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ORIGINAL ARTICLE

Metabolic interdependencies between
phylogenetically novel fermenters and respiratory
organisms in an unconfined aquifer

Kelly C Wrighton1, Cindy J Castelle2, Michael J Wilkins1,3, Laura A Hug2, Itai Sharon2,
Brian C Thomas2, Kim M Handley4, Sean W Mullin2, Carrie D Nicora5, Andrea Singh2,
Mary S Lipton5, Philip E Long6, Kenneth H Williams6 and Jillian F Banfield2,5

1Department of Microbiology, The Ohio State University, Columbus, OH, USA; 2Department of Earth and
Planetary Science, University of California, Berkeley, Berkeley, CA, USA; 3School of Earth Sciences,
The Ohio State University, Columbus, OH, USA; 4Department of Ecology and Evolution, University of
Chicago, Chicago, IL, USA; 5Pacific Northwest National Laboratory, Department of Energy, Biological
Sciences Department, Richland, WA, USA and 6Lawrence Berkeley National Laboratory, Department of
Energy, Berkeley, CA, USA

Fermentation-based metabolism is an important ecosystem function often associated with
environments rich in organic carbon, such as wetlands, sewage sludge and the mammalian gut.
The diversity of microorganisms and pathways involved in carbon and hydrogen cycling in
sediments and aquifers and the impacts of these processes on other biogeochemical cycles remain
poorly understood. Here we used metagenomics and proteomics to characterize microbial
communities sampled from an aquifer adjacent to the Colorado River at Rifle, CO, USA, and
document interlinked microbial roles in geochemical cycling. The organic carbon content in the
aquifer was elevated via acetate amendment of the groundwater occurring over 2 successive years.
Samples were collected at three time points, with the objective of extensive genome recovery to
enable metabolic reconstruction of the community. Fermentative community members include
organisms from a new phylum, Melainabacteria, most closely related to Cyanobacteria, phylogen-
etically novel members of the Chloroflexi and Bacteroidales, as well as candidate phyla genomes
(OD1, BD1-5, SR1, WWE3, ACD58, TM6, PER and OP11). These organisms have the capacity to
produce hydrogen, acetate, formate, ethanol, butyrate and lactate, activities supported by proteomic
data. The diversity and expression of hydrogenases suggests the importance of hydrogen
metabolism in the subsurface. Our proteogenomic data further indicate the consumption of
fermentation intermediates by Proteobacteria can be coupled to nitrate, sulfate and iron reduction.
Thus, fermentation carried out by previously unknown members of sediment microbial communities
may be an important driver of nitrogen, hydrogen, sulfur, carbon and iron cycling.
The ISME Journal (2014) 8, 1452–1463; doi:10.1038/ismej.2013.249; published online 13 March 2014
Subject Category: Integrated genomics and post-genomics approaches in microbial ecology
Keywords: metagenomics; proteomics; candidate phylum; hydrogenase; fermentation; sulfate
reduction; microbial diversity

Introduction

Carbon turnover in reservoirs, such as the ocean,
soil and subsurface sediments, occurs through a
range of abiotic and biotic processes operating over
highly divergent timescales, with short to very long-
term impacts on atmospheric chemistry and global

climate. Information on microbial roles in acquisi-
tion, transformation and exchange of carbon and
other resources is needed as inputs for global
carbon-cycling models (Riley et al., 2011; Grant
et al., 2012). At this time, few studies have focused
on the microbial membership or carbon-induced
biogeochemical cycling in anoxic sediments, which
may contain a substantial fraction of Earth’s biomass
(Whitman et al., 1998).

Stimulation of subsurface regions by organic
carbon amendments can selectively increase the
activity and abundance of selected microorganisms,
thus more easily enabling ‘omics’-based studies of
microbial biogeochemical cycling in sediments.
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Previously, we demonstrated that 2 years of succes-
sive acetate amendment to groundwater from a
site of former heavy-metal contamination enabled
recovery and physiological prediction for 49 mem-
bers from previously genomically un-sampled and
uncultivated bacterial phyla, designated as candi-
date phyla (CP). The results uncovered an obligatory
fermentation-based lifestyle in CP organisms includ-
ing members of SR1 (previously referred to as
ACD80), OP11, OD1, PER, BD1-5 and WWE3 (three
genomes previously assigned to OD1; Wrighton
et al., 2012). This finding was later supported by
complete genomes for members of SR1, OD1 and
WWE3 recovered from acetate-stimulated sediments
from this same site (Kantor et al., 2013). These phyla
have been identified from non-carbon amended
sediments from the same metal-contaminated aqui-
fer (Castelle et al., 2013) and pristine environments
(Briée et al., 2007; Peura et al., 2012).

Here, we describe the organisms responsible for
biogeochemical processes ongoing in the aquifer via
comprehensive analysis of the entire community
metagenomic data set. We use proteogenomic-
enabled metabolic analyses to identify roles for
uncultivated and previously uncharacterized mem-
bers of the subsurface bacterial community. We have
partitioned biogeochemical traits into functional
guilds and identified the metabolic interdependen-
cies across the microbial community. The results
uncover an integrated web of bacterial (and phage)
interactions and linking fermentation and respira-
tory metabolisms to carbon, hydrogen, sulfur, nitro-
gen and iron cycling in the aquifer.

Materials and methods

Sampling, sequencing and assembly
Acetate, an abundant fermentation byproduct in
anoxic systems, was added to groundwater in an
alluvial aquifer adjacent to the Colorado River, CO,
USA in a region previously stimulated the year
before by acetate addition (Supplementary Figure
S1A). Microbial community samples (denoted sam-
ple A, C and D) were collected 5, 7 and 10 days after
the start of acetate addition to the aquifer at the Rifle
Integrated Field Research Challenge site in Color-
ado, in August 2008. At the time of sampling during
the second year stimulation (samples A, C, D),
acetate concentrations ranged from B0.6 to 1.2 mM

(Supplementary Figure S1A). Additional details of
the geochemistry and trace elements are provided
(Supplementary Figure S1 and Williams et al.,
2011).

Previously, we reported details on the microbial
community assembly and sampling (Wrighton et al.,
2012) and have summarized the methods here.
Microbial cells from pumped groundwater that
passed through a 1.2 mm pre-filter, but not a 0.2 mm
filter, were frozen immediately upon collection for
DNA and protein extractions. Illumina sequences

from DNA extracted from each of three samples
were assembled individually, then co-assembled
(denoted as assembly ACD). A total of 24 Gbp was
used in the final iterative Velvet co-assembly
(Sharon et al., 2013).

From assembly to genomes: ESOM-based binning
Genome fragments were clustered using emergent
self-organizing map (ESOM) analysis of their tetra-
nucleotide sequence composition (Dick et al., 2009).
The primary map structure was established using
5-kb fragments (all fragments 410 kb were subdi-
vided into 5-kb segments). In addition to tetranu-
cleotide information, we projected the relative
abundance of the genome fragments in early to
late samples (ratio (A)/(D)) onto the ESOM to further
differentiate clusters. To avoid potential mis-
binnings, protein-coding genes associated with a
genome bin were confirmed to have the same
phylogenetic affiliation, guanine-cytosine content
and coverage as the predominant core genes in the
genome bin, and to match 16S ribosomal RNA
(rRNA) genes where available. For additional
details, see Supplementary Online Materials (SOM).

Genome annotation and proteomics
Details of the annotation and proteomic analysis
were published previously (Wrighton et al., 2012);
information is also included in the SOM. Genes
were predicted and annotated on assembled contigs
in each genomic bin. These predicted proteins
formed a database that was searched via SEQUEST
with collected 2D-LC-MS/MS data from extracted
biomass. SEQUEST peptide identifications were
filtered using MSGF cutoffs (1e-10), with spectral
count data for each identified protein subsequently
normalized using NSAF calculations.

Genome bin completion estimates and phylogenetic
assignment
Our primary method for assessing genome comple-
teness was based on the presence or absence of
orthologous groups representing a core gene set that
typically occur only once per genome and are
widely conserved among bacteria and archaea
(Raes et al., 2007). For ESOM bins with more than
one genome, protein-coding genes were assigned to
specific organisms within the bin by coverage,
phylogenetic identity and guanine-cytosine content.

Open-access database for genome analyses
A summary of ESOM bin size, guanine-cytosine
content and phylogenetic identity is provided
at http://ggkbase.berkeley.edu/Rifle_ACD/organisms.
All genomic data are publically available using this
web service. ggKbase is designed around ‘live data,’
whereby projects are continuously updated and
improved (updates may include bin content and
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improvements to functional predictions; the project
name, organism names and gene names remain
consistent). We used the ‘lists’ and ‘genome
summary’ functions to assess genome completeness
and profile metabolic traits. Additional details on
analysis and annotation are included in the SOM.

Results and Discussion

Generation of draft genome bins representing
phylogenetically diverse lineages
The ESOM defined draft genome bins for many
organisms (Supplementary Figure S2). We recovered
87 genome bins, of which four were identified as
phage (ACD33, ACD84, ACD85 and ACD86) and two
as potential mobile elements (ACD71 and ACD74).
The remaining bins were bacterial; no genomic bins
were affiliated with Archaea. Previously, we reported
49 CP genomes (Wrighton et al., 2012). Here we focus
on the remaining genomes and the proteomics-
inferred metabolic networks that occur across the
community. A summary table of the proteomic data
are provided (Supplementary Table S1).

Bins were taxonomically assigned based on a
coherent phylogenetic signal from single-copy gene
markers, concatenated ribosomal protein trees and
16S rRNA gene trees, when recovered. We estimated
genome bins to be near-complete if they contain
475% of 35 single marker genes (Supplementary
Figure S3). The 20 near-complete genomes are
visualized on a concatenated ribosomal protein tree,
with the genomes first reported in this article
highlighted in red, prior CP genomes reported
(Wrighton et al., 2011) are also denoted (Figure 1).
For a detailed concatenated phylogenetic tree see
Supplementary Figure 4.

Twenty-two of the genomes reported here can be
assigned to phyla with cultivated representatives
and prior genomic sampling including the Proteo-
bacteria (19), Bacteroidetes (1), Chloroflexi (1) and
Firmicutes (1) (Table 1). With the exception of three
proteobacterial genomes, these ACD genomes
were divergent from those previously sequenced
(Figure 1). AAI comparisons between our ACD
genomes to nearest neighbor genomes supported
this conclusion. Only ACD10 (Dechloromonas spp.,
AAI 76±17, Supplementary Figure S5b), ACD54

Previously genomically sampled ACD Candidate Phyla 

SR1

PER

BD1-5

OP11

OD1

Existing sequenced reference genomes

ACD sequenced genomes described here

* Genomically unsampled phyla described here

*

*

WWE3

Figure 1 Maximum likelihood phylogenetic tree generated from concatenation of 16 ribosomal predicted proteins. The near-complete
ACD sequences are shown in red with inferred taxonomic assignment summarized in Table 1.
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(Rhodobacter spp., AAI 69±16; Supplementary
Figure S5a) and the dominant genome in the ACD6
bin (Acinetobacter spp., Supplementary Figure S5c)
had AAI values approaching 85%, which is the
criterion used by Goris et al. (2007) to assign
organisms to the same species.

Three additional genomes included here are
members of phyla that lack cultivated representa-
tives. A recovered 16S rRNA gene places ACD64, a
partial genome bin, in the TM6 lineage and ACD58,
previously reported as a divergent OD1 in Wrighton
et al. (2012), is now recognized as a separate
phylum level lineage, here named Berkelbacteria.
For another near-complete genome, ACD20, we used
a combination of core and 16S rRNA genes (o85%
identity) assign the organism to a novel phylum
called Melainabacteria, most closely related to the
Cyanobacteria (Di Rienzi et al., 2013; Figure 1).
Another near-complete genome, ACD47, lacks a 16S
rRNA gene sequence but, based on our concatenated
protein phylogenetic analyses, this genome repre-
sents a previously genomically unsampled phylum
(Figure 1, Supplementary Figure S5e). An additional
seven genomic bins lacked sufficient markers for
resolvable classification (for example, ACD79) and
are reported as unknown. In this category, ACD17
had some conserved markers related to Chlamydiae
(SOM). Overall, the results presented here underline

the phylogenetic novelty of these subsurface
groundwater samples.

Community metabolic genomic potential and
expression

Carbon degradation by phylogenetically novel
bacteria. In light of the importance of fermentation
previously identified in CP genomes (Wrighton
et al., 2012; Kantor et al., 2013), we screened the
entire community for genes encoding the hydrolysis
of plant-derived materials and chitin, the two most
abundant biopolymers (Berlemont and Martiny,
2013). We identified members of the OP11 (ACD38),
OD1 (ACD8) and a genomic fragment with unknown
affiliation (ACD79, 16x coverage) that could encode
the capacity for the complete degradation of cellulose
to monomeric carbon, which can be oxidized via
glycolysis. A gammaproteobacterial genome (ACD69)
contains an exocellulase with necessary residues for
functionality, but this organism lacks a b-glucosidase,
required to convert the cello-oligosaccharide product
to glucose (Supplementary Table S2, Figure 2).

Additional potential exocellulosic activity
may be associated, albeit by putative divergent
cellulases, with members of the WWE3 CP
(ACD24 and ACD25), OD1, OP11 and Proteobacteria.

Table 1 The phylogenetic affiliations of organisms discussed in this article

Near-complete
single-copy
genomes

Phylum Class Order Family Genus Nearest neighbor

ACD77 Bacteroidetes Bacteroidetes Bacteroidia Bacteroidales Undefined Alistipes and Rikenella spp.
ACD17a Chlamydiae Chlamydii Chlamydiales Undefined Undefined Simkania negevensis strain Z
ACD79a Undefined Undefined Undefined Undefined Undefined No clear phylogenetic signal (SI)
ACD34 Chloroflexi Anaerolineae Anaerolineales Undefined Undefined Anaerolinea thermophila UNI-1
ACD54 Proteobacteria Alpha Rhodobacterales Rhodobacteraceae Rhodobacter Rhodobacter sp. SW2
ACD16 Proteobacteria Alpha Rhodospirillales Undefined Undefined Members of Rhodospirillales
ACD23 Proteobacteria Beta Burkholderiales Comamonadaceae Undefined Members of the Comamonadaceae
ACD10 Proteobacteria Beta Rhodocyclales Rhodocyclaceae Dechloromonas Dechloromonas aromatica RCB
ACD75_I Proteobacteria Delta Desulfobacterales Desulfobulbaceae Undefined Desulfotalea LVS4
ACD62 Proteobacteria Delta Undefined Undefined Undefined ACD73 (no defined taxonomic

affiliation)
ACD73 Proteobacteria Delta Undefined Undefined Undefined ACD62 (no defined taxonomic

affiliation)
ACD75_II Proteobacteria Delta Syntrophobacterales Undefined Undefined Syntrophus aciditrophicus SB
ACD21 Proteobacteria Gamma Legionellales Coxellaceae Undefined (ACD69) and Coxiella spp.
ACD42 Proteobacteria Gamma Legionellales Coxellaceae Undefined Coxiella spp.
ACD69 Proteobacteria Gamma Legionellales Coxellaceae Undefined ACD21 and Coxiella spp.
ACD45 Proteobacteria Gamma Legionellales Coxellaceae Undefined ACD60 and Rickettsiella grylli
ACD60 Proteobacteria Gamma Legionellales Coxellaceae Undefined ACD45 and Rickettsiella grylli
ACD44 Proteobacteria Gamma Legionellales Coxellaceae Undefined Rickettsiella grylli
ACD6_II Proteobacteria Gamma Legionellales Coxellaceae Undefined Rickettsiella grylli
ACD6_I Proteobacteria Gamma Pseudomonadales Moraxellaceae Acinetobacter Acinetobacter lwoffii SH145
ACD64a TM6 Undefined Undefined Undefined Undefined First genomic sampling
ACD20, Novel Melainabacteria Undefined Undefined Undefined Undefined Novel phylum near Cyanobacteria
ACD58, Novel Berkelbacteria Undefined Undefined Undefined Undefined Novel phylum
ACD47, Novel Undefined Undefined Undefined Undefined Undefined Novel phylum near Spirochaetes

Organisms are assigned to the deepest possible taxonomic level whereby the organism was placed in a defined group with 480% bootstrap
support. Taxonomic levels for which no affiliation could be assigned based on existing reference genomes are marked as undefined. The ‘Nearest
neighbor’ column refers to the taxonomy of publically available genomic sequences closest in similarity to ACD.
aDenotes a partial genome with phylogenetic identity based on single-copy gene or 16S rRNA analyses.
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Endocellulase genes were also identified in an
incomplete Firmicutes genome (ACD 35) and a
Bacteroidales genome (ACD77). ACD cellulose-
degrading organisms may shape external carbon
pools, as the ACD79 cellulase (from an unknown
organism) is predicted to be localized to the outer
cell membrane, and the OP11 and gammaproteo-
bacterial enzymes are predicted to be localized
extracellularly.

Many organisms in the community have
b-glucosidases to degrade cello-oligosaccharides,
but lack genes for the initial steps in cellulose
breakdown mentioned above (Supplementary
Table S2). The lower incidence of pathways for
complete cellulose breakdown relative to those
for utilization of cellobiose is consistent with a
bioinformatic study that found genomes with only
cello-oligosaccharide utilization outnumbered cellulase-
containing genomes two to one (Berlemont and
Martiny, 2013). Compared with compost and peat
wetland soil metagenomic data sets (Allgaier et al.,
2010; Tveit et al., 2013), the ratios of hemicellulose:
cellulose genes were less, suggesting different
carbon sources between the systems selectively
enrich at the functional level (Figure 2). Genes for
chitin and N-acetyl-glucosaminidase (almost in a 1:1
ratio), suggest the capacity to completely degrade
this biopolymer to C-N residues is encoded in up
to 30 different organisms within the community
(Figure 2).

Carbon degradation can occur via respiration or
fermentation, with many organisms capable of both
processes. Of the aforementioned genomes that have
carbon degradation machinery, only those of the
Bacteroidales and Chloroflexi encode the machinery
to reduce oxygen, but not other electron acceptors
(SOM). Despite the broad genetic potential for
aerobic respiration (for example, cytochrome and
quinone oxidases) across the 87 genomes, we found
no proteomic evidence indicating oxygen reductases
are synthesized in this data set; a finding consistent
with oxygen levels below 0.1 p.p.m. detection limit

during the sampling period (Yabusaki et al., 2011).
The organisms capable of anaerobic respiration
(discussed below) do not have extensive carbon
degradation machinery. Taking these together, we
suggest fermentation is the primary mode of carbon
turnover in this system. Consistent with this
hypothesis, a significant fraction of organisms,
including Melainabacteria (ACD20) and members
of the OP11 and OD1, appear to be obligately
fermentative, and express genes for in situ carbon
degradation. This inference is based on the lack
of a complete tricarboxylic acid cycle, electron
transport chain components and terminal reduc-
tase/oxidases (Wrighton et al., 2012; Di Rienzi et al.,
2013).

Proteomics confirmed the synthesis of cellobiosi-
dases (weakly supported), alpha-amylases and
enzymes for monosaccharide degradation from
Bacteroidales, OD1, Chloroflexi and ACD20
(Supplementary Table S1). Previously, we presented
proteomic support for roles of OD1 and OP11
bacteria in the production of acetate, formate, lactate
and ethanol as fermentation end products (Wrighton
et al., 2012). Here we expand the list of organisms
capable of producing acetate (Bacteroidales,
ACD20), butyrate (Bacteroidales, ACD20), ethanol
(Bacteroidales, ACD20, Chloroflexi) and lactate
(ACD20) (Figure 4). Overall, uncultivated and
previously genomically unrepresented bacteria have
key roles in carbon cycling in this aquifer; roles that
could not have been assigned based on phylogeny
alone or using unbinned metagenomic data.

We were initially surprised that a non-fermentable
compound, like acetate, would stimulate a wide
phylogenetic and metabolic diversity of fermenta-
tive bacteria. A similar phenomenon, where the
addition of labile carbon-stimulated decomposition
of more recalcitrant carbon, described as ‘priming’,
has been well documented in soils and marine
systems, but has yet to be defined in the terrestrial
subsurface (Bianchi, 2011). Priming can be caused
by direct or indirect mechanisms (Kuzyakov et al.,
2000); here we suggest the latter is more likely.
We propose acetate amendment in the first year
stimulated microbial blooms (Wilkins et al., 2010)
and this resulting biomass contained a diversity of
carbon types that indirectly sustained a broader
diversity of organisms after the stimulation event.

Phage may also shape carbon pools in the subsur-
face (Engelhardt et al., 2011). Phage abundances and
proteomic identifications vary over time during the
stimulation event studied here (Supplementary
Table S1). We recovered four partial phage genomes,
all of which have genomic similarity to sequenced
phage that target Gammaproteobacteria. Phage lysis
of gammaproteobacterial cells (ACD44, ACD45,
ACD46 and ACD60) or other taxa responding to
acetate amendment may explain the decreased
abundance of these taxa over time. This could have
resulted in release of fermentable compounds,
possibly accounting for the major increase in
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obligatory fermentative bacteria at later time
points (for example, BD1-5 such as ACD3; OD1,
such as ACD1 and ACD5). The organismal changes
in relative abundance across the samples are
discussed in the SOM (Supplementary Figure S6).
Surprisingly, no spacer sequences extracted from the
CRISPR loci matched (even imperfectly) to any
phage in the data set, raising the possibility that
sample collection by filtration separated most phage
from their bacterial hosts (SOM).

Hydrogen economy may link fermentation and
respiratory processes. Molecular hydrogen is an
important metabolic intermediary in wetlands,
sewage sludge, serpentinized rocks and the intest-
inal track of insects and animals (Schmidt et al.,
2010; Ballor and Leadbetter, 2011; Brazelton et al.,
2012). It is possible a similar hydrogen exchange
may link fermentation and respiratory metabolisms
in aquifer communities, given the extensive evi-
dence for fermentation-based metabolism identified
in these genomes.

To this end, we identified all three genes in
confurcating FeFe hydrogenase complexes, which
are found in fermenters known to produce high
molar ratios of H2 (Schut and Adams, 2009; Sieber
et al., 2012). Two copies exist in the Bacteroidales
(ACD77) genome, while the novel phylum Melaina-
bacteria (ACD20) contains three copies (SOM).
Phylogenetic analyses confirmed that the hydroge-
nase sequences were most closely related to those
from fermentative organisms (Supplementary Figure
S7), as such we predict both organisms ferment
carbon to produce H2 in these samples.

Unlike FeFe hydrogenases, which are generally
considered to catalyze hydrogen production in
fermentative bacteria, the four phylogenetically
distinct groups of NiFe hydrogeneses can be
involved in either hydrogen production or con-
sumption. With NiFe hydrogenases, phylo-
genetic affiliation may provide insight into the
co-factors and potential physiological function. For
instance, group 1 NiFe hydrogenases are membrane-
associated enzymes commonly found in organisms
that use H2 as a donor for respiratory metabolism
(Vignais and Billoud, 2007). We recovered three
sequences in our data set, from genomes affiliated
with Geobacter, the Desulfobulbaceae (ACD75) and
a partial sequence on a genome fragment from a
plasmid likely associated with Geobacter spp.
(ACD74) (Supplementary Figure S8). We posit that
these link hydrogen uptake to a respiratory
metabolism.

The vast majority of hydrogenase catalytic subunit
genes in our data set belong to group 3 (types b, c,
and d) hydrogenases, which are physiologically
reversible with either H2 production or consumption.
In addition to the group 3b hydrogenases previously
reported from OD1 and OP11 genomes (Wrighton
et al., 2012), we recovered group 3b sequences from
two gammaproteobacterial genomes (ACD46 and

ACD21) and a partial sequence from the ACD79
genomic bin of unknown taxonomic assignment
(Supplementary Figure S8). Unlike the Archaeal
sulf-hydrogenase homologs in the obligately fermen-
tative Thermococcales, the physiological role for
NADP group 3b hydrogenases in the Proteobacteria
(for example, A. vinelandii and T. denitrificans) is
not yet known (Beller et al., 2006). The ACD79
genome bin has a second hydrogenase, and along
with sequences from the Chloroflexi (ACD34) and
Deltaproteobacteria (ACD 62) genomes, is most closely
related to group 3c sequences (Supplementary
Figure S8). A physiological role could not be
predicted for the group 3b hydrogenases in ACD79,
ACD46 and ACD21 or for the group 3c hydrogenase
in ACD62 and ACD79.

We also identified a group 3d hydrogenase in the
Chloroflexi genome (ACD34), as well as a partial
group 3d sequence from a genome related to
Dechloromonas (ACD10). We predict that the
Chloroflexi hydrogenases support a fermentative,
not respiratory, metabolism in situ, yielding hydro-
gen as a byproduct. This finding is supported by
cultivation studies using isolates closely related to
the Chloroflexi studied here (Yamada et al., 2006),
and a 75% shared amino-acid similarity between the
Chloroflexi and ACD34 hydrogenases. Alternatively,
for the ACD10 group 3d hydrogenase we infer a role
in hydrogen uptake, not production, based on
the high shared amino-acid identity (67%) to
Dechloromonas spp. that have been shown to use
hydrogen as an electron donor (Shrout et al., 2005).

Proteomics confirmed the in situ synthesis of the
FeFe hydrogenase from ACD20, and the NiFe
Chlamydiae group 3c, OD1 group 3b and Geobacter
group 1 hydrogenases (Supplementary Table S1).
The expression of Geobacter-affiliated uptake
hydrogenase gene detected here is consistent
with proteomic investigations from other acetate
stimulations at the site, where the authors con-
cluded hydrogen may be a donor for metal reduction
(Wilkins et al., 2013). From the ACD data, we
detected greater proteomic support for H2 produc-
tion relative to other fermentation end products
(Figure 4). Together our data suggest that H2

produced by phylogenetically novel fermentative
organisms is an important ecosystem currency,
potentially fueling a diversity of respiratory meta-
bolisms in the subsurface.

Diversity of multi-heme c-type cytochromes. Multi-
heme c-type cytochromes (MHCs) are metallopro-
teins that can have various biochemical roles,
including substrate catalysis and electron transfer
in many respiratory metabolisms, including anaerobic
ammonia oxidation as well as nitrite, oxygen and
iron reduction. Where iron-reducing bacteria require
direct contact with a mineral, MHCs localized in
both the periplasm and outer membrane transfer
electrons across the cell envelope. In iron-reducing
bacteria, the physiological importance for MHCs are
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clear from genomic data, with an abundance of
MHCs (average 437 per genome), each containing
multiple predicted heme-binding motifs (average
46 per protein) (Wrighton et al., 2011).

In addition to MHCs from Geobacter spp. that
have been extensively researched at Rifle (Aklujkar
et al., 2010), we recovered 43 MHCs (only 8
belonged to Geobacter) and 39 mono-heme c-type
cytochromes. Of the MHCs, 7 were predicted to be
localized in the periplasm, 10 others had a signal
peptide but localization could not be predicted and
3 were predicted to be extracellular (Supplementary
Table S3). One of the extracellular cytochromes was
associated with a phage, and another periplasmic
MHC was associated with a plasmid. These results
suggest that mobile elements and phage may transfer
physiological capabilities amongst microorganisms
in the subsurface.

Most MHCs were recovered from genomes
affiliated with members of the Proteobacteria. In
addition to Geobacter spp., we recovered MHCs
from organisms most closely related to Desulfotalea
psychrophila LVS4 (ACD75) and Dechloromonas
spp. (ACD10), which can both grow by soluble
ferric iron reduction (Knoblauch et al., 1999; Weber
et al., 2006). Although there are multiple organisms
with MHCs in the ACD75 bin, we could confidently
assign four c-type cytochromes (with 6, 4, 4 and 1
heme) to scaffolds from organisms most closely
related to Desulfotalea. Interestingly, the genome
from the most closely related isolate (D. psychrophila
LVS4) lacks annotated MHCs and reduces iron via a
yet unknown mechanism (Rabus et al., 2004).

We also recovered MHCs from phylogenetically
novel organisms. Three of these MHCs contain 23,
22 or 16 hemes, and are encoded by the ACD73
genome, which represents a novel order within the
Deltaproteobacteria (Supplementary Figure S5). One
c-type cytochrome with 10 hemes is encoded by a
very partial genome (ACD39) that lacks a confirmed
phylogenetic affiliation. Genomes that encode
multiple copies of MHCs with high heme content
(416) are rare, and are typically associated with
organisms capable of reducing insoluble iron miner-
als (for example, Shewanella, Anaeromyxobacter
and Geobacter; Sharma et al., 2010). Our findings
provide detailed and direct genomic evidence indicat-
ing that the capacity for metal reduction within the
aquifer extends beyond the Geobacteraceae.

Sulfate and iron reduction co-occur during secondary
stimulation. Sulfate reduction in the Rifle sedi-
ments and groundwater has been previously attrib-
uted to Desulfobacter spp. (Milleto et al., 2011;
Handley et al., 2012, 2013), while metagenome
reconstruction suggested sulfide re-oxidation was
attributed to Sulfurovum- and Sulfurimonas-like
Epsilonproteobacteria (Handley et al., 2013). None
of these genomically characterized sulfur-cycling
organisms were identified in these samples,
indicating the value of sampling different material

(planktonic vs sediment-attached) under varying
geochemical conditions (iron reduction vs sulfate
reduction) to capture the vast physiological diver-
sity in subsurface communities.

Here we recovered key genes for the transport,
activation and reduction of sulfate only from contigs
with best hits to the Desulfobulbaceae (ACD75). The
dominant genome within the bin (coverage 460X) is
from an organism most closely related to Desulfotalea
psychrophila LVS4. Genomic fragments with this
coverage encode key genes for the sulfate transport
and the activation and reduction of sulfate, including
ATP sulfurylase (sat), APS reductase (aprAB) and
dissimilatory sulfite reductase (dsrABCD). We also
identified sat and dsrAB encoded on medium
coverage (B40X) scaffolds and aprAB encoded on
low coverage (5X) scaffolds from this Desulfobulbaceae-
like bin (Supplementary Table S4, Supplementary
Figure S9). Proteomics confirmed the sat, apr and
dsr genes are synthesized from the three strains
across all time points (Supplementary Figure S10).

In addition, the presence of a sulfite:cytochrome
c oxidoreductase in conjunction with the DSR
pathway in the medium coverage genome (B40X),
may indicate the capacity for sulfur disproportiona-
tion, as occurs in other members of the Desulfobul-
baceae (Finster et al., 1998). Along these lines,
cultures in a defined medium with elemental sulfur
(S0) and amorphous ferric hydroxide (FeOOH)
formed sulfate via disproportionation (Thamdrup
et al., 1993). This process is consistent with the
geochemical conditions of the Rifle aquifer and
requires the coexistence of sulfate, sulfide, reactive
metals (FeOOH) and a high-turnover pool of
elemental sulfur (Supplementary Figure S1).

Sulfate reduction by ACD75 can be coupled to the
oxidation of lactate, ethanol, hydrogen and formate
(Figure 3). We were not able to reconstruct a
complete CODH/ACS pathway from any of our
genomes. Members of the Desulfobulbaceae (for
example, D. psychrophila LVS4) closely related to
our sulfate-reducing bacteria (SRB) are incomplete
oxidizers, generally not known to grow solely with
acetate (Friedrich et al., 2001; Knoblauch et al.,
1999). This is despite a complete tricarboxylic acid
cycle and genes for the conversion of acetate to
acetyl-CoA (Rabus et al., 2004). Supporting this,
dsrB gene transcripts from another Rifle experiment
found members of the Desulfobulbaceae were
constant before and during acetate stimulation
(Miletto et al., 2011). Our proteomics results support
the previously proposed decoupling of sulfate
reduction from acetate amendment for the
Desulfobulbaceae, with the synthesis of sulfate
reduction genes coinciding with the usage of
fermentation end-products (for example, ethanol)
rather than acetate (Figure 3).

Our proteogenomic findings indicating concurrent
iron reduction and sulfate reduction are consistent
with the studies of Druhan et al. (2012), who used
sulfur isotopes to identify early onset of sulfate
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reduction (during acetate stimulation) before detec-
tion of sulfide or statistically significant decreases in
groundwater sulfate from this same aquifer during
acetate stimulation. In addition, we offer a mechan-
ism for co-existence of iron-reducing and SRB by
niche partitioning, with Geobacter utilizing acetate
and certain SRB consuming end-products of
fermentation, thus explaining the large relative
abundance (41:1) of Desulfobulbaceae to Geobac-
teraceae by 16S rRNA gene copy number (Wrighton
et al., 2012) and genomic coverage in our data set.
Together our findings may have important ramifica-
tions for reactive transport models (Yabusaki et al.,
2011) that may currently underestimate the
biomass and activity of SRB during early acetate
stimulation and do not yet incorporate alternative
carbon sources and hydrogen into biogeochemical
predictions.

Given the proteomic support for sulfide produc-
tion by SRB and also potentially from OD1 3b
sulf-hydrogenases (Wrighton et al., 2012), we
evaluated the potential for sulfur oxidation in the

ACD community. A genome assigned to Rhodobac-
ter spp. (ACD54) contained a complete 16-gene
sulfur oxidation pathway (Sox). Like other purple
non-sulfur photosynthetic bacteria (for example,
Rhodovulum sulfidophilum; Friedrich et al., 2001),
ACD54 may be capable of chemolithotrophic growth
in the absence of light by coupling sulfur oxidation
to oxygen reduction via either the identified
aa3-type cytochrome c oxidase (80.8% AAI,
Oceanicola granulosus) or the high oxygen affinity
cbb3-type oxidase (73.68% AAI, Rhodobacter
sphaeroides). This organism may also degrade
carbon compounds (Supplementary Table S2), by
either an aerobic respiratory or fermentative
metabolism. Genes for the reduction of alternative
terminal electron acceptors or for phototrophy were
not identified, but ACD54 is a partial genome and
some physiology may not be sampled. Proteomics
suggest that sulfur cycling by ACD54 is not
physiologically active during these sampled time
points or that the synthesized protein was below
detection (Figure 3).
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Proteobacteria are responsible for denitrification.
Nitrate is the most prevalent groundwater contami-
nant and impacts drinking water resources on a
global scale (Rivett et al., 2008). Despite this, the
diversity and activity of nitrate-reducing bacteria
remains surprisingly understudied in the subsurface
relative to other ecosystems, such as soils or waste-
water treatment systems (Green et al., 2010). In our
samples, only members of the Proteobacteria
encoded the capacity for dissimilatory nitrate
reduction.

The ACD betaproteobacterial genomes are closely
related to known subsurface denitrifying bacteria
from Dechloromonas (ACD10) and members
of the Comamonadaceae, most closely related to
Acidovorax spp. (ACD23) (Coates et al., 2001;
Byrne-Bailey et al., 2010). Organisms closely related
to those studied here have been demonstrated to
have a role in nitrate, as well as selenium reduction
at this and other subsurface sites (Byrne-Bailey
et al., 2010). In ACD10, we recovered genes for
napAB (periplasmic nitrate reductase), nirS (nitrite
reductase), while ACD23 encodes narG (membrane-
bound nitrate reductase), nirS and nosZ (nitrous
oxide reductase) (Supplementary Table S5). Given
that these are partial genomes, it might be possible
that both organisms, like their nearest neighbors,
completely denitrify using acetate, hydrogen and
organic acids as donors. We also recovered genes
potentially involved in nitrate reduction (narGHIJ)
by sulfate-reducing ACD75 Desulfobulbaceae, as
well as the capacity for other nitrogen transforma-
tions by Geobacter spp., Bacteroidales and novel
members of the Deltaprotoebacteria (SOM). Proteomics
confirmed the ACD10 and ACD23 nirS proteins
were synthesized in situ (Supplementary Table S1).
However, given proteomic evidence for nitrite
reductase only, it is possible these proteins may
have other functions, including the detoxification or
reduction of oxygen or sulfite (Averill, 1996; Pereira
et al., 2000).

The ability to fix nitrogen was used to explain the
increasing dominance of Geobacter relative to other
iron-reducing bacteria during the course of biosti-
mulation (Zhuang et al., 2010). We therefore
examined the capacity for nitrogen fixation in our
genomes, based on the presence of the catalytic
subunit of the nitrogenase (nifH). In addition to
Geobacter (nifH confirmed by proteomics), we
identified cluster III nifH genes from obligately
fermentative ACD20 and sulfate-reducing Desulfo-
bulbaceae ACD75 (Zehr et al., 2003). Ultimately, the
use of proteogenomic data to infer nitrogen cycle
processes highlights the complementary value of
this approach when compared with geochemical
measurements that may fail to account for pathways
where substrates are in low abundance or consumed
in close concert with their production.

Interconnected metabolic networks are driven by
phylogenetically novel organisms. There is a

limited amount of research about the encoded and
manifested physiology of the vast majority of
microorganisms in subsurface sediments. Here, we
used community proteogenomics to predict over-
lapping resource utilization (that is, two species
consume shared resources) and cooperative interac-
tions (for example, where the metabolites produced
by one organism are consumed by another;
Figure 4). Ultimately, our research connects the
functional traits of carbon, hydrogen, metal, sulfur
and nitrogen cycling to a phylogenomic framework,
assigning phylogenetic identity to many processes
that were previously unknown or unassigned.

Our approach sheds light on the physiology of
phylogenetically novel fermentative bacteria from at
least six previously genomically unrepresented CP
and two novel phyla. We expanded the fermentative
capacity of CP (for example, OD1, WWE3 and OP11)
to include possible roles in cellulose and chitin
degradation, as well as assigning roles in carbon
degradation and hydrogen production to a member
of a new phylum, sibling to Cyanobacteria (ACD20,
Melainabacteria), Bacteroidales (ACD77) and Anae-
rolineae (ACD34) (Figure 4). Draft genomes for
members of the Anaerolineae have been documented
in unamended sediments from this same aquifer
(Hug et al., 2013) and complete genomes from the
Melainabacteria lineage were recovered from the
human intestinal tract (Di Rienzi et al., 2013).
Conclusions from these studies are consistent with
our proposed roles in carbon degradation, suggesting a
conserved functionality across ecosystems may exist
for some of the organisms identified here.

Our results show that the production of organic
acids and hydrogen by phylogenetically novel
fermenters fuels respiratory processes driven by
members of the Proteobacteria. Of the fermentative
metabolic end-products, the production of hydrogen
and ethanol was most strongly supported by our
proteomic data (Figure 4). The reasons for this may
include a selective advantage gleaned by an increase
in ATP production for organisms capable of
hydrogen over organic acid production (Herrmann
et al., 2008).

A notable finding from our research was proteomic
evidence for the co-existence of nitrite, sulfate and
iron reduction during early acetate stimulation.
Our proteogenomic results, in conjunction with
isotopic data (Druhan et al., 2012), is consistent
with findings where carbon excess resulted in
overlapping redox zones with co-occurring
reduction of multiple terminal electron accepting
processes (Roychoudhury and Merret, 2006). Our
genomic analyses suggest that the sulfate reduction
processes that occur during iron reduction phase
of the aquifer may be decoupled from acetate
amendment and instead rely on other fermentation
end-products (for example, hydrogen and ethanol;
Figure 4) and that SRB (for example, ACD75;
Desulfobulbacaea), fermentative sulfur reduction
via sulf-hydrogenases (for example, ACD1, 5, 15;
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OD1) and sulfur disproportionation (for example,
ACD75; Desulfobulbacaea) activity may produce
sulfide. Biogenic sulfide during early acetate
amendment could contribute to the abiotic reduc-
tion of iron geochemically detected in the aquifer
and previously almost exclusively attributed to
bioreduction by Geobacteraceae (Figure 4). Our
findings suggest that other phylogenetically
unclassified Deltaproteobacteria (other than
Geobacter spp.) may contribute to metal reduction
(Supplementary Table S3).

Future research is needed to discern the
broader obligate or facultative organism metabolic
interdependencies that exist for members of the
Rifle subsurface community. For instance, in addi-
tion to the metabolic interdependencies outlined in
Figure 4, a recent study documented that some
members of CP discussed here (for example, SR1,
ACD80) lack identifiable biosynthetic pathways and
may be dependent on members of the community
for key metabolites (Kantor et al., 2013). Our
research demonstrates how a proteogenomic
approach can assign microbial identity and meta-
bolic roles for bacteria that previously lacked
characterized physiologies. Ultimately this research
can untangle the metabolic interdependencies
that shape the structure, function and stability of
complex microbial communities.
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