UC Berkeley

UC Berkeley Electronic Theses and Dissertations

Title

Epigenetic Regulation Of Thermogenesis By Adipose Specific Tet1 And Role Of Dnmt3a In Endurance Exercise By Suppressing Aldh1l1-mediated Oxidative Stress

Permalink

https://escholarship.org/uc/item/7jh3g0xz

Author

Damal Villivalam, Sneha

Publication Date

2021
Peer reviewed|Thesis/dissertation

Epigenetic Regulation Of Thermogenesis By Adipose Specific Tet1 And Role Of Dnmt3a In Endurance Exercise By Suppressing Aldh1I1-mediated Oxidative Stress

By
Sneha Damal Villivalam

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in

Endocrinology
in the
Graduate Division
of the
University of California, Berkeley

Committee in charge:
Professor Sona Kang, Chair
Professor Hei Sook Sul
Professor Jen-Chywan Wang

Abstract
Epigenetic Regulation Of Thermogenesis By Adipose Specific Tet1 And Role Of Dnmt3a In Endurance Exercise By Suppressing Aldh1I1-mediated Oxidative Stress

By
Sneha Damal Villivalam
Doctor of Philosophy in Endocrinology
University of California, Berkeley
Professor Sona Kang, Chair

The first part of the thesis reports the role of Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) in beige adipocyte thermogenesis. It has been suggested that beige fat thermogenesis is tightly controlled by epigenetic regulators that sense environmental cues such as temperature. We report that subcutaneous adipose expression of the DNA demethylase TET1 is suppressed by cold and other stimulators of beige adipocyte thermogenesis. TET1 acts as an autonomous repressor of key thermogenic genes, including Ucp1 and Ppargc1a, in beige adipocytes. Adipose-selective Tet1 knockout mice generated by using Fabp4-Cre improves cold tolerance and increases energy expenditure and protects against diet-induced obesity and insulin resistance. Moreover, the suppressive role of TET1 in the thermogenic gene regulation of beige adipocytes is largely DNA demethylase-independent. Rather, TET1 coordinates with HDAC1 to mediate the epigenetic changes to suppress thermogenic gene transcription. Taken together, TET1 is a potent beige-selective epigenetic breaker of the thermogenic gene program. Our findings from this chapter may lead to a therapeutic strategy to increase energy expenditure in obesity and related metabolic disorders.

The second part of the thesis demonstrates the role of DNA (cytosine-5)-methyltransferase 3A (DNMT3A) in exercise regulation. Exercise can alter the skeletal muscle DNA methylome, yet little is known about the role of the DNA methylation machinery in exercise capacity. Here, we show that DNMT3A expression in oxidative red muscle increases greatly following a bout of endurance exercise. Muscle-specific Dnmt3a knockout mice have reduced tolerance to endurance exercise, accompanied by reduction in oxidative capacity and mitochondrial respiration. Moreover, Dnmt3a deficient muscle overproduces reactive oxygen species (ROS), the major contributors to muscle dysfunction. Mechanistically, we show that DNMT3A suppresses the Aldh1/1 transcription by binding to its promoter region, altering its epigenetic profile. Forced expression of ALDH1L1 elevates NADPH levels, which results in overproduction of ROS by the action of NADPH oxidase complex, ultimately resulting in mitochondrial defects in myotubes. Thus, inhibition of ALDH1L1 pathway can
rescue oxidative stress and mitochondrial dysfunction from Dnmt3a deficiency in myotubes. Finally, we show that in vivo knockdown of Aldh1/1 largely rescues exercise intolerance in Dnmt3a deficient mice. Together, we establish that DNMT3A in skeletal muscle plays a pivotal role in endurance exercise by controlling intracellular oxidative stress.

The aim of this dissertation work was to identify and characterize the role of adipose Tet1 in the epigenetic regulation of thermogenesis and the role of skeletal muscle Dnmt3a in exercise metabolism and oxidative stress. This may lead to a therapeutic strategy in obesity, related metabolic disorders and exercise intolerance.

Chapter 1 provides a detailed understanding of the mechanisms of DNMT3A and TET2, which may lead to identifying novel targets for the treatment of IR and relevant human diseases. Even though a plethora of studies have found that changes in DNA methylation are associated with metabolic dysregulation, the functional role is poorly understood. Here, I will review the currently available literature and point out the remaining questions to be answered in order to gain a better understanding of the mechanisms of DNMT3a and TET2.

Chapter 2 exhibits my efforts in characterizing the epigenetic role of DNA demethylase TET1 in suppressing key thermogenic genes. TET1 suppresses the thermogenic activation of beige adipocytes. Moreover, adipose-specific TET1 loss-of function in vivo led to increased energy expenditure and protection from diet-induced obesity, insulin resistance, and glucose tolerance. TET1 coordinates with HDAC1 to suppress thermogenic gene transcription in a DNA demethylase-independent manner. These findings will open new avenues for developing therapeutic strategies to increase energy expenditure in obesity and related metabolic disorders.

Chapter 3 shows the previously unknown role of DNMT3A in endurance exercise skeletal muscle mitochondrial biology. DNMT3A expression in oxidative red muscle increases greatly following a bout of endurance exercise. Mechanistically, we reveal that ALDH1L1 serves as a novel molecular link that contributes to oxidative stress and mitochondrial dysfunction following the loss of Dnmt3a in red muscle. This is of great importance from the standpoint of exercise physiology, as physical activity is strongly encouraged as a key strategy for preventing and treating a wide range of human diseases.

Chapter 4 concludes my work on the role of epigenetic enzymes TET1 and DNMT3A in metabolism and related disorders. Further, it also presents future directions and additional questions to get a further understanding.

Table of contents

Abstract 1
Table of contents i
List of figures ii
List of tables v
Acknowledgments vi
Chapter 1: DNMT3a and TET2 in adipocyte insulin sensitivity 1
Abstract 2
Role of DNMT3A in insulin resistance 2
Role of TET2 in insulin resistance 2
Outstanding questions 3
Conclusions 4
References 4
Chapter 2: TET1 is a beige adipocyte-selective epigenetic suppressor of thermogenesis 5
Abstract 6
Introduction 6
Results 7
Discussion 23
Methods 25
Acknowledgements 30
References 69
Chapter 3: A necessary role of DNMT3A in endurance exercise by suppressing ALDH1L1-mediated oxidative stress 64
Abstract 65
Introduction 66
Results 67
Discussion 80
Methods 83
Acknowledgements 86
References 107
Chapter 4: Conclusion 111

List of figures

Chapter 1

Figure 1: Proposed model of TET2 as a regulator of PPARy-dependent transcriptionin adipocytes

Chapter 2

Main Figures

Figure 1. Subcutaneous adipose Tet1 expression is regulated by ambient temperature and cAMP signaling

Figure 2. Tet1 loss-of-function in vitro increases thermogenesis in beige adipocytes.
Figure 3. Tet1 gain-of-function in vitro suppresses thermogenesis in beige adipocytes.
Figure 4. Adipose-specific Tet1-KO mice show improved cold tolerance.

Figure 5. Adipose-specific Tet1-KO mice are protected from diet-induced obesity and metabolic dysregulation.

Figure 6. TET1 suppresses the thermogenic gene program in a DNA demethylaseindependent manner.

Figure 7. TET1 coordinates the epigenetic remodeling of the regulatory regions of Ucp1 and Ppargc1a by coordinating with HDAC1.

Chapter 3

Figure 1. MCK-Dnmt3a KO mice display a reduced tolerance to endurance exercise
Figure 2. MCK-Dnmt3a KO mice display increased muscle damage following exercise
Figure 3. Dnmt3a-KO soleus muscle displays a decreased oxidative capacity with a reduced mitochondrial respiration

Figure 4. Transcriptome analysis identifies Aldh1/1 as a key target gene of DNMT3A in the soleus muscle

Figure 5. ALDH1L1 contributes to the oxidative stress and mitochondrial defect in loss of Dnmt3a

Figure 6. NAC treatment partially rescues reduced oxidative capacity in Dnmt3a KD myotubes and exercise intolerance in MCK-Dnmt3a KO mice

Figure 7. ALDH1L1 knockdown in vivo partially rescues exercise intolerance in MCKDnmt3a KO mice

List of Tables

Chapter 2

Supplementary Table 1 Gene list in Figure 4I and Supplementary Figure 9b-c
Supplementary Table 2. Oligonucleotide sequences used in this manuscript.

Chapter 3

Appendix Table S1. Oligonucleotide sequences used in this manuscript

Acknowledgments

First and foremost, thanks to my adviser and mentor, Dr. Sona Kang for taking a chance on me and giving me the greatest opportunity of my life. Her drive, knowledge and exacting attention to detail has been an inspiration and kept my work on track from the first day of my graduate study. I would not have developed as a well-rounded researcher without her mentorship and persistence in me. Being her first PhD student, I worked very closely with her over the years. She taught me how to multitask, grasp techniques fast, and execute experiments without errors. I also express my deepest gratitude for taking the time to guide me for not only my research work but also providing me with instant feedbacks on my scientific writing, motivating me to mentor undergraduate students, and training me to give scientific presentations. She coached me to be a team player by involving me in multiple collaboration projects both within our lab and other labs. She actively created opportunities for me to learn several new techniques and always pushed me to achieve beyond my limits. I would not have been able to accomplish nearly as much as I have without her.

A special thanks to Dr. Hei Sook Sul, being a great pillar of support throughout my PhD. I would not have made it this far without her motivation. My sincere gratitude for truly caring about me and taking the time to help me through the various stages of my graduate school. I will always be indepted for her kindness. I would like to thank Dr. Wally Wang for his support and guidance over the years. His positive comments and reassurance during my qualifying exams and endocrinology seminars helped me moved forward.

During my PhD I was fortunate to work with amazing former and current lab members. My Sincere thanks to my colleagues in the lab, Dr. You, Dr. Jung, Dr. Ma, Dr. Bian, Jinse Kim and Han Xu who have stood by me through thick and thin. All of them have made great contribution to all the projects. I'm also glad to have worked with wonderful undergraduate students Sarah Fung, Lilian Kim, Anna Pi, Tabitha Tcheau, Sarah Ampaloor, Mrinalini Jain, Pouya Amin and Camella Alvarez.

I will not be who I am today without the inspiration and affection of my loving parents, amazing husband, our wonderful family and friends. They have helped me focus on my PhD by taking care of every other aspect in my life. Thanks for spending sleepless nights with me, helping me prepare for important presentations, providing me emotional support and much more. I will forever cherish their love and endless support.

Chapter 1:
 DNMT3a and TET2 in adipocyte insulin sensitivity

DNMT3a and TET2 in adipocyte insulin sensitivity

Abstract

Insulin resistance (IR) is a key pathogenic feature of type 2 diabetes and occurs in a wide array of other maladies including obesity, aging, cardiovascular disease, and certain typesof cancer. It results from an intricate interaction between genetic make-up and environment, suggesting it's orchestrated by epigenetic mechanisms. In fact, a plethora of studies have found that changes in DNA methylation are associated with metabolic dysregulation [1,2], but methylation's functional role is poorly understood. In this chapter we will review in detailthe known mechanisms of DNA methylation activity of DNMT3a and TET2 in IR. Further, list the outstanding questions that still remain unanswered.

Role of DNMT3A in insulin resistance

DNA methylation is an epigenetic mark involving the covalent transfer of a methyl group tothe C-5 position (5mC) of cytosine by DNA methyltransferases (DNMTs). The initial findingthat DNMT levels are significantly increased in diet-induced obesity and genetically obeseob/ob mice led us to postulate that it plays a large role in IR [3]. We found that DNMT3a, inparticular, is both necessary and sufficient to mediate IR in cultured mouse and human adipocytes. Indeed, adipose-specific Dnmt3a knockout mice are protected from diet-induced IR and glucose intolerance, with no change in their body weight or composition. Through RNA-seq studies, we found that an important downstream target is Fgf21, which is known to facilitate glucose uptake in adipocytes. In patients with diabetes, DNA methylation at the FGF21 locus is elevated in association with decreased expression of FGF21 in adipose tissue. Importantly, FGF21 expression partially rescues Dnmt3a- mediated IR in vitro, indicating that it is helping mediate the effect of DNMT3a on IR.

Role of TET2 in insulin resistance

DNMTs methylate DNA, but this methylation can be erased by the TET proteins (TET1, 2, and 3), which oxidize 5 mC to hydroxymethylcytosine (5 hmC), which is then converted to unmethylated cytosine (5C) through base excision repair (BER) and thymidine DNA glycosylase (TDG) [4]. Given the functional role of DNMT3a in the development of IR, we hypothesized that the TET proteins play a counter-regulatory role. Indeed, adipose expression of TET2 is significantly decreased in diet-induced IR [5], and TET2 gain-offunction promotes insulin sensitivity while loss-of-function is necessary for insulin sensitization of PPARy agonist, Rosiglitazone (Rosi). TET2 is required for Rosi-dependent gene activation of certain PPARy targets, which is accompanied by changes in the DNA demethylation profile at their promoter regions (Figure 1). Furthermore, TET2 physically interacts with PPARy to sustain PPARy binding to target loci upon PPARy activation with Rosi (Figure 1). Together, these studies suggest that TET2 facilitates the transcriptional activity and insulin-sensitizing efficacy of PPARy.

In line with these findings, Wu et al recently published work revealing a novel axis between TET2 and AMPK in the regulation of glucose homeostasis [6]. This study found that hyperglycemia destabilizes TET2 through inhibiting AMPK-mediated TET2 phosphorylation at Ser99, which leads to downregulation of global 5 hmC levels in the blood of diabetic patients. Furthermore, hyperglycemia-promoted tumor growth was suppressed by TET2, and the anti-tumor effect of Metformin appears to require the AMPK-TET2-5hmC axis. Together, these studies suggest that TET2 is a critical epigenetic sensor/regulator of glucose in the cell. It will be of great importance to find out whether this regulatory loop can be found in adipose and other metabolic tissues in the context of obesity and diabetes

Figure 1: Proposed model of TET2 as a regulator of PPARy-dependent transcriptionin adipocytes. TET2 physically interacts with PPARy to sustain PPARY binding at PPARy responsive elements (PPREs) and to facilitate the transcriptional activation of PPARy in response to Rosiglitazone (Rosi). TET2 causes demethylation at the promoter regions of some PPARy target genes such as Adipoq in a site-specific manner, which canaffect insulin sensitivity. Based upon recent finding by Wu et al, it is postulated that AMPKmay act as an upstream of TET2 in adipocytes (Open circle; demethylated CpG).

Outstanding Questions

Several important questions still remain: 1) Do DNMT3a and TET2 directly converge to regulate insulin sensitivity? They functionally oppose one another, but physical interaction between the two was not detectable by co-immunoprecipitation, and most of their gene targets do not overlap [3,3,5]. 2) What is the in vivo role of TET2 in adipose and other tissues? Studies on TET2 were conducted using cultured adipocyte models, thus physiological validation using tissue-specific knockout and transgenic mouse models will
be critical. It will be intriguing to investigate whether adipose-specific Tet2- knockout mice are refractory to Rosi-driven insulin sensitization. 3) How do DNMT3a and TET2 affect theadipose epigenome?

Conclusion

Investigation into the DNA methylation activity of DNMT3a and TET2 has been limited to the promoter regions of key target genes, but gene bodies and enhancers may also be methylated, having different impacts on gene regulation depending on the function of the region and CpG density. To gain a more comprehensive understanding, global DNA methylation profiling studies will be necessary, ideally using in vivo models. Answering these questions will lead to a more detailed understanding of the mechanisms of DNMT3a and TET2, which may lead to identifying novel targets for the treatment of IR and relevant human diseases.

References

1 Barres, R. and Zierath, J.R. (2011) DNA methylation in metabolic disorders. Am. J. Clin. Nutr. 93, 897S - 900

2 Davegårdh, C. et al. (2018) DNA methylation in the pathogenesis of type 2 diabetes in humans. Mol. Metab. 14, 12-25
3 You, D. et al. (2017) Dnmt3a is an epigenetic mediator of adipose insulin resistance. elife 6,

Benner, C. et al. (2015) New roles for DNA cytosine modification, eRNA, anchors, and superanchors in developing B cell progenitors. Proc Natl Acad Sci USA112, 1277612781
5 Bian, F. et al. (2018) TET2 facilitates PPARy agonist-mediated gene regulation and insulin sensitization in adipocytes. Metab. Clin. Exp. 89, 39-47
6 Wu, D. et al. (2018) Glucose-regulated phosphorylation of TET2 by AMPKreveals a pathway linking diabetes to cancer. Nature 559, 637-641

Chapter 2: TET1 is a beige adipocyte-selective epigenetic suppressor of thermogenesis

TET1 is a beige adipocyte-selective epigenetic suppressor of thermogenesis

Abstract

It has been suggested that beige fat thermogenesis is tightly controlled by epigenetic regulators that sense environmental cues such as temperature. Here, we report that subcutaneous adipose expression of the DNA demethylase TET1 is suppressed by cold and other stimulators of beige adipocyte thermogenesis. TET1 acts as an autonomous repressor of key thermogenic genes, including Ucp1 and Ppargc1a, in beige adipocytes. Adipose-selective Tet1 knockout mice generated by using Fabp4-Cre improves cold tolerance and increases energy expenditure and protects against diet-induced obesity and insulin resistance. Moreover, the suppressive role of TET1 in the thermogenic gene regulation of beige adipocytes is largely DNA demethylase-independent. Rather, TET1 coordinates with HDAC1 to mediate the epigenetic changes to suppress thermogenic gene transcription. Taken together, TET1 is a potent beige-selective epigenetic breaker of the thermogenic gene program. Our findings may lead to a therapeutic strategy to increase energy expenditure in obesity and related metabolic disorders.

Introduction

Mammals have at least two types of thermogenic adipocytes, brown and beige, that play a central role in regulating energy homeostasis[1,2]. In rodents, classical brown adipose tissue (BAT) exists in discrete anatomical depots, such as the interscapular regions, while beige adipocytes sporadically arise within white adipose tissue (WAT)[1,2]. These two thermogenic adipocyte subtypes are similar in multiple respects: both contain multilocular lipid droplets, have a high mitochondrial content, and express key thermogenic genes such as Ucp1, Ppargc1a, and Cidea[1,2]. At the same time, beige and brown adipocytes have several distinct characteristics that distinguish them as two different cell types. For instance, their developmental origins are different. While classical brown adipocytes derive from Myf5-positive precursors during embryonic development, beige adipocytes postnatally develop in the WAT depots of adults and derive from multiple origins depending on the depot[3-7]. In addition, molecular profiling studies highlight significant differences between the gene signatures of brown vs. beige adipocytes[8,9]. Lastly, the plasticity of thermogenic activity remarkably differs between these two cell types. Brown adipocytes are constitutively active and express high levels of UCP1 and other thermogenic genes. Their thermogenic activity can be further increased to a moderate degree upon stimulation. On the other hand, beige adipocytes express very low levels of thermogenic genes but robustly induce their expression in response to external stimuli, thus displaying a greater degree of thermogenic plasticity[1,2].

Beige fat formation, also called "browning" or "beiging", is induced by various environmental cues, including cold exposure, exercise, and PPARy agonist[1,2], and it results in the production of heat by burning stored fat. Conversely, beige adipocytes also
undergo "whitening", returning them to a white adipocyte-like phenotype, in response to thermoneutrality[10], impaired β-adrenergic signaling[11], triglyceride hydrolase deficiency[12], and other cues[13]. In mice, beige fat contains one tenth the amount of UCP1, a key thermogenic protein, than brown fat[14]; however, the total amount of beige fat can be greater than brown fat and can have a bigger impact on energy homeostasis, as it can be recruited en masse in many white depots[14]. Notably, recent studies have identified additional mechanisms through which beige fat modulates whole-body metabolism such as creatine cycling[15] and Serca2b-mediated calcium cycling[16]. In humans, although still debatable, a substantial number of studies suggest that thermogenic adipocytes are recruited upon cold acclimatization[17,18] leading to increased energy expenditure and a beneficial impact on glucose metabolism[18,19]. Due to this remarkable plasticity and the relevance to human obesity, beige adipocytes are an attractive therapeutic target for obesity and related metabolic diseases.

The browning and whitening of beige and brown fat involves dramatic changes in morphology, transcription, and chromatin landscape[10,20-25]. Therefore, epigenetic regulators are likely to play a key role in this process. The ten-eleven translocation (TET) proteins (TET1, 2, and 3) are the enzymes that oxidize methylated cytosine. In addition to participating in the initial step of DNA demethylation, TETs play versatile roles in transcription regulation[26] by acting as both transcriptional co-activators and corepressors[26]. Notably, the transcriptional regulation activity of TET proteins can be dependent or independent of their demethylase activity through interacting with other transcriptional regulators and chromatin modifiers[27-31].

Here, we report that TET1 expression in subcutaneous adipose tissue shows reciprocal regulation with Ucp1 in response to ambient temperature changes and cAMP signaling. We demonstrate that Tet1 loss-of-function leads to cell-autonomous increases in cAMPinduced expression of thermogenic genes, including Ucp1, and increases in mitochondrial respiration in beige adipocytes. Consistent with this, conditional deletion of Tet1 in adipose tissue increases browning of subcutaneous fat, leading to reduced adiposity and improved cold tolerance, glucose tolerance, and insulin sensitivity. Moreover, the knockout mice are protected from diet-induced obesity and metabolic impairment. Mechanistically, we identify that TET1 collaborates with HDAC1 to mediate the epigenetic changes that suppress thermogenic gene transcription in a DNA demethylaseindependent manner. Together, our results suggest that TET1 is a potent epigenetic sensor of ambient temperature and modulates the temperature-mediated browning of beige adipocytes.

Results

Adipose TET1 levels in response to temperature and cAMP.

First, we compared the expression of Tets across tissues and noted that all three Tets are moderately expressed in inguinal and epididymal white adipose tissues (iWAT and eWAT) and less expressed in BAT (Figs. 1a-d). To identify a potential role for the DNA
methylation machinery in the temperature-induced plasticity of beige and brown adipocytes, we examined how TET expression in adipose tissue is affected by changes in ambient temperature. Inguinal white adipose tissue (iWAT), epididymal WAT (eWAT), interscapular brown fat tissue (BAT) were taken from wild-type C57BL/6J mice that were housed at $\operatorname{RT}\left(23^{\circ} \mathrm{C}\right)$ before being subjected to cold $\left(4^{\circ} \mathrm{C}\right)$ or thermoneutral ($\mathrm{TN}, 30^{\circ} \mathrm{C}$) temperatures for 24 hours. As expected, Ucp1 levels overall went up in all three depots when mice were housed for 24 hours at cold $\left(4^{\circ} \mathrm{C}\right)$ and down when housed at thermoneutrality (TN, $30^{\circ} \mathrm{C}$) (Fig. 1e). Importantly, the expression of Tet1 was most dramatically regulated by the changes in ambient temperature, especially in iWAT (Fig. 1f). Heat increased the mRNA expression of Tet1 by ~ 20 fold whereas cold reduced it by $\sim 60 \%$ (Fig. 1f). The temperature-sensitive regulation of TET1 in iWAT was also confirmed by western blotting (Fig. 1f).

Similar to Tet1, the expression of Tet2 was also changed but to a lesser degree in iWAT (Fig. 1g). On the contrary, Tet3 levels did not show consistent changes between depots; they had a ~ 3 fold increase in iWAT (Fig. 1h) under cold conditions. The anti-correlation between Tet1 levels with Ucp1 in vivo prompted us to determine their expression levels in three different shades of adipocyte cell lines: 3T3-L1 cells (considered 'white') and immortalized 'beige' and 'brown' adipocytes. As expected, UCP1 protein expression was not detectable in mature 3T3-L1 adipocytes, had intermediate expression in mature beige adipocytes, and high expression in mature brown adipocytes (Fig. 1I). Interestingly, TET1 expression was increased during white adipogenesis and reduced during beige and brown adipogenesis, displaying an anti-correlation with UCP1 levels (Figs. 1i-11). On the other hand, both the expression of TET2 and TET3 was overall higher in all three types of mature adipocytes compared to that of preadipocytes (Figs. 1i-1I). As we noted that Tet1 expression was relatively higher in iWAT compared to BAT (Figs. 1a, d), we looked into how the regulation of Tet1 expression is regulated in response to thermogenic stimulators (cAMP-inducing forskolin and norepinephrine) in in vitro-differentiated primary inguinal adipocytes. Consistent with in vivo, Tet1 mRNA expression was reciprocally regulated with Ucp1 expression in response to the thermogenic stimulators (Figs. 1m, n). Together, our expression data suggested that TET1 and TET2 have a functional role in the regulation of thermogenesis in beige fat, thus we sought to test the effects of their downregulation in beige adipocyte thermogenesis.

Fig. 1 Subcutaneous adipose Tet1 expression is regulated by ambient temperature and cAMP signaling. a-d Various tissues from wild-type C57BL/6 mice housed at room temperature (RT) were collected to measure Tets mRNA (a-c) and protein expression d (a-c); $n=3$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test and one-way ANOVA). e-h Tet and Ucp1 mRNA and protein expression in iWAT from wild-type male C57BL/6J mice housed at room temperature (RT) and exposed to cold or thermoneutrality (TN) for 24 h ($\mathrm{n}=5$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed

Student's t test and one-way ANOVA followed by Bonferroni post-hoc testing). i-l Tets mRNA and protein expression were measured in 3T3-L1 and immortalized beige and brown preadipocytes at confluence and after differentiation (i-k; $\mathrm{n}=4$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test). m, n Ucp1 and Tet1mRNA expression with and without $1 \mu \mathrm{M}$ forskolin (Forsk) or 1 $\mu \mathrm{M}$ norepinephrine (NE) stimulation for 3 h in mature primary beige adipocytes ($\mathrm{n}=4$ pergroup, Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by twotailed Student's t test and one-way ANOVA followed by Bonferroni post-hoc testing).

TET1 suppresses the thermogenic activation of beige adipocytes.

To test the cell-autonomous role of TETs in the regulation of thermogenic genes, we performed gain- and loss-of-function studies of individual TETs using an immortalized beige cell line. Since TETs are pro-adipogenic [32] we conducted the studies in fully mature beige adipocytes using short hairpin RNAs (shRNAs) to avoid any effect on differentiation. Remarkably, knockdown of Tet1, but not Tet2 or Tet3, enhanced the forskolin-stimulated expression of Ucp1 and some of key thermogenic markers including Ppargc1a, Cidea, and Elovl3 (Figs. 2a-d). Notably, there was no change in the expression levels of general adipocyte markers such as Pparg and Fabp4 (Figs. 2e, f). Tet1 knockdown in beige adipocytes increased the rate of mitochondrial respiration in the presence and absence of norepinephrine (Figs. 2g-i). Conversely, lentiviral overexpression of Tet1 in mature beige adipocytes suppressed the expression of thermogenic genes (Figs. 3a-d) without altering the expression of general adipocyte markers (Pparg and Fabp4) (Figs. 3e, f) and suppressed mitochondrial respiration in the presence and the absence of norepinephrine (Figs. $3 \mathrm{~g}-\mathrm{i}$). Together, our results suggest that TET1 suppresses adipocyte thermogenesis in a cell-autonomous manner in beige adipocytes.

Fig. 2 Tet1 loss-of-function in vitro increases thermogenesis in beige adipocytes. a-f Differentiated beige adipocytes were transduced with hairpins against Tet1, 2, and 3 and scrambled control shRNA (shScr). The basal- and forskolin-stimulated levels of key adipocyte thermogenic gene transcripts were measured by qPCR ($\mathrm{n}=4$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test and two-way ANOVA followed by Bonferroni post-hoc testing). g-i Basal and norepinephrine (NE)-stimulated mitochondrial respiration under various drug treatments was measured in Tet1 knockdown and scramble beige adipocytes ($\mathrm{n}=3$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test and one-way ANOVA). (Oligo; Oligomycin, AA; antimycin A). i Shown are the various components of oxygen consumption rates with and without NE stimulation from (g, h). (n $=3$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test and two-way ANOVA followed by Bonferroni post-hoc testing)

Tet1 KO mice display increased cold tolerance and energy expenditure.

To determine the in vivo role of Tet1 in the regulation of adipose plasticity and the thermogenic gene program, we initially generated adipose-selective Tet1 knockout mice (AdipoQ-Tet1KO) using adiponectin-Cre mice[33]. However, these knockout mice had poor knockdown efficiency ($\sim 10 \%$) even when specifically assessing adipocytes. Therefore, we used Fabp4-Cre[34] to generate an adipose-selective knockout (AdiTet1KO) mouse, in which Tet1 mRNA levels were knocked down by more than 80% in the purified adipocyte fraction obtained from iWAT, eWAT, and BAT.

Fig. 3 Tet1 gain-of-function in vitro suppresses thermogenesis in beige adipocytes. a-f Differentiated beige adipocytes were transduced with lentiviral expression plasmids for Tet1 and GFP. The basal- and forskolin-stimulated levels of key adipocyte thermogenic gene transcripts were measured by qPCR ($\mathrm{n}=4$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test and two-way ANOVA followed by Bonferroni post-hoc testing). g, h Basal and norepinephrine (NE)-stimulated mitochondrial respiration under various drug treatments was measured in Tet1 overexpression and GFP beige adipocytes ($\mathrm{n}=3$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test and one-way ANOVA). (Oligo; Oligomycin, AA; antimycin A). i Shown are the various components of oxygen consumption rates with and without NE stimulation from g, h. ($\mathrm{n}=$ 3 per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's test and two-way ANOVA followed by Bonferroni post-hoc testing).

To examine whether TET1 is necessary for temperature-mediated adipose plasticity, we exposed Adi-Tet1KO and WT mice to different ambient temperatures. To assess their cold tolerance, we monitored the rectal temperature of individual mice placed into a $4^{\circ} \mathrm{C}$ cold chamber. Adi-Tet1KO mice maintained their core body temperature better than WT
mice under cold conditions (Fig. 4a). Consistent with the increased tolerance to cold, the KO mice had a significant increase in oxygen consumption upon cold exposure and a trend towards increased oxygen consumption at RT and TN, as compared to controls (Figs. 4b, c). In addition, the serum release of glycerol was elevated in KO mice upon cold exposure (Fig. 4d), likely due to increased lipolysis to provide fuel for the increased adaptive thermogenesis. We also noted that KO iWAT had more multilocular brown-like adipocytes after 7 days of cold exposure (Fig. 4e), whereas there was no marked difference between WT and KO BAT (Fig. 4e). Also notably, the increased rates of basal and norepinephrine-stimulated respiration was more pronounced in the KO iWAT (Fig. 4f). This depot-biased effect was also observed at molecular levels; increased expression of UCP1 and PGC1a was found in iWAT (Fig. 4g). This suggests that TET1 is acting selectively on beige adipocytes, which are present in iWAT.

Fig. 4 Adipose-specific Tet1-KO mice show improved cold tolerance. a Rectal core body temperatures of Adi-Tet1-KO and WT mice under cold conditions at indicated time points ($\mathrm{n}=5$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test and one-way ANOVA). b, c Shown is the wholebody oxygen consumption rate (VO2, b) and averaged VO2 c ($\mathrm{n}=4$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test and two-way ANOVA followed by Bonferroni post-hoc testing). d Serum levels of glycerol were measured from WT and KO mice that were housed at RT or exposed to cold for 24 $h(n=8 W T, n=6$ KO. Data are expressed as means \pm SEM. *denotes $p<0.05$,
determined by two-tailed Student's t test and two-way ANOVA followed by Bonferroni post-hoc testing). e Whole tissue and H\&E staining of iWAT and BAT from WT and KO mice that were exposed to cold for 7 days. f Oxygen consumption rate of iWAT from WT and KO mice was measured with and without stimulation of NE. Average basal respiration rate is presented with or without norepinephrine addition ($\mathrm{n}=6$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test and two-way ANOVA followed by Bonferroni post-hoc testing). g Immunoblot of UCP1 and PGC1A from WT and KO iWAT from RT, exposed to TN or cold for 7 days. The relative expression is shown by normalizing to β-ACTIN ($n=2$ per group. Data are presented as means of the two). h, i Scatter plot showing differentially regulated genes in inguinal KO adipocytes from WT and KO mice held at RT and exposed to cold for 4 h ($\mathrm{n}=2$ per group for RT, $\mathrm{n}=3 \mathrm{WT}, \mathrm{n}=2 \mathrm{KO}$ for Cold, FC > 1.5, FDR < 0.05). j, k q-PCR analysis of key thermogenic genes from WT and KO inguinal adipocytes from WT and KO mice at RT and cold exposed for 4 h ($\mathrm{n}=3$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test). I Venn diagram of the upregulated genes in the KO adipocytes at RT vs cold conditions and the gene names that are commonly upregulated in the KO adipocytes at both temperatures ($n=2$ per group for RT, $n=3 W T, n=2 K O$ for Cold). Gene list is provided in Supplementary Table 1. m , n Commonly upregulated biological pathways in the KO adipocytes from RT and cold.

TET1 acts as a repressor of the thermogenic gene program.

 To investigate the mechanism of how TET1 suppresses the thermogenic gene program, we used RNA-Seq to identify the adipocyte-specific target genes of TET1. In short, we profiled fractionated inguinal adipocytes from WT and KO mice held at RT and exposed to cold for 4 hours (Figs. 4h-n). We found that 51 genes were significantly upregulated and 73 genes were downregulated in the KO inguinal adipocytes at RT, and 87 genes were upregulated and 26 genes downregulated after a 4-hr cold exposure (Figs. 4h-j). This suggests that TET1 acts as both a gene repressor and activator in inguinal adipocytes. Interestingly, the upregulated genes in the KO adipocytes greatly overlapped between RT and cold conditions (Fig. 4j), and many of those are involved in thermogenesis (e.g., Ucp1, Pgc1a, Cidea, and Elov/3). These were validated by qPCR analysis (Figs. 4k, I). This suggests that the transcriptional regulation of key thermogenic genes in the KO is already primed under RT, which is mildly cold for mice. Gene Ontology term analysis found that the commonly upregulated pathways in KO inguinal adipocytes are relevant to thermogenesis, such as fatty acid metabolism, under both RT and cold (Figs. 4m, n).
Tet1 KO mice are protected against diet-induced obesity.

Increased browning leads to increased energy expenditure and improved glucose homeostasis[18,19]. Thus, we assessed whether the increased browning during adipose-selective Tet1 deficiency leads to metabolic improvement. Despite the body weight of Adi-Tet1KO remaining unchanged (Fig. 5a), their fat mass was significantly reduced compared to their littermate controls on a chow diet (Fig. 5b). Reduced adiposity in Adi-Tet1KO mice on chow was accompanied by improved glucose tolerance, insulin sensitivity, and hypoinsulinemia (Figs. 5c-e). Next, we asked whether adipose-selective

Tet1 deficiency confers protection against diet-induced obesity and impaired glucose tolerance by placing cohort mice on a high-fat diet (HFD, 60\% calories from fat). The body weights of the two groups began to significantly diverge after 6 weeks of HFD feeding (Fig. 5f). The KO had reduced fat mass (Fig. 5g), and their tissue mass of inguinal and mesenteric WAT was significantly decreased (Fig. 5h). Consistent with the lean phenotype, KO mice were more glucose tolerant and insulin sensitive than controls, having reduced insulin levels at fed and fast states on HFD (Figs. 5i-k).

Fig. 5 Adipose-specific Tet1-KO mice are protected from diet-induced obesity and metabolic dysregulation. a, b Body weight (a) and body composition by EchoMRI (b) of 8 -week-old WT and KO mice on a chow diet ($\mathrm{n}=6$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's test). c, d Insulin tolerance test (c) and glucose tolerance test (d) on chow diet ($\mathrm{n}=8 \mathrm{WT}, \mathrm{n}=6$ KO. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test). e Fed and fasted insulin levels from a chow-fed cohort ($\mathrm{n}=6$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test and two-way ANOVA followed by Bonferroni post-hoc testing). f Weekly body weight of

WT and KO mice on a high-fat diet ($\mathrm{n}=7$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's test). g Body composition after 10 weeks of HFD ($\mathrm{n}=6$ per group, Data are expressed as means \pm SEM. *denotes $p<0.05$, determined bytwo-tailed Student's t test). h Adipose tissue weight from HFD cohort ($n=6$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test). i, j Insulin tolerance test (i) and glucose tolerance test (j) after 10 or 11 weeks on HFD, respectively ($\mathrm{n}=6$ per group, Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test). k Fed and fasted insulin levels from high-fat-fed mice ($n=6$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's test and Two-way ANOVA followed by Bonferroni post-hoc testing).

TET1 acts in a DNA demethylase-independent manner.

TETs mediate their biological functions in both DNA demethylase-dependent and independent manners[27-31]. Thus, we addressed whether demethylation activity is necessary for TET1 to suppress the thermogenic program in beige adipocytes. First, as a genetic approach, we generated various Tet1 mutant alleles (Fig. 6a). Lentiviral overexpression of a Tet1 mutant allele that lacks c-terminal catalytic activity (Tet1 $\Delta \mathrm{CD}$)[42] (Fig. 6b) still repressed Ucp1 transcription to a similar degree as the wildtype allele (Tet1WT) (Fig. 6c). On the other hand, overexpressing either the truncation mutant that contains only the catalytic domain (Tet1CD) or the catalytically inactive mutant with two critical amino acid substitutions (Tet1CDM)[43] was not able to repress Ucp1 expression (Fig. 6c). Both wild-type Tet1 and Tet1 Δ CD equally inhibited mitochondrial respiration in the presence of norepinephrine (Figs. 6d, e).

Second, we performed Tet1 loss-of-function studies in cells that had all three DNA methyltransferases (DNMTs) knocked down to reduce the level of 5 mC , which is the enzymatic substrate for TET. If DNA demethylation activity was critical, the effect of Tet1 loss-of-function would be diminished in these cells. Interestingly, knocking down the Dnmts alone resulted a trend toward an increase in the Ucp1 expression, and double knockdown with Tet1 further increased the expression of Ucp1 (Fig. 6f). Third, we manipulated TET demethylase activity at the co-factor level. Alpha-ketoglutarate ($\alpha-K G$), a key metabolite from the TCA cycle, acts as a co-factor for the demethylation activity of TETs, whereas another TCA intermediate, succinate, inhibits TET activity[44,45]. We treated mature brown and beige adipocytes with cell-permeable forms of $\alpha-K G$ and diethyl-succinate then subjected them to forskolin treatment. Neither metabolite had any significant impact on forskolin-stimulated Ucp1 expression (Fig. 6g).

Fig. 6 TET1 suppresses the thermogenic gene program in a DNA demethylaseindependent manner. a The protein map showing Tet1 wild-type and mutant alleles: the Tet1 wild-type (Tet1 WT) allele, a truncation mutant that lacks DNA demethylase activity (Tet1 $\Delta C D$), a mutant that contains only DNA demethylase activity (Tet1 CD), and a catalytically inactive form (Tet1 CDM). b Mature beige adipocytes were transduced with lentiviral expression plasmids for the various Tet1 alleles from (a). c The basal- and forskolin-stimulated levels of Ucp1 were measured by qPCR from (b) ($\mathrm{n}=4$ per group. Data are expressed as means \pm SEM. *denotes $\mathrm{p}<0.05$, determined by two-tailed Student's t test and one-way ANOVA followed by Bonferroni post-hoc testing). d, e Mitochondrial respiration is measured by Seahorse from beige adipocytes that overexpress Tet1 WT, Tet1 \triangle CD, or GFP. ($n=4$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test and two-way ANOVA followed by Bonferroni post-hoc testing). f Beige adipocytes were transduced with hairpins against Dnmt1, 3a, and, 3b or control scramble RNA (shScr), and differentiated beige adipocytes were transduced with shTet1. The basal- and
forskolin-stimulated levels of Ucp1 were measured by qPCR ($\mathrm{n}=4$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test and two-way ANOVA followed by Bonferroni post-hoc testing). g Alpha-KG ($\alpha-K G$), diethyl-succinate (Succinate), or a vehicle was used to pre-treat mature beige adipocytes for 3 hr . The basal- and forskolin-stimulated levels of Ucp1 were measured by qPCR (n $=4$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test and two-way ANOVA followed by Bonferroni post-hoc testing).

TET1 coordinates with HDAC1 to mediate the thermogenic gene repression.
It has been proposed that the repressor role of TET1 in gene regulation in other cell types is accomplished through interacting with other repressor proteins like polycomb repressive complex 2 (PRC2)[50], HDACs[51], and SIN3A[52]. Since genetic and pharmacological inhibition of HDAC1 increases UCP1 and PGC1a expression and oxidative metabolism[53-55]. we sought to determine whether TET1-mediated repression involves interacting with HDAC1. First, we detected an interaction between TET1 and HDAC1 by co-immunoprecipitating in HEK293T cells (Fig. 7a). Interestingly, the interaction with HDAC1 still existed with Tet1 1 CD, which lacks DNA demethylase activity at the c-terminal region (Fig. 7a). We examined whether TET1 and HDAC1 are recruited to the same gene regulatory regions of Ucp1 and Ppargc1a[55]. Since we were not able to identify a high-quality antibody against endogenous TET1, we immunoprecipitated TET1 tagged with of Ty1 tag from overexpressor cells. With ChIPreChIP analysis, we confirmed the simultaneous binding of HDAC1 and TET1 at these regulatory regions (Fig. 7b) and that both TET1 and HDAC1 binding at these sites was greatly diminished with forskolin stimulation (Figs. 7c-e).

HDAC1 deacetylates histones, which prevents transcription. Therefore, to examine the downstream epigenetic changes that Tet1 loss-of-function confers, we performed ChIPPCR using the active histone mark H3K27ac in WT and KO adipose tissue harvested from different temperature conditions. As expected, in WT iWAT samples, H3K27ac enhancer activity was higher at RT and highest during cold exposure as compared to TN. Overall, this temperature-dependent H3K27ac enhancer activity was even more dramatic in KO iWAT (Figs. 7f-h), in concert with increased expression of Ucp1 and Ppargc1a (Figs. 4j, k). Lastly, we assayed the role of HDAC1 in TET1-mediated thermogenic gene suppression. CRISPR-Cas-mediated knockout of HDAC1 fully rescued TET1-mediated repression of Ucp1 (Figs. 7i, j). Together, our results suggest that the role of TET1 as a suppressor of the thermogenic gene program is in large part due to HDAC1.

Fig. 7 TET1 coordinates the epigenetic remodeling of the regulatory regions of Ucp1 and Ppargc1a by coordinating with HDAC1. a Coimmunoprecipitation assay was performed using protein lysates from HEK293T cells that were co-transfected with vectors expressing Ty1-Tet1 WT, Ty1- Tet1deltaCD, and Myc-HDAC1. b ChIP-reChIP qPCR analysis was performed on beige adipocytes that were transduced with Ty1-Tet1 WT or GFP using HDAC1 (1st IP), Ty1 (2nd IP), or IgG as a control. The enrichment efficiency is presented as a percent input at the indicated binding sites ($\mathrm{n}=3$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test followed by Bonferroni post-hoc testing). c-e Ty1 and HDAC1 ChIP-qPCR analysis was
performed in cells that express Ty1-Tet1 WT with and without forskolin stimulation ($\mathrm{n}=3$ per group. Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by twotailed Student's t test and two-way ANOVA followed by Bonferroni post-hoc testing). f-h H3K27ac ChIP-qPCR analysis was performed in WT and KO iWAT from RT or exposed to TN or cold for 7 days ($\mathrm{n}=3$ per group). Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test and two-way ANOVA followed by Bonferroni post-hoc testing. i, j Beige adipocytes were transduced with either Tet1 overexpressor, gRNA against Hdac1, both, or control plasmids. The forskolin-stimulated level of Ucp1 and Ppargc1a was measured by qPCR ($n=4$ per group, Data are expressed as means \pm SEM. *denotes $p<0.05$, determined by two-tailed Student's t test and twoway ANOVA followed by Bonferroni post-hoc testing).

Discussion

While classical brown and beige adipocytes share many fundamental features in morphology and function, discrete characteristics have been identified, including the plasticity of beige thermogenesis[1]. A recent epigenomic profiling study demonstrated that the temperature-mediated plasticity of subcutaneous fat is accompanied by profound changes in chromatin state[10]. To add to these results, we identified TET1 as a beige fat-selective epigenetic repressor of the thermogenic gene program.

We demonstrated that TET1 represses thermogenic gene regulation in a largely DNA demethylase-independent manner. In support of this notion, transcriptional changes induced by overexpression of TET1 were highly similar to those induced by its demethylation activity-dead mutant in differentiated cell lines. Other studies have demonstrated that TETs, in addition to modifying cytosine methylation, can act as gene regulators through a DNA methylation-independent manner[28]. The repressive role of TET1 in transcriptional regulation has been proposed to derive from its interaction with other repressor proteins. In ES cells, but not in somatic cells, TET1 contributes to silencing some genes by interacting with polycomb repressive complex 2 (PRC2), which targets repressive histone mark H3K27me3[50]. TET1 is also found in the repressor complex containing SIN3A and HDAC1/2 in both mESCs and HEK293T cells, and its localization greatly overlaps with the SIN3A binding profile genome-wide[30]. Thus, our results are in line with these studies, as TET1 cooperates with HDAC1 to repress some of the key thermogenic genes like Ucp1 and Ppargc1a. We speculate that such interaction facilitates local epigenetic modifications and regulates other transcription factors and cofactors to regulate transcriptional activity.

There is also indirect evidence that DNA demethylation and TETs are also required for the development of interscapular BAT[56]. In this study, the authors suggested that TET proteins mediate demethylation at the promoter region of Prdm16[56], a key developmental gene that is critical for the brown adipogenic lineage and maintains brown adipocyte identity. Moreover, reducing the level of α-ketoglutarate ($\alpha-K G$), a co-factor for the TET enzymes, leads to reduced demethylation of Prdm16 and impaired brown adipocyte development and function in mutant mice carrying loss-of-function AMPKa1[56]. Given the pro-adipogenic function of TET1 in white and brown
adipogenesis, our results demonstrating TET1 is an inhibitor of thermogenic genes may seem contradictory. However, such dual roles have been reported with other 'whitening' transcription factors. For example, Zfp423, preferentially expressed in white adipocytes, is a pro-adipogenic commitment factor in vitro and in vivo[57], but it also acts as a molecular gate keeper that maintains white cell identity while suppressing browning in mature adipocytes[58]. Interestingly, a recent study reported that the glucocorticoid receptor (GR) drives beige adipocyte whitening as an upstream regulator of Zfp423[10]. TLE3, another whitening transcription factor, promotes adipose conversion during early differentiation by interacting with PPARy and antagonizing Wnt signaling[59]. But a recent study identified its novel role as a suppressor of thermogenic gene expression in beige adipocytes[60]. Notably, both Zfp423 and TLE3 inhibit the activity of pro-browning transcription factor early B-cell factor 2 (EBF2)[58,60], which cooperates with PPARy and epigenetic modifiers, such as the chromatin remodelers BRG1 and BAF, and a long noncoding RNA, Blnc1[61]. Future studies are warranted to determine whether TET1mediated gene repression converges with these known transcriptional regulators.

Notably, two global studies suggest that differences in the DNA methylation profile is not a major contributor to cell type-specific gene expression in white vs beige or brown adipocytes[62,63]. The first global study employed restriction landmark genomic scanning (RLGS)[63], the method by which methylation-sensitive restriction enzymes preferentially cut CpG islands in regulatory regions[63]. In this study, authors also did not find a dramatic difference in the DNA methylation profile between primary white vs. brown adipocytes. The other global study profiled in vitro-differentiated white and brown adipocytes from inguinal and brown adipose depots using reduced representation bisulfite sequencing (RRBS)[62,63], which focuses on CpG-rich promoter methylation. Although an overall negative correlation between promoter methylation and gene expression was observed when comparing white and brown adipocytes, dramatic differences in DNA methylation at the thermogenic genes were not reported. Consistent with these reports, we did not detect dramatic changes in DNA demethylation at the key thermogenic genes. However, we observed that some of the CpG sites displayed simultaneous hyper- or hypo-methylation depending on temperature changes at the Ucp1 promoter region. Thus, genome-wide methylation profiling studies are warranted to more accurately understand the DNA methylation profile under different temperature conditions. Moreover, functional validation studies will be necessary at the level of individual CpGs .

One of the major caveats of our study is the use of Fabp4-Cre, which is expressed in several other non-adipose tissues[35,64]. Thus, we conducted additional experiments to assess whether there is an additional contribution from non-adipose tissues to the increased thermogenesis in Adi-Tet1 KO mice. First, our in vitro gain- and loss-of-function studies showed that Tet1 knockdown and overexpression have a beige adipocyteautonomous effect on thermogenic gene regulation and mitochondrial respiration. Second, we showed that inguinal-selective knockdown of Tet1 by AAV8-hAdi-Cre and noted a similar effect on thermogenesis. Third, to address if there is input from macrophage cells in Adi-Tet1 KO mice, we conducted co-culture experiments using beige adipocytes and primary macrophages isolated from Adi-Tet1 KO vs. WT mice. There were no significant changes in basal and forskolin-induced thermogenic gene expression.

Lastly, we report no major phenotypic changes in thermogenesis and energy homeostasis in the PDGFRa-Tet1 KO generated using PDGFRa-Cre, which is expressed in preadipocytes and a variety of tissues, including the lung, heart, intestine, skin, and cranial facial mesenchyme[37-39,65-67]. We, however, note that it is still possible that there could be an additional contribution on top of that from adipose tissues.

In summary, we identified TET1 as an important epigenetic regulator of the thermogenic gene program in beige adipocytes that coordinates with HDAC1. Adipose-specific TET1 loss-of-function led to increased energy expenditure and protection from diet-induced obesity, insulin resistance, and glucose tolerance.

Methods

Cell culture

Immortalized beige and brown adipocytes were maintained and differentiated with an adipogenic cocktail (0.5 mM IBMX, 5 uM Rosiglitazone, $5 \mathrm{mg} / \mathrm{ml}$ insulin, 1 mM dexamethasone). To generate lentivirus particles, lentiviral constructs were cotransfected with pM2DG- and psPAX-expressing plasmids into 293T cells. After 48 h , virus-containing supernatant was collected, filtered through $0.45 \mu \mathrm{~m}$ filters, and added to mature day 5 adipocytes for 48 h along with $8 \mu \mathrm{~g} / \mathrm{ml}$ Polybrene. Transduction efficiency was determined by comparing to cells transduced in parallel with a GFP-expressing lentivirus. For the ex vivo system, subcutaneous WAT and iBAT from wild-type C57BL/6 mice was fractionated with digestion buffer ($10 \mathrm{mg} / \mathrm{ml}$ collagenase $\mathrm{D}, 2.4$ units of dispase II, 10 mM CaCl 2 in PBS). The stromal-vascular fraction (SVF) were isolated by $1.5 \mathrm{u} / \mathrm{ml}$ collagenase and plated in culture and differentiated with adipogenic cocktail. For coculture experiment, beige adipocytes were cultured in 6-well plates and differentiated at day 8, and macrophages (2×10^{5} cells/well) were plated onto the transwell insert containing a $0.4 \mu \mathrm{~m}$ polyethylene terephthalate membrane (Costar, Corning, USA) in serum free medium. After incubation together for 24 h , the transwell was removed and beige adipocytes were harvested for analysis. 3T3-L1 adipocytes were differentiated in 12-well plates and then treated with conditioned medium from LPS-activated macrophages from WT and KO mice. 3T3-L1 adipocytes were cultured for 24 hours before gene expression analysis.

Reagents

Insulin, dexamethasone, isobutylmethylxanthine (IBMX), a-KG, CL316, 243, diethyl succinate, and thyroid hormone (T3) were purchased from Sigma. Rosiglitazone was purchased from Cayman. Antibodies were purchased from GeneTex (Tet1, GTX1242071), Thermo Fisher (β-actin, MA5-14739), Cell Signaling (HSP-90, 4874), GenScript (Ty1, A01004), Covance (HA, MMS-101R), Sigma (Flag, F3165), Santa Cruz (Myc, SC-40), Abcam (UCP1, Ab10983; PGC1a: Ab54481; H3K27ac: Ab4729),

Biolegend (CD45-PerCP/Cy5.5,103131; F4/80-PE/Cy7, Cat\# 123113; Cd11b-Pacific Blue, 101223; CD301-APC, 145707 and eBioscience (Cd11c-PE,12-0114-81).

Animals

Tet ${ }^{1 / f}$ mice were obtained from Dr. Anjana Rao laboratory at UCSD. Mice were maintained under a 12 hr light $/ 12 \mathrm{hr}$ dark cycle at room temperature $\left(23^{\circ} \mathrm{C}\right)$ with free access to food and water. For thermal challenge, mice were placed in a cold chamber $\left(4^{\circ} \mathrm{C}\right)$ for up to 1 week or at thermoneutrality $\left(30^{\circ} \mathrm{C}\right)$. Body temperature was measured using a rectal probe (Physitemp). For high-fat feeding studies, male C57BL/6J mice were put on the diet beginning at 8 weeks of age and continuing for up to three months. Blood and various tissue samples were collected. For the CL316,243 studies, animals were given the drug by IP injection for 5 consecutive days at RT and euthanized for the gene expression analysis. For histology, adipose tissues were fixed with neutral-buffered formalin and embedded in paraffin, and sections were stained with H\&E.
iWAT-specific Tet1 Adi-CRE mice were generated by injecting adeno-associated virus (AAV) expressing Adiponectin CRE (AAV8-hAdp-iCre, Vector Biolabs) or control Null (AAV8-Null) into inguinal WAT level. Briefly, mice were anesthetized and maintained using isoflurane. Area around iWAT was shaved on either side of the mice and cleaned with Betadine (\#19-027132,) and Ethanol. A small incision was made to expose the iWAT pads. AAV was injected into both the iWAT depot at 10 different locations per depot of Tet1f/f adult mice using hamilton microsyringe. Viral titer of 5.0×10^{11} genomic copies (GC) per mouse. After injection, the incision was closed using suture (\#101-7137, Henry Schein). Efficacy of viral infection and knockdown was evaluated by quantification of TET1 expression. All animal work was approved by the UC Berkeley ACUC.

Protein analysis

Whole-cell protein lysates were prepared using RIPA lysis buffer (1\% Triton X-100, 1\% Sodium deoxycholate, 0.1% SDS, $0.15 \mathrm{M} \mathrm{NaCl}, 50 \mathrm{mM}$ Tris (pH 7.2) and protease inhibitor cocktail (Complete Mini-EDTA free, 11836170001, Roche). Protein was resolved using Tris-glycine gels and transferred to PVDF membrane. After blocking with 5\% nonfat dried milk in TBS-Tween (0.25%), the membranes were incubated with the appropriate primary antibodies and loading control. Immunoblots were quantified by the ImageJ program.

Immunoprecipitation

HEK-293T cells were transfected with various DNA constructs using Lipofectamine 3000 (Invitrogen). A day after transfection, cells were lysed with RIPA buffer with protease inhibitor cocktail. 500 mg of protein was incubated with the appropriate antibodies overnight. The next day, protein A/G PLUS-Agarose (SC-2003, Santa Cruz) was added and incubated for 2 hr , washed with lysis buffer five times and PBS once. Beads were eluted with non-reducing SDS/PAGE loading buffer and subjected to SDS/PAGE and western blotting.

Indirect Calorimetry

Metabolic rate was measured by indirect calorimetry in open-circuit Oxymaxchambers, a component of the Comprehensive Lab Animal Monitoring System (CLAMS; Columbus

Instruments). Mice were housed individually at various temperatures under a 12 hr light/12 hr dark cycle. Food and water were available ad libitum.

Cellular and tissue respiration

For cellular respiration, lentivirally transduced beige adipocytes were plated on XF24 Cell Culture Microplates. For tissue respiration, freshly isolated iWAT and iBAT were rinsed in sterile saline and dissected with a microdisector to 2 mm per well. Oxygen consumption rate (OCR) was determined using an XF24 Extracellular Flux Analyzer (Seahorse Bioscience). Uncoupled and maximal OCR was determined using oligomycin ($4 \mu \mathrm{M}$) and FCCP ($4 \mu \mathrm{M}$). Antimycin A and rotenone (2 uM each) were used to inhibit Complex IIIand Complex I-dependent respiration.

ChIP-qPCR

Cells were crosslinked with 1% formaldehyde for 10 min at room temperature. Crosslinked chromatin was sonicated using an S220 Ultrasonicator (Covaris) to generate DNA fragments of $\sim 200-500 \mathrm{bp}$. Inputs were taken from cleared lysates, and the rest were rotated O / N at $4^{\circ} \mathrm{C}$ with Ty1, HDAC1, and IgG antibodies for immunoprecipitation. An aliquot of 20μ l of pre-washed Dynabeads Protein G was added per IP and rotated 1 hr at $4^{\circ} \mathrm{C}$. Beads were successively washed in low-salt RIPA buffer (20 mM Tris- $\mathrm{HCl}[\mathrm{pH}$ 8.0], 1 mM EDTA, 1% Triton x-100, 0.1\% SDS, $140 \mathrm{mM} \mathrm{NaCl}, 0.1 \% \mathrm{Na}$ deoxycholate), high-salt RIPA buffer (20 mM Tris-HCI [pH 8.0], 1 mM EDTA, 1% Triton $\mathrm{x}-100,0.1 \%$ SDS, $500 \mathrm{mM} \mathrm{NaCl}, 0.1 \% \mathrm{Na}$ deoxycholate), LiCl buffer ($250 \mathrm{mM} \mathrm{LiCl}, 0.5 \% \mathrm{NP} 40,0.5 \% \mathrm{Na}$ deoxycholate, 1 mM EDTA, 10 mM Tris-HCl [pH 8.0]) and TE buffer (10 mM Tris- $\mathrm{HCl}[\mathrm{pH}$ 8.0] and 1 mM EDTA). Each reaction was then incubated in digestion buffer (50 mM TrisHCl [pH 8.0], 1 mM EDTA, $100 \mathrm{mM} \mathrm{NaCl}, 0.5 \%$ SDS, proteinase K) for a minimum of 4 hr at $65^{\circ} \mathrm{C}$ to reverse cross-links. DNA was recovered using a phenol-chloroform extraction. ChIP-reChIP was performed in essentially the same way as ChIP, except that the first elution was carried out in a digestion buffer (50 mM Tris, $\mathrm{pH} 8.0,1 \mathrm{mM}$ EDTA, $1 \% \mathrm{SDS}, 50 \mathrm{mM} \mathrm{NaHCO} 3$) at $65^{\circ} \mathrm{C}$ for 10 minutes. After saving the supernatant, the beads were with 40 ul 10 mM DTT for 30 minutes at $37^{\circ} \mathrm{C}$. The combined elutes were subjected to the second IP. Real-time qPCR primers are listed in Supplementary Table 2. All data were normalized to input.

RNA extraction and quantitative PCR

Total RNA was extracted from cells or tissues using TRIzol reagent according to the manufacturer's instructions. cDNA was reverse-transcribed from $1 \mu \mathrm{~g}$ of RNA using the RETROscript first strand synthesis kit (Ambion). Quantitative PCR (qPCR) was performed with SYBR Green qPCR Master Mix (Applied Biosystems) using a 7900HT Fast RealTime PCR System (Applied Biosystems) and CFX96 Touch (BioRad). Primer sequences are listed in Supplemental Table 2. The relative amount of mRNA normalized to cyclophilin B was calculated using the delta-delta method[68].

RNA-Seq analysis

RNA samples were extracted using the RNeasy Mini kit (Qiagen, 74104) following the manufacturer's protocol. Libraries were prepared using the BGI Library Preparation Kit, and sequencing was performed on the BGISEQ. RNA-Seq reads were aligned to UCSC
mm10 genome using STAR aligner[69] with an option, "--outFilterMultimapNmax 1". Mitochondrial reads were filtered out to avoid sequencing depth bias due to mitochondrial abundance. Then, raw read count for each gene was measured using Feature Counts. Differential gene expression analysis was performed using edgeR. Hierarchical clustering was performed using group-wise average gene expression levels to identify distinct functional modules of genes using Ward's criterion and Pearson correlation as a similarity measure. Gene ontology analysis was done using EnrichR.

5hmC-Seal analysis

Genomic DNA (250ng) was sonicated to $\sim 100-500 \mathrm{bp}$ with a Bioruptor PICO sonicator (Diagenode). Sonicated DNA was end-repaired, A-tailed, and ligated to paired-end adapters following the standard Illumina protocol. The glucosylation reactions were performed in a 50μ solution containing 1x glucosylation buffer, above adapter-ligated DNA, $200 \mu \mathrm{M}$ UDP-Azide-Glucose (Active Motif, 55020), and 5 U T4 Bglucosyltransferase (Thermofisher, EO0831), at $37^{\circ} \mathrm{C}$ for 1 hr . After glucosylation, the reaction was purified by Zymo DNA clean \& concentrator Kit (Zymo, D4014) and eluted into 45 ul ddH2O. Then, $1.5 \mu \mathrm{I}$ DBCO-PEG4-Biotin (Click Chemistry Tools, A105. 4.5 mM stored in DMSO, dilute from 30 mM stock before use) was added to the 45 ul glusosylated DNA and the reactions were incubated at $37^{\circ} \mathrm{C}$ for 2 hr . Next, the DNA was purified by Zymo DNA clean \& concentrator Kit and eluted in 10ul ddH2O. The purified DNA was pulled down by $5 \mu \mathrm{l}$ streptavidin C1 beads (Thermofisher, 65001) for 15 min according to the manufacture's instruction. The beads were subsequently undergone ten washes with 1 x binding-washing buffer and two washes with ddH2O and were re-suspended in 15 ul ddH2O. All binding and washing were done at room temperature. The captured DNA fragments were amplified with 12 cycles of PCR amplification using the Phusion DNA polymerase. The PCR products were purified using 1.0X AMPure XP beads according to the manufacture's instruction. DNA concentration of each library was measured with a Qubit fluorometer (Life Technologies) and sequencing was performed on the Next-Seq instrument (Illumina). 5 hmC -seq analysis: Sequencing reads was trimmed adapter using cutadapt (https://cutadapt.readthedocs.io/en/stable/), aligned to mouse genome mm10 using BWA with default parameters http://bio-bwa.sourceforge.net/. MethyIQA was used to process the aligned BAM files. Concordantly aligned read-pairs were selected and deduplicated using Picard tool (https://broadinstitute.github.io/picard/). Genome browser tracks were created in bigwig files using "makeUCSCfile" in Homer and bedGraphToBigWig in UCSC toolkit.

Plasmids

Hairpins against Dnmt1, Dnmt3a, and Dnmt3b are from Sigma. HDAC1 was subcloned to pcDNA3.1 at EcoRI/Notl for Myc-HDAC1. Lentiviral overexpression vectors for Tet1WT, Tet1 $\triangle C D$, Tet1CD, and Tet1CDM were subcloned into pCDH using various multicloning sites (Xbal/Notl for Ty1-Tet1WT, Ty1-Tet1 $\Delta \mathrm{CD}$, Xbal/Nhel for Flag-Tet1CD, Flag-Tet1CDM). Hairpins targeting Tet1 were subcloned at Agel/EcoRI or purchased from Open Biosystems. Hairpin sequences are shown in Supplemental Table 1. sgRNAs that targeted Hcac1 were cloned into lentiCRISPR v2 vector. Hairpin and sgRNA sequences are shown in Supplementary Table 1.

Statistical analyses.

Data are presented as means \pm SEM and individual data points are plotted. Sample size was determined by our experience with inherent variability. No statistical method was used to predetermine sample size. Statistical analyses and the number of samples (n) were described in detail for each figure panel. Statistical analyses and the number of samples (n) is described in detail for each figure panel. Two-tailed unpaired Student's t test was used for the comparison between two groups. One-way analysis of variance (ANOVA) or two-way ANOVA followed by the Bonferroni's test was used for the multiple comparisons. Statistical analyses were performed using excel and GraphPad Prism. All reported p values were two-sided and differences were considered significant at $p<0.05$.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files. Source data underlying Figs.1a-n, Figs. 2a-j, Figs. 3a-i, Figs.4a-d, f, g, j, k, Figs. 5a-k, Figs. 6b-g, Figs. 7a-j, Supplementary Figs. 1a-j, Supplementary Figs. 2a-e, Supplementary Figs. 3a-d, Supplementary Figs. 4a-c, Supplementary Figs. 5a-b, Supplementary Fig. 6c, Supplementary Figs. 7a-i, Supplementary Figs. 8a, c, d-f, Supplementary Figs. 10a-e, Supplementary Figs. 11a, b, and Supplementary Fig. 13 provided as a Source Data File. Global profiling data are available in the GEO repository under accession number: GSE153093.

Acknowledgements

Work was funded by AHA Award \# 19POST34380834 to DY and R01 DK116008 to SK. We thank Drs. Hei Sook Sul and Jen-Chywan Wally Wang (UC Berkeley) for helpful conversations about manuscript and thank Dr. Shingo Kajimura (UCSF) for allowing us to learn adenoviral injection to inguinal fat pad in his laboratory.

Author Contributions

SK supervised experiments and wrote the manuscript. Experiments were carried out by SDV, DY, JK, HX, PA, and SK. HL analyzed RNA-Seq and 5hmC-Seal analysis. PHJ helped with CLAMS studies. YO helped with adenovirus injections.

Competing Interests

The authors declare no competing interests.

Supplementary Table 2. Oligonucleotide sequences used in this manuscript.

Hairpin	shDnmt1	ACCAAGCTGTGTAGTACTTTG
Hairpin	shDnm3a	CGCTCCGCTGAAGGAATATTT
Hairpin	shDnmt3b	GCACTTTAATCTGGCTACCTT
Hairpin	shTet1	AATAGAGGATTACTAAGCAAG
Hairpin	shTet2	GAGCGTTCCTCAGTATCATTT
Hairpin	shTet3	GCTCCAACGAGAAGCTATTTG
gRNA	gHdac1 (\#2)	CACCGAATCCGCATGACTCA
Q-PCR	Cyclophilin_F	GGTGGAGAGCACCAAGACAGA
Q-PCR	Cyclophilin_R	GCCGGAAGTCGACAATGATG
Q-PCR	Tet1-f	CCCAGACTCCTTAACTTGCA
Q-PCR	Tet1-r	CTCGTCCTGGATATTATGTGTAC
Q-PCR	Tet2-f	AGAGCCTCAAGCAACCAAAA
Q-PCR	Tet2-r	ACATCCCTGAGAGCTCTTGC
Q-PCR	Tet3-f	CCGGATTGAGAAGGTCATCTAC
Q-PCR	Tet3-r	AAGATAACAATCACGGCGTTCT
Q-PCR	Ppargcla_f	AGCCGTGACCACTGACAACGAG
Q-PCR	Ppargcla_r	GCTGCATGGTTCTGAGTGCTAAG
Q-PCR	Ucp1_f	CACCTTCCCGCTGGACACT
Q-PCR	Ucp1_r	CCCTAGGACACCTTTATACCTAATGG
Q-PCR	Elovl3_f	TCCGCGTTCTCATGTAGGTCT
Q-PCR	Elov13_r	GGACCTGATGCAACCCTATGA
Q-PCR	Fabp4_f	AAGGTGAAGAGCATCATAACCCT
Q-PCR	Fabp4_r	TCACGCCTTTCATAACACATTCC
Q-PCR	Pparg_f	CAAGAATACCAAAGTGCGATCAA
Q-PCR	Pparg_r	GAGCTGGGTCTTTTCAGAATAATAAG
Q-PCR	Ppara_f	GCCTGTCTGTCGGGATGT
Q-PCR	Ppara_r	GGCTTCGTGGATTCTCTTG
ChIP	Ucp1_promoter_f	CCCACTAGCAGCTCTTTGGA
ChIP	Ucp1 promoter r r	CTGTGGAGCAGCTCAAAGGT
ChIP	Ucp1_enhancer_f	CTCCTCTACAGCGTCACAGAGG
ChIP	Ucp1 enhancer_r	AGTCTGAGGAAAGGGTTGA
ChIP	Ppargcla_promoter_f	CAAAGCTGGCTTCAGTCACA
ChIP	Ppargcla_promoter_r	AAAAGTAGGCTGGGCTGTCA
ChIP	Ins_f	GGACCCACAAGTGGAACAAC
ChIP	Ins_r	GTGCAGCACTGATCCACAAT
Bisulfite	Ucp1 (\#1)_f	TAAGGGTTGGTTTATGAGTTTAGTTG
Bisulfite	Ucpl (\#1) r	TTCAAATATCACCTTCAAATTTAAATAACT
Bisulfite	Ucp1 (\#2)_f	TTTTGAGAGAAATTATGGGAATTAAAA
Bisulfite	Ucp1_(\#2)_r	CATAACCCCAAAACTACAAAAAATAAC
Bisulfite	Ucp1 (\#3)_f	AGTTAGGTTGGGTTGTATATTTTTGT
Bisulfite	Ucp1 (\#3)_r	TTACTTTTCAAACTTTCTTACACTTTTAAA
Bisulfite	Ucp1 (\#4)_f	TTTTTTTGGAGATAGATAAGAAGTTA
Bisulfite	Ucp1_(\#4)_r	AAAATATAAAACACCATTTACAAAACAC
Bisulfite	Tet1 (\#1)_f	AAAAGAAATTAATATTTGAGGGGAAG

Bisulfite	Tet1 $(\# 1) _$r	AATAAACCAACCATCCTAAACTAAAC
Bisulfite	Tet1 $(\# 2) _\mathrm{f}$	GATTTTTATAATTAGAATTTAGAATAGAG
Bisulfite	Tet1 $(\# 2)$ _r	ATTCATTAATAAAACACTTACTTAAC
Bisulfite	Tet1 $(\# 3) _\mathrm{f}$	TTTTTTTGGAGATAGATAAGAAGTTA
Bisulfite	Tet1 $(\# 3) _\mathrm{r}$	AAAATATAAAACACCATTTACAAAACAC

Supplementary Table 1 Gene list in Figure 4I

RT. WT vs Cold. Up	Cold. WT vs RT. Up	Commonly up in KO at RT and Cold
Abi3	A330041J22Rik	Abi3
Acaa2	A530050N04Rik	Acaa2
Acot11	Abi3	Acot11
Agtr1a	Acaa2	Cidea
Atp1b1	Acacb	Clstn3
Atp7b	Acot11	Cox7a1
Bdnf	Acss1	Cox8b
Cidea	Adcy3	Cpt1b
Clic5	Ankrd9	Dio2
Clstn3	Apold1	Fabp3
Coq10b	Aspg	Fam151a
Cox7a1	Atp2a1	Gk
Cox8b	Calm4	Gm44502
Cpt1b	Cend1	Otop1
Csn1s1	Cidea	Pank1
Csn2	Ckm	Phospho1
Dbp	Cldn1	Ppara
Dcpp3	Clstn3	Ppargc1a
Defb15	Coch	Ppp1r3b
Dio2	Coq8a	Slc27a2
Fabp3	Cox7a1	Ucp1
Fam151a	Cox8b	
Fcgbp	Cpt1b	
Gk	Crct1	
Gm44502	Ctnnbl1	
Gm4841	Cyp2g1	
Gm5148	Dagla	
Gys2	Defb6	
Hsd11b1	Dhrs9	
Muc15	Dio2	
Nr1d2	Dmkn	
Nr4a2	Dpep1	
Nr4a3	Elovi3	
Otop1	Elov16	
Pank1	Fa2h	
Per2	Fabp3	

Per3	Fam151a
Phospho1	Fam69b
Pnldc1	Gk
Ppara	Gm44502
Ppargc1a	Gm94
Ppp1r3b	Gm9899
Ppp1r3d	Gmpr
Sbp	Gnao1
Slc27a2	Gpd2
Tef	Hamp2
Tnfsf11	Hc
Ucp1	Inmt
VIdlı	Kcnh1
Wnk2	Kcnk3
Wnk4	Krt10
	Krtdap
	Lce1m
	Ldhb
	Letmd1
	Lor
	Lrrc52
	Me1
	Mmp11
	Mrgprg
	Mtfp1
	Otop1
	Pamr1
	Pank1
	Pdk4
	Perm1
	Phospho1
	Pim1
	Ppara
	Ppargc1a
	Ppif
	Ppp1r3b
	Psapl1
	Pvalb
	Pygl
	Rorc

Serpina3b
Serpina3j
SIc25a34
SIc27a2
Slc2a5
Slc4a4
Sorcs2
Tnni2
Tnnt3
Ucp1
Ucp3

Supplementary Table 1
Gene list in Supplementary Figure 9b

RT. WT vs Cold down	Cold. WT vs KO down	Commonly down in KO at RT and Cold
Akr1c14	3830417A13Rik	Aoc1
Alox5ap	Agt	C4b
Aoc1	Aldh112	Chrdl1
Aqp3	Aoc1	Faim2
Aqp5	Bmper	Padi4
Areg	C2	Vnn1
Arsi	C4b	
Bst1	Cfb	
C4b	Chrdl1	
Ccl6	Creb311	
Ccl8	Dclk1	
Ccl9	Faim2	
Cd209f	Fam83e	
Cd209g	Ffar2	
Cfp	Fgf10	
Chrd11	Irs3	
Chsy3	Mcam	
Cldn11	Padi4	
Clec3b	Prr32	
Cystm1	Prtn3	
Dab2	Serpinh1	
Dscam	Sncg	
Faim2	Spon1	
Fbln1	Timp1	

Fcgr1	Ttyh2
Fcgr2b	Vnn1
Fcrls	
Gas6	
Gm13031	
Gm14005	
Gng12	
Gsr	
Hif1a	
II33	
Irf4	
Itgam	
Krt4	
Ldb3	
Lgi2	
Mafb	
Matn4	
Mcpt4	
Mgl2	
Mmp9	
Mrc1	
Ms4a6d	
Muc13	
Nfam1	
Ngfr	
Ninj1	
Npl	
Padi2	
Padi4	
Pinc	
Ptpn5	
Sfrp4	
Siglec1	
SIco2a1	
Slpi	
Spi1	
Sprr1a	
Stc2	
Syn2	
Tcf21	

Tgm2
Thbs2
Thsd4
Tmed3
Tmem176a
Tmem86a
Vnn1
Wfdc17
Wfdc3

Supplementary Table 1
Gene list in Supplementary Figure 9c

${ }^{223024946}$ 127602
351022
5．10605菖蓦莫 ${ }^{0.62111422}$ 6．118socaca

 0.028068174
200605
0.0335668
1．5565

差教竞

 － ${ }_{0}^{0.812102021}$

120017833
0.6011328

1.37245209
10220
5
0.004
0.0002
0
50045233 $3 \quad 0.0 .4559841$

${ }^{6.82363039}$ 2366003
篔总
\square

\％
\square
0.667032241

[^0]

${ }^{6}$. 033224076	4.69383102	0.0.3sse	Sasaoseer	0.73s53236	4.69323102	0.002asss	0.123	0.4n12499	4.63832102	00773	0.557\%96\%	0.0ssessr	4.68382702	0.764556\%
$2 \mathrm{Fb66}$	S\%er399	2797993	Wsan236	122750	1.1115865^{1}	2,9979915	${ }^{82207}$	0.000	68373927	13977995	${ }^{\text {acssmas }}$	${ }^{02,2 e s e s s 2}$	0.6.1ss691	3.3979915	0.65132718
${ }^{\text {Pamm}}$	${ }^{20} 513 \mathrm{sas}$	277 macees	${ }^{\text {oussssu18 }}$	Osscosess	${ }^{1038307295}$	27 27ercases	chene	0.0265623	0.53msear	27rucaese	0.sese315	0.732075 2	0.1199753	as	0.688 sc 278
	83	S96ssran	cors	${ }^{0.14530236}$	2887	nor	2 2Stes	0.0209sess	0.5887292	s.gssizan	0.018s9235		0.1535916	Sssmana	a.assomi
mose	-0.9634m	39662008	0.0.2ssan	.007n39382	1.12099295	3, 3 crazes	0.0020ens	0.0esssss		${ }^{3} 56827 \mathrm{max}$	0.orsaseas	оsiscoss	0.1880239	3.3 crizess	0.87asssi
Sment	-098006ser	5.51229275	0.0078375	${ }^{0.1 .0602965}$	4.3038989	5.50239275	0 .omesisal	0.03092s	O.sassaus	51.1029235	0.14 asizs	0.9809395	0.173883×2	5.502329215	$0.6 .50 s a 45$
Stap	-0.073973	5 sacesers	o.amesase	${ }^{0.1603837}$	-.6807372	Smacesvs	0.00ss32\%	0.0.1293199	0.28159384	Sascosis	0.1014393	-0xermuss	aosar23x ${ }^{\text {a }}$	5 sasosne	0.685023072
mosb	.0.4nsenor	396053982	0.027sest	${ }^{\text {ajamersen }}$.o.reseose	399065s\%	0.007s924	0.034302	O.ssessis	${ }^{3}$ Senerese 2	0.109329	0.92385053	0.asonsta	3.30969592	0.3321278
Nen	-05929395	6seerene	O.ossoss6		-09203sc9	6.seersen	0 oonreas	0.0 .033552	0.3898519	6searseg	0.15385120	1	corsemas	6.5sensear	0.senesas
smexp	O.asirseser	4 Sssanazes	0.assenas			4.8080×298	Stes	0.0nesomas			0.0024595	$0^{0.7392882}$	${ }^{2} 0.0 .64238$	4.8580×298	Oser2ss.
5×12	0.7n1usase		0.07rsses	02233232	-14985699	8.1083388	o.oonsscse	0.0esmess	osserniss	s.oenses	${ }^{0.10859912}$	O9nessose	cosessese	8.1085	0.9882275
P20	-10033969	2 20easess	o.omesass	о0estas9	. 1.88581947	2 2eneess ${ }^{\text {a }}$	2 26068	19966	oassouss	2 28020s578	0.0173817	O4menses	a.asesvon		0.0515353
Meniza	-.63139897	1.3238985	O.ossomen	Oasssens	1227naeas	1.33283659	0.0019209	0.03sss52	Osiseenes		0.158518	1	.0.924eses	1.33289859	0.0.astara
Smm	2 20assusa	1.220 grses	23005	-0.02sers	435924591	1.220 grses	${ }^{315509}$	${ }^{202566}$	1.0 meares 7	${ }^{1220 \text { crese }}$	0.0189597	ocasurss		${ }^{1220 \times 9898}$	0.6anoss
Misha	Osespens	${ }^{32} 2 \times 30558$	0.010 ces 3		.1.6665624	${ }^{32} 20$ esess 7	©omenass6	0.01129 ss 1	0.S662317	${ }^{2200 e s e s s} 7$	0.183280008	1	aoroanal	3200sess 7	08085932
enta	. 1.0 amanoc	3,6812914	oomoruszas	cossaras	${ }^{1.003020858}$	3.68ı2913	ess566	aomosu11	0.3serses	3.6812943	0265samb	:	0.72sasza	3.6пи2914	0.5983823
Peres	.ospueses	5 sarzess2	${ }^{121205}$	aomerseon	${ }^{1.365 s s a s}$	5 careses2	${ }^{224688}$	23085	0.3095939	Scheress 2	221130esis	1	-00229397	5 carasesz	0.78300
$4{ }^{40}$	-amencrs	4 assions	acons3est	osososens	${ }^{\text {asmaxaz26 }}$	4 assor39	oomerras	0.0183336	O.1sensas	4 40s30338	O.3sozes	1	a.arsosass	4.8538338	osamassos
"106	$0.6598178{ }^{\text {c }}$	${ }^{\text {ataserang }}$	0.0 .0 asose	${ }^{0000932234}$	0.8ssrnas	${ }^{4.446519196}$	${ }^{36556}$	0.000es978	0.2020 css 5	${ }^{4} 4.4651916$	020241939	1	.0.0323n9	4.4 4es11966	0.985 soeat
citer	-assmasis		0.anowas	0.1982107	0.068 mas 6	5.55903898	0.002029s	O.ascesese	0.2023 ssce	558503 sec	0.30202751	1	0.013293	5.53903388	0.9515 sels
4	-0.022ess	7 Smensera	0.02029se	Ocssesss2	10714 ass	2 S5enssar	2 setas	0.02neses	${ }^{0.36842653}$	${ }^{258018587}$	0.148 spas	0.985897	1.0227929	${ }^{\text {S Sosssan7 }}$	0.93915907
Ditar	-0.53637n92	assarsse	0.9982333	0.5359041	-.7nasspr	45.5093588	-0.0009897	0.00782398	2025ssera	4 assassee	${ }^{0.85839291}$	1	a.anosssa	4515895898	0.serszea
${ }^{31}$	- 0.3959585	63searia	0.0183×59	0202027212	-.5soness6	6,3samere	0.00039118	0.ascess26	020203531	63s3erce	02298839	:	0.0953934	6,3830264	0.89893071
${ }_{\text {Tman }}$	-.ssssmesa	7 Issaervs	0.0.202403	0.1733314	-.4tcososs	${ }^{2}$.ameares	coomenens	¢00easas	03392944	${ }^{238502027}$	${ }^{12126661}$	Oseseser21	0.03882971	7 2manezus	0.8453308
tres	.assmgssi	6 Gesirases	0.0074995	${ }^{0.1 .06629856}$	0.683351978	6 saerisate	coosseata	0.0023 seass	${ }^{0.3886935}$	Geserinses	017346e3s	1	0.05531	6 cesmease	0,280enesi
kob1	-0.82276175	59.3611736	15sta6	${ }^{0.00385298}$	122025s76	5.42161736	${ }^{272468}$	${ }^{199666}$	0.43sasta	593611136	0.40730098	0.0 asasass	0.0033382 2	5.4 .3611736	0.0589731
cans	-. 0 enssaz	4.6598931	0.0 .020 nes 9	0a0massin	0.8scoss32	4.6859831	0.0008868	0.0130956	0.2023863	4.6598931	${ }^{\text {0.3anas319 }}$	1	0.06653991		0.82302ate
${ }^{\text {sp }}$	0.0603789	5 sa3ssene 2	0.0 onssis	0.osasson 2	0.8373575	5 sa3sene22	52905	coumb3s	0.2730745	samssenz	020292183	:	0.00106119	5.43350×2	0.7298949
misal	1.084×38	6soncese9	0.00032×3	Ooisenss	1.27 ISssais	6 6.00ctese	sactos	0.0ssarız6	0.9333513	6samases	023 asesse	:	0.1332908	6sprosisag	0.6sseers
mat	.abussssa	5 scrames	0.000\%ssas	003202nsa	-6assam	5 serames	${ }^{0.003352}$	0.0sss9386	${ }^{\text {oremass }}$	5 s6menzs	035723229	:	0.72enemz	5 semasmes	-.336ser9
Tredar	-.53stseas	4.1539293	0 amisassa	${ }^{\text {coazeusfa }}$	-.sssama	4.15332039	0.0enseas6	0.12972935	0.13 arames	4.15332203	0.50 .98265	1	0.18183803	4.1539239	${ }^{\text {a32020aca }}$
nutp	. 0.6 sesear 7	Saseosaes	${ }^{\text {acoss } 25}$	0020207at	Osssmases	Sabasoses	0.0sesocra	0.5000382	Oementas?	Sanasase	0.687389	1	0.18 .850213	S.aserssea	0.3935s2es
cost		${ }^{6192902989}$	${ }^{138605}$	${ }^{0.00480246}$	${ }^{\text {an2mess4 }}$	${ }^{6191902398}$	0.00393159	0.0atiosese	0.0837218	${ }^{6} 19192939$	0.08810985	1	0.24535784	${ }^{6.129023989}$	${ }^{0.28872 a n 12}$
can	-0.73ssssa7	615125579	0.0 .0038507	0003506ss	-.cesesess	615253579	0.00006ss	0.08518897	${ }^{0.10606 s s e ~}$	615235737	0.07738515	:	0.7168167	6.53535797	0.38022727
sman	-0.87719995	6 639sesras	1.58 cos	-0.ass978		6 63989545	${ }^{0.0001326}$	conseasar	0.12383989	63989575	0.548359	:	0 020803829	6.5398575	0.2850772
Mesemas	-997730s	Assreaes	sep	acomosen	-0.8388723		0.0 messsa	0.asmmass	0.18935192	4 Scraves	0.6415985	1	0 0.20ses36	4 .ssasame	0.3802739
ctas	2.553939	482799897	0.000329	0onsesen	-0.sscrese	48279367	coomesisea	oosososs	0.181 .1509	4×2798507	Oassmas9	1	0.1435361	4.4278969	0.593sscse
2ano		4 43sesens	0.00073101	00001247	-.7.39s5s4	4 4,seseos	0.0027139	0.0 .153876	${ }^{0.15902733}$	4 4,sensos	cassasese	1	comseasas		$0^{\text {ospang }}$
mether	-0.7111984	4 ass3932	0.0007nes	0.03s\%res	-.70scoser	- 4 ess3sa		0.05701289	0.135 coses6	4essesa	ossossa	1	0.108593	49	0.6es3s4s
Cmmon	. 1.19991029	42.8289816	${ }^{1.5567}$	${ }^{\text {3,seces }}$	1.23100312	${ }^{4.248189716}$	${ }^{135466}$	${ }^{\text {0.003sere3 }}$	0.1889880101	${ }^{4224859816}$	0.5055346	'	0.150×0933	${ }^{42215893976}$	${ }^{0.533227275}$
sms	-aszrase	462532933	${ }^{\text {aocosescse }}$	0oneseres	-0.9363354	$4{ }^{46232923}$	coossersz	0.02428097	0.1020×7001	4.2625233	0.0820285	:	${ }^{\text {aosacaiz2 }}$	4.2023293	o.asoroser
smer	0.6ana93	6300 esch	${ }^{120405}$	${ }^{\text {aoar2013 }}$	${ }^{0.66939093}$	6.300esce	${ }_{\text {satecos }}$	$0.0 .045 s \times 87$	0.asesases	630nester	0.653sam	1	${ }^{\text {cous3r } 24} 4$	6.503 sec 69	0.rsameng
clase	0esencsis	400014	5_{59865}	${ }^{\text {acourscous }}$	${ }^{\circ} 886$	4 Canan	992	0.0 .156	0.0 .0 csosss	4 amanase	osascrist	1	aonomass		0.ss6rame
mest	0.0.osses	${ }^{288777238}$	2mosesal7	0.00976512	-.7.ssssor	${ }^{\text {3,927n723 }}$	0.031733	0.023sasa	0.0723932	${ }^{397777238}$	0.97699516	1		38477ne6	O.93sssems
cotas	- 1.0 essanas		${ }^{3256508}$	92406	1.16393299		${ }^{1.554} \mathbf{7}$	${ }^{3.92505}$	$0.0 .1850 \times 9$	4 4076039	0.9023ses	1	acssoses	4 4017cesas	
$v_{\text {sta }}$	-0.7scersis	53302768	4.9067	9,9es	0.8ss9099	535202788	${ }^{1.46568}$	o.omoseas	${ }_{0}^{0.503023}$	S302075	0.33s567	1	a.argascat	5.53272708	0.97\%61196
, mation	1.9888979	225345336	1.8107	421505	1.580×892	${ }^{251245326}$	${ }^{1226066}$	0.00029s6	acsasasoz	${ }^{253145326}$	0.8sonons	:	0.02985999	253541326	0.93523297
${ }_{\text {fgil }}$	0.9320 Scsa	${ }^{25502 s e n 73}$	\$21205	${ }^{\text {cooseser }}$ \%	${ }^{1.209934882}$	${ }^{2.502 s e s m 3}$	${ }^{1280505}$	0.00163739	${ }^{0.12338301}$	${ }^{355028773}$	0.5931113	1	comenerat	${ }^{3.50205977}$	0.02925
$1 \mathrm{~mm}{ }^{\text {a }}$	0.7386993	5 ssass 29	monores	00098223	-0.386334	5 s.asss2a	235505)0chis	0.173020	sanass22	0.03365856	:	0.0sse238	5 smasseng	Oseosaras
nom	12726 cen 2	${ }^{3}$ sena20r	45969	9.sacos	4.187359	3.58202017	${ }^{23469}$	${ }^{285566}$	${ }^{2} 2.2304365$	${ }^{3} 5$ saorerer	osassisees	1	0.1593332	3 Senerxor	0.559
wasa	. 131239348	30.662716	926606	${ }^{\text {acounssso }}$	${ }^{1.61839396}$	30.662716	${ }^{296407}$	0.00202ses	0.18131399	30.662716	0.5resese	1	0.18520933	30.627816	0.59819279
sam	. 1.0 Ssasas3	4 atsssan	${ }^{2} \mathrm{Lafes}$	${ }^{3,565}$	1.23536858	${ }^{4945 s 5931}$	${ }^{288598}$	${ }^{66}$	0.10141593	${ }^{\text {4.44ssasi }}$	0.0671323	1	10.0365397	4.scsseas	07368
Atus	22.2019386	7.7nsestis	${ }^{26563}$	28		\%.mpeatis	${ }_{151513}$	${ }^{212127}$	0.1278×204	1mmeatis	0.5355907	:	-2.asasar	7.7neatis	0.2eranar9
cipo	. 12.2333594	Stuenares	1.085	${ }^{1.124 .40}$. 188730272	5.160×109	${ }^{4254.46}$	298412	0.124 .45607	Stiamasas	$0.5020 \times s{ }^{\text {a }}$:	0.17781366	5.16468109	
Angen	Osatasas	4 4enens ${ }^{\text {a }}$	${ }^{185556}$	${ }^{\text {comoseara }}$	${ }^{1227858426}$	4 4enerys	${ }^{3.06588}$	${ }^{\text {arcos }}$	0.153161607	448887538	0.5850938	:	0.03973739	4.48	${ }^{0.4 a n a r a t a l}$
${ }^{\text {Th2 }}$	-0.9393853	627389939	${ }^{1.865}$ \%	coonees3	0.02039856	${ }^{627839393}$	tor	${ }^{12365}$	0.07232394	6276ases	0 acssear	1	0.1332002	62786393	o.ssassise
sts	-0.63sarna	4.17993936	amossse3	aorcoom	-0.ssesses5	4.12981939	0.00029095	0.0073621	O.ossesals	4.1893196	0.08510022	1	0.asseass	4.37981396	0.6 .68893132
Pras	0.0 .8983231	695327276	${ }^{0.000603939}$	${ }^{\text {cososatsse }}$	-.9.3220356	695327236	0 000711996	0.0 .0 ensas	-0.0esests	6953227x6	0997xsser	1	0.101202393	695321236	$0^{\text {OSSasasa }}$
Slesa	-0,75senes	4 assosaris	${ }^{\text {a00essaral }}$	Ooneatine	.ososess6	4 assosarse	o.oassesas	0.asposer	-acasers74	4 4ascosise	Ossatases	1	0.1973072	4 assonene	$0.4 .4580 \times 28$
Pemmm1	- 0.51339351	5996\%s31	dooass33		-062126299	Sasmers	0.onss3079	0.0232328	-omatas36	59.85	0.omasasp	:	(11423897	Sexaman	a.asasass
Stur ${ }^{2}$. 11.15 29ss	3 Satanese	Sstag	acomseos	1.2.927235	3.anceses	${ }^{33605}$	0.0×37212	-2,aerases	3984ases	0.6972398	1	-120252294	3 3salsese	
smm	-169961987	4.85023861	1285	${ }^{1.564}$	- 1.58548978	$4.850236{ }^{1}$	2976.11	Lestas	-0.18soss95	4.580 .846	Otanose	1	0.1.enve6	$4.850246{ }^{\text {a }}$	0.4075 sas
mextr	1.12339898	4.187 mses	2121607	4.9 esos	1.18293919	4.167 mase	${ }^{325566}$	0.0000329	Decrioser	${ }_{4} 1.677 \times 56$	nataozese	1	.osmines	${ }^{4.6 m m s o s 6}$,
tran	.0.8589563	3,38273019	0.0 ansses	${ }^{\text {coabesesals }}$	0.6993319	3.68273019	Ooosteses	0.0030354	Doastarz2	${ }^{2188272099}$	ояas9398	1	.acssenss	3.8823019	0ensearz
${ }^{\text {Atas }}$.ossassica	655235623	0.0007 rea	000aram	0.0 .8385 seas	655235523	0.0nusers	0.0 .083354	20ss3213	655936823	0.08972725	1	0.0323712	6 S520sser ${ }^{\text {a }}$	oassossas
Treted	.ormenorse	5.5sm32es	${ }^{298607}$	acoustes	-..83mess	5.58533288	${ }^{302605}$	0.0.72ess	-10escruss	5sens 2 cee	0.6462793	1	(00087007	5 smasszese	O.assmesa
Pmm	. 0.6 ersmen	${ }_{5} 53333866$	0.0003237	${ }^{\text {coangssen }}$	0.62202355	527331868	0.02ssess	0.0533724	.oonsesesp	5 52339366	0.088373	1	.00132394	523 239866	O.9ness ${ }^{\text {a }}$
trens	.a.730acas	577e3398	Gater	-oanvaste	-052093163	57763305	-0009303	0.0ssencas	-1.3strwas	577esas	033985174	1	a.omessss	57178305	0.600333
882	. 1.3 Sas3619	6721313597	${ }^{23513}$	${ }^{2185} 510$	0.08132356	67\%139357	255505	0.0209ssas	-29358464	67103135\%	0.15958974	1	0.1922269	6.7nesess	0.03029411
,	-09887302	5.12385998	${ }^{1.86507}$	4 actes ${ }^{\text {c }}$	-.sserseos	5.123839093	-0.02sseng	0.0 .50138	-1.2963239	SLIssares	0.324\%712	1	01107868	5.18385×89	$0^{\text {ascassmer }}$
6ek	${ }^{12212123516}$	2 29ssars	${ }^{223605}$	${ }^{\text {cooasasen }}$	-.7883227	2 29ssaris	0.02 Onats	0.5892779	-2323615982	2 2esscriss	0.0397511	1	0.178659	2 2esscriss	${ }^{0.509323}$
ent15	-.6989a33	4.72323022	${ }^{\text {sintos }}$	coosenres	- 0.12 sesess	4.43235322	0.0essariz	0.12430353	.012311326	478233502	0.5829897	1	a.0323202	4.78235022	0.72320as
elt	-astrsam9	$4246897 n$	${ }^{32545}$	oocoss\%75	0.02989538	42.268937	0.oastess	0.098712	.0.7265613	42 sesesm	oansenios	:	a.012as92	4.246897	${ }^{0.50939314}$
	-0.95s2935	438232468	${ }^{23565}$	${ }^{\text {cocosesens }}$	${ }^{\text {0. }} \mathbf{0} 5832386$	$4{ }^{4222823624}$	0.0023565	0.00953888	-0.63003931	488232688		:	0.03950705	4.82932364	0.48m93s\%
${ }^{2} 20$	-.50smssb6	3.73seorr	0.0006322s	00008846]	0.02362733	${ }^{\text {273seorra }}$	0.014s5097	0.18	-11330093		0.ssscsass	1	0.assssas	3.7neosri4	a.7n93124
Trimes	-ascesone	43 ascranals	4.12906	oonesisse	-2007038	4.356	0.006ss74	0.0687396	-212909ss	43 asciants	0.0372325	1	0.ossess9	4.35668015	0.938632
${ }_{4}$	0.7.8sssoz		4.85	s	0.6.6seses	64678933	0.003sere7	0.01313037	.12329463	¢6е8ез33	0.assisss	1	0.02	6.6881433	0.9322
vege	-0.7sssss	8.13513099	${ }^{\text {a Ooxessas }}$	0.0239852	-.6ctasess	8.18312389	0.01933615	02153348	-13537397	81.3513889	0.ssscass	1	0.00798393	8.83530897	O.ssanalice
${ }^{\text {pras }}$. 093923035	6.oessens	0.0 ornesa	Oorinass ${ }^{\text {a }}$	Oenesssess	6.cossens	${ }^{\text {0.0saraz75 }}$	$0.0 .2023 \times 18$	101999662	coaessens	0.512×393	:	0.0enzess6	6.sossese ${ }^{\text {a }}$	O.entesut
coratal	-07353014	55255332	0.000ssss	Corocomes	0.68639388	552537132	0.02022938	0.03232981	-0.0.mssas	52585313	ortasper	:	.a00203s2	552537332	0.9835978
Nats	-093713094	${ }^{364595923}$	${ }^{268505}$	${ }^{0.0029238}$	0.5esesers	3.14939723	comostese	0.08976 St	.0.07\% 5 S4a	${ }_{2} 2.9859323$	0.0938856	:	0.0280233	${ }^{3181889293}$	0.08987611
\% 8	-0.6eneses	43859349	0.0003387	conssomas	-08976ser	43859349	0.oensuss	$0.12128 s 85$.anornose	43850949	coserines	1	0.020997	4 4ssosat9	O.assen
(tan	${ }^{1.1 .864}$	${ }^{383} 518800$	${ }^{22465}$	ocoves	-06stases9	3.1336890	0.02020se	0.0 sss275	-1.129s54.	3.931384802	0.0837258	1	cosamsse	now	anssa
${ }^{12}$	-0.3897396	799820297	amosesess	conocoses	0.0 .1183493	7,98272027	0.ososover	0.1027009	-acrasaon	79927207	cospracar	1	aonourss	${ }^{293924247}$	- 7 neasss
${ }_{681}$. 1890 \%eas6	${ }^{122 s s s 226}$	${ }^{20868}$	asseos	. 1 cesatars6	${ }^{1228 s s 226}$		0.0239227	-1.193999	${ }^{127 s s e n z 6}$	arcsasocan	:		${ }^{1.2585226}$	-.6seasess
mat2	-.7350022	5 sanazese	${ }^{236505}$	${ }^{10202059} 9$	-.6sseom	Santerasa	0.0045093	0assr2321	-0.5ssasi9	samarezer	coseseas	1	0.omp393	Suntaros	0.59266151
${ }_{\text {fomisa }}$	${ }^{1.5997095}$	${ }^{295837295}$	${ }^{320510}$		${ }^{12} .23823066$	7.98987295	${ }^{121266}$	0.003sases	0.00329885	7 7989722as	0.9035ssaz	1	0.13982×5	${ }^{298837205}$	0.23502984
mmases	${ }^{\text {a }}$. 1 csso	2 25ersas6	0.004essa	0.0978	2 25003es5	${ }^{2529253596}$	0.01009017	0.15 sesss	Pomeneste	2 25erseses	0asess76\%	:	0.55858336	${ }^{2} 2$ Serssasa	0.82532776
Stopl	23880979	2106 reson	${ }^{24} 413$	${ }^{212650}$. 120823595	21.607800	sonts	${ }^{235505}$	2038393	21.67 rean	ооязэм	1	0.3s2esas	2.18 \%rnean	0.27nese
${ }^{\text {Amplu }}$	-.6s3nass	4 scearars	0.00sarı3	00212462	.052419356	4.6 ematrse	0.0.224112	2.1.cesese	ooman354	4 Acesear	Osameses	:	0.0910293	4 4.eseans	0.03858173
	-oseng			cocssoss cosereas	-0.0.935356		-0.0123739	0.0382378 0.582339	${ }_{\text {a }}^{\text {a }}$			1	-1.1729521	Sts2	

[^1]

茹
$0.01333169 \quad 0.70702$

昜
$\underbrace{\text { a．0012601057 }}$ 0.0 .0 .0 .0 .02655999 0.13969974

量害
＂•••
${ }^{0.239292045}$

${ }^{0.272325693}$喜膏愚
 2．00eces318

0.0 .0513359
${ }_{1}^{2.565605}$
0.0 .0925255
0.0002859
0.02059316

－．391197

畠㟟

昜
量

巻券
${ }^{-0.415574955}$
0.15282821
0.52322955
0.03044678
0.02565899
0.0 .32035952
$0_{0}^{0.0 .545935599}$
0.0207111554

宽
量

曾量

$\frac{18}{8} \frac{1}{8}$
－0．45520as17
${ }^{0} 0.0 .03524653$
－． 0.5 senseas

总量
． 0.58 eser335s

0.122892327 0.1609647 0.50569775

0.2384135
0．78887102

| 0.002433018 |
| :--- | :--- |
| a．015s5se |

 5
${ }^{\text {a．oan2020ese }}$

6．090333908
6．2412e203

0

0．002333985
0．002727807
${ }_{\substack{0.0203 s e s e s s) \\ 6.12605}}$

0.000124 5．66656 0

\section*{| 0.0002 |
| :--- |
| 0.0008 |
 }

暽量
s．

0.000010 0.00004 0

登

$\begin{array}{r}0.00010077_{1} \\ 1.2505 \\ \hline\end{array}$

费薄

总量
$\frac{8}{8}$

管毫
素总总
0.001272922
$6.522-10$
0.00389988
0.00025712
管

．
${ }^{200425255}$

0.020528674
0.0009946
0.01310637
0.02429723

0.120409828
0.07525277
0.15970212

\section*{| 0.02707724 |
| :--- |
| 0.039899767 |}

${ }^{0.294127706}$

0.188272013
0.0994393

${ }^{0.033283999}$
0.00558823
0.101085706
0.10005512
0.120005512
0.120768125
0.4000173
0
0.17027762
0.2055328
0

$0.037 \times 0 \times 055$
0.01294109

${ }_{2}^{7.6186556}$

4.505102757

\section*{| 6330ascris |
| :--- |
| 4.978 and |}

5.208738897
4.69182729

\section*{| 4．08816 |
| :---: |
| 6．16977 |
| 4.7802412 |}

479044227 531382322

娄昐亳喜
量量量量
墨量愚
童

1	1
2	1

20．256

References

1 Ikeda, K. et al. (2018) The common and distinct features of brown and beige adipocytes. Trends Endocrinol. Metab. 29, 191-200
2 Kajimura, S. et al. (2015) Brown and Beige Fat: Physiological Roles beyond Heat Generation. Cell Metab. 22, 546-559
3 Sanchez-Gurmaches, J. et al. (2012) PTEN Ioss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab. 16, 348-362
4 Seale, P. et al. (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961-967
5 Chu, D.-T. and Gawronska-Kozak, B. (2017) Brown and brite adipocytes: Same function, but different origin and response. Biochimie 138, 102-105
6 Chu, D.-T. and Tao, Y. (2017) Human thermogenic adipocytes: a reflection on types of adipocyte, developmental origin, and potential application. J. Physiol. Biochem. 73, 1-4
7 Chu, D.-T. et al. (2017) OPA1 in lipid metabolism: function of OPA1 in lipolysis and thermogenesis of adipocytes. Horm. Metab. Res. 49, 276-285
8 Wu , J. et al. (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366-376
9 Sharp, L.Z. et al. (2012) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE 7, e49452
10 Roh, H.C. et al. (2018) Warming induces significant reprogramming of beige, but not brown, adipocyte cellular identity. Cell Metab. 27, 1121-1137.e5
11 Grujic, D. et al. (1997) $\beta 3$-Adrenergic Receptors on White and Brown Adipocytes Mediate $\beta 3$-Selective Agonist-induced Effects on Energy Expenditure, Insulin Secretion, and Food Intake. Journal of Biological Chemistry 272, 17686-17693
12 Ahmadian, M. et al. (2011) Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 13, 739-748
13 Altshuler-Keylin, S. et al. (2016) Beige Adipocyte Maintenance Is Regulated by Autophagy-Induced Mitochondrial Clearance. Cell Metab. 24, 402-419
14 Nedergaard, J. and Cannon, B. (2013) UCP1 mRNA does not produce heat. Biochim. Biophys. Acta 1831, 943-949
15 Kazak, L. et al. (2015) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643-655
16 Ikeda, K. et al. (2017) UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23, 1454-1465
17 Cypess, A.M. et al. (2009) Identification and importance of brown adipose tissue in
adult humans. N. Engl. J. Med. 360, 1509-1517
18 Saito, M. et al. (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526-1531
19 Hanssen, M.J.W. et al. (2015) Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat. Med. 21, 863-865
20 Emmett, M.J. et al. (2017) Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge. Nature 546, 544-548
21 Inagaki, T. et al. (2016) Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat. Rev. Mol. Cell Biol. 17, 480-495
22 Ohno, H. et al. (2013) EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504, 163-167
23 Sambeat, A. et al. (2016) LSD1 Interacts with Zfp516 to Promote UCP1 Transcription and Brown Fat Program. Cell Rep. 15, 2536-2549
24 Tateishi, K. et al. (2009) Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458, 757-761
25 Zeng, X. et al. (2016) Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation. Genes Dev. 30, 1822-1836
26 Pastor, W.A. et al. (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341-356
27 Chen, Q. et al. (2013) TET2 promotes histone O-GIcNAcylation during gene transcription. Nature 493, 561-564
28 Gao, J. et al. (2016) Non-catalytic roles for TET1 protein negatively regulating neuronal differentiation through srGAP3 in neuroblastoma cells. Protein Cell 7, 351-361

29 Tsai, Y.-P. et al. (2014) TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator. Genome Biol. 15, 513
30 Williams, K. et al. (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473, 343-348
31 Zhang, Q. et al. (2015) Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525, 389-393
32 Yoo, Y. et al. (2017) TET-mediated hydroxymethylcytosine at the Ppary locus is required for initiation of adipogenic differentiation. Int J Obes (Lond) 41, 652-659
33 Eguchi, J. et al. (2011) Transcriptional control of adipose lipid handling by IRF4. Cell Metab. 13, 249-259
$34 \mathrm{He}, \mathrm{W}$. et al. (2003) Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci USA 100, 15712-15717
35 Jeffery, E. et al. (2014) Characterization of Cre recombinase models for the study
of adipose tissue. Adipocyte 3, 206-211
36 Nguyen, K.D. et al. (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104-108
37 Boström, H. et al. (1996) PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85, 863-873
38 Chong, J.J.H. et al. (2013) Progenitor cells identified by PDGFR-alpha expression in the developing and diseased human heart. Stem Cells Dev. 22, 1932-1943
39 Karlsson, L. et al. (1999) Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle. Development 126, 2611-2621
40 O'Neill, S.M. et al. (2014) Targeting adipose tissue via systemic gene therapy. Gene Ther. 21, 653-661
41 Chella Krishnan, K. et al. (2019) Sex-specific metabolic functions of adipose Lipocalin-2. Mol. Metab. 30, 30-47
42 Zhang, W. et al. (2016) Isoform switch of TET1 regulates DNA demethylation and mouse development. Mol. Cell 64, 1062-1073
43 Ito, S. et al. (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300-1303
44 Tahiliani, M. et al. (2009) Conversion of 5-methylcytosine to 5hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930-935
45 Yang, H. et al. (2014) TET-catalyzed 5-methylcytosine hydroxylation is dynamically regulated by metabolites. Cell Res. 24, 1017-1020
46 Huang, Z. et al. (2013) Bisulfite sequencing of cloned alleles. Methods Mol. Biol. 1049, 83-94
47 Zhang, Y. et al. (2009) DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones. Methods Mol. Biol. 507, 177-187
48 Li, L.-C. and Dahiya, R. (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18, 1427-1431
49 Itzhak, Y. et al. (2015) Long-term parental methamphetamine exposure of mice influences behavior and hippocampal DNA methylation of the offspring. Mol. Psychiatry 20, 232-239
50 Neri, F. et al. (2013) Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells. Genome Biol. 14, R91
51 Wei, T. et al. (2015) An HDAC2-TET1 switch at distinct chromatin regions significantly promotes the maturation of pre-iPS to iPS cells. Nucleic Acids Res. 43, 5409-5422
52 Chandru, A. et al. (2018) Sin3A recruits Tet1 to the PAH1 domain via a highly conserved Sin3-Interaction Domain. Sci. Rep. 8, 14689
53 Galmozzi, A. et al. (2013) Inhibition of class I histone deacetylases unveils a
mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 62, 732-742
54 Ye, J. (2013) Improving insulin sensitivity with HDAC inhibitor. Diabetes 62, 685687
55 Li, F. et al. (2016) Histone deacetylase 1 (HDAC1) negatively regulates thermogenic program in brown adipocytes via coordinated regulation of histone H 3 lysine 27 (H3K27) deacetylation and methylation. J. Biol. Chem. 291, 4523-4536 Yang, Q. et al. (2016) AMPK/a-Ketoglutarate Axis Dynamically Mediates DNA Demethylation in the Prdm16 Promoter and Brown Adipogenesis. Cell Metab. 24, 542-554
57 Gupta, R.K. et al. (2010) Transcriptional control of preadipocyte determination by Zfp423. Nature 464, 619-623
58 Shao, M. et al. (2016) Zfp423 Maintains White Adipocyte Identity through Suppression of the Beige Cell Thermogenic Gene Program. Cell Metab. 23, 11671184

59 Villanueva, C.J. et al. (2011) TLE3 is a dual-function transcriptional coregulator of adipogenesis. Cell Metab. 13, 413-427
60 Pearson, S. et al. (2019) Loss of TLE3 promotes the mitochondrial program in beige adipocytes and improves glucose metabolism. Genes Dev. 33, 747-762
61 Shapira, S.N. et al. (2017) EBF2 transcriptionally regulates brown adipogenesis via the histone reader DPF3 and the BAF chromatin remodeling complex. Genes Dev. 31, 660-673
62 Lim, Y.C. et al. (2016) Dynamic DNA methylation landscape defines brown and white cell specificity during adipogenesis. Mol. Metab. 5, 1033-1041
63 Sakamoto, H. et al. (2007) Cell type-specific methylation profiles occurring disproportionately in CpG-less regions that delineate developmental similarity. Genes Cells 12, 1123-1132
64 Mullican, S.E. et al. (2013) A novel adipose-specific gene deletion model demonstrates potential pitfalls of existing methods. Mol. Endocrinol. 27, 127-134
65 Karlsson, L. et al. (2000) Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development 127, 34573466
66 Lindahl, P. et al. (1997) Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 124, 3943-3953
67 McCarthy, N. et al. (2016) Pdgfra and Pdgfrb genetically interact during craniofacial development. Dev. Dyn. 245, 641-652
68 Ljvak, K.J. (2001) Analysis of relative gene expression data using real time quantitative PCR and the $2^{\wedge}<-\Delta \Delta C T>$ method. Methods

69 Dobin, A. et al. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21

Chapter 3:

A necessary role of DNMT3A in endurance exercise by suppressing ALDH1L1-mediated oxidative stress

A necessary role of DNMT3A in endurance exercise by suppressing ALDH1L1mediated oxidative stress

Abstract

Exercise can alter the skeletal muscle DNA methylome, yet little is known about the role of the DNA methylation machinery in exercise capacity. Here, we show that DNMT3A expression in oxidative red muscle increases greatly following a bout of endurance exercise. Muscle-specific Dnmt3a knockout mice have reduced tolerance to endurance exercise, accompanied by reduction in oxidative capacity and mitochondrial respiration. Moreover, Dnmt3a deficient muscle overproduces reactive oxygen species (ROS), the major contributors to muscle dysfunction. Mechanistically, we show that DNMT3A suppresses the Aldh1/1 transcription by binding to its promoter region, altering its epigenetic profile. Forced expression of ALDH1L1 elevates NADPH levels, which results in overproduction of ROS by the action of NADPH oxidase complex, ultimately resulting in mitochondrial defects in myotubes. Thus, inhibition of ALDH1L1 pathway can rescue oxidative stress and mitochondrial dysfunction from Dnmt3a deficiency in myotubes. Finally, we show that in vivo knockdown of Aldh1/1 largely rescues exercise intolerance in Dnmt3a deficient mice. Together, we establish that DNMT3A in skeletal muscle plays a pivotal role in endurance exercise by controlling intracellular oxidative stress.

Key words: DNA methylation, exercise, oxidative stress

Synopsis

- Muscle-specific Dnmt3a knockout mice display a reduced tolerance to endurance exercise.
- Dnmt3a knockout soleus muscle oververproduces ROS and exhibits mitochondrial dysfunction.
- ALDH1L1 acts as a downstream effector that mediate muscle dysfunction and exercise intolerance in loss of Dnmt3a

Introduction

Endurance exercise, an aerobic exercise, is generally characterized by high-frequency, long duration, and low power output activity, such as marathon running and swimming. Endurance exercise exerts many positive effects on health, prevents disease, and even acts as therapeutics for a wide range of non-communicable diseases [1,2]. Despite these benefits of exercise, there is very limited understanding in the regulatory factors that affect endurance exercise.

Mitochondria are the organelles where oxidation meets phosphorylation to generate ATP for contracting muscles [3]. In response to endurance exercise, skeletal muscle increases energy production through aerobic metabolism through involvement of enhancing mitochondrial oxidative capacity [4]. It has been suggested that the degree of mitochondrial health and adaptations can be dependent on ROS levels. Thus, a moderate increase in skeletal muscle ROS production in the acute phase of exercise is thought to activate signaling pathways that lead to cellular adaptation, thereby protecting against future stress [5]. On the other hand, excessive ROS can oxidatively damage macromolecules, such as DNA, lipids, and proteins, as well as modify cellular redox status and cellular functions. Consequently, ROS elevation is also associated with pathophysiological states of muscle and contractile dysfunction [5,6]. Mitochondria make a large contribution to ROS production at rest, but not during muscle contraction [7]. The majority of ROS produced during contraction arise from non-mitochondrial sources, such as NADPH oxidase (NOX), located in the microtubules [8-10]. The redox-mediated crosstalk between NOX and mitochondria exacerbates ROS production and disrupts redox homeostasis. For example, NOX-derived ROS promote the opening of mitochondrial ATP-sensitive K^{+}channels [11-13]. The resultant potassium influx into the matrix lowers the mitochondrial membrane potential, which causes mitochondrial swelling, opening of permeability transition pores, and elevated ROS production [11-13]. In addition, NOX-derived ROS causes leakage of Ca^{2+} from the sarcoplasmic reticulum or entry of extracellular Ca^{2+}, resulting in mitochondrial Ca^{2+} overload and mitochondrial ROS emission, which ultimately results in muscle fatigue and dysfunction [5,14,15].

DNA methylation, a reversible epigenetic mark that usually occurs on a cytosine residue followed by a guanine (CpG), is mediated by a member of the DNA methyltransferase (DNMT) family [16]. Methylation prevents the binding of transcriptional machinery that requires interaction with cytosine, usually resulting in transcriptional silencing [17]. Exercise significantly alters the DNA methylation profile of skeletal muscle [18-26]. Acute and chronic forms of exercise induce both hyper- and hypo-CpG methylation of target loci [1826], and some of these modifications are inversely correlated with gene expression [18,23,26]. For example, a single bout of aerobic endurance exercise in human subjects transiently induces hypomethylation at the promoter region of important mitochondriarelated transcripts (e.g., PPARGC1A, PDK4, TFAM, and PPARD), followed by an increase in their expression [18]. Moderate-intensity exercise in humans has been reported to result in hypermethylation of FABP3 and COX4L1, which is inversely associated with their gene expression [25]. As such, despite the obvious link between altered DNA methylation and
exercise-associated gene expression, the underlying function of DNMTs in exercise performance remains unclear.

Here, we report that skeletal muscle DNMT3A is a critical epigenetic modulator of endurance exercise. Muscle-specific Dnmt3a-deficient mice greatly reduced the exercise capacity accompanied by increased signs of myopathy. Remarkably, knockout (KO) muscles, especially soleus and gastrocnemius (GA) muscles exhibited a dramatic reduction in oxidative capacity and mitochondrial dysfunction accompanied by an increase in ROS during exercise. Our transcriptomic analysis identifies A/dh1/1 as a key direct target of repression by DNMT3A in soleus muscle and GA muscles. Overexpression of ALDH1L1 was sufficient to recapitulate Dnmt3a KO-mediated mitochondrial dysfunction and oxidative stress by promoting accumulation of NADPH and thereby increasing NOX activity. Conversely, Aldh1/1 KO or pharmacological inhibition of NOX rescued mitochondrial decline and oxidative stress caused by Dnmt3a deficiency. Lastly, we demonstrate that resolving oxidative stress with an anti-oxidant and Aldh1/1 knock-down largely rescues exercise incapacity in Dnmt3a KO mice. Together, our results provide novel insights into the epigenetic regulation of the muscle response to exercise and reveal a surprising molecular target that is important for sustaining endurance exercise.

Results

DNMT3A level in the soleus muscle increases after endurance exercise

DNMT1 is the major enzyme involved in maintenance of the DNA methylation pattern following DNA replication, whereas DNMT3A and DNMT3B are primarily responsible for de novo DNA methylation [16]. Hence, we postulated that de novo DNMTs might be more important for adaptive responses to environmental changes. To begin to characterize the role of de novo DNMTs in endurance exercise, we examined their expression patterns in soleus, extensor digitorum longus (EDL), and GA muscles, which are red, white, and mixed muscles, respectively, at rest and after a bout of endurance exercise, in C57BL/6J wildtype mice. We also measured the mRNA expression of PPARy-coactivator 1a (Ppargc1a), which is known to be induced by exercise in skeletal muscle $[18,27]$.

Muscle-specific Dnmt3a ablation decreases the capacity for endurance exercise

Endurance exercise has been shown to lead to the greater relative increase in contractile activity in the soleus and red portion of the GA muscle relative to white muscles, such as EDL $[28,29]$. The increase of DNMT3A expression in soleus led us to hypothesize that DNMT3A plays an important role in endurance exercise. To test this, we generated musclespecific Dnmt3A knockout mice (MCK-Dnmt3a KO) by using the well-characterized muscle creatine kinase (MCK)-Cre, which excises floxed alleles in muscle fibers but not satellite cells starting at embryonic day 17 [30].

To assess tolerance to endurance exercise, we employed two different regimens: (1) a lowintensity regimen (Fig 1A) that tested the ability to run steadily at relatively low speed (12 $\mathrm{m} / \mathrm{min}$) for an initial 40 min , followed by a gradual increase in speed until exhaustion [31], and (2) a high-intensity regimen (Fig 1D) that rapidly increased the running speed (6 m/min
and increased by $2 \mathrm{~m} / \mathrm{min}$ every 5 min) to a maximal pace of $30 \mathrm{~m} / \mathrm{min}$, which persisted until exhaustion [31]. During low-intensity exercise, oxidative muscle fibers predominantly rely on fatty acid oxidation for their ATP production. On the other hand, high-intensity exercise raises the ATP utilization rate and induces a metabolic switch from fatty acid to glucose oxidation [31]. We tested the exercise performance of the MCK-Dnmt3a KO mice at 8 weeks of age under these two regimens. Remarkably, the running capacity of the MCKDnmt3a KO mice was greatly impaired: both distance and duration were reduced by 30$40 \%$ under both the low- and high-intensity regimens (Figs 1B, C, E, F).

Figure 1. MCK-Dnmt3a KO mice display a reduced tolerance to endurance exercise.
(A) Schematic of low intensity exercise regimen.
(B, C) Exercise capacity of MCK-KO and WT mice from the low intensity regiment was conducted. ($n=4 \mathrm{WT}, n=5 \mathrm{KO}$ mice, mean \pm SEM, * $\mathrm{p}<0.05$, two-tailed student's t -test).
(D) Schematic of high intensity exercise regimen.
(E, F) Exercise capacity of MCK-KO and WT mice from the high intensity regiment ($\mathrm{n}=5$ mice, means \pm SEM, two-tailed student's t-test).

Next, we investigated whether reduced exercise tolerance of MCK-Dnmt3a KO mice accompanies other morphological and biochemical changes as indications of muscle fatigue. First, nuclear dislocation is a hallmark of dysfunctional muscle with or without degeneration/regeneration [32]. Concordant with impaired exercise capacity, the KO muscles displayed an increased frequency of muscle damage, evidenced by an increased
number of dislocated nuclei in the soleus (2.4\% vs 4.8% in WT vs. KO) and GA 2.3 vs. 3.5% muscles from 8 -week-old mice (Figs 2A-D) after a single bout of low-intensity exercise for the same duration. Second, we measured ROS levels, as high levels of ROS are associated with contractile dysfunction and muscle fatigue [7]. Remarkably, we found that ROS levels greatly increased in red soleus and mixed GA muscles, but not in white EDL, at 8 weeks of age (Figs 2E-G). Lastly, we also measured blood lactate levels, which essentially serve as an indirect marker for biochemical events such as fatigue within exercising muscle [33]. As expected, blood lactate levels were also increased in exercised KO mice (Fig 2H). Together, these data indicate that Dnmt3a KO muscles display increased signs of muscle fatigue which was associated with reduced exercise capacity.

Figure 2. MCK-Dnmt3a KO mice display increased muscle damage following exercise. (A) The H\&E staining of MCK-KO and WT soleus muscle after a bout of low intensity treadmill running (top 40X, bottom 100X magnifications). Black arrow indicates centralized nuclei.
(B) The percentage of myofibers with centralized nuclei was determined by manual counting 300 myofibers in 20X magnification. ($n=3$, means \pm SEM, * $p<0.05$, two-tailed student's t-test).
(C-D) The analogous set of data is shown with WT and MCK-KO GA muscles. ($\mathrm{n}=3$, means \pm SEM, two-tailed student's t-test. GA: Gastrocnemius)
(E-G) Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ levels were measured in WT and MCK-KO soleus (E), GA (F), and EDL (G) at rest and after a bout of exercise ($n=6$ per group, means \pm SEM, * $p<$ 0.05 , two-tailed student's t-test and two-way ANOVA followed by Bonferroni post-hoc testing).
(H) Serum levels of lactate were measured before and after a bout of low-intense exercise for 50 mins in WT and MCK-KO mice ($n=16$ for sedentary and $n=14$ for exercise groups, means \pm SEM, * p < 0.05, two-tailed student's t-test and two-way ANOVA followed by Bonferroni post-hoc testing).

Dnmt3a-KO muscle has reduced oxidative capacity and diminished mitochondrial respiration

High power of oxidative capacity and mitochondrial function of skeletal muscle is critical for supporting endurance exercise. Succinate dehydrogenase (SDH), located in the inner membrane of the mitochondrion, is responsible for oxidizing succinate to fumarate in the citric acid cycle [34]. Hence, we performed SDH staining to distinguish between oxidative and less-oxidative muscles. Remarkably, KO soleus muscles displayed $\sim 20 \%$ less SDH activity relative to WT tissues even at the sedentary (Figs 3A, B) and that this difference became exacerbated after exercise showing a 50% decline in KO tissues from 8 weeks old mice (Figs 3C, D). KO GA muscles showed a similar pattern of SDH activity at rest and following exercise (Figs. 3E-H). By contrast, EDL muscles did not show marked differences between genotypes at both conditions (Figs 3I-L). We then assessed whether such differences of SDH activity is related to mitochondrial respiration rates and noted that KO soleus muscles exhibit a reduced oxygen consumption rate in both sedentary and exercise conditions (Figs $\mathbf{3 M}, \mathbf{N}$). We were also able to confirm that myotube-autonomous effect of DNMT3A loss of function in oxygen consumption rates (Figs 30-P). Lastly, we performed H\&E staining and SDH staining using successive tissue sections to examine whether damaged myofibers with centro-nucleation overlap with reduced SDH activity.

Skeletal muscle depots are composed of heterogeneous populations of muscle fibers, which are categorized largely as slow-twitch (type I) and fast-twitch (type II) based upon biophysical property of contractility [35]. Slow-twitch fibers are dense in mitochondria to allow high oxidative capacity and sustain long-term energy demands [36]. By contrast, fasttwitch fibers are subdivided into fast-oxidative (type IIA) or fast-glycolytic (type IIB/X), which correlate with their mitochondrial density [36]. The soleus muscle is rich in type I and some IIA myosin heavy chains (MHCs), whereas muscles like EDL are enriched in the faster MHC IIB fibers that are for the fast twitch property [37]. Previous studies suggest that shifting muscle fiber composition is engaged with altered exercise capacity and muscle dysfunction [38]. Collectively, our data suggest that DNMT3A is required for the full oxidative capacity of skeletal muscle and is not associated with fiber type determination.

Figure 3. Dnmt3a-KO soleus muscle displays a decreased oxidative capacity with a reduced mitochondrial respiration.
(A-D) Succinate dehydrogenase staining was performed in WT and MCK-KO soleus at sedentary (A, B) and after a bout of low-intensity exercise for $50 \mathrm{~min}(\mathbf{C}, \mathrm{D})(10 \mathrm{X}, 20 \mathrm{X}$ magnifications), and the staining intensity was quantified using ImageJ ($\mathrm{n}=6$, means \pm SEM, ${ }^{*}$ p < 0.05, two-tailed student's t-test).
(E-H) The analogous set of data is shown with WT and MCK-KO GA muscles. ($n=6$, means \pm SEM, * $p<0.05$, two-tailed student's t-test).
(I-L) The analogous set of data is shown with WT and MCK-KO EDL muscles. ($\mathrm{n}=6$, means \pm SEM, two-tailed student's t-test. EDL: Extensor digitorum longus)
(M, N) Mitochondrial respiration was measured in WT and MCK-KO soleus tissue after a bout of low-intensity exercise for 50 min under basal conditions and in response to 4 mM oligomycin (complex V inhibitor), 4 mM FCCP (uncoupler), or 4 mM each of rotenone and antimycin A (complex I inhibitor) ($n=8$, means \pm SEM, * $p<0.05$, two-tailed student's t-test and two-way ANOVA followed by Bonferroni post-hoc testing).
(\mathbf{O}, \mathbf{P}) Mitochondrial respiration was measured in Dnmt3a knocked down L6 myotubes which were transduced with lentiviral under basal conditions and in response to 4 mM oligomycin (complex V inhibitor), 4 mM FCCP (uncoupler), or 4 mM rotenone and antimycin A (complex I inhibitor) ($n=5$, means \pm SEM, * $p<0.05$, two-tailed student's t-test and twoway ANOVA followed by Bonferroni post-hoc testing).

Gene profiling identifies muscle-specific DNMT3A target genes

We and others have shown that DNMT3A regulates biological processes by regulating nonoverlapping sets of cell type-specific target genes [39-41]. To elucidate the underlying molecular basis by which DNMT3A regulates exercise capacity, we performed RNA-Seq on WT and KO soleus muscle at rest and after exercise. The transcriptome profiles detected that 23 genes were upregulated, and 3 genes were downregulated in Dnmt3adeficient soleus muscle at rest, while 18 genes were up and 17 genes were downregulated in the exercise condition (Figs 4A, B). While several of the upregulated genes in the KO overlapped conditions, none of the downregulated genes overlapped (Figs. 4A, B).

Our search to identify the targets responsible for the increase in ROS production led us to investigate Aldh1/1, which encodes aldehyde dehydrogenase 1 family member L1 (ALDH1L1), a cytosolic enzyme involved in folate and one-carbon metabolism. Specifically, ALDH1L1 oxidizes 10-formyltetrahydrofolate to tetrahydrofolate, simultaneously producing NADPH as a byproduct [42] (Fig 4C). Notably in this regard, NADPH plays a dual role in the regulation of oxidative stress. On the one hand, it is a reducing agent for glutathione, thioredoxins, peroxiredoxins, and glutathione peroxidases, which neutralize ROS [43]. On the other hand, it contributes to ROS generation, through the activity of the NADPH oxidase complex (NOX) (Fig 4C) located within the sarcoplasmic reticulum, transverse tubules, and sarcolemma in skeletal muscle fibers [44]. We hypothesized that ALDH1L1-mediated NADPH production feeds into NOX, thereby increasing intracellular ROS in Dnmt3a KO muscle.

First, we examined the regulation of Aldh1/1 by DNMT3A. We measured the levels of Aldh1/1 mRNA and ALDH1L1 protein to be elevated in KO muscle tissues (Figs 4D-F). Notably, ALDH1L1 expression was elevated only in the red soleus and mixed GA muscles, but not in the white EDL muscle (Figs 4E, F), suggesting that muscle depot-selective regulation of Aldh1/1 by DNMT3A. To determine whether Aldh1/1 is indeed a direct target of DNMT3A, we performed methylated DNA immunoprecipitation (MeDIP)-qPCR analysis of the CpG rich Aldh1/1 promoter regions (Fig 4G). In KO soleus muscle, DNA methylation was greatly reduced in four of the five regions we examined, including the CpG island (P4) (Fig 4H). In vivo ChIP assay confirmed strong enrichment of DNMT3A at those differentially
methylated regions (Fig 4I). In fact, the DNA methylation and histone regulation machineries often engage in crosstalk [45]. Therefore, we also conducted a ChIP assay for H3K27ac, a histone modification marker of active promoters and enhancers, and detected strong signals at Aldh1/1 promoter regions in KO soleus tissues (Fig 4J). Collectively, these data demonstrate that DNMT3A directly regulates expression of Aldh1/1 by modifying the epigenetic profile at its regulatory regions.

Figure 4. Transcriptome analysis identifies Aldh1/1 as a key target gene of DNMT3A in the soleus muscle.
(A, B) (A) RNA-Seq was performed in WT and MCK-KO soleus muscle at rest. The scatter plots show differentially expressed genes in MCK-KO soleus muscle at sedentary (A) and after a bout of low-intensity exercise for $50 \mathrm{~min}(B)(F D R<0.05, \mathrm{p}<0.05)$.
(C) Proposed model for ROS regulation during loss of Dnmt3a. Loss of DNMT3A increases ALDH1L1 expression, thus leading to the increase in NADPH levels and increased activity of NADPH oxidase, leading to increased ROS levels. The increased oxidative stress contributes to mitochondrial dysfunction and muscle fatigue.
(D) Q-PCR validation of Aldh1/1 at sedentary and after exercise for 50 min ($n=6$, means \pm SEM, * $p<0.05$, two-tailed student's t-test).
(E, F) ALDH1L1 protein expression and the quantification in WT vs. MCK-KO soleus, GA and EDL muscles at sedentary and normalizing to GAPDH using ImageJ.
(G) The map of CpG-rich promoter regions of Aldh1/1 and MeDIP and ChIP primers (P1P 5) that cover the CpG rich regions. The numbers correspond to the position from the transcriptional start site of A/dh1/1.
(H) MeDIP-qPCR was performed in WT and MCK-KO soleus muscle to assess differential methylation using primer sets from $(\mathbf{G})(n=4$, means \pm SEM, * $p<0.05$, two-tailed student's t-test).
(I) DNMT3A ChIP-PCR was conducted in WT and MCK-KO soleus muscles using primer sets from (G) ($n=3$, means \pm SEM, ${ }^{*} p<0.05$, two-tailed student's t-test).
(J) H3K27ac ChIP-PCR was conducted in WT and MCK-KO soleus muscles using primer sets from (G) ($n=3$, means \pm SEM, ${ }^{*} \mathrm{p}<0.05$, two-tailed student's t-test).

ALDH1L1 drives the increase in ROS and mitochondrial dysfunction in KO soleus muscle

To determine whether elevated ALDH1L1 expression is responsible for NADPH-dependent generation of ROS, we compared NADPH levels between WT and KO muscle. Indeed, NADPH levels were significantly increased in KO muscle (Fig 5A). To assess whether this in turn results in increased flux into NOX, $[46,47]$ and, indeed, we detected elevated NOX level in KO tissues (Fig 5B). Next, to evaluate the functional significance of ALDH1L1, we performed an ALDH1L1 gain-of-function study in L6 rat myotubes in the presence and absence of apocynin, a specific NOX inhibitor [48]. Overexpression of ALDH1L1 had no effect on myogenesis, but remarkably, it was sufficient to recapitulate the redox changes in Dnmt3a-KO muscles, including the increases in the levels of NADPH (Fig 5C) and ROS (Figs 5D, E). More strikingly, ALDH1L1-overexpressing myotubes exhibited a reduced oxygen consumption relative to controls (Figs 5F, G). Importantly, all of these changes associated with ALDH1L1 overexpression were largely reversed by treatment with apocynin (Figs 5C-G). To obtain evidence that ALDH1L1 is required for the phenotype of the Dnmt3a loss-of-function model, we knocked out Aldh1/1 in Dnmt3a knockdown L6 myotubes, which resulted in dramatic rescue of the oxidative stress that is mediated by Dnmt3a deficiency (Figs 5H-K).

Figure 5. ALDH1L1 contributes to the oxidative stress and mitochondrial defect in loss of Dnmt3a.
(A, B) NADPH levels (A) and NOX (B) level was measured in WT and MCK-KO muscles at rest and after a bout of low-intensity exercise for $50 \mathrm{~min}\left(n=6\right.$, means \pm SEM, ${ }^{*} p<0.05$, two-tailed student's t-test and two-way ANOVA followed by Bonferroni post-hoc testing).
(C-G) L6 myotubes were transduced with lentiviral expression plasmids for Flag-ALDH1L1 and GFP. NADPH levels (C), H2O2 levels (D, E), Mitochondrial respiration (F, G) were measured from these cells in the presence and absence of NADPH oxidase inhibitor apocynin ($\mathrm{n}=3$ per group, for (C-E) and $\mathrm{n}=5$ for (\mathbf{F}, \mathbf{G}), means \pm SEM, * $\mathrm{p}<0.05$, twotailed student's t-test and two-way ANOVA followed by Bonferroni post-hoc testing).
(H-K) Single and double knockdowns of Dnmt3a and Aldh1/1 in L6 myotubes were achieved by lentiviral transduction. NADPH levels (\mathbf{H}) and NOX activity (I) were measured in single and double knockdowns of Dnmt3a and Aldh1/1 in L6 myotubes. ($\mathrm{n}=3$, means \pm SEM, * p < 0.05, two-tailed student's t-test and two-way ANOVA followed by Bonferroni post-hoc testing). (J, K) H2O2 levels were measured in single and double knockdowns of Dnmt3a and Aldh1/1 in L6 myotubes. (J: $n=3$ and $\mathbf{K}: \mathrm{n}=6$ for Control, Aldh111 KD, Aldh1I1 KD + Dnmt3a KD, $\mathrm{n}=5$ for Dnmt3a KD, means \pm SEM, * $\mathrm{p}<0.05$, two-tailed student's t-test and two-way ANOVA followed by Bonferroni post-hoc testing).

Resolving oxidative stress and muscle-targeted Aldh1/1 silencing in MCK-Dnmt3a KO mice partially rescues exercise intolerance

Since we hypothesized that excessive ROS production is a main driver of muscle dysfunction and exercise incapacity during loss of Dnmt3a, we sought to determine whether an antioxidant could resolve the issues. Remarkably, a single i.p. injection of N acetylcysteine (NAC) rescued exercise capacity in KO mice by 43% but had no significant effect on WT's exercise performance (Figs 6A, B). Consistent with this data, we confirmed that NAC reduced ROS levels in Dnmt3a KD myotubes (Fig 6C) and significantly improved mitochondrial respiration (Figs 6D, E). Lastly, we sought to determine whether decreasing ALDH1L1 levels can rescue the exercise intolerance detected in Dnmt3a KO mice. To this end, we chose to use in vivo transfection method which allows us to specifically transfect the nuclei of terminally differentiated adult muscle fibers, but not the nuclei of satellite cells or connective tissue cells [49]. We delivered gRNA against gA/dh1/1 or control to the GA and soleus muscles in the KO mice and we achieved $\sim 50 \%$ knock-down of Aldh $1 / 1$ mRNA and protein in soleus and GA, but without a major change in EDL (Figs 7A-C). Remarkably, Dnmt3a KO mice that were delivered with Aldh1/1 knock-down gRNA partially restored the ability of treadmill running by 47% and 38% by time and distance, respectively, compared to the KO mice transfected with control gRNA (Figs 7D, E). Together, our results suggest that ALDH1L1 plays a critical role in producing muscle dysfunction and exercise intolerance arising from Dnmt3a deficiency.

A

B

Figure 6. NAC treatment partially rescues reduced oxidative capacity in Dnmt3a KD myotubes and exercise intolerance in MCK-Dnmt3a KO mice.
(A, B) Exercise capacity of MCK-KO and WT mice treated with PBS (vehicle) or NAC (200mg/kg, i.p). ($\mathrm{n}=4$ WT and $\mathrm{n}=6$ MCK-KO , mean \pm SEM, * $\mathrm{p}<0.05$, two-tailed student's t-test and two-way ANOVA).
(C-E) (C) Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ levels ($\mathrm{n}=6$ for Control groups and Dnmt3a KD with NAC treatment group $n=4$ Dnmt3a KD, means \pm SEM, * $p<0.05$, two-tailed student's ttest and two-way ANOVA followed by Bonferroni post-hoc testing).(D, E) mitochondrial respiration in Dnmt3a knockdown and control L6 myotubes treated with NAC (3mM) or vehicle treatment for 24 hrs ($\mathrm{n}=5$ Control groups $\mathrm{n}=3$ Dnmt3a KD, $\mathrm{n}=4$ Dnmt3a KD with NAC treatment groups. means \pm SEM, * $p<0.05$, two-tailed student's t-test and two-way ANOVA followed by Bonferroni post-hoc testing).

Figure 7. ALDH1L1 knockdown in vivo partially rescues exercise intolerance in MCKDnmt3a KO mice.
(A) Aldh1/1 mRNA expression in various muscles in MCK-KO mice that were transfected with gRNA DNAs against Aldh111 or control. ($\mathrm{n}=4$ for Soleus, $\mathrm{n}=3$ GA gCont and $\mathrm{n}=4$ GA gAldh111, $\mathrm{n}=4$ EDL gCont and $\mathrm{n}=3$ EDL gAldh111, means \pm SEM, * $\mathrm{p}<0.05$, twotailed student's t-test).
(B, C) ALDH1L1 protein expression and the quantification in MCK-KO muscles that were transfected with gCont vs. gAldh111 using ImageJ. ($n=3$, means \pm SEM, * $p<0.05$, twotailed student's t-test).
(D, E) Exercise capacity of WT and MCK- KO with or without transfection of gCont vs. gAldh1I1 under the low intensity regimen ($n=4 \mathrm{WT}+\mathrm{gCont}, n=9$ MCK- KO + gCont, and MCK- KO + gAldh111, *p<0.05, means \pm SEM, two-tailed student's t-test and one-way ANOVA).

Discussion

Exercise significantly alters the DNA methylation profile of skeletal muscle [18-26], however, it has not been studied whether DNA methylation machinery has functional roles in exercise capacity. Here, we demonstrate that skeletal muscle DNMT3A plays an essential role for the full capacity to perform endurance exercise. Our findings indicate that

Dnmt3a deficiency in skeletal muscle leads to oxidative stress and muscle fatigue and consequently a dramatic reduction of exercise capacity. Surprisingly, our studies find that skeletal muscle DNMT3A is necessary to maintain mitochondrial function and oxidative capacity, which are critical to support endurance exercise. Our mechanistic studies reveal that ALDH1L1 as a key downstream effector of DNMT3A loss of function as evidenced by that knock-down of ALDH1L1 that can largely rescue defects from Dnmt3a deficiency in vitro and in vivo, while overexpression of ALDH1L1 recapitulates them. These findings demonstrate a surprising role for DNMT3A as an epigenetic modulator of endurance exercise by controlling intracellular oxidative stress and reveal ALDH1L1 as a key mediator.

Studies have reported that aerobic exercise changes DNA methylation profile. For example, a human study has shown that a single bout of aerobic exercise transiently induces promoter DNA hypomethylation of promoter regions of important mitochondriarelated genes (e.g., PPARGC1A, PDK4, TFAM, and PPARD), followed by their induction [18]. on the basis of this human study, our results showing the requirement of DNMT3A in endurance exercise as counterintuitive. However, it should be noted that exercise affects DNA methylation profile in either direction depending on loci. As an example, another human study reported that moderate-intensity exercise results in hypermethylation of FABP3 and COX4L1, which negatively correlated with their expression [25,50]. By the same token, genome-wide studies have reported that both acute and chronic exercise interventions produce profound changes in CpG methylation [18-26]. We did not observe that Dnmt3a deficiency in soleus alter the expression of the genes that were shown to be differentially methylated in association with exercise.

Mitochondria in skeletal muscle are highly dynamic organelles that exhibit remarkable plasticity, adapting their content, structure, and metabolism in response to a variety of physiological and pathophysiological stresses including exercise, disuse, and aging [51,52]. Exercise training increases mitochondrial biogenesis to satisfy elevated energy requirements by increasing oxidative capacity to ensure optimal ATP supply; this has the consequence of favoring lipid metabolism [53,54]. Thus, exercise represents a viable therapy, with the potential to reverse the impairment of mitochondrial function associated with diseases such as type 2 diabetes, and aging-related sarcopenia [55-57]. In this regard, a key link between exercise and control of mitochondrial biology was revealed by the observation that PGC-1a expression is transiently induced in skeletal muscle following an acute bout of exercise [58]. Since that discovery, a great deal of research effort has been devoted to elucidating the role of PGC1A in skeletal muscle mitochondrial biology and exercise. For example, transgenic expression of PGC1A increases mitochondrial content and function and the abundance of oxidative type I muscle fibers, while decreasing muscle fatigue. However, loss of PGC1A has only a mild effect on exercise capacity and does not alter fiber-type composition in muscle [59] or affect training-induced increase in the expression of genes involved in oxidative phosphorylation [60]. This suggests that PGC1A is sufficient, but not necessary, to mediate metabolic adaptations in response to exercise. We believe that the role of DNMT3A in the regulation of mitochondrial biology is likely to be PGC1A-independent as PGC1A mRNA and protein levels are not altered in Dnmt3a KO muscles.

Overproduction of ROS induced by unaccustomed, exhaustive exercise training or other stresses can lead to oxidative stress-related tissue damage and reduced contractility [61,62], involving impaired cellular function, macromolecule damage and apoptosis [63]. Mitochondria are highly susceptible to chronic high levels of ROS-mediated damage, and a heterogeneous class of human diseases, such as aging, cancer, neurodegenerative disorders, and diabetes, have been linked to mitochondrial defects and oxidative stress [63-65]. Despite the clinical significance, the molecular mechanisms involved in mitochondrial dysfunction and increased ROS production are not well understood. Recent studies have proposed a link between epigenetic factors and ROS-mediated adaptation in skeletal muscle [66-69]. Our results suggest DNMT3A is a critical epigenetic modulator of ROS and thereby helps to prevent oxidative stress-mediated myopathy. NADPH oxidases are major contributors to ROS production in skeletal muscle [70,71]. It has been shown that physical stretching can increase the activity of NADPH oxidase, especially NOX2, causing production of ROS in microtubule-dependent processes [72]. While that study described mechanotransduction-dependent activation of NADPH in cardiac muscles, here we identified ALDH1L1-dependent activation of NADPH oxidase as a contributor to ROS overproduction, especially in oxidative muscles, during loss of Dnmt3a. Our finding that inhibiting NADPH oxidase rescued both oxidative stress and mitochondrial dysfunction raises the possibility of repurposing these inhibitors to improve exercise trainability. Further understanding the epigenetic and molecular basis of DNMT3A to moderate ROS will help us address several critical health issues that are derived from exercise-induced high levels of ROS in the pathogenic processes of relevant human diseases.

ALDH1L1 is a folate-metabolizing enzyme that controls the overall flux of one-carbon groups in folate-dependent biosynthetic pathways, with simultaneous production of NADPH from NADP. Differential methylation of ALDH1L1 has been reported with an implication in tumor development and progression in several cancer models [73-75]. Other than that, little has been known about physiological functions of ALDH1L1 in skeletal muscle biology. Here, we outline that ALDH1L1, whose transcriptional level is epigenetically regulated by DNMT3A especially in soleus and GA muscles, plays a determining role in Dnmt3a deficiency-induced oxidative stress and exercise intolerance.

Overall, we highlight the surprising role of DNMT3A in endurance exercise and skeletal muscle mitochondrial biology. Mechanistically, we reveal that ALDH1L1 serves as a novel molecular link that contributes to oxidative stress and mitochondrial dysfunction following the loss of Dnmt3a in red muscle. This is of great importance from the standpoint of exercise physiology, as physical activity is strongly encouraged as a key strategy for preventing and treating a wide range of human diseases. Understanding the epigenetic and molecular basis of exercise tolerance will help us to address critical health issues that arise from reduced ability to perform exercise.

Materials and Methods

Animals

Animal Care Mice were maintained under a $12-\mathrm{hr}$ light /12-hr dark cycle at constant temperature $\left(23^{\circ} \mathrm{C}\right)$ with free access to food and water. All mice were extensively backcrossed onto a C57BL/6J background. All animal work was approved by UC Berkeley ACUC. In vivo assays were done with 7 - to 20 -week-old littermate male mice.

Measurement of exercise capacity

All mice were acclimated to the treadmill prior to the exercise test session. For each session, food was removed 2 hr before exercise. Acclimation began at a low speed of 5 to 8 meters per minute ($\mathrm{m} / \mathrm{min}$) for a total of 10 min on Day 1 and was increased to 5 to 10 $\mathrm{m} / \mathrm{min}$ for a total of 10 min on Day 2. The experiments were performed on Day 3. For the low intensity treadmill test, the treadmill began at a rate of $12 \mathrm{~m} / \mathrm{min}$ for 40 min . After 40 min , the treadmill speed was increased at a rate of $1 \mathrm{~m} / \mathrm{min}$ every 10 min for a total of 30 min , and then increased at the rate of $1 \mathrm{~m} / \mathrm{min}$ every 5 min until the mice were exhausted. The high intensity treadmill test was conducted on the same open-field six-lane treadmill set at a 10% incline. Following a $5-\mathrm{min} 0 \mathrm{~m} / \mathrm{min}$ acclimation period, the speed was raised to $6 \mathrm{~m} / \mathrm{min}$ and increased by $2 \mathrm{~m} / \mathrm{min}$ every 5 min to a maximal pace of $30 \mathrm{~m} / \mathrm{min}$ until exhaustion. Mice were considered exhausted when they were unable to respond to continued prodding with a soft brush. For the rescue experiment with N-Acetylcysteine (NAC, (Sigma, \#A7250), mice were intraperitoneally injected with $200 \mathrm{mg} / \mathrm{kg} 4$ hours prior to the exercise capacity test.

RNA-Seq library generation and analysis

RNA samples were extracted using the RNeasy Mini kit (Qiagen, 74104), and the quality of total RNA was assessed by the 2100 Bioanalyzer (Agilent) and agarose gel electrophoresis. Libraries were prepared using the BGI Library Preparation Kit, and sequencing was performed on the BGISEQ (BGI, China). RNA-Seq reads were aligned to the UCSC mm10 genome using HISAT2 (Hierarchical Indexing for Spliced Alignment of Transcripts [76], and mapping was done using Bowtie2 [76]. Differentially regulated genes were calculated using DEseq2 [77].

Measurement of NADPH

The NADPH measurement was performed on GA/Soleus or L6 myotube extracts using the NADP/NADPH assay kit (Cat\#K347, BioVision) according to the manufacturer's instructions. Briefly, $\sim 20 \mathrm{mg}$ tissue samples or 4×10^{6} cells were extracted in $400 \mu \mathrm{~L}$ of the given extraction buffer, and $50 \mu \mathrm{~L}$ was processed following instructions of the kit. OD450 measurements were made on a plate-reader (SpectraMAX i3 Plate reader) at $25^{\circ} \mathrm{C}$, and the data was calculated using a standard curve.

Measurement of NADPH oxidase activity

NOX activity was measured by accessing oxidation of NADPH through Continuous Spectrophotometric Rate Determination [46,47]. Briefly, samples of tissue or cells were extracted in $500 \mu \mathrm{~L}$ and $200 \mu \mathrm{~L}$ of potassium phosphate buffer, respectively. The tissues and cells were first homogenized and then sonicated. The homogenate was centrifuged at
top speed for 10 min , and the supernatant was used for reading. Oxidation of NADPH was monitored at 340 nm on the SpectraMAX i3 Plate Reader at $30^{\circ} \mathrm{C}[46,47]$.

MeDIP-qPCR

Genomic DNA was sheared using a Covaris S220 sonicator to an average of 200-600 bp. 600 ng of denatured DNA was incubated with 2 mg of 5 -methylcytosine ($5-\mathrm{mC}$) monoclonal antibody ([33D3] Diagenode, Cat No \# C15200081) in IP buffer (0.1\% SDS, 1 Triton X-100, 2 mM EDTA, 20 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.1,150 \mathrm{mM} \mathrm{NaCl})$ for 1 h at $4^{\circ} \mathrm{C}$ on a rotating wheel. Antibody-bound DNA was collected with 20 ml of protein A/G PLUS-Agarose (\#sc-2003) for 1 h at $4^{\circ} \mathrm{C}$ on a rotating wheel and successively washed three times with IP buffer (0.1% SDS, 1 Triton $\mathrm{X}-100,2 \mathrm{mM}$ EDTA, 20 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.1,150 \mathrm{mM} \mathrm{NaCl})$. DNA was recovered in 100 ml of digestion buffer (50 mM Tris $\mathrm{pH} 8.0,0.5 \%$ SDS, 35 mg proteinase K) and incubated overnight at $65^{\circ} \mathrm{C}$. Recovered DNA was used for qPCR analysis. Primers for MeDIP-qPCR studies are listed in Appendix Table S1. All data were normalized to input.

ChIP-qPCR

Soleus muscles were homogenized in dounce homogenizer using Nuclei Preparation Buffer (10 mM HEPES (pH 7.5), $10 \mathrm{mM} \mathrm{KCl}, 1.5 \mathrm{mM} \mathrm{MgCl} 2,0.1 \% \mathrm{NP} 40$) and crosslinked with 1% formaldehyde for 10 min , then neutralized with glycine and rinsed with cold phosphate-buffered saline. After nuclei isolation, samples were sonicated using an S220 Covaris to generate DNA fragments of $\sim 200-500 \mathrm{bp}$. Inputs were taken from cleared lysates, and the rest were rotated O / N at $4^{\circ} \mathrm{C}$ with DNMT3A, H3K27ac, and IgG antibodies for immunoprecipitation. An aliquot of 20μ l of protein A/G PLUS-Agarose (\#sc-2003) were added per IP and rotated 1 hr at $4^{\circ} \mathrm{C}$. Beads were successively washed in low-salt RIPA buffer (20 mM Tris-HCl [pH 8.0], 1 mM EDTA, 1% Triton x-100, 0.1% SDS, 140 mM NaCl , 0.1% Na deoxycholate), high-salt RIPA buffer (20 mM Tris-HCI [pH 8.0], 1 mM EDTA, 1% Triton $x-100,0.1 \%$ SDS, $500 \mathrm{mM} \mathrm{NaCl}, 0.1 \% \mathrm{Na}$ deoxycholate), LiCl buffer (250 mM LiCl , 0.5% NP40, 0.5% Na deoxycholate, 1 mM EDTA, 10 mM Tris- HCl [pH 8.0]) and TE buffer (10 mM Tris-HCl [pH 8.0] and 1 mM EDTA). Each reaction was then incubated in digestion buffer (50 mM Tris-HCl [pH 8.0], 1 mM EDTA, $100 \mathrm{mM} \mathrm{NaCl}, 0.5 \%$ SDS, proteinase K) for a minimum of 4 hr at $65^{\circ} \mathrm{C}$ to reverse cross-links. DNA was recovered using a phenolchloroform extraction. Recovered DNA was used for qPCR analysis. Primers for CHIPqPCR studies are listed in Appendix Table S1. All data were normalized to input.

Cell culture

L6 rat myoblasts (UCSF Cell Culture Facility Core) were maintained in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum, $100 \mathrm{U} / \mathrm{ml}$ penicillin, and $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin. Culture conditions were maintained in a humidified incubator under an atmosphere of $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$. Differentiation was carried out in DMEM supplemented with 2% horse serum. To generate lentivirus particles, lentiviral constructs were co-transfected with pMD2.G- and psPAX2-expressing plasmids into 293T cells. After 48 h , the virus-containing supernatant was collected, filtered through $0.45-\mathrm{mm}$ filters, and added to mature L6 myotubes for 48 h along with $8 \mathrm{mg} / \mathrm{ml}$ polybrene. Transduction efficiency was determined by comparing to cells transduced in parallel with a GFPexpressing lentivirus.

In vivo electroporation

Mice were anesthetized by an IP injection of $91 \mathrm{mg} / \mathrm{kg}$ ketamine and $9.1 \mathrm{mg} / \mathrm{kg}$ xylazine, after which hindlimbs were shaved, and the GA muscles were injected with $30 \mu \mathrm{l}$ hyaluronidase solution (which was prepared by resuspending bovine placental hyaluronidase (Sigma) in sterile injectable $0.9 \% \mathrm{NaCl}$ at a concentration of $0.4 \mathrm{U} / \mu \mathrm{l}$). Mice were anesthetized two hours later and the GAs were injected with 180 ug plasmid DNA in sterile saline. After injection of plasmid DNA, the hind limbs were placed between twopaddle electrodes and subjected to 10 pulses (20 mSec) of $175 \mathrm{~V} / \mathrm{cm}$ (with $480-\mathrm{mSec}$ intervals between pulses) using an ECM-830 electroporator (BTX Harvard Apparatus, Holliston, MA).

ROS Measurement

Accumulation of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ and horseradish peroxidase was measured using OxiSelect ${ }^{\text {TM }}$ Hydrogen Peroxide/Peroxidase Assay Kit (Cell Biolabs, Inc., San Diego, CA), a sensitive quantitative fluorometric assay for hydrogen peroxide or peroxidase activity levels. To investigate $\mathrm{H}_{2} \mathrm{O}_{2}$ accumulation, the muscle tissues or L6 myotubes were homogenized in $1 \times$ assay buffer provided from the kit followed by centrifuging to remove debris. These lysates were then assayed according to the manufacturer's procedure.

Mitochondrial respiration

For tissue respiration, mice were allowed to run for 50 min on the low-intensity regime. Following this, WT and MCK-Dnmt3a KO soleus tissues were isolated and seeded in XF24 plates (catalog \#101122-100,
Seahorse Bioscience). For cellular respiration, lentivirally transduced L6 were plated on XF24 Cell Culture Microplates catalog \#100777-004, Seahorse Bioscience). Measurement of intact tissue and cellular respiration was performed using the Seahorse XF24 analyzer (Seahorse Bioscience). Oxygen consumption rates (OCRs) (picomoles of O2 per minute) were measured under basal conditions after three consecutive injections of the following: (1) oligomycin (ATP synthase inhibitor; $4 \mu \mathrm{M}$); (2) the electron transport chain accelerator ionophore FCCP ($4 \mu \mathrm{M}$; FCCP treatment gives the maximal OCR capacity of the cells); and (3) the electron transport chain inhibitors Rotenone (4uM) and Antimycin A (4uM).

Data Availability

RNA-Seq data can be found GSE159105.

Statistical Analysis

Data are presented as means \pm SEM and individual data points are plotted. Sample size was determined by our experience with inherent variability. No statistical method was used to predetermine sample size. Statistical analyses and the number of samples (n) were described in detail for each figure panel. Statistical analyses and the number of samples (n) is described in detail for each figure panel. Two-tailed unpaired Student's t test was
used for the comparison between two groups. One-way analysis of variance (ANOVA) or two-way ANOVA followed by the Bonferroni's test was used for the multiple comparisons. Statistical analyses were performed using excel and GraphPad Prism. All reported p values were two-sided and differences were considered significant at $p<0.05$.

Author Contributions

SK supervised experiments and wrote the manuscript. SDV drafted the result, method, and legend sections. Experiments were carried out by SDV, DY, JK, HHP, BCC, and SK. HL analyzed RNA-Seq. SME and CMA contributed to mouse histology and in vivo transfection assays.

Acknowledgements

We thank Dr. Hei Sook Sul, Dr. Jen-Chywan Wally Wang, and Dr. Anders Näär for helpful conversations about the manuscript. We are very grateful to Dr. Brian Black and Emily Wilson for technical help with histology, Sarah Fung, Lilian Kim, Anna Pi, Tabitha Tcheau, Sarah, and Sarah Ampalloor, Mrinalini Jain, Pouya Amin, and Michelle Tampa for their technical supports.

Funding

Work was funded by AHA Award \# 19POST34380834 to DY and R01 DK116008 to SK.

Conflict of interest

The authors declare no conflict of interest.

Appendix Table S1. Oligonucleotide sequences used in this manuscript

Hairpin	(m/r) shDnmt3a	CGCTCCGCTGAAGGAATATTT
gRNA	(r) gAldh111	CGAGGTGGTGGGTGTGTTCA
Q-PCR	(m) Cyclophilin_f	GGTGGAGAGCACCAAGACAGA
Q-PCR	(m) Cyclophilin r	GCCGGAAGTCGACAATGATG
Q-PCR	(r) Cyclophilin f	CCAAACACAAATGGTTCCCAGT
Q-PCR	(r) Cyclophilin_r	ATTCCTGGACCCAAAACGCT
Q-PCR	(m) Dnmt3a f	GTGGAGCCTGAAGCAGCTG
Q-PCR	(m) Dnmt3a_r	CTGGCACATGCCTCCAATGAA
Q-PCR	(m) Dnmt3b_f	CCATGGTGGTGTCCTGGAAA
Q-PCR	(m) Dnmt3b_r	CAGGACTGCTGGAGAAGGTCT
Q-PCR	(m) Ppargcla f	AGCCGTGACCACTGACAACGAG
Q-PCR	(m) Ppargcla r	GCTGCATGGTTCTGAGTGCTAAG
Q-PCR	(m) Aldh 111 f	GGTGACCCTGTTTTCCCTACT
Q-PCR	(m) Aldh111_r	GGGATCTGCTTTCCCATCCT
Q-PCR	(r) Myf5 f	TGAGGGAGCAGGTAGAGAAC
Q-PCR	(r) Myf5_r	CTGTTCTTTCGGGACCAGAC
Q-PCR	(r) Myh6_f	CGAGACGGTGGTGGGGCTGT
Q-PCR	(r) Myh6_r	CCTTTCCCACTGTCACCGGTATC
Q-PCR	(r) Myh7_f	GATGTTTTTGTGCCTGATGA
Q-PCR	(r) Myh7_r	CAGTCACCGTCTTGCCATTCT
Q-PCR	(r) Myog_f	CTACAGGCCTTGCTCAGCTC
Q-PCR	(r) Myog_r	TGGAGTTGCATTCACTGG
Q-PCR	(m) MHC1_f	GCCAACTATGCTGGAGCTGATGCCC
Q-PCR	(m) MHC1_r	GGTGCGTGGAGCGCAAGTTTGTCATAAG
Q-PCR	(m) MHCIIA_f	GGCACAAACTGCTGAAGCAGAGGC
Q-PCR	(m) MHCIIA_r	GGTGCTCCTGAGGTTGGTCATCAGC
Q-PCR	(m) MHCIIX_f	GGCAGCAGCAGCTGCGGAAGCAGAGTCTGG
Q-PCR	(m) MCHIIX -	GAGTGCTCCTCAGATTGGTCATTAGC
Q-PCR	(m) MHCIIB f	GAGCTACTGGATGCCAGTGAGCGC
Q-PCR	(m) MHCIIB r	CTGGACGATGTCTTCCATCTCTCC
Q-PCR	(m) Ctxn3 f	GGGCATCCTCATTGTCAGGT
Q-PCR	(m) Ctxn3 r r	TCAGCCCATGTTGAGGTTGG
Q-PCR	(m) Dnaic 1_f	CGAACTTTTCAGCCACAGCC
Q-PCR	(m) Dnaic1_r	CCGTGTCCCACTGCAAAAAG
Q-PCR	(m) Mttp_f	GGAAGGCAGAGCTTCATGGT
Q-PCR	(m) Mttp r r	GGCTTCAGCCTTGTCCATCT
Q-PCR	(m) Plin3 f	GAGCGGGGTGGACACAGTGC
Q-PCR	(m) Plin3_r	CAAGGGATGTGGCGAGGCGG
Q-PCR	(m) Myh8_f	CAGGAGCAGGAATGATGCTCTGAG
Q-PCR	(m) Myh8 r r	AGTTCCTCAAACTTTCAGCAGCCAA
Q-PCR	(m) Kcnell_f	GGTCGTCCCTGACCCTTTC
Q-PCR	(m) Kcnell_r	CGGCTAGGCAGGCATAGAA
Q-PCR	(m) Nos1 f	CTCGGGCATACCCTCACTTC
Q-PCR	(m) Nos1 r	ATGTTGACGTCATCCCCCAC
MeDIP/ChIP	(m) Aldh111-P1_f	TAAGGAGTCTCAGCGGTGGT

MeDIP/ChIP	(m) Aldh111-P1_r	TGGGCAGAGTCATTGTCCTA
MeDIP/ChIP	(m) Aldh111-P2 f	GGCATGCTAGGCAATGAACT
MeDIP/ChIP	(m) Aldh111-P2 r	CTCAGGTCATCCGTCCATTT
MeDIP/ChIP	(m) Aldh111-P3 f	GGTGAAGGAAATGACCCAAA
MeDIP/ChIP	(m) Aldh111-P3_r	ATGAGTGAGGAGGCAAGGAG
MeDIP/ChIP	(m) Aldh111-P4_f	CTGCTTCCTGCCTCCTTG
MeDIP/ChIP	(m) Aldh111-P4_r	CTAGCATGCCCGGAACCTA
MeDIP/ChIP	(m) Aldh111-P5 f	AAATGGACGGATGACCTGAG
MeDIP/ChIP	(m) Aldh111-P5_r	CCTCCAGGCAGAGAAGAGG

(m); mouse
(r); rat

References

1 Baskin, K.K. et al. (2015) Muscle as a "mediator" of systemic metabolism. Cell Metab. 21, 237-248
2 Hawley, J.A. et al. (2014) Integrative biology of exercise. Cell 159, 738-749
3 Huertas, J.R. et al. (2019) Stay fit, stay young: mitochondria in movement: the role of exercise in the new mitochondrial paradigm. Oxid. Med. Cell. Longev. 2019, 7058350
4 Clausen, J.P. and Trap-Jensen, J. (1970) Effects of training on the distribution of cardiac output in patients with coronary artery disease. Circulation 42, 611-624
5 He, F. et al. (2016) Redox mechanism of reactive oxygen species in exercise. Front. Physiol. 7, 486
6 Gomes, E.C. et al. (2012) Oxidants, antioxidants, and the beneficial roles of exerciseinduced production of reactive species. Oxid. Med. Cell. Longev. 2012, 756132
7 Powers, S.K. et al. (2011) Reactive oxygen species: impact on skeletal muscle. Compr. Physiol. 1, 941-969
8 Di Meo, S. et al. (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev. 2016, 1245049
9 Panday, A. et al. (2015) NADPH oxidases: an overview from structure to innate immunityassociated pathologies. Cell. Mol. Immunol. 12, 5-23
10 Cross, A.R. and Segal, A.W. (2004) The NADPH oxidase of professional phagocytes-prototype of the NOX electron transport chain systems. Biochim. Biophys. Acta 1657, 1-22
11 Daiber, A. (2010) Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim. Biophys. Acta 1797, 897-906
12 Daiber, A. et al. (2017) Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br. J. Pharmacol. 174, 1670-1689
13 Dan Dunn, J. et al. (2015) Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 6, 472-485
14 Steinbacher, P. and Eckl, P. (2015) Impact of oxidative stress on exercising skeletal muscle. Biomolecules 5, 356-377
15 Görlach, A. et al. (2015) Calcium and ROS: A mutual interplay. Redox Biol. 6, 260-271
16 Jaenisch, R. and Bird, A. (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 Suppl, 245-254
17 Bird, A.P. and Wolffe, A.P. (1999) Methylation-induced repression--belts, braces, and chromatin. Cell 99, 451-454
18 Barrès, R. et al. (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 15, 405-411
19 Kanzleiter, T. et al. (2015) Exercise training alters DNA methylation patterns in genes related to muscle growth and differentiation in mice. Am. J. Physiol. Endocrinol. Metab. 308, E912-20
20 Widmann, M. et al. (2019) Physical exercise and epigenetic modifications in skeletal muscle. Sports Med. 49, 509-523
21 Valenzuela, N. et al. (2017) HIRA deficiency in muscle fibers causes hypertrophy and susceptibility to oxidative stress. J. Cell Sci. 130, 2551-2563

22 Li, F. et al. (2017) Study of HSPB6: Insights into the Properties of the Multifunctional Protective Agent. Cell. Physiol. Biochem. 44, 314-332
23 Nitert, M.D. et al. (2012) Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 61, 3322-3332
24 Song, S. et al. (2019) The HDAC3 enzymatic activity regulates skeletal muscle fuel metabolism. J. Mol. Cell Biol. 11, 133-143
25 Seaborne, R.A. et al. (2018) Methylome of human skeletal muscle after acute \& chronic resistance exercise training, detraining \& retraining. Sci. Data 5, 180213
26 Brown, W.M. (2015) Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. Br. J. Sports Med. 49, 1567-1578
27 Gouspillou, G. et al. (2014) The relationship between muscle fiber type-specific PGC-1 α content and mitochondrial content varies between rodent models and humans. PLoS ONE 9, e103044
28 Haizlip, K.M. et al. (2015) Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology (Bethesda) 30, 30-39
29 Laughlin, M.H. et al. (2006) Exercise training produces nonuniform increases in arteriolar density of rat soleus and gastrocnemius muscle. Microcirculation 13, 175-186
30 Brüning, J.C. et al. (1998) A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559-569
31 DeBalsi, K.L. et al. (2014) Targeted metabolomics connects thioredoxin-interacting protein (TXNIP) to mitochondrial fuel selection and regulation of specific oxidoreductase enzymes in skeletal muscle. J. Biol. Chem. 289, 8106-8120
32 Roman, W. and Gomes, E.R. (2018) Nuclear positioning in skeletal muscle. Semin. Cell Dev. Biol. 82, 51-56
33 Finsterer, J. (2012) Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet. Disord. 13, 218
34 Old, S.L. and Johnson, M.A. (1989) Methods of microphotometric assay of succinate dehydrogenase and cytochrome c oxidase activities for use on human skeletal muscle. Histochem. J. 21, 545-555
35 Talbot, J. and Maves, L. (2016) Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip. Rev. Dev. Biol. 5, 518-534
36 Bourdeau Julien, I. et al. (2018) Metabolic networks influencing skeletal muscle fiber composition. Front. Cell Dev. Biol. 6, 125
37 Arany, Z. et al. (2007) The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab. 5, 35-46
38 Handschin, C. et al. (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J. Biol. Chem. 282, 3001430021
39 Challen, G.A. et al. (2011) Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23-31
40 Nguyen, S. et al. (2007) Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan. Dev. Dyn. 236, 1663-1676

41 Nishikawa, K. et al. (2015) DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nat. Med. 21, 281-287
42 Krupenko, S.A. (2009) FDH: an aldehyde dehydrogenase fusion enzyme in folate metabolism. Chem. Biol. Interact. 178, 84-93
43 Fernandez-Marcos, P.J. and Nóbrega-Pereira, S. (2016) NADPH: new oxygen for the ROS theory of aging. Oncotarget 7, 50814-50815
44 Ferreira, L.F. and Laitano, O. (2016) Regulation of NADPH oxidases in skeletal muscle. Free Radic. Biol. Med. 98, 18-28
45 Du, J. et al. (2015) DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519-532
46 Reusch, V.M. and Burger, M.M. (1974) Distribution of marker enzymes between mesosomal and protoplast membranes. J. Biol. Chem. 249, 5337-5345
47 Hidalgo, C. et al. (2006) A transverse tubule NADPH oxidase activity stimulates calcium release from isolated triads via ryanodine receptor type 1 S -glutathionylation. J. Biol. Chem. 281, 26473-26482
48 Petrônio, M.S. et al. (2013) Apocynin: chemical and biophysical properties of a NADPH oxidase inhibitor. Molecules 18, 2821-2839
49 Welle, S.L. (2009) Myostatin and muscle fiber size . Focus on "Smad2 and 3 transcription factors control muscle mass in adulthood" and "Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size." American Journal of Physiology-Cell Physiology 296, C1245-C1247
50 Lane, S.C. et al. (2015) Effects of sleeping with reduced carbohydrate availability on acute training responses. J. Appl. Physiol. 119, 643-655
51 Hood, D.A. et al. (2019) Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu. Rev. Physiol. 81, 19-41
52 Gouspillou, G. and Hepple, R.T. (2016) Editorial: mitochondria in skeletal muscle health, aging and diseases. Front. Physiol. 7, 446
53 Kuzmiak-Glancy, S. and Willis, W.T. (2014) Skeletal muscle fuel selection occurs at the mitochondrial level. J. Exp. Biol. 217, 1993-2003
54 Boushel, R. et al. (2014) Mitochondrial plasticity with exercise training and extreme environments. Exerc. Sport Sci. Rev. 42, 169-174
55 Kim, Y. et al. (2017) Impact of aging and exercise on mitochondrial quality control in skeletal muscle. Oxid. Med. Cell. Longev. 2017, 3165396
56 Yoo, S.-Z. et al. (2018) Role of exercise in age-related sarcopenia. J. Exerc. Rehabil. 14, 551-558
57 Picca, A. et al. (2019) Targeting mitochondrial quality control for treating sarcopenia: lessons from physical exercise. Expert Opin. Ther. Targets 23, 153-160
58 Safdar, A. et al. (2011) Exercise increases mitochondrial PGC-1alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J. Biol. Chem. 286, 10605-10617
59 Zechner, C. et al. (2010) Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab. 12, 633-642
60 Rowe, G.C. et al. (2012) PGC-1a is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle. PLoS ONE 7, e41817

61 Tidball, J.G. and Wehling-Henricks, M. (2007) The role of free radicals in the pathophysiology of muscular dystrophy. J. Appl. Physiol. 102, 1677-1686
62 Bowen, T.S. et al. (2015) Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J. Cachexia Sarcopenia Muscle 6, 197207
63 Simioni, C. et al. (2018) Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 9, 17181-17198
64 Lejay, A. et al. (2014) Mitochondria: mitochondrial participation in ischemia-reperfusion injury in skeletal muscle. Int. J. Biochem. Cell Biol. 50, 101-105
65 Di Meo, S. et al. (2017) Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J. Endocrinol. 233, R15-R42
66 Dimauro, I. et al. (2020) Exercise, redox homeostasis and the epigenetic landscape. Redox Biol. 35, 101477
67 Radak, Z. et al. (2013) Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid. Redox Signal. 18, 1208-1246
68 Radak, Z. et al. (2011) Age-dependent changes in 8-oxoguanine-DNA glycosylase activity are modulated by adaptive responses to physical exercise in human skeletal muscle. Free Radic. Biol. Med. 51, 417-423
69 Rasmussen, M. et al. (2014) Dynamic epigenetic responses to muscle contraction. Drug Discov. Today 19, 1010-1014
70 Henríquez-Olguin, C. et al. (2019) Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nat. Commun. 10, 4623
71 Sakellariou, G.K. et al. (2013) Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxid. Redox Signal. 18, 603-621
72 Prosser, B.L. et al. (2011) X-ROS signaling: rapid mechano-chemo transduction in heart. Science 333, 1440-1445
73 Oleinik, N.V. et al. (2011) Epigenetic silencing of ALDH1L1, a metabolic regulator of cellular proliferation, in cancers. Genes Cancer 2, 130-139
74 Kang, J.H. et al. (2016) Aldehyde dehydrogenase is used by cancer cells for energy metabolism. Exp. Mol. Med. 48, e272
75 Krupenko, S.A. and Krupenko, N.I. (2019) Loss of ALDH1L1 folate enzyme confers a selective metabolic advantage for tumor progression. Chem. Biol. Interact. 302, 149-155
76 Kim, D. et al. (2015) HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360
77 Love, M.I. et al. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550

Chapter 4:
 Conclusion

By 2030, metabolic diseases will be the number one noncommunicable disease on a global scale with one billion people suffering from metabolic disorders and their consequences (1). Metabolic disorders are caused by a lot of known risk factors such as dietary intake, lack of exercise and other lifestyle behaviors (2). Recently, a rising number of studies have linked differential epigenetic modifications with metabolism (2). The most relevant epigenetic modifications involved in gene activity regulation are DNA methylation, histone modifications, and non-coding RNAs (3). Out of these, DNA methylation is the most extensively studied epigenetic mark in relation to gene expression regulation (3). Despite the efforts taken to unravel the specific contributions of writers (DNA methyltransferases) and erasers (TET methylcytosine dioxygenases) of DNA methylation, the underlying molecular mechanisms remained previously unknown. My thesis work focuses on identifying the specific roles of TET1 and DNMT3A in metabolic regulations.

Chapter 1 provides a review on the detailed understanding of DNMT3a and TET2 mechanisms, which may lead to identifying novel targets for the treatment of \mathbb{R} and relevant human diseases.

Chapter 2 reports the role of Tet1 as a potent beige-selective epigenetic breaker of the thermogenic gene program. TET1 expression was increased during white adipogenesis and reduced during beige and brown adipogenesis, displaying an anti-correlation with UCP1 levels. TET1 also suppresses adipocyte thermogenesis in a cell-autonomous manner in beige adipocytes. Furthermore, adipose specific TET1 KO mice were more glucose tolerant and insulin sensitive than controls, having reduced insulin levels at fed and fast states on HFD. Finally, TET1-mediated suppression of the thermogenic gene program is largely done in a DNA demethylase-independent manner and in large part due to HDAC1. These findings advances our understanding of how thermogenesis is regulated by epigenetics and lead to a therapeutic strategy to increase energy expenditure in obesity and related metabolic disorders.

Chapter 3 shows that DNMT3A plays a necessary role in endurance exercise by suppressing ALDH1L1-mediated oxidative stress. Muscle-specific Dnmt3a ablation decreases the capacity for endurance exercise, shows reduced oxidative capacity and diminished mitochondrial respiration. Importantly, gene profiling studies identified A/dh1/1 as a key target gene of DNMT3A in the soleus muscle. Furthermore, ALDH1L1 drives the increase in ROS and mitochondrial dysfunction in KO soleus muscle. Finally, resolving oxidative stress and muscle targeted Aldh1/1 silencing in Dnmt3a KO mice partially rescues exercise intolerance. Together, our results provide novel insights into the epigenetic regulation of the muscle response to exercise and reveal a surprising molecular target that is important for sustaining endurance exercise.

Overall, my work not only advances our understanding of the epigenetic regulations in metabolism but also provides novel insights into the development of improved therapeutic strategy in the future.

References

1. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008 Sep;32(9):1431-7.
2. Tzika E, Dreker T, Imhof A. Epigenetics and metabolism in health and disease. Front Genet. 2018 Sep 18;9:361.
3. Samblas M, Milagro FI, Martínez A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics. 2019 Mar 27;14(5):421-44.

[^0]:

[^1]:

