeaveraged over0® individual power spectra of indiviadual
stochastic trajectories of the detector current. For theegpectra in Fig$.]13 B foy = 5, 10, however, where the coupling to the
environment is so strong that the oscillations of the detemirrent are damped out, 24% (fer= 5) and 3% (fory = 10) of
the trajectories diverged and were not taken into accoutigraveraging.





