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Continuous Measurement of a Non-Markovian Open Quantum System

A. Shabani, J. Roden, and K. B. Whaley
Berkeley Center for Quantum Information and Computation, Berkeley, California 94720 USA

Department of Chemistry, University of California, Berkeley, California 94720 USA

Continuous quantum measurement is the backbone of various methods in quantum control, quantum metrol-
ogy, and quantum information. Here, we present a generalized formulation of dispersive measurement of a
complex quantum systems. We describe the complex system as an open quantum system that is strongly cou-
pled to a non-Markovian environment, enabling the treatment of a broad variety of natural or engineered com-
plex systems. The system is monitored via a probe resonator coupled to a broadband (Markovian) reservoir.
Based on this model, we derive a formalism ofStochastic Hierarchy Equations of Motion(SHEM) describing
the decoherence dynamics of the system conditioned on the measurement record. Furthermore, we demon-
strate a spectroscopy method based on weak quantum measurement to reveal the non-Markovian nature of the
environment, which we termweak spectroscopy.

Introduction –Generalized or weak quantum measurement
has become increasingly important in the last decade due to
its application in quantum feedback control [1, 2], quantum
metrology [1], quantum information [3–5], and the study of
quantum-classical transitions [6, 7]. The existing theories
consider continuous weak measurement of simple open quan-
tum systems with Born-Markov decoherence models [5, 8–
10]. However, there is a lack of theoretical formalism to ex-
tend the exceptional capacities of weak measurement method
for system identification and control to complex natural [11]
or engineered [12, 13] systems, i.e., systems that are large,
possibly disordered and interacting strongly with their envi-
ronment. The present letter addresses the demand for such
advanced theories.

Cavity quantum electrodynamics (CQED) is a well estab-
lished paradigm to implement weak quantum measurement
protocols [5, 8]. In this paper, we develop a CQED theory for
continuous measurement of an arbitrary quantum system cou-
pled to a bosonic environment. In this framework, we derive
a set of coupled stochastic differential equations, SHEM, that
describes the system conditional evolution in the presenceof
non-Markovian and possibly strong decoherence effects. As
an application of our theory, we propose a simple experimen-
tal spectroscopic procedure to diagnose the non-Markovian
nature of the decoherence dynamics via continuous measure-
ment. Our theory can be applied in any frequency regime,
given the appropriate parameters setting. We shall therefore
use the term CQED to refer to both cavity (optical) and circuit
(microwave) QED systems.

We should emphasize that the current SHEM formalism de-
scribes a different measurement paradigm than the measure-
ment interpretations of non-Markovianstochastic Schrödinger
equations [14–19]. The latter, originally developed to model
decoherence dynamics in presence of a bosonic environment
[14–17], under certain conditions, describe direct monitoring
of the environment [18, 19]. In the measurement setting con-
sidered in this letter, we avoid such a direct environmental
monitoring, rather we use an independent cavity coupled to a
broadband reservoir to probe only the system.

In CQED, a quantum harmonic oscillator acting as the
measurement probe interacts with the system. In the optical

FIG. 1: A single mode cavity resonator probes an quantum system
coupled to a bosonic environment. A detector continuously measures
the photons leaking out of the cavity that carry informationabout the
system dynamics.

regime the oscillator is realized by a single mode of a cavity
with mirror walls [8], in the microwave regime by a 1D [5]
or 3D [21] cold electrical resonator. The oscillator, whichwe
shall refer to from now on as the cavity, is designed to be im-
perfect and to have photon loss. The leaked photons carry in-
formation about the phase and amplitude of the cavity mode,
quantities that per se encode some system information. An
appropriate detection scheme can therefore indirectly extract
some system information by measuring the leaked photons.
The photon detection occurs in real-time, leading to a contin-
uous measurement of the quantum system. In the following,
we present a full formulation of the measurement scenario for
a quantum system with an arbitrary internal structure, thatis
coupled to a cavity mode and is also free to interact with an ad-
ditional bosonic environment. Physical examples of such sys-
tems include double quantum dots probed by a microwave res-
onator [22], superconducting qubits with undesired coupling
to 3D cavity modes [21, 23], and atoms in an optical resonator
[8]. Note that gaussian fluctuations with fermionic nature can
be also effectively modeled as a bosonic bath [24, 25].

A complex system coupled to a cavity –Consider a quan-
tum system with HamiltonianHS coupled to a single cavity
mode with HamiltonianHC = ωca

†a at frequencyωc, where
a is the mode lowering operator. We consider a system-cavity
couplingHint = µ̂(a + a†) for some Hermitian system op-
eratorµ̂. This model captures a range of couplings, includ-
ing electric dipole-electric field, spin-magnetic field, ormore
complicated engineered couplings [5, 20]. The total system-
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cavity Hamiltonian is then

HSC = HS + ωca
†a+ µ̂(a+ a†) (1)

A desired system-probe coupling suitable for weak measure-
ment has the formOSa

†a [1, 26]. One can then measure the
observableOS by direct measurement of the cavity phase con-
jugate to the operatora†a. In the dispersive regime where the
cavity is relatively far off detuned from the system resonance
frequencies, i.e., for|µ̂jk = 〈j|µ̂|k〉| ≪ |ωc−(Ωk−Ωj)| with
the spectral decompositionHS =

∑

j Ωj |j〉〈j|, the Hamilto-
nianHSC can be turned into this desired form by applying
a generalized dispersive transformationUD = exp[Xa† −
X†a], whereX =

∑

jk
µ̂jk

ωc+Ωj−Ωk
|j〉〈k| and all terms up to

second order inX are retained. Applying the rotating wave
approximation and neglecting two photon creation and anni-
hilation processes results in the dispersive Hamiltonian

HD
SC = UDHSCU

†
D ≈ HD

S + ωca
†a+OSa

†a (2)

with modified system HamiltonianHD
S = HS − 1

2 (X
†µ̂ +

µ̂X). Now the effective system-cavity couplingOSa
†a is

of the desired form, withOS = 1
2 [µ̂, X

† − X ]. The sys-
tem operatorOS serves as an adjustment to the cavity fre-
quency, i.e. ωD

c = ωc + OS , and therefore measuring the
phase of the leaking photons reveals information about the
system. Such measurement is not generally non-demolition
unless[HD

S , OS ] = 0 [26]. We will see later thatOS is the
primary but not the only component of the total observable.

We can now induce dynamics by a classical cavity drive
with multiple frequency components, i.e.E(t) = Epe−iωpt +
∑

q Eqe−iωqt. The detuning between system and cavity in the
dispersive regime allows these to be individually addressable.
The componentEp with frequencyωp that is near resonance
with ωc drives the cavity, while choosing{ωq} close to the
system frequencies allows the components{Eq} to excite the
system. The Hamiltonian for such a multi-frequency drive is

HD
drive = E(t)UDa†U †

D + h.c. ≈
Epe−iωpta†(1 + Λ)−

∑

q

Eqe−iωqtX† + h.c. (3)

and is added toHD
SC . HereΛ = 1

2 [X
†, X ], andh.c.stands for

Hermitian conjugate.

System decoherence and cavity leakage –The dynamics of
the system and cavity is further influenced by two sources
of ambient interactions: a broadband electromagnetic reser-
voir R that couples to the cavity, causing photon leakage, and
an environmentE that induces decoherence via its coupling
to the system, see fig.(1). The latter could be, e.g., acoustic
phonons in a quantum dot [27] or intramolecular vibrational
modes of chromophores [29]. A master equation description
of these process can be derived in the Born (weak coupling)-
Markov (no-memory) regime [1, 9, 10]. Here we present a
detailed microscopic derivation of these processes with nei-
ther Markovian nor perturbative approximation.

We shall index the modes of the electromagnetic reser-
voir by 0r and the modes of the environment bymr with
m ≥ 1. The environmentE is then treated as a sum
of local baths of harmonic oscillators, fig.(1), with Hamil-
tonian HE =

∑

m≥1,r ωmrb
†
mrbmr, where bmr denotes

the lowering operator of the(mr)th mode at frequencyω.
The system-environment coupling is of the formHSE =
∑

m≥1,r gmr(bmr + b†mr)Sm. for some system operatorsSm

and coupling strengthsgmr. The effect of such a bath is usu-
ally captured by its spectral densityJm(ω) =

∑

r g
2
mrδ(ω −

ωmr). We model the photon leakage process by including
a reservoir of electromagnetic modes,HR =

∑

r ω0rb
†
0rb0r,

that is also linearly coupled to the cavity mode:HCR =
∑

r g0r(b0r + b†0r)Sm. We emphasize that coupling to the
electromagnetic reservoir is desirable, since this allowssome
photons and therefore some information to leak out of the cav-
ity, while coupling to the environment is usually undesirable
since this destroys the coherence needed for quantum infor-
mation processing [3].

Now, we have to solve for the dynamics of a 4-component
system,S,C,E, andR which possesses only 2-body inter-
actions in the laboratory frame (HSC , HSE , HCR), but the
transformation into the dispersive frame generates some per-
turbative 3-body couplings. Specifically, the Hamiltonian
HCR becomes

HD
CR =

∑

r

g0r(b0r + b†0r)F0, (4)

with F0 = (a+ a†)(1 + Λ)− (X +X†).

The term(b0r+ b†0r)(X+X†) in Eq.(4) shows that the dis-
persive transformation has introduced a new reservoir channel
for system decoherence, together with higher order system-
cavity-reservoir termsb0ra†Λ, Such modification of the sys-
tem decoherence channels leads to a Purcell type effect in the
dispersive regime [8]. The change of frame also modifies the
interaction between the system and the environment, yielding

HD
SE =

∑

m≥1,r

gmr(bmr + b†mr)(

=Fm
︷ ︸︸ ︷

S̃m +Qma†a+Gm) (5)

with S̃m = Sm − 1
2{X†X,Sm}+X†SmX , Qm = (D[X ] +

D[X†])Sm, andGm = −[X†, Sm]a+ [X,Sm]a†. The super-
operatorD is defined asD[A]B = ABA†− 1

2{A†A,B}. The
operatorS̃m represents the effective system and environment
coupling. We interpret the second term with theQm opera-
tor as a cavity-state dependent decoherence of the system that
will show up explicitly in the master equation. We analyze
the dynamics in the frame rotating withHC . Accordingly,
the last term in Eq. (5), which contains a sum over contribu-
tionsgmr(bmr + b†mr)Gm for each environmental modemr,
becomes
∑

m≥1,r

gmr(bm + b†m)(−[X†, Sm]e−iωcta+ [X,Sm]eiωcta†)(6)
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Here we assume the environment has negligible modes at
the cavity frequencyωc, i.e., Jm(±ωc) ≈ 0. This is a le-
gitimate assumption when the environmental cutoff frequen-
cies are smaller or comparable to the cavity-system detun-
ing, which can be the case for e.g., phonons in quantum dots
[27] and vibrational modes of proteins in photosynthetic com-
plexes [29]. Neglecting Eq. (6), yields the following Hamil-
tonian for the system-environment and cavity-reservoir inter-
actions

HD
SE +HD

CR =
∑

m≥0,r

gmr(bmr + b†mr)Fm. (7)

The full (S,C,R,E) Hamiltonian is thenHD
SC + HD

drive +
HD

SE+HD
CR. Incorporation of Eq. (6) will only perturbatively

modiy the decoherence dynamics, while its non-Markovian
effect on the cavity mode is dominated by the strong Marko-
vian leakage process that is described byHD

CR. Tracing out
the surrounding bosonic fields,R andE, yields a combined
description of the photon leakage and decoherence dynam-
ics. The common approach to describe such open system pro-
cesses is to apply the Born-Markov approximation [9, 10].
Here we take a different approach that avoids these approx-
imations and relies instead only on assuming Gaussian statis-
tics for the fluctuations of the bosonic fields. This is the ap-
proach of the hierarchy equations of motion (HEOM) [28],
which we employ here with the Drude-Lorentz form environ-
mental spectral density,Jm(ω) = 2λmγm

ω
ω2+γ2

m
with cou-

pling strengthλm and cut-off frequencyγm.

The HEOM approach has recently been generalized to in-
clude arbitrary parameterized bath correlation functionsfor
both bosonic and fermionic environments [23, 30]. As an ex-
act solution, HEOM can treat any level of non-Markovianity
or system-bath coupling strength and is therefore is a powerful
tool for dynamical simulation of quantum systems with com-
plex environmental interactions. HEOM has produced suc-
cessful results in modeling various systems such as quantum
dots [31], nano-devices [32], Kondo systems [33], and pho-
tosynthetic complexes [34]. The full HEOMs describing the
system dynamics with all leakage and decoherence processes
included are described in the appendix. We emphasize that
our analysis employs an exact treatment of the influence of the
(non-Markovian) environmentE while treating the reservoir
R as a broadband (Markovian) field. This description is well
suited to the properties of many current implementations of
optical or microwave resonators. While non-Markovian cav-
ity leakage processes have been proposed [35], from the per-
spective of quantum measurement there is however no known
benefit from such generalization.

Continuous Measurement –Eq.(2) shows that coupling to
the system modifies the effective frequency of the cavity. Con-
sequently, photons leaving the cavity carry information about
the system that is encoded in their phase. Measurement of the
phase of the photons and hence indirect measurement of the
system may be made by homodyne detection [1, 9]. A contin-
uous flow of photons thereby allows us to continuously moni-

tor the system. The noisy current of a detectorI(t) = dQ/dt
with efficiencyη can be described by [1, 9]

dQ ∝ 2ηκ〈e−iφa+ eiφa†〉dt+
√

2ηκdWt (8)

(〈.〉 means expectation value) for a local oscillator with phase
φ. The parameterκ is the cavity leakage rate determined
by J0(ω), and the infinitesimal incrementdWt represents a
Wiener process. The latter results in a measurement back-
action term in the system-cavity dynamics (see below) that
is stochastically conditioned on the instantaneous outcome at
the detector. In the case of Markovian leakage, such random
changes allow a stochastic unravelling of the corresponding
Markovian master equation [1, 9]. We show in appendix B
that such an unravelling is possible even in the presence of a
non-Markoviandecoherence process described by the HEOM.

In order to ensure that the detection information reflects
only the quantum state of the system, we shall consider the
bad cavity regime in which the cavity state slavishly follows
the system [20, 36]. In this regime the leakage timeκ−1

is smaller than the time scale of the system dynamics and
we may adiabatically eliminate the cavity mode, in both op-
tical [20] and microwave [36] regimes (details are given in
appendix C). A good criterion for applicability of the bad
cavity parameter regime isκ ≫ ||OS ||1(1 + |α|2), where
|α = Ep/iκ〉 is the bare cavity coherent state forωc = ωp.
This adiabatic elimination leads to our main result, which is a
set of stochastic hierarchy equations of motion (SHEM) that
describe the dynamics of a quantum system under continu-
ous measurement with non-perturbative coupling to a non-
Markovian bath. For temperaturesβ−1 larger thanγm, a par-
ticularly simple form is found, namely

dσn = Ln

S [σ
n]dt−

∑

m≥1

nmγmσndt− i
∑

m≥1

[F̃m, σnm+1]dt

+
∑

m≥1

nm(
2iλm

β
[F̃m, σnm−1] + λmγm{F̃m, σnm−1})dt

−
√

2η

κ
H[iαe−iφOS ]σ

ndWt (9)

corresponding to the detector record

dQ ∝ 2η|α|〈ŌS〉dt+
√

2ηκdWt (10)

ŌS = sin(φ− arg(α))OS + κ cos(φ− arg(α))Λ (11)

with H[A]. = A. − Tr[A.]. + h.c., F̃m = S̃m + Qm|α|2,
andLn

S . = −i[HD
S −

∑

q(Eqe−iωqtX†+ h.c.)+ |α|2OS , .] +

(|α|2/
∑

nmγm)D[OS ].+κD[X ]. HereA. denotes action of
the map A on an operator. The general form of the SHEM for
arbitrary temperature andωc 6= ωp is derived in the appendix.

The subscriptn is a matrix of non-negative indicesnma

that defines one tier of the full coupled set of equations. The
system density matrix corresponds to index zero,ρS = σn=0

and the rest of operatorsσn 6=0 are auxiliary operators that cap-
ture non-Markovian effects. The indexnma ± 1 denotes in-
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FIG. 2: A qubit coupled to a non-Markovian environment undergoes
Rabi oscillations on driving at frequencyΩR. The plot shows the
spectrum of the detector current that continuously measures the qubit
population. The spectrum is monotonically shifted and broadened as
the environment bandwidthγ decreases. Due to the finite time range
over which the detector current is calculated, the spectrumhas a finite
frequency resolution, i.e., it consists of discrete points.

crease or decrease of the indexnma. In practice, one trun-
cates Eq. (9) at finite indices{nt

ma} when
∑

m≥1,a n
t
maγma

is much larger than the system frequencies. Therefore, the
SHEM can capture a higher level of non-Markovianity merely
by including more auxiliary operatorsσn. Notice that the
strength ofSE couplingsλm is an unconstrained parameter
that enables SHEM to handle strong decoherence. Another
interesting feature is the non-Markovian nature of the mea-
surement back-action that derives fromQm|α|2.

The measured observablēOS is not limited to the result of
the direct system-cavity coupling, i.e., toOS . An additional
componentΛ appears as a result of the 3-body system-cavity-
reservoir coupling becoming effective in the dispersive frame
(see above). In Ref.[39], we discuss how the effective observ-
able ŌS can be engineered by varying the cavity frequency
ωc, the local oscillatorα, or the cavity drive phaseφ. That
enables continuous quantum state tomography [39].

Weak spectroscopy for detection of non-Markovian dynam-
ics – Spectroscopy can provide useful dynamical informa-
tion about atomic and molecular systems by analyzing cor-
relations in measurement outcomes. We show here that the
non-destructive nature of weak measurement can empower
spectroscopy, in particular, that it allows detection of the non-
Markovian nature of the decoherence dynamics. We term this
general approach “Weak Spectroscopy” [38].

Consider a single qubit driven in resonance with amplitude
ΩR while the observableOS = χσz = χ(|0〉〈0| − |1〉〈1|)
is continuously measured. With Markovian decoherence, the
power spectral density of the detector current [40],S(ω), is
bell shaped with a peak aroundΩR. A non-Markovian envi-
ronment modifies the detector spectrum. In the SHEM equa-
tions, the qubit coupling is made withS(m=1) = σz , rep-

resenting non-Markovian dephasing with strengthλ(m=1) =
λ = 0.05 at temperatureβ−1 = 20. We choose the remaining
parameters to be similar to those in Ref.([41]): a total relax-
ation raterd = 0.05 that includes the reservoir induced damp-
ing κD[X ], and measurement parameters|α|χ/√κ = 0.36,
η = 1, andφ − arg(α) = −π/2. The qubit is driven at Rabi
frequencyΩR = 3 and the power spectrum is obtained by
averaging over105 trajectories. The spectrumS(ω) plotted
in Figure 2 clearly shows a shift of the peak fromΩR and a
broadening, both of which are monotonically enhanced as we
raise non-Markovian effects by loweringγ(m=1) = γ from 50
to 5. We also observed a shift by keepingγ constant and in-
creasingλ. In general, the shift can be blue or red depending
on parameter values.

More detailed discussion and analysis of the dependence
of the detector spectrum on temperature and on the spectral
density parametersλ andγ are given in appendix D.

The spectrum peak shift is due to the environmentally in-
duced lamb shift [42]. In principle the power spectrum can
be obtained by evaluating the time autocorrelation function
from a single experimental run [40], while a time discrete
tomographic approach such as in Ref.[42] asks for many
runs. The nonzero offset of the spectrum in Figure (2) is due
to the unavoidable detector noise [43]. Such a weak spec-
troscopy experiment may be carried out in a coupled quantum
dot-resonator system, where it would allow probing of non-
Markovian contributions to decoherence [22].

Discussion and Outlook –We presented a microscopic de-
scription of CQED-based continuous measurement of a quan-
tum system coupled to a bosonic environment that resulted in
a stochastic hierarchy of equations of motion (SHEM). While
the explicit analysis was presented here for an environmentof
local baths with Drude-Lorentz spectral density, it is straight-
forward to relax these assumptions and derive the SHEM for
very general spectral densities[23, 30, 44]. Spin environments
present more significant challenges for this analysis [45] and
constitute another interesting direction for future research.

The theory presented here is for a single quantum system.
Working with an ensemble allows a higher signal to noise ra-
tio [37]. However the associated inhomogeneous broadening
as well as coupling between individual ensemble members,
induced virtually by the dispersive transformation Eq. (2), in-
troduces additional dephasing effects.

The fundamental nature of the observable engineering de-
veloped in this work has revealed a novel spectroscopic ca-
pability of quantum weak measurement to probe the non-
Markovian nature of the environment in an open quantum sys-
tem. This suggests that a new generation of spectroscopy tech-
niques might be possible with this approach. Measurement-
based feedback control [1] is another area where SHEM can
lead to significant developments. Feedback control of quan-
tum systems has thus far been limited to systems with weak
and Markovian decoherence dynamics. The SHEM approach
provides the necessary tools to develop feedback control now
for open quantum systems with non-Markovian and non-
perturbative decoherence effects. It thereby opens a route
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to use of quantum feedback control for mitigating effects of
non-Markovian quantum noise and a performance compari-
son with methods such as dynamical decoupling [4].

We acknowledge funding from DARPA under the QUEST
program. This research was also supported in part by the
National Science Foundation under Grant No. NSF PHY11-
25915. AS and KBW thank the Kavli Institute for Theoretical
Physics for hospitality.
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APPENDIX

A. System and Cavity Combined decoherence dynamics

We consider the following Hamiltonian for the system and cavity interactions with the surrounding environmentE and elec-
tromagnetic reservoirR, all in the dispersive regime (see Eqs. (2,3,7) in the paper):

HD
SCER = HD

SC +HD
drive +

∑

m≥0,r

gmr(bmr + b†mr)Fm (12)

We employ a Drude-Lorentz spectral density for bothE andR, i.e.,Jm(ω) = 2λmγm
ω

ω2+γ2
m

, whereλm andγm represent the
coupling strength and cut-off frequency for the environment modem. The correlation function corresponding to the Drude-
Lorentz model is

〈T b̃m(t)b̃m(0)〉E or R =

∞∑

a=0

cma exp(−γmat) (13)

whereγm0 = γm and fora ≥ 1, γma = 2πa/β are Matsubara frequencies. The coefficientscma are

cma =

{ λmγm

2 [cot(βγm

2 )− i], a = 0

(2λm

β ) γmγma

(γ2
ma−γ2

m) , a ≥ 1
(14)

The summation Eq. (13) will be truncated at a numberL large enough thatγmL exp(−γmLt) ≈ δ(t).
The combined system and cavity dynamics has an exact solution given by the HEOM. The HEOM is a special case where

the total bath consists of a non-Markovian environment and aMarkovian reservoir. In this situation we may use the hybrid
Markov-HEOM equations developed in Ref. [48]. These yield the following equations for the system-cavity dynamics, which
are valid for any temperature:

dσn(t)

dt
= (LSC + Lleak − νn)σn(t)−

∑

m≥1

Γm[Fm, [Fm, σn(t)]]

−i
∑

m≥1

L∑

a=0

[Fm, σnma+1(t)]− i
∑

m≥1

L∑

a=0

nma(cmaFmσnma−1(t)− c∗maσnma−1(t)Fm), (15)

with νn =
∑

m≥1

∑L
a=0 nmaγma, Γm = (1/βγm0 − i/2)λm −∑L

a=0 cma/γma andLSC . = −i[HD
SC +HD

drive, .] + κD[X ]..
The second termκD[X ] is the Purcell type of system decoherence modification and isalso a part of the measurement back-
action. The superoperatorLleak = κD[a(1 + Λ)] denotes the modified cavity leakage process. The subscriptn is a matrix
of indicesnma ≥ 0 and the indexnma ± 1 denotes increase or decrease of the indexnma. The system-cavity density matrix
corresponds to index zero,ρSC = σn=0, the remaining operatorsσn 6=0 constitute a set of auxiliary Hermitian operators. These
hierarchical equations continue to infiniten. In practice, however, one can truncate them at a finite tiernt, which is given by the
condition

Ψ =
∑

m≥1

L∑

a=0

nt
maγma ≫, ωSC (16)

whereω−1
SC is the largest time scale in the system-cavity dynamics [29]. This inequality follows from requiring the approximation

Ψe−Ψ(t−s) ≈ δ(t− s) be satisfied.

B. Unravelling the HEOM

We describe a consistent unravelling of the set of dynamicalequations (15) as a result of continuous homodyne measurement
of the cavity mode. Although the HEOM describes a non-Markovian evolution, mathematically it has an inherent Markovian
property. Eqs (15) are clearly a set of linear equations for an extended variableΞ = [σ0, σ1, ..., σN]. Therefore, we can express
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the HEOM in a compact form aṡΞ = (Φ + IN ⊗ Lleak)Ξ, with a super-operatorΦ representing all other terms in Eq.(15). The
HEOM can then be formally solved as

Ξ(t) = e(Φ+IN⊗Lleak)tΞ(0) = lim
n→∞

(eΦt/nIN ⊗ eLleakt/n)nΞ(0) (17)

where the second equality is an application of Lie-Trotter-Kato product formula [47]. Eq.(17) facilitates a separate treatment of
the photon leakage process and the decoherence dynamics. The infinitesimal dynamical mapeΦt/n is the unobserved part of the
system-cavity dynamics while the infinitesimal mappingeLleakt/n is the one being unravelled by the photo-detector. Homodyne
detection is based on mixing the cavity signal with a strong local oscillator with amplitudeβ and phaseφ. We can follow the
steps in Ref.[1] and represent the the infinitesimal mapeLleakt/n by a Kraus map

eLleakt/n ≈ I + Lleakt/n. = E0(t/n).E
†
0(t/n) + E1(t/n).E

†
1(t/n), (18)

with Kraus operators

E0(t/n) =
√

t/n[a(1 + Λ) + βeiφ] (19)

E1(t/n) = 1− (t/n)[β(ae−iφ − a†eiφ)(1 + Λ) +
1

2
(a†(1 + Λ) + βe−iφ)(a(1 + Λ) + βeiφ)]. (20)

The unnormalized superoperatorFi. = Ei(t/n).E
†
i (t/n) refers to no-photon (single photon) detection process fori = 0 (i = 1).

For a history of detector records{i1, i2, ...}, the HEOM Eq.(17) is unraveled as

Ξ{i1,i2,...}(t) = lim
n→∞

...eΦt/n(IN ⊗Fi2)e
Φt/n(IN ⊗Fi1)Ξ(0) (21)

whereΞ{i1,i2,...}(t) is the unnormalized conditional state variable.
We obtain the continuous limit of the discrete picture in EQ.(21) by using the well-known stochastic description of homodyne

detection induced dynamics [1, 9]. For a bare cavity, continuous homodyne detection of the leakage process˙ρC = κD[a]ρC is
described by the following stochastic differential equations (SDEs) of the photo-detector current

dQ = 2ηκ〈e−iφa+ eiφa†〉dt+
√

2ηκdW, (22)

together with the associated conditional state of the cavity

dρ̄C = −i[ωc, ρ̄C ]dt+ κD[a]ρ̄Cdt+
√

2ηκH[e−iφa]ρ̄CdW. (23)

The solution of the SDE (23) for one particular realization of the Wiener processdW is equivalent to a sequence of super-
operations...Fi3Fi2Fi1 . Thereby, we arrive at the following stochastic HEOM to describe the homodyne measurement of the
system and cavity such that the trajectory described by Eq. (21) is a solution for one particular photo-detector record:

dσn = (LSC + Lleak − νn)σndt−
∑

m≥1

Γm[Fm, [Fm, σn]]dt− i
∑

m≥1

L∑

a=0

[Fm, σnma+1]dt

−i
∑

m≥1

L∑

a=0

nma(cmaFmσnma−1 − c∗maσnma−1Fm)dt+
√

2ηκH[e−iφa(1 + Λ)]σndW. (24)

The detector current can be written accordingly as

dQ = 2ηκ〈(1 + Λ)(e−iφa+ eiφa†)〉dt+ β
√

2ηκdW. (25)

C. Cavity Mode Elimination and the general SHEM

The next step is to eliminate the cavity mode in the parameterregime where the cavity state reaches to equilibrium with the
system state in a negligible time. In another words, the system has an adiabatic evolution in compare to the cavity dynamics.
Such behavior can be obtained with a relatively high leakage(low finesse) cavity. In the following we use the standard approach
as described in Refs. [20, 36] to eliminate the cavity mode.
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Under cavity driving by the fieldEpe−iωpt, it is biased to the coherent steady-state|α〉 = | − iEp/(i∆ + κ)〉, where
∆ = ωc − ωp. Elimination of the cavity mode then proceeds as follows.

1- Write Eqs. (24,25) in the frame rotating with the drive frequencyωp.
2- Project the cavity to the ground state by the transformationρc → D(−α)ρcD(α) whereD(α) is the displacement operator

D(α) = exp(αa† − α∗a).
3- Represent the system-cavity density matrix asσn =

∑

lk σ
n

lk|l〉〈k|, where|l〉 is the cavityl photon state in the displaced
framework,D(−α).D(α), andσn

lk is the corresponding system operator. Expand the density matrix ρSC to the second order
of the perturbative parametersǫ = 1

κ max{(|OS | + ∆)(1 + |α|2),∑m≥1 Γm||Qm||,∑m≥1 |α|2λ||Qm||}. The high leakage
condition corresponds then toǫ ≪ 1.

We begin by writing the system-cavity stateρSC and the auxiliary statesσn as

σn = σn

00|0〉〈0|+ (σn

10|1〉〈0|+ h.c.) + σn

11|1〉〈1|+ (σn

20|2〉〈0|+ h.c.) (26)

We assume the matrix elementsσn

lk scale asǫl+k, consistent with the following perturbative analysis. We insert the
perturbative solution Eq. (26) into Eq. (24) to find the equations fordσn

mlk. Our ultimate goal is to find the dynamics of the
system density matrixσn

lk = σn

00 + σn

11 that are obtained by solvingσn

20 andσn

10 as a function ofσn

00 andσn

11. To this end, we
shall dissect different terms of the SHEM, Eq. (24). However, showing this detailed analysis we first present the final result for
the SHEM at an arbitrary temperature. In the body of the paperwe showed only the high temperature limit of these equations,
for both a resonant cavity and resonant drive,∆ = 0.

Stochastic Hierarchy Equations of Motion:

dσn = Ln

S [σ
n]dt− νnσ

ndt+
(κ+ νn)|α|2

(κ+ νn)2 +∆2
D[OS ]σ

ndt+
i∆|α|2

(κ+ νn)2 +∆2
[O2

S , σ
n]dt

+
∑

m≥1

ΓmD[F̃m]σndt− i
∑

m≥1

L∑

a=0

[F̃m, σnma+1]dt− i
∑

m≥1

L∑

a=0

nma(cma(F̃m)σnma−1 − c∗maσnma−1(F̃m))dt

−
√

2ηκH[e−iφ α

κ+ i∆
(i(1 + Λ)OS + κΛ2)]σndW (27)

Detector Current:

dQ = β[2η|α|〈 κ

κ2 +∆2
(1 + Λ)[sin(θ)OS + κ cos(θ)Λ〉dt+

√

2ηκdW ] (28)

whereF̃m = S̃m +Qm|α|2 andθ = φ− arg(α)− arctan(∆/κ).
As an extension of this analysis, it would be interesting to consider a cavity with a higher quality factorQ = ωc/κ and to use

the the cavity mode elimination technique developed in Ref.[9]. In the latter case, we can expect reach a higher signal tonoise
ratio.

D. Adiabatic Elimination Calculations

Part I

First we calculate the action of(LSC + Lleak) onσ = σ00|0〉〈0|+ σ10|1〉〈0|+ σ†
10|0〉〈1|+ σ11|1〉〈1|.

[LSC + Lleak]σ = LSσ − i[(Epa† + E∗
pa)(1 + Λ), σ]− i[a†a(OS +∆), σ] + κD[a(1 + Λ)]σ (29)

whereΛ = 1
2 [X

†, X ] and

LSσ = −i[HD
S −

∑

q

Eqe−iωqtX† −
∑

q

E∗
q e

iωqtX, σ] + κD[X ]σ (30)
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After the transformationσ → D(−α)σD(α)

[LSC + Lleak]σ →
Ln

Sσ − i[(Epa† + E∗
pa)(1 + Λ), σ]− i[(a†a+ α∗a+ αa†)(OS +∆), σ] + κD[(a+ α)(1 + Λ)]σ (31)

for Ln

Sσ = LSσ− i(Epα∗+ E∗
pα)[Λ, σ]− i|α|2[(OS +∆), σ]. Next we apply the superoperatorLSC +Lleak on all terms ofσ:

A. Termσ00|0〉〈0|:

Ln

S [σ00]|0〉〈0| − ((iEp(1 + Λ) + iα(OS +∆) + κα(1 + 2Λ))σ00|1〉〈0|+ h.c.) (32)

B. Termσ10|1〉〈0|:

Ln

S [σ10]|1〉〈0| − (iE∗
p (1 + Λ) + iα∗(OS +∆))σ10|0〉〈0|+ σ10(iE∗

p (1 + Λ) + iα∗(OS +∆))|1〉〈1|
+κα∗σ10(1 + 2Λ)|0〉〈0| − i(OS +∆)σ10|1〉〈0| − κ(1 + 2Λ)σ10|1〉〈0| − κα∗σ10(1 + 2Λ)|1〉〈1|√

2σ10(iE∗(1 + Λ) + iα(OS +∆)− κα∗(1 + Λ)2)|0〉〈2| (33)

C. Termσ11|1〉〈1|:

Ln

S [σ11]|1〉〈1|+ (σ11(iEp(1 + Λ) + iα(OS +∆))|1〉〈0|+ κα(1 + 2Λ)σ11|1〉〈0|+ h.c.)

−i[(OS +∆), σ11]|1〉〈1|+ 2κ(1 + Λ)σ11(1 + Λ)|0〉〈0| − κ{σ11, 1 + 2Λ}|1〉〈1| (34)

D. Termσ20|2〉〈0|:

Ln

S [σ20]|2〉〈0| − i
√
2(E∗

p (1 + Λ) + α∗(OS +∆))σ20|1〉〈0| − i2α∗(OS +∆)σ20|2〉〈0|
+2

√
2κα∗(1 + Λ)σ20(1 + Λ)|1〉〈0| −

√
2κα∗(1 + Λ)2σ20|1〉〈0| − 2κ(1 + Λ)2σ20|2〉〈0|

(35)

Part II

The next term isD(−α)H[e−iφa(1 + Λ)]σD(α) = H[e−iφ(a+ α)(1 + Λ)]σ

A. Termσ00|0〉〈0|:

(e−iφαΛσ00 + eiφα∗σ00Λ)|0〉〈0|
−Tr[e−iφαΛ(σ00 + σ11) + eiφα∗(σ00 + σ11)Λ + e−iφ(1 + Λ)σ10 + eiφσ†

10(1 + Λ)]σ00|0〉〈0| (36)

B. Termσ10|1〉〈0|:

e−iφ(1 + Λ)σ10|0〉〈0|+ e−iφΛσ10α|1〉〈0|+ eiφσ10Λα
∗|1〉〈0|

−Tr[e−iφαΛ(σ00 + σ11) + eiφα∗(σ00 + σ11)Λ + e−iφ(1 + Λ)σ10 + eiφσ†
10(1 + Λ)]σ10|1〉〈0| (37)

C. Termσ11|1〉〈1|:

(e−iφαΛσ11 + eiφα∗σ11Λ)|1〉〈1|+ (e−iφ(1 + Λ)σ11|0〉〈1|+ eiφσ11(1 + Λ)|1〉〈0|)
−Tr[e−iφαΛ(σ00 + σ11) + eiφα∗(σ00 + σ11)Λ + e−iφ(1 + Λ)σ10 + eiφσ†

10(1 + Λ)]σ11|1〉〈1| (38)

D. Termσ20|2〉〈0|:
√
2e−iφ(1 + Λ)σ20|1〉〈0|+ (e−iφα(1 + Λ)σ20 + eiφα∗σ20(1 + Λ))|2〉〈0|

−Tr[e−iφαΛ(σ00 + σ11) + eiφα∗(σ00 + σ11)Λ + e−iφ(1 + Λ)σ10 + eiφσ†
10(1 + Λ)]σ11|2〉〈0| (39)
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Part III

The next term requiring the perturbative treatment is[Fm, σ] for Fm = S̃m + Qma†a with operatorsS̃m = Sm −
1
2{X†X,Sm}+X†SmX andQm = D[X ]Sm +D[X†]Sm.

[S̃m +Qm|α|2, σ] + [Qm(a†a+ aα∗ + a†α), σ] (40)

A. Termσ00|0〉〈0|:

[S̃m +Qm|α|2, σ00]|0〉〈0|+Qmασ00|1〉〈0| − σ00Qmα∗|0〉〈1| (41)

B. Termσ10|1〉〈0|:

[S̃m +Qm|α|2, σ10]|1〉〈0|+Qmσ10|1〉〈0|+ α∗Qmσ10|0〉〈0| − σ10Qmα∗|1〉〈1|+
√
2αQmσ10|2〉〈0| (42)

C. Termσ11|1〉〈1|:

[S̃m +Qm|α|2, σ11]|1〉〈1|+ [Qm, σ11]|1〉〈1|+ α∗Qmσ11|0〉〈1| − σ11Qmα|1〉〈0| (43)

D. Termσ20|2〉〈0|:

[S̃m +Qm|α|2, σ20]|2〉〈0|+ 2Qmσ20|2〉〈0|+ α∗
√
2Qmσ20|1〉〈0| (44)

Part IV

We also have the double commutator operation[Fm, [Fm, σ]] that is expanded to the second order ofQm

[S̃m, σ] + [Qm|α|2, σ] + [Qm(a†a+ aα∗ + a†α), σ] (45)

A. Termσ00|0〉〈0|:
(
[S̃m, [S̃m, σ00]] + [S̃m, [Qm|α|2, σ00]] + [Qm|α|2, [S̃m, σ00]]

)
|0〉〈0|+ [Qmα[S̃m, σ00]|1〉〈0| − [S̃m, σ00]Qmα∗|0〉〈1|

+[S̃m, Qmασ00]|1〉〈0| − [S̃m, σ00Qmα∗]|0〉〈1| (46)

B. Termσ10|1〉〈0|:

[S̃m +Qm|α|2, [S̃m, σ10]]|1〉〈0|+Qm[S̃m, σ10]|1〉〈0|+ α∗Qm[S̃m, σ10]|0〉〈0| − [S̃m, σ10]Qmα∗|1〉〈1|+
√
2αQm[S̃m, σ10]|2〉〈0|

+[S̃m, [Qm|α|2, σ10]]|1〉〈0|+ [S̃m, Qmσ10]|1〉〈0|+ [S̃m, α∗Qmσ10]|0〉〈0| − [S̃m, σ10Qmα∗]|1〉〈1|+
√
2[S̃m, αQmσ10]|2〉〈0|(47)

C. Termσ11|1〉〈1|:

[S̃m +Qm|α|2, [S̃m, σ11]]|1〉〈1|+ [Qm, [S̃m, σ11]]|1〉〈1|+ α∗Qm[S̃m, σ11]|0〉〈1| − [S̃m, σ11]Qmα|1〉〈0| (48)

+[S̃m, [Qm|α|2, σ11]]|1〉〈1|+ [S̃m, [Qm, σ11]]|1〉〈1|+ [S̃m, α∗Qmσ11]|0〉〈1| − [S̃m, σ11Qmα]|1〉〈0| (49)

D. Termσ20|2〉〈0|:

[S̃m +Qm|α|2, [S̃m, σ20]]|2〉〈0|+ 2Qm[S̃m, σ20]|2〉〈0|+ α∗
√
2Qm[S̃m, σ20]|1〉〈0|

+[S̃m, [Qm|α|2, σ20]]|2〉〈0|+ 2[S̃m, Qmσ20]|2〉〈0|+ α∗
√
2[S̃m, Qmσ20]|1〉〈0| (50)

Part V

The next term is{Fm, σ}.
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A. Termσ00|0〉〈0|:

{S̃m +Qm|α|2, σ00}|0〉〈0|+ {Qmασ00|1〉〈0|+ σ00Qmα∗|0〉〈1|)} (51)

B. Termσ10|1〉〈0|:

{S̃m +Qm|α|2, σ10}|1〉〈0|+Qmσ10|1〉〈0|+ α∗Qmσ10|0〉〈0|+ σ10Qmα∗|1〉〈1|+
√
2αQmσ10|2〉〈0| (52)

C. Termσ11|1〉〈1|:

{S̃m +Qm|α|2, σ11}|1〉〈1|+ {Qm, σ11}|1〉〈1|+ α∗Qmσ11|0〉〈1|+ σ11Qmα|1〉〈0| (53)

D. Termσ20|2〉〈0|:

{S̃m +Qm|α|2, σ20}|2〉〈0|+ 2Qmσ20|2〉〈0|+ α∗
√
2Qmσ20|1〉〈0| (54)

Part VI

Wrapping up the above calculations in parts I-V, we find the following hierarchical equations for different components of ρSC

andσn

A. |0〉〈0| component:

dσn

00 = Ln

S [σ
n

00]dt− νnσ
n

00dt− i(E∗
pΛ + α∗OS)σ

n

10dt+ iσn†
10 (EpΛ + αOS)dt+ 2κα∗σn

10Λ + 2καΛσn†
10

+2κ(1 + Λ)σn

11(1 + Λ) +
∑

m≥1

ΓmD[F̃m]σn

00dt+
∑

m≥1

Γm(α∗Qm[S̃m, σn

10]− α[S̃m, σ†n
10 ]Qm + h.c.)dt

−i
∑

m≥1

L∑

a=0

(
[F̃m, σnma+1

00 + nmaRe(cma)σ
nma−1
00 ] + α∗Qm(σnma+1

10 + nmaRe(cma)σ
nma−1
10 )

−α(σ†nma+1
10 + nmaRe(cma)σ

nma−1
10 )Qm

)
dt

−
∑

m≥1

{F̃m, nmaσ
nma−1
00 }+ α∗Qmnmaσ

nma−1
10 + αnmaσ

†nma−1
10 Qm

+
√

2ηκ(e−iφαΛσn

00 + eiφα∗σn

00Λ + e−iφ(1 + Λ)σn

10 + eiφσ†n
10 (1 + Λ))dW

−
√

2ηκTr[e−iφαΛσn

00 + eiφα∗σn

00Λ + e−iφ(1 + Λ)σn

10 + eiφσ†n
10 (1 + Λ) + e−iφαΛσn

11 + eiφα∗σn

11Λ]σ
n

00dW(55)

B. |1〉〈0| component:

dσn

10 = Ln

S [σ
n

10]dt− νnσ
n

10dt− (iαOS + καΛ − i∆Λ)σn

00dt− i(OS +∆)σn

10dt− κ(1 + 2Λ)σn

10dt

+
∑

m≥1

ΓmD[F̃m]σn

10dt− ΓmQm[S̃m, σn

10]− Γm[S̃m, Qmσn

10]− ΓmαQm[S̃m, σn

00]− Γmα[S̃m, Qmσn

00]

+
∑

m≥1

Γmα[S̃m, σn

11]Qm + Γmα[S̃m, σn

11Qm]− Γm

√
2α∗Qm[S̃m, σn

20]− Γm

√
2α∗[S̃m, σn

20Qm]

−i
∑

m≥1

L∑

a=0

(
[F̃m, σnma+1

10 + nmaRe(cma)σ
nma−1
10 ] + αQm(σnma+1

00 + nmaRe(cma)σ
nma−1
00 )

+Qm(σnma+1
10 + nmaRe(cma)σ

nma−1
10 )− α(σnma+1

11 + nmaRe(cma)σ
nma−1
00 )Qm

+α∗
√
2Qm(σnma+1

20 + nmaRe(cma)σ
nma−1
20 )

)
dt

−
∑

m≥1

nma{F̃m, σnma−1
10 }+ nmaQmσnma−1

10 + αnmaQmσnma−1
00 + αnmaσ

nma−1
11 Qm + α∗nma

√
2Qmσnma−1

20

√

2ηκ(e−iφΛσn

10α+ eiφσn

10Λα
∗ +

√
2e−iφ(1 + Λ)σn

20)dW

−
√

2ηκTr[e−iφαΛσn

00 + eiφα∗σn

00Λ + e−iφσn

10 + eiφσ
†
n

10 + e−iφαΛσn

11 + eiφα∗σn

11Λ]ρ10dW (56)
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C. |1〉〈1| component:

dσn

11 = Ln

S [σ
n

11]dt− νnσ
n

11dt+ (σn

10(iE∗
pΛ + iα∗OS) + h.c.)dt− κ{σn

11, 1 + 2Λ}
+

∑

m≥1

ΓmD[F̃m]σn

11dt−
∑

m≥1

Γm(α∗[S̃m, σn

11]Qm + α∗[S̃m, σn

10Qm] + h.c.)dt

∑

m≥1

Γm([Qm, [S̃m, σn
11]] + [S̃m, [Qm, σn

11]])− i
∑

m≥1

L∑

a=0

(
[F̃m, σnma+1

11 +Re(σnma−1
11 )] + [Qm, σnma+1

11 +Re(σnma−1
11 )]

−((σnma+1
10 +Re(σnma−1

10 ))Qmα∗ +Qm(σ†nma+1
10 +Re(σ†nma−1

10 ))α]))

−
∑

m≥1

nma{F̃m, σnma−1
11 }+ nma{Qm, σnma−1

11 }+ nmaα
∗σnma−1

10 Qm + nmaαQmσ†nma−1
10

+
√

2ηκ(e−iφΛσn

11α+ eiφσn

11Λα
∗)dW

−
√

2ηκTr[e−iφαΛσn

00 + eiφα∗σn

00Λ + e−iφσn

10 + eiφσ†n
10 + e−iφαΛσn

11 + eiφα∗σn

11Λ]σ
n

11dW (57)

D. |2〉〈0| component:

dσn

20 = Ln

S [σ
n

20]dt− νnσ
n

20dt− i2α∗(OS +∆)σn

20dt−
√
2κα(1 + 2Λ)σ†n

10

+
∑

m≥1

ΓmD[F̃m]σn

20dt+ 2Qm[S̃m, σn

20] + 2[S̃m, Qmσn

20] +
√
2αQm[S̃m, σn

10] +
√
2α[S̃m, Qmσn

10])
)
dt

−i
∑

m≥1

L∑

a=0

(
[F̃m, σnma+1

20 +Re(σnma−1
20 )] + [Qm, σnma+1

20 + Re(σnma−1
20 )]

2Qm((σnma+1
10 +Re(σnma−1

10 )) +
√
2αQm(σ†nma+1

10 +Re(σ†nma−1
10 ))

)

−
∑

m≥1

nma{F̃m, σnma−1
11 }+ nma{Qm, σnma−1

11 }+ nmaα
∗σnma−1

10 Qm + nmaαQmσ†nma−1
10

−
∑

m≥1

nma{F̃m, σnma−1
20 }+ 2nmaQmσnma−1

20 +
√
2αnmaQmσnma−1

10

+
√

2ηκ(e−iφ(1 + Λ)σn

20 + eiφσ†n
20 (1 + Λ))dW

−
√

2ηκTr[e−iφαΛσn

00 + eiφα∗σn

00Λ + e−iφσn

10 + eiφσ†n
10 + e−iφαΛσn

11 + eiφα∗σn

11Λ]σ
n

20dW (58)

In the limit of largeκ ≫ {|OS |(1+ |α|2),
∑

m≥1 Γm||Qm||,
∑

m≥1 |α|2λ||Qm||} the off-diagonal terms{ρ10, ρ20, σn
10, σ

n
20}

decay faster than diagonal terms. We can then solve forσk
10

σk
10 = − 1

κ+ νn + i∆
(iαOS + καΛ)σk

00 + σk
11

1

κ+ νn + i∆
(iαOS + καΛ) +O(ǫ2) (59)

Now we are ready to put everything together and find the final expression for the system only dynamical equation. We sum
up the above equations fordσn

00 anddσn
11 to find the SHEM:

dσn = Ln

S [σ
n]dt− νnσ

ndt+
(κ+ νn)|α|2

(κ+ νn)2 +∆2
D[OS ]σ

ndt+
i∆|α|2

(κ+ νn)2 +∆2
[O2

S , σ
n]dt+

∑

m≥1

ΓmD[F̃m]σn

−i
∑

m≥1

L∑

a=0

[F̃m, σnma+1]dt− i
∑

m≥1

L∑

a=0

nma(cma(F̃m)σnma−1 − c∗maσnma−1(F̃m))dt

−
√

2ηκH[e−iφ α

κ+ i∆
(i(1 + Λ)OS + κΛ2)]σndW (60)

The associated detector signal is

dQ = β[−2ηκ〈(1 + Λ)(e−iφρ10 + eiφρ†10)〉dt +
√

2ηκdW ]

= β[2η|α|〈 κ

κ2 +∆2
(1 + Λ)[sin(θ)OS + κ cos(θ)Λ〉dt +

√

2ηκdW ] (61)
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FIG. 3: A, B, and D: averaged power spectral densities of the detector current for different parametersγ andλ of the Drude-Lorentz environ-
ment spectral density and temperatureT (values indicated in the figure). C: Drude-Lorentz environment spectral densities for four different
values ofγ (values indicated in the figure; all for the sameλ, which is simply a global prefactor). The vertical line atω = 1 marks the
transition energy of the two-level system.

whereθ = φ− arg(α) − arctan(∆/κ).

E. Weak spectroscopy analysis of the system-environment coupling

The Weak Spectroscopy results presented in the paper (Figure 2) show a clear blue shift of the peak that depends on the
cut-off frequencyγ of the environment. Decreasing the cut-offγ leads to a stronger non-Markovianity of the environment.
Thus, the peak shift, which becomes larger for decreasingγ, could serve as an indicator for the degree of non-Markovianity. We
show here how the spectra change when we vary not onlyγ, but also the parameterλ that scales the strength of the coupling
to the environment, as well as the temperature. Consider again an environment spectral density of the Drude-Lorentz form,
J(ω) = 2λγ ω

ω2+γ2 . This spectral density is shown In Figure 3 tfor four different values of the cut-off energyγ.
Figures 3 A and B show the detector spectra for the same valuesof cut-off γ and temperature as previously used for the

calculations shown in the paper (Figure 2). However, the coupling to the environment is made stronger by factor of 5 in Figure 3
A, and by a factor of 20 in Figure 3 B, i.e., the coupling strength parameter takes the valuesλ = 0.25 andλ = 1, respectively.
All other parameters of the calculation are the same as for inFigure 2 in the paper. Figure 3 A shows that for a moderate increase
in coupling strength, the peaks are broader compared to those in the paper (Figure 2), but the shifts of the peak maxima remain
roughly the same. We can relate this behavior to the spectraldensities for the correspondingγ values shown in Figure 3 C. In the
neighborhood of the transition energy of the two-level system, marked with the vertical line, the spectral density grows whenγ is
decreased, in a similar fashion as it would grow on increase of λ (which is just a prefactor in the Drude-Lorentz spectral density).
Accordingly, the peaks in the detector spectra broaden whenγ is decreased or whenλ is increased, due to the stronger coupling
of the two-level transition to the environment. Beyond this, however, a shift of the peak in the detector spectrum occurswhen
the cut-off energyγ of the spectral density is reduced and approaches the two-level transition. That gives additional information
about the character of the coupling to the environment, in particular, of the degree of non-Markovianity.

In Figure 3 B, the coupling strengthλ is further increased and the peaks become even broader. Additonally, now for the smaller
values ofγ, the spectral densiy in the neighborhood of the two-level transition is so large that the coupling to the environment
damps out the oscillations in the detector current, leadingto very broad peaks at zero frequency in the detector spectrum for
γ = 5, 10. This damping of the oscillations was already apparent in the rise of the low energy contributions in Figure 3 A.
Further investigations show that increasing the temperature leads to additional broadening of the peaks in the detector spectra.
As an example, in Figure 3 D we show detector spectra for a temperature that is higher by a factor of 25. For this example we
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choose a large cut-offγ = 500, since for smallerγ the peaks would be excessively broad. Increasing the coupling strengthλ
now shows a similar broadening of the peaks and subsequent damping of the oscillations as seen above for decreasingγ. These
observations are consistent with the above explanation based on the form of the environment spectral density in relation to the
position of the two-level transition.

F. Details of the simulations

The detector output spectra in the paper (Figure 2) and 3 werecalculated using the general SHEM equations up to the second
order in Ito form Eq.(15). We calculate the stochastic detector current of the weak measurement over time by solving the SHEM
equations with a Runge-Kutta method (of order 1 and 1.5) thatgives strong solutions. The numerical integration part of our
simulation uses Fortran 90 routines partly based on routines provided by Ref.[49]. For the calculation of the power spectral
density of the detector current we use the Python routine matplotlib.mlab.psd. To calculate the averaged power spectral densities
of the detector current, shown in the paper (Figure 2) and 3, we averaged over105 individual power spectra of indiviadual
stochastic trajectories of the detector current. For the two spectra in Figs. 3 B forγ = 5, 10, however, where the coupling to the
environment is so strong that the oscillations of the detector current are damped out, 24% (forγ = 5) and 3% (forγ = 10) of
the trajectories diverged and were not taken into account inthe averaging.




