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Abstract of the Dissertation

Essays on Discrete Choice Models

by

Joonmo Kang

Doctor of Philosophy in Economics

University of California, Los Angeles, 2016

Professor Rosa Liliana Matzkin, Co-Chair

Professor Jinyong Hahn, Co-Chair

This dissertation consists of three essays divided into chapters. In chapter 1, I analyze the

identification of a simultaneous binary response model without nonadditive unobservable

random terms, and suggest an estimation method. In particular, the derivatives of struc-

tural equations are identified and estimated. The identification relies on a special regressor,

which enters the underlying structural equation linearly. All other exogenous variables held

constant, variation on this special regressor generates variation on the structural equation

which determines the latent endogenous variable in a known way, so we can recover the

conditional distribution of the structural equations. The estimator can be constructed using

a least-squares method, after replacing the elements of a matrix with kernel density and

density derivative estimates. The estimator is shown to be consistent and asymptotically

normal.

In chapter 2, I examine the determinants smartphone adoption among the elderly in

South Korea. The advent of smartphones has caused a dramatic change in access to infor-

mation and media, leading to a super-connected world of real-time services. Meanwhile, the

constant dissemination of new technologies makes the digital divide multi-layered. In partic-

ular, older persons fall far behind the overall population in the access and use of new devices.

To understand the technological environment following the introduction of smartphones and

other smart mobile devices, I examine individual, household, and regional factors that can
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influence the preferences of the elderly with regard to obtaining a smartphone. I find that

smartphone ownership among the elderly is mainly determined by personal rather than fam-

ily characteristics. A smartphone is an individual mobile device that is not shared by other

household members, and therefore personal preferences are most integral to the decision.

Also, I find that the area where a person lives has a significant effect on the probability of

their owning a smartphone. Living in the areas located far from Seoul Metropolitan Area

has significant effect in the probability of having a smartphone, which suggest that regional

imbalance may play a role in usage of smartphones and other ICT, as well as informatization.

In chapter 3, I analyze the evolution of preferences for brands in digital camera market.

A consumer considers the value of a brand, as well as product characteristics when deciding

which product to buy. One way to capture this effect is to use brand-specific dummy vari-

ables, as in Nevo (2001). However, including brand-specific dummy variables does not fully

account for the variation of the unit sales of compact digital cameras, since the preference for

digital camera brands evolves over time. Assuming that the brand preference is affected by

the advertising expenditure of each brand and the reputation among consumers, I suggest a

method to capture the time-varying brand preference under the specification of BLP model.
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CHAPTER 1

Nonparametric Estimation of Simultaneous Binary

Response Model Without Additivity

1.1 Introduction

Imagine a situation where a married woman bears a child. After her parental leave is over,

the family encounters a real problem: how do they take care of the baby while they are

at work? As the demand for child care is strongly linked to maternal employment, the

responsiveness of the labor supply of married women to the price of child care and changes

in household income has attracted the attention of many scholars. One may consider three

different child care benefit policies. If the government gives a certain amount of money to

the household with a young child, it will change the household’s overall income. Or, the

government could provide more public child care centers. This policy would have the effect

of lowering the average price of child care services. The third option is to subsidize only

those low-income families with working mothers. Policymakers, as well as researchers, ask

which policy is the most appropriate for achieving their policy objectives.

Estimating the parameters of interest and analyzing the counterfactuals to evaluate poli-

cies in this situation is not an easy task. Insufficient data exist regarding work hours and

wages of the unemployed. Even for those who participate in the labor market, researchers

often only observe qualitative responses, such as whether a person continues to work or exits

from the workforce. The work participation decision is made by negotiation between the

wife and the husband, which causes endogeneity in the model. Moreover, price and income

effects are not universal; they depend on both observable and unobservable household char-
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acteristics. The standard approach for dealing with this problem is a linear binary choice

model, but it offers only an approximation of the true parameters if the underlying decision

process is expressed in a nonlinear way.

In this paper, we propose a nonparametric estimator for the binary response model. It

is significantly different from other methods for binary response models with endogenous

regressors in the literature. First, it does not impose any assumptions regarding the func-

tional form of the structural equations or distributions of the unobserved variables, so it is

free from the misspecification error. The unobserved random terms enter the model in a

nonadditive way. Unlike linear models with additive errors, each reduced form function in

the nonadditive model depends on the value of each of the unobservable variables in the

system. Second, the endogeneity is controlled by full simultaneous structural equations in

contrast to the triangular models where the endogenous variable has an explicit reduced form

relationship. Though the instrument variable and control function approaches are the most

common, they have some flaws in a nonparametric framework, as discussed below. To our

knowledge, the estimator suggested in the present paper is the first estimator for a nonpara-

metric binary response model that allows for full simultaneity. Third, the estimator relies

on the pointwise identification conditions of the structural model, so it does not require the

large support condition on the special regressor, which is a potential obstacle to empirical

applications. As long as the conditional density is well defined on the neighborhood of a

point of interest, we can identify and estimate elements of the structural equation.

The estimation is based on a two-step procedure. The first step consists of estimating

functionals of the conditional densities of transformed variables, which can be done by kernel

density and density derivative estimations from observable variables. In the second step, we

integrate the functionals obtained in the first step and solve a minimization problem with

an integrated quadratic loss function. The particular model structure, and the choice of

quadratic loss function, enables us to express the estimated feature in a least-squares form.

In this sense, the estimator is an extension of the average derivative methods of Stoker (1986)

and Powell et al. (1989).
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The binary response model plays an important role in applied fields of economics and is

therefore the focus of extensive literature. Even when a rich dataset is available, researchers

often only observe qualitative responses, and variables underlying the decision process such as

subutility and willingness-to-pay are always latent by nature. Though the use of experimental

and quasi-experimental methods has been preferred in empirical work in the last decade,

analyses of counterfactuals, policy evaluation, and prediction of the evolution of markets

require knowledge of the underlying structure and distributions in the economy, which can

often only be estimated using structural models.1 Empirical use of the structural binary

response model has included the model of decision for post-secondary vocational school

training from Nelson et al. (1978), the analysis of demand for deductibles in private health

insurance from Van de Ven and Van Praag (1981), a variation of the labor force participation

decision model offered by Blundell and Powell (2004), and the estimation of willingness-to-

pay in Lewbel et al. (2011).

The standard method for estimating the linear binary response model involves logit and

probit procedures, assuming that the distribution of the unobservable term follows a specific

parametric law and that exogenous variables and error terms are statistically independent.

However, neither of these assumptions might be appropriate in many empirical applications.

First, the structural econometric model provides no guidance as to the functional form

of the distribution of the error term, but misspecification generally results in inconsistent

estimates. A number of semiparametric estimators have been proposed that do not impose

parametric restrictions on the distribution of the error term, including semiparametric least

squares (Ichimura, 1993), semiparametric maximum likelihood (Klein et al., 1993), average

derivative estimators (Stoker, 1986; Powell et al., 1989), and the semiparametric estimator

for discrete regressors (Horowitz and Härdle, 1996).

Second, when the structure arises in a system of simultaneous equations, some compo-

nents of the independent variables will be endogenous, violating the independence assump-

1There had been much debate on the role of structural models in the analyses of economic data. For
recent discussion on the topic, see Angrist and Pischke (2010), Nevo and Whinston (2010), Imbens (2010),
Deaton (2010), and Heckman and Urzúa (2010).
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tion. In regard to parametric specification of the distribution of the error term, Smith and

Blundell (1986), Rivers and Vuong (1988), and Newey (1987) proposed estimators that are

able to deal with endogeneity. In semiparametric methods, two general approaches exist for

overcoming the endogeneity problem. One approach utilizes instrumental variables, which

are independent of the unobservable term but functionally dependent on the endogenous

variable. Lewbel (2000) used this approach to estimate the index coefficients in a linear

binary response model, and Honoré and Lewbel (2002) expanded this to panel data models.

The control function approach offers another method for dealing with endogeneity. The

general idea of this approach is to use residuals from a reduced form of regressors to account

for endogeneity. Blundell and Powell (2004) and Rothe (2009) proposed estimators using

the control function approach in a binary response model. Lee (2012) reviewed semipara-

metric estimation methods for general limited dependent variable models with endogenous

regressors.

In addition to the linear model, nonparametric models with nonseparable unobservables

have received considerable attention in econometrics. These models are important because

they can accommodate general forms of unobserved heterogeneity, but the nonseparability of

unobserved heterogeneity complicates the identification and estimation of structural features

relative to standard models with additively separable disturbances. Similar to the linear

case, various methods can be considered to treat the endogeneity. The instrumental variable

approach has been considered by Chernozhukov and Hansen (2005), Chernozhukov et al.

(2007), Chen and Pouzo (2012), and Chen et al. (2014). However, estimators based on

this approach may suffer from ill-posed inverse problems. Another approach comes from

trying to describe the source of simultaneity by specifying the relation between endogenous

variables. One way to achieve this is through the control function approach (Florens et al.,

2008; Imbens and Newey, 2009; Torgovitsky, 2015). While it is possible to avoid an ill-

posed inverse problem, the class of simultaneous structural equations that allows for the use

of the control function approach is restrictive. Blundell and Matzkin (2014) presented the

conditions required for using the control function approach.
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The third approach to achieve the identification and estimation of nonseparable models is

allowing for full simultaneity. This approach dates back to Brown (1983) and Roehrig (1988),

but it has received much less attention in recent econometrics literature. One complication

of this approach is that the change of variables involves the Jacobian of the transformation.

Identification results under full simultaneity have been discussed by Matzkin (2007, 2008,

2012), Berry and Haile (2010, 2014), and Chiappori and Komunjer (2009). Matzkin (2012)

considered the identification of general limited dependent variable models, but her identi-

fication strategy is not constructive. And the only existing estimation procedure for this

approach with nonseparable models is proposed by Matzkin (2015).

The structure of the paper is as follows. In the next section, we formally introduce

the model and provide preliminary assumptions. In addition, some empirical examples to

which the model can be applied are investigated. In Section 3, we present the constructive

identification result and the support condition. In Section 4, we describe our estimator and

analyze its asymptotic properties. In addition, we compare the asymptotic properties with

that of Matzkin (2015) when all the endogenous variables are observed. In Section 5, we

report the results of our simulation study. Section 6 concludes the paper.

1.2 The Model

We consider the model

Y ∗1 = m1(Y2, Z,X1, ε1)−W, Y1 = 1(Y ∗1 > 0) (1.1)

Y2 = m2(Y ∗1 +W,Z,X2, ε2),

In this model, (Y1, Y2) is a vector of observable endogenous variables and Y ∗1 is a latent vari-

able generating binary response Y1. (Z,X,W ) is a vector of observable exogenous variables,

and (ε1, ε2) is a vector of unobservable exogenous variables. The observable vector Z does

not add any complications if we consider any distribution conditioning on Z, so it will be

suppressed in the following discussion for simplicity. The simultaneity occurs between two

continuous variables, Y ∗1 +W and Y2, and the dummy variable Y1 does not directly enter the
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model. In this sense, this model can be considered as a version of the hybrid model without

structural shift offered by Heckman (1978).

One of the crucial assumption in this model is the additive separability between W

and m1. Along with the statistical independence between the observable variables (X,W )

and the unobservable ε, it provides a mapping between the observable choice probability

and the distribution of the latent variable. This special regressor method is a standard

strategy in the literature on limited dependent variable models.2 Note that we require full

independence between the exogenous, observed explanatory variables and the unobservables,

but the independence between X and W is not necessary.

Suppose that Y ∗1 is observable, so that we can directly observe Y ∗1 + W rather than Y1.

Denote B = (B1, B2) = (Y ∗1 +W,Y2), and rewrite the model as

B1 = m1(B2, X1, ε1) (1.2)

B2 = m2(B1, X2, ε2)

Since the structural equation mj is unknown and the nonadditive error term εj is unob-

servable, we can identify features of the structural equation only up to an invertible transfor-

mation (Matzkin, 2007). We may assume that mj is strictly monotone in εj as a normaliza-

tion. Without loss of generality, suppose that mj is strictly increasing in the last coordinate

for j = 1, 2. This enables us to find a unique value of εj for each realization of (b, x). Denote

such mapping by εj = rj(b1, b2, xj). Then, the system of indirect structural equations can be

expressed as

ε1 = r1(B1, B2, X1) (1.3)

ε2 = r2(B1, B2, X2)

Choose a point (b1, b2, x1, x2, ε1, ε2) on the graph of (1.3), and suppose the function r1 is

twice continuously differentiable. If the derivative of the function r1 with respect to b1 is

2Lewbel (2010) provides a brief overview of the special regressor method.
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invertible at the point, then the implicit function theorem states that there is an open neigh-

borhood U of the fixed point (b1, b2, x1, x2, ε1, ε2) and a unique continuously differentiable

function b1 = m1(b2, x1, ε1) such that ε1 = r1(m1(b2, x1, ε1), x1, ε1) on U . The uniqueness of

the function m1(b2, x1, ε1) guarantees that it matches up with m1(b2, x1, ε1) on U . Moreover,

we can express the derivatives of the function m1 in terms of r1,

∂m1(b2, x1, ε1)

∂b2

∣∣∣∣
ε1=r1(b1,b2,x1)

= −
[
∂r1(b1,b2,x1)

∂b1

]−1 [
∂r1(b1,b2,x1)

∂b2

]
(1.4)

∂m1(b2, x1, ε1)

∂x1

∣∣∣∣
ε1=r1(b1,b2,x1)

= −
[
∂r1(b1,b2,x1)

∂b1

]−1 [
∂r1(b1,b2,x1)

∂x1

]
and similar result holds between m2 and r2.

The identification and estimation method in the nonparametric simultaneous equations

system rely on the change-of-variable technique. Under appropriate conditions, the condi-

tional density function of B given X = x is given by

fB|X=x(b) = fε(r(b, x))

∣∣∣∣∂r(b, x)

∂b

∣∣∣∣ (1.5)

If all the terms in (1.5) are twice continuously differentiable, it can be transformed into a

system of linear equations with derivatives of known functions on one side and derivatives

of unknown functions on the other side. This allows us to identify some features of the

function r. See Matzkin (2008, 2012, 2015) for a detailed discussion on the identification

and estimation of the nonparametric simultaneous equation system.

We encounter a problem when directly applying the method above to a binary response

model. Since Y ∗1 is not observed, we cannot directly observe B1 = Y ∗1 + W . However, the

existence of the special regressor, W , enables us to recover the conditional probability of

(B1, B2) = (Y ∗1 + W,Y2) given (X1, X2,W ) from the data. Suppose that ε is independently

distributed of (X,W ) and the structural equation system allows for the unique reduced-form

expression, Bj = hj(X1, X2, ε1, ε2), for each j. Conditional on X, (B1, B2) is a function of ε,

so they are independent of W conditional on X. Hence, for any b,

FB|X=x(b1, b2) = P [B1 ≤ b1, B2 ≤ b2|X = x] = P [B1 ≤ b1, B2 ≤ b2|W = b1, X = x](1.6)
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= P [Y ∗1 +W ≤ b1, Y2 ≤ b2|W = b1, X = x]

= P [Y ∗1 + b1 ≤ b1, Y2 ≤ b2|W = b1, X = x]

= P [Y ∗1 ≤ 0, Y2 ≤ b2|W = b1, X = x]

= P [Y1 = 0, Y2 ≤ b2|W = b1, X = x]

The second equality in the first line comes from the conditional independence of B and W

given X. The conditional probability density function of B at a certain value (b1, b2) given

X = x is obtained by differentiating (1.6) with respect to (b1, b2). More precisely,

FB|X=x(b1, b2) = P [B1 ≤ b1, B2 ≤ b2|X = x]

= P [Y ∗1 ≤ 0, Y2 ≤ b2|W = b1, X = x]

=

∫ b2

−∞

∫ 0

−∞

fY ∗1 ,Y2,W,X(y∗1, y2, b1, x)

fW,X(b1, x)
dy∗1dy2

=

∫ b2

−∞

fY1,Y2,W,X(0, y2, b1, x)

fW,X(b1, x)
dy2

where fY1,Y2,W,X(y1, y2, w, x) is the joint pdf of binary random variable Y1 and continu-

ous random vector (Y2,W,X). From the definition, we know that fY1,Y2,W,X(0, y2, b1, x) =∫ 0

−∞ fY ∗1 ,Y2,W,X(y∗1, y2, b1, x)dy∗1 and fY1,Y2,W,X(1, y2, b1, x) =
∫∞

0
fY ∗1 ,Y2,W,X(y∗1, y2, b1, x)dy∗1. Dif-

fentiating with respect to b1 and b2, we obtain

fB|X=x(b1, b2) =
∂2

∂b1∂b2

FB|X=x(b1, b2) (1.7)

=
∂2

∂b1∂b2

∫ b2

−∞

fY ∗1 ,Y2,W,X(y∗1, y2, b1, x)

fW,X(b1, x)
dy2

=
∂

∂b1

fY1,Y2,W,X(0, b2, b1, x)

fW,X(b1, x)

=
fwf̃ − ff̃w

f̃ 2

where fW,X(w, x) =
∫∞
−∞

∫∞
−∞(y∗1, y2, w, x)dy∗1dy2 =

∑1
y1=0

∫∞
−∞ fY1,Y2,W,X(y1, y2, w, x)dy2 is

the joint pdf of (W,X), f = fY1,Y2,W,X(0, b2, b1, x),

fw = ∂
∂w
fY1,Y2,W,X(y1, y2, w, x)

∣∣∣∣
y1=0,y2=b2,w=b1,x=x

, f̃ = fW,X(b1, x), and

f̃w = ∂
∂w
fW,X(w, x)

∣∣∣∣
w=b1,x=x

.3 Since the last expression contains functions related to the

3The arguments in the density function and its derivatives are suppressed for notational convenience.
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observable variables (Y1, Y2,W,X) only, they can be recovered from the data.

Below is a set of conditions required for identification.

Assumption 1 (ε1, ε2) is distributed independently of (X,W ), with an everywhere positive

and twice continuously differentiable density fε.

Assumption 2 (X,W ) possesses a differentiable density.

Assumption 3 For the model, there exist unique twice continuously differentiable functions

r as in (1.3). rj is invertible in bj and the derivative of rj with respect to xj is bounded away

from zero. Conditional on (X1, X2), the function r is 1-1, onto R2, and as a function of x,

its Jacobian determinant is positive and bounded away from zero.

Assumption 4 For the model, there exists unique reduced-form system h such that for each

(x1, x2, ε1, ε2),

b1 = h1(x1, x2, ε1, ε2)

b2 = h2(x1, x2, ε1, ε2)

Remark The conditional independence of B and W given X is crucial in deriving the con-

ditional density of B given X from (1.6). Without the conditional independence, not only

the value of B1 but also the value of W affect the derivative with respect to b1, so we cannot

recover the density of the (possibly) latent variables (Y ∗1 + W,Y2) from the observables. As-

sumption 4 guarantees conditional independence under the statistical independence of (X,W )

and ε.

Remark Assumption 4 requires that the endogenous variables are uniquely determined by

exogenous variables (X, ε), say, the model is coherent and complete. One of the sufficient

condition for the existence of the unique reduced-form system is strict monotonicity of m in

ε and crossing property such that (∂m1(b2, x1, ε1)/∂b2)(∂m2(b1, x2, ε2)/∂b1) < 1, as discussed

in Blundell and Matzkin (2014).
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Remark As shown in the next section, the identified feature of r is the ratios of derivatives,

rkbj(b, xk)/r
k
xk

(b, xk) at a certain point (b1, b2, x1, x2). However, since b1 is not directly ob-

served, the special regressor W is used to recover the distribution of the structural equation

m. This approach requires a large support of W such that the support of s1(Y2, X1, ε1) is

included in the support of W . However, since the identification result is pointwise, we need

rather a relaxed support condition, in accordance with the choice of the point (b1, b2). This

condition will be discussed in the next section.

1.2.1 Empirical Examples

The binary response model is widely used in applied microeconomics to analyze the impact

of a policy change. We provide two empirical examples where our model is appropriate.

The first example is the labor participation decision of a married woman with children,

which was introduced at the beginning of this paper. The second example is the purchase

of private health insurance after the implementation of a policy preventing the insurer from

prescreening.

Example 1 (Full-time Employment after Childbirth) Parents in the labor force

face numerous decisions when balancing their work and home lives. One decision is choosing

the type of child care to provide for their children while they work. In the past, mothers

were considered to be the caregiving parents, but maternal employment has become the

norm rather than the exception. According to the 2010 Census, less than one-third of

families with children have a full-time, stay-at-home parent. Hence, child care arrangements

and their costs are a significant issue for parents, relatives, care providers, and policymakers.

Many researchers have studied the effect of child care costs on the labor force participation of

married women, including Heckman (1974), Blau and Robins (1988), and Connelly (1992).

A detailed survey of this issue was provided by Blau and Currie (2006).

Parents decide on the optimal time arrangement for work, parental care, and care services.

However, full-time employment generally requires a fixed amount of working hours, and
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parents cannot freely determine office schedules. Hence, a full-time worker with children

may consider transferring from full-time to part-time employment. This decision depends

on how strongly an individual wants to work, the accessibility of private child care services,

and other household income. If the desired work hours of an individual are greater than

the hours required by the full-time job, she might keep the job and find a way to take

care of her child. Otherwise, she will look for another job with more flexible work hours,

typically a part-time job, or exit the labor market. Moreover, the elasticity of the desired

work hours varies with different levels of household income. In model (1.1), Y ∗1 + W is

an individual’s desired work hours, where W is exogenously determined work hours in the

current full-time employment and Y2 is other household income, including a spouse’s income

and various government benefits. With an appropriate choice of individual characteristics X

that does not directly affect each equation, we can recover the underlying decision structure

for determining the employment schedule, and this can be used to evaluate child care subsidy

policies.

Example 2 (Private Health Insurance) During the early- and mid-1990s, many U.S.

states introduced regulations on the small and non-group health insurance markets. Such

regulations included rating restrictions, guaranteed issue requirements, limits on exclusions

for pre-existing conditions, reinsurance requirements, minimum loss ratio requirements, and

premium rate restrictions. Rating restrictions limited the insurers’ ability to utilize certain

predictors of healthcare use in setting premiums while guaranteed issue laws banned the

denial of policies. Pre-existing condition exclusion laws and portability laws improved the

continuity of access to health insurance for individuals working for small firms. The intent of

the regulations was to generate transfers from the healthy to the sick, but such efforts may

be fruitless due to adverse selection since the healthy can escape these transfers by reducing

or dropping their coverage Rothschild and Stiglitz (1976); Buchmueller and Dinardo (2002).

The model for purchasing private health insurance that we may consider is a modification

of the model used by Clemens et al. (2015). The optimal choice of insurance coverage for

an individual depends on the shape of her utility function, her level of risk aversion, and
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her private information on the type, either healthy or sick. Solving the utility maximization

problem leads to a relationship between the willingness-to-pay for health insurance and the

optimal level of medical expenditure. Under the community-rating restriction, the insur-

ance premium is determined exogenously, not based on individual characteristics. If the

willingness-to-pay exceeds the premium proposed by the insurer, she will buy the plan. In

model (1.1), Y ∗1 + W is an individual’s willingness-to-pay for health insurance, where W is

the community-rated premium determined in the market and Y2 is the (expected) medical

expenditure of an individual, which partially reflects the expected health cost and hence the

type of individual. Since W is determined independently of an individual’s characteristics,

it would be independent of the unobserved individual characteristic ε. With an appropriate

choice of socio-economic variable X, we can recover the likelihood that an individual buys

a community-rated health insurance policy given her type of expected medical expenditure,

and thus we can estimate the degree of adverse selection in a community.

1.3 Identification

Identification of the model comes from the observational equivalence results on nonpara-

metric simultaneous equation models in Matzkin (2015), using the conditional density of

transformed variables B given X.

Let us begin with introducing notations used throughout the paper. Let fB|X=x(b) denote

the conditional density of the transformed variables (B1, B2) = (Y ∗1 +W,Y2), which is derived

in (1.7). Denote the derivative of the log of fB|X=x(b) with respect to b and x by gb(b, x) =[
∂ log fB|X=x(b)

∂(b1,b2)

]
and gx(b, x) =

[
∂ log fB|X=x(b)

∂(x1,x2)

]
, respectively. The derivatives of rg with respect

to bj and xs will be denoted by rgbj(b, xg) and rgxg(b, xg). The ratio of derivatives of r with

respect to bj and xs, r
g
bj

(b, xg)/r
g
xg(b, xg), will be denoted by rgbj(b, xg). For fixed x, the

Jacobian determinant of r as a function of b, |∂r(b, x)/∂b|, will be denoted by |rb(b, x)|, and

the derivatives of the Jacobian determinant with respect to its arguments t ∈ {b1, b2, x1, x2}
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will be denoted by |rb(b, x)|t. Lastly, define functions dbg(b, x) for g = 1, 2 by

dbg(b, x) =
|rb(b, x)|bg
|rb(b, x)|

− |rb(b, x)|x1
|rb(b, x)|

r1
bg

(b, x1)

r1
x1

(b, x1)
− |rb(b, x)|x2
|rb(b, x)|

r2
bg

(b, x2)

r2
x2

(b, x2)
.

Let Γ be the class of functions r that satisfy Assumption 3, and let Φ be the class

of densities that satisfy Assumption 1. Define observational equivalence within Γ over a

subset M in the interior of the support of the vector of transformed variables (B,X) =

(Y ∗1 +W,Y2, X1, X2). The definition comes from the change-of-variable formula in (1.5).

Definition 1 (Observational Equivalence over M) Let M denote an open subset of the

support of (B,X) such that for all (b, x) ∈ M , fB,X(b, x) > δ for some positive constant δ.

A function r̃ ∈ Γ is observationally equivalent to r ∈ Γ if there exist densities fε, fε̃ ∈ Φ

such that for all (b, x) ∈M ,

fB|X=x(b) = fε(r(b, x))

∣∣∣∣∂r(b, x)

∂b

∣∣∣∣ = fε̃(r̃(b, x))

∣∣∣∣∂r̃(b, x)

∂b

∣∣∣∣
Suppose (r, fε) and (r̃, fε̃) in Γ×Φ generate the same density of (B,X) derived from the

observational variables (Y1, Y2, X,W ). The following theorem provides a characterization of

observational equivalence on M in terms of r and fB|X only.

Theorem 1.3.1 Suppose that (r, fε) generates fB|X on M and that Assumptions 1-4 are

satisfied. A function r̃ ∈ Γ is observationally equivalent to r on M if and only if for all

(b, x) ∈M ,

0 =
(
r1
b1
− r̃1

b1

)
gx1 +

(
r2
b1
− r̃2

b1

)
gx2 +

(
db1 − d̃b1

)
(1.8)

0 =
(
r1
b2
− r̃1

b2

)
gx1 +

(
r2
b2
− r̃2

b2

)
gx2 +

(
db2 − d̃b2

)
(1.9)

Proof. The theorem is analogous to Theorem 2.1 in Matzkin (2015) if we let G=2 and

substitute fY |X in her paper with fB|X .

Again, the change-of-variable formula in (1.5) can be used to develop constructive iden-

tification results for features of r. Taking logs and differentiating (1.5) with respect to bj
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gives

∂ log fB|X=x(b)

∂bj
=

2∑
g=1

∂ log fε(r(b, x))

∂εg
rgbj(b, xg) +

|rb(b, x)|bj
|rb(b, x)|

(1.10)

and taking logs and differentiating (1.5) with respect to xg gives

∂ log fB|X=x(b)

∂xg
=
∂ log fε(r(b, x))

∂εg
rgxg(b, xg) +

|rb(b, x)|xg
|rb(b, x)|

(1.11)

Solving for ∂ log fε(r)/∂εg in (1.11) and plugging the result into (1.10), we obtain

∂ log fB|X=x(b)

∂bj
=

2∑
g=1

∂ log fB|X=x(b)

∂xg

rgbj(b, xg)

rgxg(b, xg)
(1.12)

+
|rb(b, x)|bj
|rb(b, x)|

− |rb(b, x)|x1
|rb(b, x)|

r1
bj

(b, x1)

r1
x1

(b, x1)
− |rb(b, x)|x2
|rb(b, x)|

r2
bg

(b, x2)

r2
x2

(b, x2)

=
2∑
g=1

∂ log fB|X=x(b)

∂xg

rgbj(b, xg)

rgxg(b, xg)
+ dbj(b, x)

Equation (1.12) implies that (r, d) satisfies the following system of equations

gb1 = r1
b1
gx1 + r2

b1
gx2 + db1 (1.13)

gb2 = r1
b2
gx1 + r2

b2
gx2 + db2

For a certain point of (b1, b2, x1, x2), the derivatives of the log of conditional density gb

and gx are either observable or estimable, while the ratios of derivatives of indirect structural

function rgbj and the terms dbj are unknown. We may interpret (1.13) as a linear equation

system of 2 equations and 6 unknowns. Hence, we cannot solve (1.13) for the unknowns

without further assumptions. Roughly speaking, if three distinct points of (b1, b2, x1, x2)

give different values for gb and gx but (r, d) are the same over these three points, we can

solve for (r, d) on such points. This leads to additional restrictions on the form of indirect

equation r and the values of gx.

Assumption 5 For j = 1, 2 the inverse function rj is such that for some function sj : R2 →

R and all (b, xj), rj(b, xj) = sj(b) + xj.

The identification analysis says that we can identify only the ratios of derivatives, r,

which is equivalent to the statement that r is identified up to an invertible transformation.
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The restrction of Γ satisfying Assumptions 3 and 5 guarantees that no two functions in Γ

are invertible transformations of each other.4

At this point, we need to discuss the choice of b. All the results above assume that

we analyze the identification of the model at a fixed point (b1, b2, x1, x2) using log of the

conditional density of transformed variable B given X. If the density vanishes around that

point, it is invalid to take the log of the density. This suggests a restriction on the choice of

b.

Assumption 6 The following support conditions hold:

(a) Let b = (b1, b2) be given. There exists a convex and compact subset M b that is strictly

included in the support of (W,Y2) such that b is an interior point of M b.

(b) For all (b′1, b
′
2) ∈ M b, there exists a convex and compact subset Mx in the interior of

supp(X|W = b′1, Y2 = b′2) which does not depend on the choice of (b′1, b
′
2)

(c) For all (b′1, b
′
2) ∈M b and x ∈Mx, 0 < P (Y1 = 0, Y2 ≤ b′2|W = b′1, X = x) < 1.

Assumption 6 connects the support condition on M of transformed variables with the sup-

port of the observable variables. Condition (a) and (b) guarantee that the conditional density

function fB|X=x(b) is well-defined, and condition (c) enables us to obtain non-vanishing den-

sity, and thus the differentiation in equations (1.10)–(1.12) is valid. Note that Assumption

6 does not require the full support condition on W .

The following proposition summarizes the consequence of the two assumptions,

Proposition 1.3.2 Let b be a fixed value satisfying Assumption 6. When Assumptions 3

and 5 are satisfied, (r, d) is constant over the set M = {(b, x1, x2)|(x1, x2) ∈Mx}.

The last assumption is on the value of gx. Due to the additive separable nature of the

model, the restriction on gx is equivalent to the restriction imposed on the density of ε,

4For more discussion on the normalization of the class of structural functions where no two functions are
invertible transformations of each other, see Matzkin (2008).
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through (1.11). Observe that rgxg(b, xg) = 1 and |rb(b, x)|xg = 0. Hence, we obtain a relation

between gx and fε:

gxs =
∂ log fB|X=x(b)

∂xs
=
∂ log fε(r(b, x))

∂εs
(1.14)

As stated above, we need three distinct points of t(1), t(2), t(3) in M , which makes the equation

(1.13) solvable. Denote the values of gxs evaluated at t(j) by g
(j)
xs and the values of gyg

evaluated at t(j) by g
(j)
yg . The condition is given that the matrix

g
(1)
x1 g

(1)
x2 1

g
(2)
x1 g

(2)
x2 1

g
(3)
x1 g

(3)
x2 1

 (1.15)

is invertible. Combining with (1.14), the condition can be satisfied under the following two

assumptions.

Assumption 7 There exist three values ε(1), ε(2), ε(3) of ε, not necessarily known, such that

the matrix 
∂ log fε(ε(1))

∂ε1

∂ log fε(ε(1))
∂ε2

1

∂ log fε(ε(2))
∂ε1

∂ log fε(ε(2))
∂ε2

1

∂ log fε(ε(3))
∂ε1

∂ log fε(ε(3))
∂ε2

1

 (1.16)

is invertible.

Assumption 8 There exist three points t(1), t(2), t(3) in the set M , not necessarily known,

where (r, d) is constant, such that for each j = 1, 2, 3, ε(j) = r(t(j)), where ε(j) is as in

Assumption 7.

Theorem 1.3.3 Suppose that Assumptions 1-8 are satisfied on M . Then, matrix (1.15) is

invertible, and thus (r, d) are identified on M .

Remark We may consider an alternative set of functions as a normalization in Assumption

5. One possible choice is that function r is homogeneous of degree one. This normalization

is equivalent to assuming that the structural function m is homogeneous of degree one, and

the identification occurs on a ray of (b1, b2, x1, x2) through the origin.
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1.4 Average Derivative Estimator and Asymptotic Properties

Next, we develop a least-squares type estimator for r. Proposition 1.3.2 says that for a given

b satisfying Assumption 6, (1.13) holds for all values of (gb,gx) over any subset of M . Let

Mx be a compact subset of the support of X given W = b1 such that {b} × Mx ⊂ M .

Since (r, d) is constant over M , the choice of an integrated quadratic loss function with some

weight function µ(x) gives a characterization of (r, d) as the unique solution of a minimization

problem. Choose a continuously differentiable, non-negative weight function µ(x) defined on

R2 such that
∫
Mx

µ(x)dx = 1 and µ(x) vanishes outside Mx. For any vector (r̃, d̃) generated

from a function r̃ satisfying the same assumptions as the true function r, define the loss

function by

L(r̃, d̃) =

∫
Mx

[
2∑
j=1

(
gbj − gx1 r̃

1

bj
− gx2 r̃

2

bj
− dbj

)2
]
µ(x)dx (1.17)

and consider the minimization problem min
(r̃,d̃)

L(r̃, d̃). It is clear that L
(
r̃, d̃
)
≥ 0 and

L(r, d) = 0, so (r, d) is a minimizer of the criterion function. And, when µ(x) is strictly

positive at t(1), t(2), t(3) defined in Assumption 8, (r, d) is the unique minimizer of L(·). The

quadratic form of the loss function allows us to use the least-squares method. Especially, we

can use partial linear regression to ignore the nuisance term d.

To explain the estimation method, we need to define additional notation regarding the

weighted average of related terms. The weighted average of gbj and gxs over Mx will be

denoted by ∫
Mx

gbj =

∫
Mx

gbj(b, x)dx =

∫
Mx

∂ log fB|X=x(b)

∂bj
µ(x)dx∫

Mx

gxs =

∫
Mx

gxs(b, x)dx =

∫
Mx

∂ log fB|X=x(b)

∂xs
µ(x)dx

The averaged centered cross products between gbj and gxs and between gxj and gxs will be

denoted by

Tbj ,xs =

∫
Mx

(gbj(b, x)−
∫
Mx

gbj)(gxs −
∫
Mx

gxs)µ(x)dx

Txj ,xs =

∫
Mx

(gxj(b, x)−
∫
Mx

gxj)(gxs −
∫
Mx

gxs)µ(x)dx
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Note that we focus on the estimation of r by factoring out intercept d. The matrices of

centered cross products TXX and TBX will be defined by

TXX =

Tx1,x2 Tx2,x1

Tx1,x2 Tx2,x2

 and TBX =

Tb1,x1 Tb2,x1

Tb1,x2 Tb2,x2

 .

The matrix of ratios of derivatives will be defined by

R(r) =

r1
b1

r1
b2

r2
b1

r2
b2


The solution of the First Order Conditions for r is expressed as TXXR(r) = TBX . Since (r, d)

is the unique minimizer, the matrix TXX must be invertible. Hence, R(r) will be given by

R(r) = T−1
XXTBX (1.18)

The following lemma shows that (r, d) is the unique solution of the minimization problem

with the loss function L(r̃, d̃).

Lemma 1.4.1 (Theorem 2.3 in Matzkin (2015)) Let b be a point satisfying Assumption 6

and let the compact set Mx defined as above. Suppose that Assumptions 1–8 are satisfied and

that µ(x) is strictly positive at least at one set of points w(1), w(2), w(3) defined in Assumption

8. Then, (r, d) is the unique minimizer of

L
(
r̃, d̃
)

=

∫
Mx

[
2∑
j=1

(
gbj − r̃

1

bj
gx1 − r̃

2

bj
gx2 − d̃bj

)2
]
µ(x)dx

and R(r) is given by (1.18).

The estimator for R(r) can be obtained by replacing fB|X=x(b) in all the expressions

with a nonparametric estimator f̂B|X=x(b). Hereafter, the terms with hat, (̂·), mean that the

conditional density or density derivatives are replaced by their sample analogues. Then, the

estimator for the matrix of ratios of derivatives R(r) is defined as

R̂(r) = T̂XX
−1
T̂BX
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One of the nonparametric methods widely used to estimate fB|X=x(b) is the kernel

method. Let {Y i
1 , Y

i
2 ,W

i, X i}Ni=1 denote N iid observations generated from the model. The

kernel estimators for the density and density derivatives are

f̂Y1,Y2,W,X(y1, y2, w, x) = (Nσ4
N)−1

N∑
i=1

1(Y i
1 = y1)K

(
Y i

2 − y2

σN
,
W i − w
σN

,
X i − x
σN

)
(1.19)

∂wf̂Y1,Y2,W,X(y1, y2, w, x) = (Nσ5
N)−1

N∑
i=1

1(Y i
1 = y1)Kw

(
Y i

2 − y2

σN
,
W i − w
σN

,
X i − x
σN

)
̂̃
fW,X(w, x) = (Nσ3

N)−1

N∑
i=1

K

(
W i − w
σN

,
X i − x
σN

)

∂w
̂̃
fW,X(w, x) = (Nσ4

N)−1

N∑
i=1

Kw

(
W i − w
σN

,
X i − x
σN

)
where K is a kernel function and σN is a bandwidth, ∂wg = ∂g

∂w
and Kw(·) = ∂K(·)

∂w
. For

simple notation, denote the estimates evaluated at (y1, y2, w, x) = (0, b2, b1, x) by f̂ =

f̂Y1,Y2,W,X(0, b2, b1, x), f̂w = ∂wf̂Y1,Y2,W,X(0, b2, b1, x),
̂̃
f =

̂̃
fW,X(b1, x), and

̂̃
fw = ∂w

̂̃
fW,X(b2, x),

respectively. From (1.7), we can estimate the conditional density of the latent variable B

given X by plugging estimates (1.19) into (1.7),

f̂B|X=x(b) =
f̂w
̂̃
f − f̂ ̂̃fŵ̃
f

2

The element in the k-th row and i-th column of our estimator for TXX , T̂XX is∫
Mx

(ĝxi(b, x)−
∫
Mx

ĝxi)(ĝxk −
∫
Mx

ĝxk)µ(x)dx

where

ĝxk(b, x) =
∂ log f̂B|X=x(b)

∂xk
and

∫
Mx

ĝxk =

∫
Mx

∂ log f̂B|X=x(b)

∂xk
µ(x)dx

Similarly, the element in the k-th row and i-th column of our estimator for TBX , T̂BX is∫
Mx

(ĝbi(b, x)−
∫
Mx

ĝbi)(ĝxk −
∫
Mx

ĝxk)µ(x)dx

where

ĝbi(b, x) =
∂ log f̂B|X=x(b)

∂bi
and

∫
Mx

ĝbi =

∫
Mx

∂ log f̂B|X=x(b)

∂bi
µ(x)dx
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1.4.1 Asymptotic Properties of the Estimator

To describe the asymptotic properties of the estimator, we need additional assumptions that

control the behavior of the kernel estimator. For b = (b1, b2) satisfying Assumption 6, let

M b be a convex and compact subset of the support of (W,Y2) such that (b1, b2) is an interior

point of M b, and Mx be a convex and compact set that is in the interior of the support of

X given W = b1.

Assumption 9 The density fY1,Y2,W,X generated by (fε, r) is bounded and continuously dif-

ferentiable of order d ≥ s + 2, where s denotes the order of the kernel function. Moreover,

there exists δ > 0 such that for all (y2, w, x) ∈M b×Mx, f̃(w, x) > δ, f(0, y2, w, x) > δ, and

fw(0, y2, w, x)f̃(w, x)− f(0, y2, w, x)f̃w(w, x) > δ.5

Assumption 10 The kernel function K is of order s, where s+ 2 ≤ d. It attains the value

zero outside a compact set, integrates to 1, is differentiable of order ∆, and its derivatives

of order ∆ are Lipschitz, where ∆ ≥ 3.

Assumption 11 The sequence of bandwidths σN is such that σN → 0, Nσ6
N →∞,

√
Nσ3+s

N

→ 0, [Nσ8
N/ log(N)]→∞, and

√
Nσ6[

√
log(N)/Nσ8

N + σsN ]2 → 0.

Assumption 12 The weight function µ(x) is bounded and continuously differentiable, strictly

positive over Mx, with values and derivatives vanishing on the boundary and on the com-

plement of Mx. The set {b} ×Mx contains at least one set of points t(1), t(2), t(3) satisfying

Assumption 8.

Assumptions 9 and 10 are standard conditions in kernel-based estimation literature. With

an appropriate choice of a norm, these conditions enable us to use the functional delta

method in order to derive the asymptotic variance of the functional of the kernel density

estimates. The restrictions on the kernel in Assumption 10 requires that the kernel be a

higher order kernel of order s for bias reduction. It will be used here to guarantee that

5The last expression is the numerator of the conditional density function B given X. By Assumption 6,
the value of the conditional density function is bigger than 0, so we can find δ satisfying the inequality.
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the limiting distribution of the estimators are centered at the true value. Assumption 11

is for deriving uniform convergence rates for derivatives of kernel estimators. Assumption

12 guarantees that the estimator is well-defined and the unique minimizer of the previously

discussed minimization problem.

To describe the asymptotic distribution of the estimator, we need slightly different no-

tation by vectorization. Let TTBX = vec(TBX), TTXX = I2 ⊗ TXX and rr = vec (R(r)),

where vec(·) is the vectorization operator and ⊗ is Kronecker product. T̂ TBX , T̂ TXX and

r̂r denote the corresponding estimator for each term, respectively.

Theorem 1.4.2 Under Assumptions 1–12, it holds that√
Nσ6

N(T̂ TBX − TTBX)
d→ N(0, V )

where

V =

∫
Mx

W (x) K̃K W (x)′f(y2, w, x)dx

W (x) =



µ(x)f̃

fw f̃−ff̃w

(
gx1 −

∫
Mx

gx1µ(x)dx
)

0

µ(x)f̃

fw f̃−ff̃w

(
gx2 −

∫
Mx

gx2µ(x)dx
)

0

0 µ(x)f̃

fw f̃−ff̃w

(
gx1 −

∫
Mx

gx1µ(x)dx
)

0 µ(x)f̃

fw f̃−ff̃w

(
gx2 −

∫
Mx

gx2µ(x)dx
)


K̃K =

∫
K̃K̃ ′d(y2, w)

K̃ =

∫ (∂2K(y2,w,x)
∂w2

∂2K(y2,w,x)
∂w∂y2

)
dx

As a result, the asymptotic distribution of the average derivative estimator is

√
Nh6(r̂r − rr) d→ N(0, (TTXX)−1V (TTXX)−1)

The estimator for the asymptotic variance can be constructed in an apparent way by

substituting components of the asymptotic variance V with the corresponding estimates.

The estimator V is given by

V̂ =

∫
Mx

Ŵ (x)K̃KŴ (x)′f̂(y2, w, x)dx (1.20)
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where

Ŵ (x) =



µ(x)
̂̃
f

f̂w
̂̃
f−f ̂̃fw

(
ĝx1 −

∫
Mx

ĝx1µ(x)dx
)

0

µ(x)
̂̃
f

f̂w
̂̃
f−f ̂̃fw

(
ĝx2 −

∫
Mx

ĝx2µ(x)dx
)

0

0 µ(x)
̂̃
f

f̂w
̂̃
f−f ̂̃fw

(
ĝx1 −

∫
Mx

ĝx1µ(x)dx
)

0 µ(x)
̂̃
f

f̂w
̂̃
f−f ̂̃fw

(
ĝx2 −

∫
Mx

ĝx2µ(x)dx
)


and K̃K is as defined above.

Theorem 1.4.3 Under Assumptions 1–12, the asymptotic variance estimator V̂ converges

in probability to V . Moreover, (T̂ TXX)−1V̂ (T̂ TXX)−1 is a consistent estimator for

(TTXX)−1V (TTXX)−1.

Remark It is meaningful to compare the asymptotic property of the estimator with the result

in Matzkin (2015). Assuming (B1, B2) = (Y ∗1 +W,Y2) is observable, the asymptotic variance

of her estimator is given by√
Nσ4

N(T̂ TBX − TTBX)
d→ N(0, Ṽ )

Ṽ =

∫
Mx

W̃ (x) K̃K W̃ (x)′f(b, x)dx

W̃ (x) =



µ(x)
f(b,x)

(
gx1 −

∫
Mx

gx1µ(x)dx
)

0

µ(x)
f(b,x)

(
gx2 −

∫
Mx

gx2µ(x)dx
)

0

0 µ(x)
f(b,x)

(
gx1 −

∫
Mx

gx1µ(x)dx
)

0 µ(x)
f(b,x)

(
gx2 −

∫
Mx

gx2µ(x)dx
)


K̃K =

∫
K̃K̃ ′d(b1, b2)

K̃ =

∫ (∂K(b1,b2,x)
∂b1

∂K(b1,b2,x)
∂b2

)
dx

The differences of the asymptotic distribution come from recovering the conditional den-

sity of B given X. When the endogenous variables are observable as in Matzkin (2015), we

can estimate the conditional density directly from the variation of B. On the other hand,

when the endogenous variables are latent, we use the variation of W in order to estimate
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the conditional density of the latent variables, so the first-order derivative of the density

of observable variables are necessary. This affects the asymptotic properties in two ways.

First, It slows down the rate of the convergence by the factor of the bandwidth. And sec-

ond, since the order of the derivative of the kernel function increases, the roughness of the

second-order derivative of the kernel function rather than the first-order derivative is used in

the asymptotic variance. It increases the asymptotic variance.

1.5 Simulation Study

In this section, we report the results of simulation experiments with two model specifications.

The first design is from a linear model:

y∗1 = 0.75y2 − x1 + ε1 − w

y2 = −0.5(y∗1 + w)− x2 + ε2

The transformed model is

b1 = 0.75b2 − x1 + ε1

b2 = −0.5b1 − x2 + ε2

and the inverse structural function is given by

ε1 = r1(b1, b2, x1) = s1(b1, b2) + x1 = b1 − 0.75b2 + x1

ε2 = r2(b1, b2, x2) = s2(b1, b2) + x2 = 0.5b1 + b2 + x2

For the second design, we consider a nonlinear model:

y∗1 = 10[1 + exp(−2(y2 − 5− x1 + ε1))]−1 − w

y∗2 = 4.5 + 0.1(y∗1 + w)− x2 + ε2

The transformed model is

b1 = 10[1 + exp(2(b2 − 5− x1 + ε1))]−1
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b2 = 4.5 + 0.1b1 − x2 + ε2

and the corresponding inverse structural function is given by

ε1 = r1(b1, b2, x1) = s1(b1, b2) + x1 = 5 = 0.5 log

(
10

b1

− 1

)
− b2 + x1

ε2 = r2(b1, b2, x2) = s2(b1, b2) + x1 = −0.1b1 + b2 − 4.5 + x2

The simulation samples are drawn from the distribution

X ∼ N(0, 2I), ε ∼ N(0, I)

and for the exogenous special regressor W , we use standard normal distribution for the linear

model and N(5, 1) for the nonlinear case. The mean of W in the nonlinear case is chosen to

guarantee that both y1 = 0 and y1 = 1 are observed enough.

The estimator involves choosing many parameters: the choice of bandwidth, the order

of kernel function, the region of integration Mx, and the weight function µ(x). Moreover,

the estimator contains a term in the denominator, which may attain a value too close to

zero, so trimming is desired to avoid a situation that a tiny value overwhelms the entire

procedure. The results are rather stable for the linear case, but those for the nonlinear

model are sensitive to the choice of these parameters; thus, we report the results for the

various different choices of the parameters to show the difference. For the simulation, we use

a product Gaussian kernel function of order 6 and 8. The numerical integration is performed

over Mx = [−1, 1]× [−1, 1]. The weight function µ(x) used in the simulation is the pdf of a

normal distribution with zero mean and a standard deviation of 1/3. In addition, the point

of (x1, x2) where the estimated value of the conditional density fB|X=x(b) is below 1e− 8.

It is well known that the bandwidth choice determines overall performance of the kernel-

based estimator. There is no established theory how to choose the bandwidth parameter for

the functional of the kernel density with finite samples, so we use the bandwidth derived from

the asymptotic property of the bandwidth. Typically, the rate of the bandwidth is expressed

as σ ∼ n−k where n is the sample size. Plugging this into Assumption 11, we obtain that

the range of k should be 1
6+2s

< k < 1
10

, where s is the order of the kernel. Note that the

24



optimal bandwidth for minimizing AMISE is k = 1
4+2s+2j

, where j is the order of the density

derivative. It suggests that the choice of bandwidth should be substantially smaller than the

typical bandwidth for density estimation. For the simulation, we use k = 1
4+2·6+4−3

for 6th

order kernel and k = 1
4+2·8+4−4

for 8th order kernel. These choices are totally arbitrary.

We also compare the result with the estimates proposed in Matzkin (2015), assuming

that (B1, B2) are observable. It should give similar results, but with smaller asymptotic

variance.

1.5.1 Linear Model

For the linear model, we consider the sample size n = 10000, 25000, 50000, 100000 with

500 replications. The derivatives of the function r are evaluated at (b1, b2) = (0, 0), which

corresponds to the mean of the underlying distribution. The derivatives evaluated at this

point are given by

r1
b1

= 1; r1
b2

= −0.75; r2
b1

= 0.5; r2
b2

= 1

The results are presented in Table 1.1 and 1.2, and Figures 1.1–4 in the appendix. The

table consists of four parts; the first part denotes the number of observations in each sample,

N . The second part is about the average derivative estimator. The first column denotes

the sample mean, the second the sample median, the third the sample standard deviation,

and the fourth the root-mean-square error. The third part is about the asymptotic standard

deviation estimator. The first column denotes the sample mean, the second the root-mean-

square error, and the third the proportion that the true value is within the estimated 95%

confidence interval. The last part is about the result of the estimator in Matzkin (2015),

assuming that (B1, B2) is observed. The first column denotes the sample mean of the average

derivative estimates, the second the sample standard deviation, and the third the sample

mean of the asymptotic standard deviation estimates. We can see that the average derivative

estimates converge to the true values as the sample size increases. Also, the asymptotic stan-

dard deviation estimates converge to the sample standard deviation of the average derivative
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estimator. Also, note that the estimator in Matzkin gives similar convergence results, but

the standard deviation is smaller than the estimator suggested in the paper so that narrow

confidence interval can be constructed.

Figure 1 and 3 show the box-and-whisker plots of the average derivative estimator with

6th and 8th Gaussian kernel functions, respectively. The red line in each plot denotes the

true values of the derivative. We can see the estimates converge to the true value and

the dispersion become narrower. Figure 2 and 4 show the box-and-whisker plots of the

asymptotic variance estimator. We can also see that the asymptotic variance estimates also

converges to the true asymptotic variance, and the variation decreases as the sample size

grows.

1.5.2 Nonlinear Model

The performance of the estimator in a nonlinear case is somewhat disappointing. A large

sample size is required to obtain estimates close to the true value. We consider the sample size

n =, 100000, 200000, 500000, 1000000 with 500 replications. The derivatives of the function

r are evaluated at (b1, b2) = (5, 5), which is a grid point closed to the sample mean of the

simulation set. The derivatives evaluated at this point are given by

r1
b1

= −0.2; r1
b2

= −1; r2
b1

= −0.1; r2
b2

= 1

The results for the nonlinear case are presented in Table 1.3 and 1.4, and Figures 1.5–8

in the appendix. The bias of the estimator is still large even with one million samples. The

result suggests that further bias reduction technique is necessary for precise estimation. In

addition, we can see that Matzkin’s estimator is still biased even with large samples. Our

conjecture on this bias is because of the sub-optimal choice of bandwidths.
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1.6 Concluding Remark

This paper proposes a new nonparametric estimator for a simultaneous binary response

model without additivity. We discuss how the distribution of the latent variables can be

recovered from the distribution of observed mixed variables, how identification is achieved

via a change-of-variable technique. The identification strategy used in this paper does not

require the full support condition on a special regressor. And then, we develop an estimator

for the average derivatives of the indirect structural equations that are computed by simple

matrix manipulation, and derive the asymptotic properties of the new estimator.

This paper has some limitations. First, it converges at a nonparametric rate, slower than

the square root of the sample size. This implies that it is not possible to obtain meaningful

estimates without a large number of observations, which hinders researchers from using the

estimator in empirical works. Imposing functional restriction on the structural equations

can be one way to recover the semiparametric rate of the estimator, which will be interesting

future research. Second, the estimator involves undersmoothing, but there is no practical

solution to the critical problem of choosing bandwidth. Furthermore, undersmoothing results

in larger asymptotic variance, which in turn gives too wide confidence interval. We may

consider a bootstrap-based bias correction by combining the method suggested in Hall and

Horowitz (2013). This is another possible direction for future research.
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1.7 Appendix

1.7.A Proofs

1.7.A.1 Proof of Lemmas

Lemma 1.7.1 Let M b and Mx be a compact and convex set defined as in Assumption

6. For any function g(y1, y2, w, x) ∈ {0, 1} × R4, define the marginal density functions

g̃(w, x) =
∑1

y1=0

∫
g(y1, y2, w, x)dy2, and the conditional density function

gB|X(y2, w|x) =
g(0, y2, w, x)g̃w(w, x)− gw(0, y2, w, x)g̃(w, x)

g̃2(w, x)
,

whenever these functions exist. Let F denote the set of bounded and twice continuously

differentiable functions g on the extension of the support to the whole space such that the

marginal density function g̃ is bounded and twice continuously differentiable, and that the

conditional density function gB|X is bounded and continuously diffentiable. Define the norm

‖·‖ on F by

‖g‖ = max
k∈{0,1,2}

sup
(b1,b2,x)∈Mb×Mx

∥∥∂kg(0, y2, w, x)|w=b1,y2=b2

∥∥
+ max

k∈{0,1,2}
sup

(b1,b2,x)∈Mb×Mx

∥∥∂kg̃(w, x)|w=b1,y2=b2

∥∥
+ max

k∈{0,1}
sup

(b1,b2,x)∈Mb×Mx

∥∥∂kgB|X(w, x)|w=b1,y2=b2

∥∥ .
For simplicity, we leave the argument (y1, y2, w, x) implicit. Assume that the density

f(y1, y2, w, x) belongs to F and it is such that for δ > 0 and all (b, x) ∈ M b × Mx,

f(0, b2, b1, x) > δ, f̃(b1, x) > δ, and fw(0, b2, b1, x)f̃(b1, x)− f(0, b2, b1, x)f̃w(b1, x) > δ.

Let A(g) be a differentiation operator on g and B(g) a differentiation operator on g̃.

Define the functional S(g) by

S(g) =
A(g)B(g)

gwg̃ − gg̃w
.

Then, for all h ∈ F such that ‖h‖ is sufficiently small,

S(f + h)− S(f) =
A(f + h)B(f + h)

(fw + hw)(f̃ + h̃)− (f + h)(f̃w + h̃w)
− A(f)B(f)

fwf̃ − ff̃w
= D(f ;h) +R(f ;h)
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where

D(f ;h) =
A(f)fwf̃B(h) + fwB(f)f̃A(h) + A(f)fB(f)h̃w + A(f)B(f)f̃wh

(fwf̃ − ff̃w)2

−A(f)ff̃wB(h) + fB(f)f̃wA(h) + A(f)B(f)f̃hw + A(f)fwB(f)h̃

(fwf̃ − ff̃w)2

R(f ;h) =
(fwf̃ − ff̃w)A(h)B(h)− A(f)B(f)(hwh̃− hh̃w)

(fwf̃ − ff̃w)2

−

[
fwh̃− fh̃w + f̃hw − fwh+ hwh̃− hh̃w
(fw + hw)(f̃ + h̃)− (f + h)(f̃w + h̃w)

]
×[

A(f)fwf̃B(h) + fwB(f)f̃A(h) + A(f)fB(f)h̃w + A(f)B(f)f̃wh

(fwf̃ − ff̃w)2

− A(f)ff̃wB(h) + fB(f)f̃wA(h) + A(f)B(f)f̃hw + A(f)fwB(f)h̃

(fwf̃ − ff̃w)2

+
A(h)B(h)(fwf̃ − ff̃w)− A(f)B(f)(hwh̃− hh̃w)

(fwf̃ − ff̃w)2

]
.

Moreover, D(f ;h) = O(‖h‖) and R(f ;h) = O(‖h‖2).

Proof. We will make use of the equality

N ′

D′
− N

D
=
N ′D −ND′

D2
− (D′ −D)(N ′D −ND′)

D′D2
.

Denote N ′, D′, N, D by

N ′ = A(f + h)B(f + h) = [A(f) + A(h)][B(f) +B(h)]

N = A(f)B(f)

D′ = (fw + hw)(f̃ + h̃)− (f + h)(f̃w + h̃w)

D = fwf̃ − ff̃w,

where the last equality of N ′ holds since a differentiation operator is linear. Then,

N ′D −ND′ = A(f)fwf̃B(h) + fwB(f)f̃A(h) + A(f)fB(f)h̃w + A(f)B(f)f̃wh

−A(f)ff̃wB(h)− fB(f)f̃wA(h)− A(f)B(f)f̃hw − A(f)fwB(f)h̃
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+(fwf̃ − ff̃w)A(h)B(h)− A(f)B(f)(hwh̃− hh̃w)

D′ −D = fwh̃− fh̃w + f̃hw − fwh+ hwh̃− hh̃w.

Define ωa and ωb as

ωa = A(f)fwf̃B(h) + fwB(f)f̃A(h) + A(f)fB(f)h̃w + A(f)B(f)f̃wh

−A(f)ff̃wB(h)− fB(f)f̃wA(h)− A(f)B(f)f̃hw − A(f)fwB(f)h̃

ωb = (fwf̃ − ff̃w)A(h)B(h)− A(f)B(f)(hwh̃− hh̃w)

so that N ′D − ND′ = ωa + ωb. Let δ̃0 = min{δ/2, δ/(16‖f‖), 1}. Choose h ∈ F such that

‖h‖ ≤ δ̃0. By assumptions and the definition of sup norms on F , it follows that

|ωa| =
∣∣∣A(f)fwf̃B(h) + fwB(f)f̃A(h) + A(f)fB(f)h̃w + A(f)B(f)f̃wh

−A(f)ff̃wB(h)− fB(f)f̃wA(h)− A(f)B(f)f̃hw − A(f)fwB(f)h̃
∣∣∣

≤ 8‖f‖3‖h‖

|ωb| =
∣∣∣A(h)B(h)(fwf̃ − ff̃w)− A(f)B(f)(hwh̃− hh̃w)

∣∣∣
≤ 4‖f‖2‖h‖2

|D′ −D| =
∣∣∣fwh̃− fh̃w + f̃hw − fwh+ hwh̃− hh̃w

∣∣∣
≤ 4‖f‖‖h‖+ 2‖h‖2

Moreover, D′ = (fwf̃ − ff̃w) + (hwh̃ − hh̃w) + (fwh̃ + f̃hw − fh̃w − f̃wh). By the choice of

δ̃0, we have

|fwh̃+ f̃hw − fh̃w − f̃wh| ≤ 4‖f‖‖h‖ ≤ 4‖f‖δ̃0 ≤ δ/4

and since fwf̃ − ff̃w > δ and |hwh̃− hh̃w| < δ̃ ≤ δ/2, it follows that (fwf̃ − ff̃w) + (hwh̃−

hh̃w) > δ/2. Hence, D′ ≥ δ/4. Then, it follows that

|D(f ;h)| =

∣∣∣∣∣ ωa

(fwf̃ − ff̃w)2

∣∣∣∣∣ ≤ 8‖f‖3

δ2
‖h‖

|R(f ;h)| =

∣∣∣∣∣ ωb

(fwf̃ − ff̃w)2
+
D′ −D
D′

ωa + ωb

(fwf̃ − ff̃w)2

∣∣∣∣∣
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≤

∣∣∣∣∣ ωb

(fwf̃ − ff̃w)2

∣∣∣∣∣+

∣∣∣∣D′ −DD′

∣∣∣∣
∣∣∣∣∣ ωa + ωb

(fwf̃ − ff̃w)2

∣∣∣∣∣
≤ 4‖f‖2

δ2
‖h‖2 +

16‖f‖‖h‖+ 8‖h‖2

δ
× 8‖f‖3‖h‖+ 4‖f‖2‖h‖2

δ2

=

[
4‖f‖2

δ2
+

32‖f‖4

δ3

]
‖h‖2 +

32‖f‖3

δ3
‖h‖3 +

8‖f‖2

δ3
‖h‖4

≤
[

4‖f‖2

δ2
+

32‖f‖4 + 32‖f‖3 + 8‖f‖2

δ3

]
‖h‖2.

This completes the proof.

Lemma 1.7.2 Let M b,Mx,F , ‖·‖, g̃ and gB|X be defined as in Lemma 1.7.1. Assume that

the density f(y1, y2, w, x) belongs to F and it is such that for δ > 0 and all (b, x) ∈M b×Mx,

f(0, b2, b1, x) > δ, f̃(b1, x) > δ, and fw(0, b2, b1, x)f̃(b1, x)− f(0, b2, b1, x)f̃w(b1, x) > δ.

Let C(g) be a differentiation operator on g̃. Define the functional T (g) on F by

T (g) =
gg̃wC(g)

g̃(gwg̃ − gg̃w)
.

Then, for all h ∈ F such that ‖h‖ is sufficiently small,

T (f + h)− T (f) =
(f + h)(f̃w + h̃w)(C(f) + C(h))

(f̃ + h̃)[(fw + hw)(f̃ + h̃)− (f + h)(f̃w + h̃w)]
− ff̃wC(f)

f̃(fwf̃ − ff̃w)

= D(f ;h) +R(f ;h)

where

D(f ;h) =
ffwC(h) + ffwC(f)h̃w + fwC(f)f̃wh+ fC(f)f̃whw

(fwf̃ − ff̃w)2

− f 2f̃ 2
wC(h) + ffwC(f)f̃wh̃+ ffwC(f)f̃wh̃

f̃(fwf̃ − ff̃w)2
+

f 2f̃ 2
wC(f)h̃

f̃ 2(fwf̃ − ff̃w)2

R(f ;h) =
fwC(f)f̃ 2hh̃w + (fwf̃

2 − ff̃ f̃w)(fC(h)h̃w + f̃wC(h)h+ hC(h)h̃w)

f̃ 2(fwf̃ − ff̃w)2

− ff̃wC(f)(f̃hwh̃+ fwh̃
2 + f̃hwh̃+ hwh̃

2 − fh̃h̃w − f̃whh̃− hh̃h̃w)

f̃ 2(fwf̃ − ff̃w)2

−

[
f̃(fwh̃+ f̃hw − fh̃w − f̃wh+ hwh̃− hh̃w)

(f̃ + h̃)[(fw + hw)(f̃ + h̃)− (f + h)(f̃w + h̃w)]
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+
h̃[(fw + hw)(f̃ + h̃)− (f + h)(f̃w + h̃w)]

(f̃ + h̃)[(fw + hw)(f̃ + h̃)− (f + h)(f̃w + h̃w)]

]

×

[
ffwf̃

2C(h) + ffwC(f)f̃ 2h̃w + fwC(f)f̃ 2f̃wh+ f 2f̃ 2
wC(f)h̃

f̃ 2(fwf̃ − ff̃w)2

− f 2f̃ f̃ 2
wC(h) + ffwC(f)f̃ f̃wh̃+ fC(f)f̃ 2f̃whw + ffwC(f)f̃ f̃wh̃

f̃ 2(fwf̃ − ff̃w)2

+
fwC(f)f̃ 2hh̃w + (fwf̃

2 − ff̃ f̃w)(fC(h)h̃w + f̃wC(h)h+ hC(h)h̃w)

f̃ 2(fwf̃ − ff̃w)2

− ff̃wC(f)(f̃hwh̃+ fwh̃
2 + f̃hwh̃+ hwh̃

2 − fh̃h̃w − f̃whh̃− hh̃h̃w)

f̃ 2(fwf̃ − ff̃w)2

]

Moreover, D(f ;h) = O(‖h‖) and R(f ;h) = O(‖h‖2).

Proof. The arguments are almost identical to those in the proof of Lemma 1.7.1, so omitted.

Lemma 1.7.3 Let M b,Mx,F , ‖·‖, g̃ and gB|X be defined as in Lemma 1.7.1. Assume that

the density f(y1, y2, w, x) belongs to F and it is such that for δ > 0 and all (b, x) ∈M b×Mx,

f(0, b2, b1, x) > δ, f̃(b1, x) > δ, and fw(0, b2, b1, x)f̃(b1, x)− f(0, b2, b1, x)f̃w(b1, x) > δ.

Define the functionals αbj and βxs on F by

αb1(g) =
gwwg̃

2 − gg̃g̃ww − 2gwg̃g̃w + 2gg̃2
w

g̃(gwg̃ − gg̃w)
=
gwwg̃ − gg̃ww − 2gwg̃w

gwg̃ − gg̃w
+

2gg̃2
w

g̃(gwg̃ − gg̃w)

αb2(g) =
gwy2 g̃ − gy2 g̃w
gwg̃ − gg̃w

βxs(g) =
gwxs g̃

2 − gxs g̃g̃w − gg̃g̃wxs − gwg̃g̃xs + 2gg̃wg̃xs
g̃(gwg̃ − gg̃w)

=
gwxs g̃ − gxs g̃w − gg̃wxs − gwg̃xs

gwg̃ − gg̃w
+

2gg̃wg̃xs
g̃(gwg̃ − gg̃w)

.

Then, for all h ∈ F such that ‖h‖ is sufficiently small, αbj(f + h) and βxs(f + h) admit

the first order Taylor expansion around αbj(f) and βxs(f):

αbj(f + h)− αbj(f) = Dαbj(f ;h) +Rαbj(f ;h)

βxs(f + h)− βxs(f) = Dβxs(f ;h) +Rβxs(f ;h)
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where

Dαb1(f ;h) =
(fwwh̃+ hwwf̃)− (fh̃ww + hf̃ww)− 2(fwh̃w + hwf̃w)

fwf̃ − ff̃w
+

2(2fh̃w + hf̃ 2
w)

f̃(fwf̃ − ff̃w)

− (fwwf̃ − ff̃ww − 2fwf̃w)

(fwf̃ − ff̃w)2
× (fwh̃+ hwf̃ − fh̃w − hf̃w)

− 2ff̃ 2
w[h̃(fwf̃ − ff̃w) + f̃(fwh̃+ hwf̃ − fh̃w − hf̃w)]

f̃ 2(fwf̃ − ff̃w)2

Rαb1(f ;h) = αb1(f + h)− αb1(f)−Dαb1(f ;h)

Dαb2(f ;h) =
(fwy2h̃+ f̃hwy2)− (fy2h̃w + f̃why2)

fwf̃ − ff̃w

− (fwy2 f̃ − fy2 f̃w)(fwh̃+ hwf̃ − fh̃w − hf̃w)

(fwf̃ − ff̃w)2

Rαb2(f ;h) = αb2(f + h)− αb2(f)−Dαb2(f ;h)

Dβxs(f ;h) =
(fwxsh̃+ f̃hwxs)− (fh̃wxs + hf̃wxs)− (fxsh̃w + hxs f̃w)− (fwh̃xs + hwf̃xs)

fwf̃ − ff̃w

+
2(ff̃wh̃xs + fh̃wf̃xs + hf̃wf̃xs)

f̃(fwf̃ − ff̃w)

− (fwxs f̃ − ff̃wxs − fxs f̃w − fwf̃xs)(fwh̃+ hwf̃ − fh̃w − hf̃w)

(fwf̃ − ff̃w)2

− 2ff̃wf̃xs [h̃(fwf̃ − ff̃w) + f̃(fwh̃+ hwf̃ − fh̃w − hf̃w)]

f̃ 2(fwf̃ − ff̃w)2

Rβxs(f ;h) = βxs(f + h)− βxs(f)−Dβxs(f ;h).

Moreover, Dαbj(f ;h) = O(‖h‖), Dβxs(f ;h) = O(‖h‖), Rαbj(f ;h) = O(‖h‖2) and Rβxs(f ;h)

= O(‖h‖2).

Proof. The terms in αbj and βxs have forms of S(f) and T (f). Hence, the result follows from

Lemma 1.7.1 and Lemma 1.7.2.

Lemma 1.7.4 Let M b,Mx,F , ‖·‖, g̃, gB|X , αbj and βxs be defined as in Lemmas 1.7.1 and

1.7.3. Assume that the density f(y1, y2, w, x) belongs to F and it is such that for δ > 0

and all (b, x) ∈ M b × Mx, f(0, b2, b1, x) > δ, f̃(b1, x) > δ, and fw(0, b2, b1, x)f̃(b1, x) −

f(0, b2, b1, x)f̃w(b1, x) > δ. Let µ denote a bounded and continuously differentiable, strictly
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positive over Mx, with values and derivatives vanishing on the boundary and on the comple-

ment of Mx, and such that
∫
Mx

µ(x)dx = 1.

Define the functional Φbj ,xs on F by

Φbj ,xs(g) =

∫
Mx

αbj(g)βxs(g)µ(x)dx−
(∫

Mx

αbj(g)µ(x)dx

)(∫
Mx

βxs(g)µ(x)dx

)
.

Then, for all h ∈ F such that ‖h‖ is sufficiently small, Φbj ,xs(f + h) admit the first order

Taylor expansion around Φbj ,xs(f):

Φbj ,xs(f + h)− Φbj ,xs(f) = DΦbj ,xs(f ;h) +RΦbj ,xs(f ;h)

where

DΦbj ,xs(f ;h) =

∫
Mx

Dαbj(f ;h)

(
βxs(f)−

∫
Mx

βxs(f)µdx

)
µdx

+

∫
Mx

Dβxs(f ;h)

(
αbj(f)−

∫
Mx

αbj(f)µdx

)
µdx

RΦbj ,xs(f ;h) =

∫
Mx

Rαbj(f ;h)

(
βxs(f)−

∫
Mx

βxs(f)µdx

)
µdx

+

∫
Mx

Rβxs(f ;h)

(
αbj(f)−

∫
Mx

αbj(f)µdx

)
µdx

+

∫
Mx

(Dαbj(f ;h) +Rαbj(f ;h))(Dβxs(f ;h) +Rβxs(f ;h))µdx

−
(∫

Mx

(Dαbj(f ;h) +Rαbj(f ;h))µdx

)
×
(∫

Mx

(Dβxs(f ;h) +Rβxs(f ;h))µdx

)
.

Moreover, DΦbj ,xs(f ;h) = O(‖h‖) and RΦbj ,xs(f ;h) = O(‖h‖2).

Proof.

Φbj ,xs(f + h)− Φbj ,xs(f) =

∫
Mx

αbj (f + h)βxs(f + h)µ(x)dx

−
(∫

Mx

αbj (f + h)µ(x)dx

)(∫
Mx

βxs(f + h)µ(x)dx

)
− αbj (f)βxs(f)µ(x)dx+

(∫
Mx

αbj (f)µ(x)dx

)(∫
Mx

βxs(f)µ(x)dx

)
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=

∫
Mx

(αbj (f + h)− αbj (f))

(
βxs(f)−

∫
Mx

βxs(f)µdx

)
µdx

+

∫
Mx

(
αbj (f)−

∫
Mx

αbj (f)µdx

)
(βxs(f + h)− βxs(f))µdx

+

∫
Mx

(αbj (f + h)− αbj (f))(βxs(f + h)− βxs(f))µdx

−
(∫

Mx

(αbj (f + h)− αbj (f))µdx

)(∫
Mx

(βxs(f + h)− βxs(f))µdx

)
.

Employing the expressions of αbj(f+h)−αbj(f) and βxs(f+h)−βxs(f) in terms of Dαbj(f ;h),

Rαbj(f ;h), Dβxs(f ;h) and Rβxs(f ;h) in Lemma, it follows that

Φbj ,xs(f + h)− Φbj ,xs(f) =

∫
Mx

(Dαbj (f ;h) +Rαbj (f ;h))

(
βxs(f)−

∫
Mx

βxs(f)µdx

)
µdx

+

∫
Mx

(
αbj (f)−

∫
Mx

αbj (f)µdx

)
(Dβxs(f ;h) +Rβxs(f ;h))µdx

+

∫
Mx

(Dαbj (f ;h) +Rαbj (f ;h))(Dβxs(f ;h) +Rβxs(f ;h))µdx

−
(∫

Mx

(Dαbj (f ;h) +Rαbj (f ;h))µdx

)
×
(∫

Mx

(Dβxs(f ;h) +Rβxs(f ;h))µdx

)
=

∫
Mx

Dαbj (f ;h)

(
βxs(f)−

∫
Mx

βxs(f)µdx

)
µdx

+

∫
Mx

Dβxs(f ;h)

(
αbj (f)−

∫
Mx

αbj (f)µdx

)
µdx

+

∫
Mx

Rαbj (f ;h)

(
βxs(f)−

∫
Mx

βxs(f)µdx

)
µdx

+

∫
Mx

Rβxs(f ;h)

(
αbj (f)−

∫
Mx

αbj (f)µdx

)
µdx

+

∫
Mx

(Dαbj (f ;h) +Rαbj (f ;h))(Dβxs(f ;h) +Rβxs(f ;h))µdx

−
(∫

Mx

(Dαbj (f ;h) +Rαbj (f ;h))µdx

)
×
(∫

Mx

(Dβxs(f ;h) +Rβxs(f ;h))µdx

)
= DΦbj ,xs(f ;h) +RΦbj ,xs(f ;h).

It remains to show that DΦbj ,xs(f ;h) = O(‖h‖) and RΦbj ,xs(f ;h) = O(‖h‖2). Since we
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assume f > δ, f̃ > δ and fwf̃ − ff̃w > δ,

|αb1(f)| =
∣∣∣∣fwwf̃ − ff̃ww − 2fwf̃w

fwf̃ − ff̃w
+

2ff̃ 2
w

f̃(fwf̃ − ff̃w)

∣∣∣∣
≤ 4‖f‖2

δ
+

2‖f‖3

δ2

|αb2(f)| =
∣∣∣∣fwy2 f̃ − fy2 f̃w
fwf̃ − ff̃w

∣∣∣∣ ≤ 2‖f‖2

δ

|βxs(f)| =
∣∣∣∣fwxs f̃ − fxs f̃w − ff̃wxs − fwf̃xs

fwf̃ − ff̃w
+

2ff̃wf̃xs

f̃(fwf̃ − ff̃w)

∣∣∣∣
≤ 4‖f‖2

δ
+

2‖f‖3

δ2
.

Let c0 = max{4‖f‖2
δ

+ 2‖f‖3
δ2

, 2‖f‖2
δ
}. Since Dαbj(f ;h) = O(‖h‖) and Dβxs(f ;h) = O(‖h‖),

we can find a constant c1 such that |Dαbj(f ;h)| ≤ c1‖h‖ and |Dβxs(f ;h)| ≤ c1‖h‖, and a

constant c2 such that |Rαbj(f ;h)| ≤ c2‖h‖2 and |Rβxs(f ;h)| ≤ c2‖h‖2. By the assumption

that
∫
Mx

µ(x)dx = 1, it follows that∣∣∣∣ ∫
Mx

Dαbj(f ;h)

(
βxs(f)−

∫
Mx

βxs(f)µdx

)
µdx

∣∣∣∣
≤
∫
Mx

|Dαbj(f ;h)|
∣∣∣∣ (βxs(f)−

∫
Mx

βxs(f)µdx

) ∣∣∣∣µdx
≤
∫
Mx

c1‖h‖c0µdx ≤ c0c1‖h‖

and that ∣∣∣∣ ∫
Mx

Dβxs(f ;h)

(
αbj(f)−

∫
Mx

αbj(f)µdx

)
µdx

∣∣∣∣
≤
∫
Mx

|Dβxs(f ;h)|
∣∣∣∣ (αbj(f)−

∫
Mx

αbj(f)µdx

) ∣∣∣∣µdx
≤
∫
Mx

c1‖h‖c0µdx ≤ c0c1‖h‖

Similarly, for the terms in RΦbj ,xs(f ;h),∣∣∣∣ ∫
Mx

Rαbj(f ;h)

(
βxs(f)−

∫
Mx

βxs(f)µdx

)
µdx

∣∣∣∣
≤
∫
Mx

c2‖h‖2c0µdx ≤ c0c2‖h‖2
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∣∣∣∣ ∫
Mx

Rβxs(f ;h)

(
αbj(f)−

∫
Mx

αbj(f)µdx

)
µdx

∣∣∣∣
≤
∫
Mx

c2‖h‖2c0µdx ≤ c0c2‖h‖2

∣∣∣∣ ∫
Mx

(Dαbj(f ;h) +Rαbj(f ;h))(Dβxs(f ;h) +Rβxs(f ;h))µdx

∣∣∣∣
≤
∫
Mx

(c1‖h‖+ c2‖h‖2)2µdx ≤ (c1‖h‖+ c2‖h‖2)2 ≤ (c2
1 + 2c1c2 + c2

2)‖h‖2

∣∣∣∣ (∫
Mx

(Dαbj(f ;h) +Rαbj(f ;h))µdx

)(∫
Mx

(Dβxs(f ;h) +Rβxs(f ;h))µdx

) ∣∣∣∣
≤ (c1‖h‖+ c2‖h‖2)2 ≤ (c2

1 + 2c1c2 + c2
2)‖h‖2

This completes the proof.

Lemma 1.7.5 Let M b,Mx,F , ‖·‖, g̃, gB|X , αbj and βxs be defined as in Lemma 1.7.1 and

1.7.3. Assume that the density f(y1, y2, w, x) belongs to F and it is such that for δ > 0

and all (b, x) ∈ M b × Mx, f(0, b2, b1, x) > δ, f̃(b1, x) > δ, and fw(0, b2, b1, x)f̃(b1, x) −

f(0, b2, b1, x)f̃w(b1, x) > δ. Let µ denote a bounded and continuously differentiable, strictly

positive over Mx, with values and derivatives vanishing on the boundary and on the comple-

ment of Mx, and such that
∫
Mx

µ(x)dx = 1.

Define the functional Φxj ,xs on F by

Φxj ,xs(g) =

∫
Mx

αbj(g)βxs(g)µ(x)dx−
(∫

Mx

αbj(g)µ(x)dx

)(∫
Mx

βxs(g)µ(x)dx

)
.

Then, for all h ∈ F such that ‖h‖ is sufficiently small, Φxj ,xs(f + h) admit the first order

Taylor expansion around Φxj ,xs(f):

Φxj ,xs(f + h)− Φxj ,xs(f) = DΦxj ,xs(f ;h) +RΦxj ,xs(f ;h)
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where

DΦxj ,xs(f ;h) =

∫
Mx

Dβxj(f ;h)

(
βxs(f)−

∫
Mx

βxs(f)µdx

)
µdx

+

∫
Mx

Dβxs(f ;h)

(
βxj(f)−

∫
Mx

βxj(f)µdx

)
µdx

RΦxj ,xs(f ;h) =

∫
Mx

Rβxj(f ;h)

(
βxs(f)−

∫
Mx

βxs(f)µdx

)
µdx

+

∫
Mx

Rβxs(f ;h)

(
βxj(f)−

∫
Mx

βxj(f)µdx

)
µdx

+

∫
Mx

(Dβxj(f ;h) +Rβxj(f ;h))(Dβxs(f ;h) +Rβxs(f ;h))µdx

−
(∫

Mx

(Dβxj(f ;h) +Rβxj(f ;h))µdx

)
×
(∫

Mx

(Dβxs(f ;h) +Rβxs(f ;h))µdx

)
.

Moreover, DΦxj ,xs(f ;h) = O(‖h‖) and RΦxj ,xs(f ;h) = O(‖h‖2).

Proof. The proof of Lemma 1.7.5 is analogous to that of Lemma 1.7.4, so omitted.

Lemma 1.7.6 Let ω(x) denote a bounded and continuously differentiable, strictly positive

over Mx, with values and derivatives vanishing on the boundary and on the complement of

Mx. Note that
∫
Mx

ω(x)dx needs not be unity. Suppose that Assumptions 9–11 are satisfied.

Then, ∫
Mx

(f̂ − f)ω(x)dx = Op((Nσ
2
N)−1/2)∫

Mx

(f̂w − fw)ω(x)dx = Op((Nσ
4
N)−1/2)∫

Mx

(f̂xs − fxs)ω(x)dx = Op((Nσ
2
N)−1/2)∫

Mx

(f̂ww − fww)ω(x)dx = Op((Nσ
6
N)−1/2)∫

Mx

(f̂wy2 − fwy2)ω(x)dx = Op((Nσ
6
N)−1/2)∫

Mx

(f̂wxs − fwxs)ω(x)dx = Op((Nσ
4
N)−1/2)∫

Mx

(
̂̃
f − f̃)ω(x)dx = Op((NσN)−1/2)
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∫
Mx

(
̂̃
fw − f̃w)ω(x)dx = Op((Nσ

3
N)−1/2)∫

Mx

(
̂̃
fxs − f̃xs)ω(x)dx = Op((NσN)−1/2)∫

Mx

(
̂̃
fww − f̃ww)ω(x)dx = Op((Nσ

5
N)−1/2)∫

Mx

(
̂̃
fwy2 − f̃wy2)ω(x)dx = Op((Nσ

5
N)−1/2)∫

Mx

(
̂̃
fwxs − f̃wxs)ω(x)dx = Op((Nσ

3
N)−1/2).

Proof. First note that f(y1, y2, w, x) is the joint pdf of mixed data where Y1 is binary and

the other variables are continuous, and f̂(y1, y2, w, x) is a kernel density estimator for f . It

is known that when estimating a density and density derivatives of mixed data using the

kernel method, the discrete variable part does not affect the rate of convergence of the kernel

estimates Li and Racine (2003).

Next, since x is the variable of integration, we may use integration by parts for the terms

differentiated with respect to x. By the assumption imposed on ω(x), , the values and

derivatives of ω(x) vanish on the boundary of Mx. Hence,∫
Mx

(f̂xs − fxs)ω(x)dx = −
∫
Mx

(f̂ − f)

(
∂ω(x)

∂xs

)
dx∫

Mx

(f̂wxs − fwxs)ω(x)dx = −
∫
Mx

(f̂w − fw)

(
∂ω(x)

∂xs

)
dx∫

Mx

(
̂̃
fxs − f̃xs)ω(x)dx = −

∫
Mx

(
̂̃
f − f̃)

(
∂ω(x)

∂xs

)
dx∫

Mx

(
̂̃
fwxs − f̃wxs)ω(x)dx = −

∫
Mx

(f̂w − f̃w)

(
∂ω(x)

∂xs

)
dx

The results follow by Lemma 5.3 in Newey (1994). For the equations about the joint

density f , let k1 = 2, k2 = 2, l be the order of the derivative, t = x, h0 = f , m(ĥ) =(∫
Mx

(∂lf̂)ω(x)dx
)

, and m(h0) =
(∫

Mx
(∂lf)ω(x)dx

)
. For the equations about the marginal

density f̃ , let k1 = 1, k2 = 2, l be the order of the derivative, t = x, h0 = f̃ , m(ĥ) =(∫
Mx

(∂l
̂̃
f)ω(x)dx

)
, and m(h0) =

(∫
Mx

(∂lf̃)ω(x)dx
)

. Then, the asymptotic normality re-

sult in the Lemma 5.3 in Newey (1994) implies that the convergence rate is
√
Nσk1+2l

N .
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1.7.A.2 Proofs of the Theorems

Proof of Theorem 1.3.3. By Proposition 1.3.2, (r, d) is constant over the set M . The system

of linear equations (1.13) can be expressed in a matrix form
g

(1)
bg

g
(2)
bg

g
(3)
bg

 =


g

(1)
x1 g

(1)
x2 1

g
(2)
x1 g

(2)
x2 1

g
(3)
x1 g

(3)
x2 1



r1
bg

r2
bg

dbg


for g = 1, 2. By Assumptions 7 and 8, the first matrix on the right-hand-side is invertible.

Premultiplying the inverse of the matrix gives us the unique solution for (r, d), so it is

identified.

Proof of Theorem 1.4.2. Let M b,Mx,F , ‖·‖, g̃, gB|X , αbj , βxs ,Φbj ,xs and Φxj ,xs be defined as

in Lemmas 1.7.1–1.7.5. Suppose that Assumptions 9–12 are satisfied.

First note that by the assumptions and Lemma B.3 in Newey (1994),

‖f̂ − f‖ = Op(σ
s
N +

√
log(N)/(Nσ8

N)).

By Assumption 11,
√
Nσ6

N [
√

log(N)/Nσ8
N + σsN ]2 → 0. Hence,√

Nσ6
N‖f̂ − f‖

2 = op(1). (T.1)

By the definition of Φbj ,xs , T̂bj ,xs = Φbj ,xs(f̂) and Tbj ,xs = Φbj ,xs(f). Let h = f̂ − f . By

Lemma 1.7.4, for h = f̂ − f such that ‖f̂ − f‖ is sufficiently small,

T̂bj ,xs − Tbj ,xs = Φbj ,xs(f + (f̂ − f))− Φbj ,xs(f) = DΦbj ,xs(f ; f̂ − f) +RΦbj ,xs(f ; f̂ − f)

where DΦbj ,xs = Op(‖f̂ − f‖) and RΦbj ,xs = Op(‖f̂ − f‖2). (T.1) implies that√
Nσ6

NRΦbj ,xs(f ; f̂ − f) = op(1).

Lemma 1.7.6 shows that the second order derivatives of the joint density dominate the

asymptotic distribution. Combining the definition of DΦbj ,xs(f ; f̂ − f) in Lemma 1.7.4 with
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the convergence rate in Lemma 1.7.6, it can be shown that

√
Nσ6

NDΦb1,xs(f ; f̂ − f) =
√
Nσ6

N

∫
Mx

(f̂ww − fww)
µf̃
(
βxs(f)−

∫
Mx

βxs(f)µdx
)

fwf̃ − ff̃w
dx+ op(1)

√
Nσ6

NDΦb2,xs(f ; f̂ − f) =
√
Nσ6

N

∫
Mx

(f̂wy2 − fwy2)
µf̃
(
βxs(f)−

∫
Mx

βxs(f)µdx
)

fwf̃ − ff̃w
dx+ op(1)

Let ω1(x) = µf̃

fw f̃−ff̃w

(
βx1(f)−

∫
Mx

βx1(f)µdx
)

, ω2(x) = µf̃

fw f̃−ff̃w

(
βx2(f)−

∫
Mx

βx2(f)µdx
)

,

and let W (x) = I2⊗
(
ω1(x)
ω2(x)

)
as in Theorem 1.4.2. By Assumptions 9 and 12, ω1(x) and ω2(x)

are bounded and continuous, and equal to zero on the boundary and the complement of

Mx. Hence, Assumption 5.1 in Newey (1994) is satisfied. Assumptions 9 and 12 imply that

Assumptions K, H, and Y in Newey (1994) are also satisfied. In addition, the bandwidth

condition of Lemma 5.3 in Newey (1994) is satisfied by Assumption 11. Hence, it follows

that √
Nσ6

N(T̂ TBX − TTBX)
d→ N(0, V )

where V is as defined in Theorem 1.4.2.

Next, by the definition of Φxj ,xs , T̂xj ,xs = Φxj ,xs(f̂) and Txj ,xs = Φxj ,xs(f). By Lemma

1.7.4, for h = f̂ − f such that ‖f̂ − f‖ is sufficiently small,

T̂xj ,xs − Txj ,xs = Φxj ,xs(f̂)− Φxj ,xs(f) = DΦxj ,xs(f ; f̂ − f) +RΦxj ,xs(f ; f̂ − f)

where DΦxj ,xs = Op(‖f̂ − f‖) and RΦxj ,xs = Op(‖f̂ − f‖2). Again, combining the definition

of DΦxj ,xs(f ; f̂ − f) and RΦxj ,xs(f ; f̂ − f) with the convergence rate in Lemma 1.7.6, we

have |T̂xj ,xs −Txj ,xs|
p→ 0. Hence T̂ TXX converges in probability to TTXX . Hence, the result

follows by Slutsky’s Theorem.

Proof of Theorem 1.4.3. It suffices to show that V̂
p→ V . The matrix multiplication of the

integrand of V and V̂ gives that the elements of V̂ and V corresponding to the covariance

between Tbj ,xs and Tbk,xl is, respectively,
∫ (

ĝxs −
∫
ĝxsµ(x)dx

)(
ĝxl −

∫
ĝxlµ(x)dx

)µ(x)2f̂(y2, w, x)

(f̂w
̂̃
f − f̂ ̂̃fw)2

 dx

 K̃Kbj ,bk

41



and{∫
Mx

(
gxs −

∫
Mx

gxsµ(x)dx

)(
gxl −

∫
Mx

gxlµ(x)dx

)(
µ(x)2f(y2, w, x)

(fwf̃ − ff̃w)2

)
dx

}
K̃Kbj ,bk

where

K̃Kbj ,bk =

{∫ [∫ (
∂2K(b, x)

∂b1∂bj

)][∫ (
∂2K(b, x)

∂b1∂bk

)]}
.

Since the terms are integrated over the compact set Mx, it is enough to show that the inte-

grand of the first equation converges in probability to that of the second equation uniformly

over Mx. µ(x) is a bounded function over the compact set Mx, so it is uniformly bounded.

Hence, it remains to show that

sup
Mx

∣∣∣∣∣
(
ĝxs −

∫
ĝxsµ(x)dx

)(
ĝxl −

∫
ĝxlµ(x)dx

) f̂(y2, w, x)

(f̂w
̂̃
f − f̂ ̂̃fw)2


−
(
gxs −

∫
Mx

gxsµ(x)dx

)(
gxl −

∫
Mx

gxlµ(x)dx

)(
f(y2, w, x)

(fwf̃ − ff̃w)2

)∣∣∣∣∣ p→ 0.

By the definition of the functional βxs , ĝxs = βxs(f̂) and gxs = βxs(f). By Lemma 1.7.3, for

sufficiently small ‖f̂ − f‖, we can find a constant c1 and c2 such that for all x ∈Mx,

|βxs(f̂)− βxs(f)| ≤ |Dβxs(f ; f̂ − f)|+ |Rβxs(f ; f̂ − f)| ≤ c1‖f̂ − f‖+ c2‖f̂ − f‖2.

Hence,

sup
Mx

∣∣∣∣βxs(f̂)− βxs(f)

∣∣∣∣ ≤ c1‖f̂ − f‖+ c2‖f̂ − f‖2.

Since µ is bounded,
∫
Mx

µ(x)dx = 1, and Mx is compact, it follows that∣∣∣∣ ∫
Mx

βxs(f̂)µdx−
∫
Mx

βxs(f)µdx

∣∣∣∣
≤
∫
Mx

|βxs(f̂)− βxs(f)|µdx

≤ c1‖f̂ − f‖+ c2‖f̂ − f‖2.

And then, for all x ∈Mx,∣∣∣∣ (βxs(f̂)−
∫
Mx

βxs(f̂)µdx

)
−
(
βxs(f)−

∫
Mx

βxs(f)µdx

) ∣∣∣∣ (T.2)
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≤ 2c1‖f̂ − f‖+ 2c2‖f̂ − f‖2.

Next, by Assumption 9, f > δ and fwf̃−ff̃w > δ. For all f̂ such that ‖f̂−f‖ ≤ min{δ/2, 1},

f̂ > δ/2 and f̂w
̂̃
f − f̂ ̂̃fw > δ/2. Hence,∣∣∣∣ f̂

(f̂w
̂̃
f − f̂ ̂̃fw)2

− f

(fwf̃ − ff̃w)2

∣∣∣∣ ≤ |f̂(fwf̃ − ff̃w)2 − f(f̂w
̂̃
f − f̂ ̂̃fw)2|

|(f̂w
̂̃
f − f̂ ̂̃fw)2||(fwf̃ − ff̃w)2|

≤ 64‖f‖3‖f̂ − f‖
δ4

.

Denote γ̂xs = βxs(f̂)−
∫
Mx

βxs(f̂)µdx and γxs = βxs(f)−
∫
Mx

βxs(f)µdx. Then,

∣∣∣∣ γ̂xs γ̂xl f̂

(f̂w
̂̃
f − f̂ ̂̃fw)2

− γxsγxlf

(fwf̃ − ff̃w)2

∣∣∣∣ =

∣∣∣∣γ̂xs γ̂xl f̂(fwf̃ − ff̃w)2 − γxsγxlf(f̂w
̂̃
f − f̂ ̂̃fw)2

∣∣∣∣
|(f̂w

̂̃
f − f̂ ̂̃fw)2||(fwf̃ − ff̃w)2|

≤ |γ̂xs − γxs||γ̂xl ||f̂ |+ |γxs||γ̂xl − γxl ||f̂ |

|(f̂w
̂̃
f − f̂ ̂̃fw)2|

+
|γxs||γxl ||f̂(fwf̃ − ff̃w)2 − f(f̂w

̂̃
f − f̂ ̂̃fw)2|

|(f̂w
̂̃
f − f̂ ̂̃fw)2||(fwf̃ − ff̃w)2|

By (T.2), |γ̂xs − γxs| and |γ̂xs − γxs| are bounded by a constant times ‖f̂ − f‖. |γ̂xs| ≤

|γxs|+ |Dγxs|+ |Rγxs| and all the three terms are bounded by a constant times ‖f̂ − f‖, as

shown in the proof of Lemma 1.7.3 and 1.7.4. Boundedness of |f | an |f̂ | is guaranteed by

Assumption 9 and the choice of f̂ . Since the norm defined on F is the sup norm and the

choice of constants does not depend on the point, we can find a constant c > 0 such that for

all x ∈Mx,∣∣∣∣∣
(
ĝxs −

∫
ĝxsµ(x)dx

)(
ĝxl −

∫
ĝxlµ(x)dx

) f̂(y2, w, x)

(f̂w
̂̃
f − f̂ ̂̃fw)2


−
(
gxs −

∫
Mx

gxsµ(x)dx

)(
gxl −

∫
Mx

gxlµ(x)dx

)(
f(y2, w, x)

(fwf̃ − ff̃w)2

)∣∣∣∣∣ ≤ c‖f̂ − f‖.

This completes the proof.
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1.7.B Tables

Table 1.1: Simulation Result: Linear Model
r1b1 = 1

k = 6

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

10,000 0.6539 0.6538 1.0585 1.1127 2.0504 90.1636 0.99 1.0524 0.2395 0.2907

25,000 0.8314 0.8262 0.8041 0.8208 1.1174 6.1943 0.99 1.0482 0.1740 0.1936

50,000 0.9193 0.8715 0.7082 0.7120 0.8508 8.4054 0.98 1.0342 0.1401 0.1424

100,000 0.9688 0.9074 0.5604 0.5607 0.6055 0.5276 0.97 1.0238 0.1077 0.1057

k = 8

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

10,000 0.6722 0.6508 0.8450 0.9056 1.7082 30.6498 0.99 1.0208 0.2620 0.3035

25,000 0.8733 0.8356 0.6468 0.6585 0.9044 1.5142 0.98 1.0272 0.1920 0.2020

50,000 0.9028 0.8671 0.5474 0.5555 0.6693 1.9770 0.97 1.0173 0.1543 0.1483

100,000 0.9658 0.9299 0.4314 0.4323 0.4787 0.1494 0.97 1.0088 0.1176 0.1097

r1b2 = −0.75

k = 6

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

10,000 -0.3737 -0.3877 0.6781 0.7749 1.4583 46.3371 1.00 -0.7838 0.2603 0.3251

25,000 -0.6143 -0.6137 0.5580 0.5737 0.7930 3.0809 1.00 -0.7930 0.1939 0.2164

50,000 -0.7015 -0.6689 0.4671 0.4692 0.6040 4.1788 0.99 -0.7788 0.1378 0.1592

100,000 -0.7477 -0.6995 0.3904 0.3900 0.4298 0.2675 0.98 -0.7760 0.1091 0.1182

k = 8

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

10,000 -0.4805 -0.4939 0.6261 0.6811 1.2141 15.4853 0.99 -0.7599 0.2866 0.3395

25,000 -0.7168 -0.6859 0.4957 0.4963 0.6420 0.7529 0.99 -0.7788 0.2147 0.2258

50,000 -0.7576 -0.7184 0.4031 0.4028 0.4753 0.9952 0.98 -0.7667 0.1520 0.1658

100,000 -0.8056 -0.7593 0.3770 0.3807 0.3399 0.0721 0.95 -0.7661 0.1191 0.1226
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Table 1.2: Simulation Result: Linear Model (Continued)

r2b1 = 0.5

k = 6

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

10,000 0.3397 0.3259 0.9605 0.9729 2.1893 145.4085 1.00 0.5245 0.2113 0.2838

25,000 0.4604 0.4232 0.7768 0.7770 1.1580 20.5989 0.99 -0.7930 0.1939 0.2164

50,000 0.5203 0.4930 0.6659 0.6655 0.8395 3.0865 0.98 -0.7788 0.1378 0.1592

100,000 0.5103 0.5150 0.5300 0.5296 0.5939 0.2701 0.99 -0.7760 0.1091 0.1182

k = 8

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

10,000 0.3776 0.3514 0.8449 0.8529 1.7831 49.1549 1.00 0.5078 0.2341 0.2984

25,000 0.4723 0.4381 0.6535 0.6535 0.9145 3.7409 1.00 0.5120 0.1711 0.1993

50,000 0.5066 0.4917 0.5261 0.5256 0.6633 1.7387 0.99 0.5032 0.1272 0.1464

100,000 0.4960 0.4703 0.4338 0.4334 0.4667 0.1249 0.97 0.5092 0.1056 0.1085

r2b2 = 1

k = 6

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

10,000 0.5128 0.5443 0.7104 0.8608 1.5565 73.9231 1.00 1.0517 0.2700 0.3175

25,000 0.7978 0.7805 0.6110 0.6431 0.8216 10.2013 0.99 1.0489 0.1980 0.2119

50,000 0.9764 0.9017 0.5118 0.5118 0.5960 1.5293 0.97 1.0349 0.1495 0.1563

100,000 1.0332 0.9710 0.4051 0.4060 0.4217 0.1294 0.96 1.0283 0.1140 0.1163

k = 8

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

10,000 0.7055 0.6890 0.7042 0.7626 1.2675 25.1447 1.00 1.0183 0.2962 0.3338

25,000 0.9324 0.8733 0.5406 0.5443 0.6491 1.8810 0.99 1.0278 0.2211 0.2227

50,000 1.0447 0.9936 0.4610 0.4627 0.4710 0.8681 0.95 1.0178 0.1655 0.1637

100,000 1.0783 1.0072 0.4016 0.4088 0.3314 0.0745 0.92 1.0142 0.1249 0.1213
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Table 1.3: Simulation Result: Nonlinear Model
r1b1 = −0.2

k = 6

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

100,000 -0.1552 -0.1332 1.4436 1.4429 6.3101 355.0971 1.00 -0.1705 0.0234 0.0396

250,000 -0.1099 -0.1083 1.0461 1.0490 3.5009 265.2227 1.00 -0.1596 0.0171 0.0269

500,000 -0.1496 -0.1156 0.9597 0.9601 1.9870 37.2885 0.99 -0.1530 0.0131 0.0201

1,000,000 -0.1413 -0.0964 0.8239 0.8252 1.3143 30.9672 0.97 -0.1507 0.0105 0.0152

k = 8

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

100,000 -0.1202 -0.1689 0.9897 0.9919 3.5186 163.0602 1.00 -0.1343 0.0246 0.0396

250,000 -0.1292 -0.1330 0.9087 0.9106 1.7953 48.8344 0.99 -0.1247 0.0176 0.0270

500,000 -0.1463 -0.1600 0.8084 0.8094 1.1108 12.4573 0.98 -0.1187 0.0134 0.0202

1,000,000 -0.1983 -0.1776 0.6984 0.6978 0.7815 1.1685 0.96 -0.1167 0.0106 0.0152

r1b2 = −1

k = 6

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

100,000 -0.0893 -0.1243 0.7231 1.1624 4.1868 155.9989 0.98 -1.0808 0.0966 0.1020

250,000 -0.2222 -0.2417 0.6192 0.9938 2.3231 117.0002 0.96 -1.0722 0.0732 0.0692

500,000 -0.3185 -0.2935 0.5558 0.8790 1.3187 16.4386 0.91 -1.0616 0.0550 0.0519

1,000,000 -0.4207 -0.4350 0.5622 0.8069 0.8722 13.6235 0.88 -1.0574 0.0454 0.0390

k = 8

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

100,000 -0.2098 -0.2393 0.6702 1.0357 2.3346 71.6969 0.96 -1.0588 0.1035 0.1021

250,000 -0.3997 -0.4572 0.7103 0.9295 1.1917 21.5846 0.91 -1.0542 0.0774 0.0695

500,000 -0.5900 -0.5591 0.6009 0.7270 0.7372 5.4788 0.88 -1.0458 0.0575 0.0521

1,000,000 -0.6884 -0.7016 0.5680 0.6474 0.5186 0.5023 0.89 -1.0443 0.0472 0.0392
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Table 1.4: Simulation Result: Nonlinear Model (Continued)

r2b1 = −0.1

k = 6

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

100,000 -0.1004 -0.0309 1.7169 1.7151 7.4219 1020.8505 1.00 -0.1134 0.0264 0.0447

250,000 -0.1940 -0.1726 1.0857 1.0886 3.4340 335.8757 0.99 -0.1062 0.0167 0.0296

500,000 -0.0782 -0.0468 0.9728 0.9721 1.9691 36.1284 0.98 -0.1020 0.0133 0.0218

1,000,000 -0.0833 -0.0938 0.8310 0.8303 1.3844 29.5566 0.98 -0.0995 0.0103 0.0162

k = 8

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

100,000 -0.0947 -0.0125 1.2861 1.2848 3.3784 106.1826 0.99 -0.1066 0.0288 0.0458

250,000 -0.1728 -0.0913 0.9952 0.9969 1.7948 40.5969 0.98 -0.0991 0.0179 0.0302

500,000 -0.0559 -0.0748 0.8522 0.8525 1.1082 13.3834 0.96 -0.0946 0.0140 0.0221

1,000,000 -0.1307 -0.0968 0.7357 0.7356 0.7749 0.7629 0.96 -0.0920 0.0107 0.0163

r2b2 = 1

k = 6

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

100,000 0.0780 0.0984 0.7798 1.2070 4.9250 451.4259 0.98 1.0883 0.1163 0.1153

250,000 0.1617 0.1784 0.5999 1.0305 2.2785 147.7338 0.95 1.0714 0.0798 0.0763

500,000 0.2862 0.2968 0.5968 0.9301 1.4428 47.8213 0.94 1.0598 0.0584 0.0563

1,000,000 0.3314 0.3843 0.5742 0.8810 0.9187 13.0154 0.87 1.0594 0.0475 0.0417

k = 8

N Mean Med STDEV RMSE ŜD RMSE 95% Mean STDEV ŜD

100,000 0.2298 0.2490 0.6779 1.0256 2.2417 46.7785 0.97 1.0659 0.1264 0.1180

250,000 0.3471 0.3773 0.6525 0.9226 1.1913 17.9479 0.92 1.0524 0.0852 0.0777

500,000 0.6158 0.6102 0.6254 0.7335 0.7355 5.8909 0.93 1.0431 0.0615 0.0570

1,000,000 0.6721 0.6758 0.5778 0.6639 0.5142 0.3285 0.86 1.0456 0.0494 0.0420
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CHAPTER 2

The Determinants of Smartphone Adoption among the

Elderly in South Korea

2.1 Introduction

Smartphones and mobile devices have become indispensable in daily life. As of January

2015, the number of Korean smartphone subscribers reached 40.3 million1. The advent of

smartphones has caused a dramatic change in access to information and media, leading to

a super-connected world of real-time services customized for each individual, location-based

services, and the Internet of Things (IoT). The constant dissemination of new technolo-

gies creates new areas of digital divide. Hence, the analysis of this division has become

increasingly important for various stakeholders in or related to the industry.

For policymakers, digital divides serve to exacerbate the disparity of information, rela-

tions, social participation, creativity, productivity, and income among different population

groups. For example, those alienated within a social system and who lack reliable ICT ser-

vices are often excluded from the benefits that new technologies provide. Market-oriented

planners, such as mobile app developers and start-up entrepreneurs, seek to understand the

evolution of ICT markets and the extent to which product and service provisions can meet

expected demand. Furthermore, they work to stimulate markets by providing platforms for

newly developed services (Robertson et al., 2007).

The Korean government has taken a comprehensive approach to overcoming digital divide

issues since the early stages of informatization. Various strategies have been implemented

1Source: IT Statistics of Korea (http://www.itstat.go.kr/en/)

56



throughout the country since the enactment of the the Act on Narrowing the Digital Divide

in 2001 and the first and second Comprehensive Plan for Addressing the Digital Divide,

established in 2001 and 2005, respectively. The First Comprehensive Plan sought to foster

an information culture environment, whereas and the Second Comprehensive Plan focused

on developing the necessary technologies to improve access to information and user environ-

ments for the underprivileged. The latter were classified into four categories: handicapped,

economically unfortunate (recipients of national basic livelihood guarantees), the elderly

(aged 50 and over), and rural (farmers and fishermen), with detailed implementation plans

for each category.

During this time period, The Ministry of Information and Communication established the

National Information Society Agency (NIA) in 2002 to support the development of policies

related to the national informatization of national agencies, the creation of an information

culture, and narrowing the digital divide. The NIA began at this time to disseminate surveys

on the digital divide, leading to its annual publishing of The Survey on the Digital Divide

Index and Status. Thanks to these efforts of the government, the digital divide related to

traditional information devices and services, such as desktop PCs and wired internet services,

all four categories of the underprivileged have improved over the past few decades. According

to an NIA report in 2014, the overall informatization level of the underprivileged increased

by 23.3 points, from 53.3 points in 2005 to 76.6 points in 2014. The informatization levels

of the persons ages 50 and over has also improved, from 49.3 points in 2005 to 74.3 points

in 2014 (National Information Society Agency (NIA), 2015).

Since new technological smart devices and mobile wireless internet have emerged, the

digital divide has in turn become multi-layered. In order to examine this multifaceted divide,

the NIA extended its survey to include new technologies created since 2013, as well as

invented a new index called the “smart digital divide index.” According to the NIA report in

2014, with the entire population represented by 100 points, the overall smart informatization

level of the underprivileged was 57.4 points, and of persons ages 50 and over, 54.3 points.

Among disadvantaged minority groups affected by the digital divide, there are several reasons
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to focus on information services in relation to the elderly in Korea. Older persons have little

incentive to become familiar with new technologies due to the fact that many have no

education concerning ICT, with the private costs of such education exceeding the benefits

of obtaining new knowledge. This is unfortunate, as the elderly represent a demographic of

individuals who can reap major benefits from informatization, especially social and medical

benefits (Hagberg, 2004). Moreover, many older persons belong to low-income and rural

demographics, both of which serve to make the digital divide more severe.

The goal of this paper is to analyze determinants affecting the adoption of smartphones

among the elderly. More specifically, I examine individual, household, and regional factors

that can influence the preferences of the elderly with regard to obtaining a new technolog-

ical device. Using a random effect binary logit model with data from the Korean Media

Panel Survey, I estimate the marginal effect of values related to the probability of owning

a smartphone over time. To date, several previous studies have focused on the traditional

digital divide caused by disparities in access to computer and internet service in the home,

yet very little is known about the existence of smartphones among the elderly. The major-

ity of studies on smartphones examine populations that include younger generations, arrive

at results via the simple analysis of survey data, and fail to consider many socioeconomic

variables. This paper contributes to knowledge of the technological environment following

the introduction of smartphones and other smart mobile devices, with particular attention

given to local and governmental informatization policies for the elderly. For firms in the ICT

sector, the results of this paper can be used in marketing for the stimulation of demand for

new ICT devices.

The two main conclusions obtained in this paper are as follows. First, smartphone owner-

ship among the elderly is mainly determined by personal rather than family characteristics.

With every year of age, the probability of an elderly persons switching to a smartphone

decreases by 0.8%. Education and familiarity with traditional information technologies also

affects choice probability. The choice probability of those who do not finish secondary edu-

cation is 7.5% lower than that of high school graduates, while the regular and heavy internet
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users have a 10% and 20% higher probability of using smartphones, respectively. These

figures can be contrasted with those related to computer and internet access, where house-

hold characteristics such as family structure and family income are more important factors

(Fairlie, 2004; Chaudhuri et al., 2005). Indeed, a smartphone is an individual mobile device

that is not shared by other household members, and therefore personal preferences are most

integral to the decision.

Next, the area where a person lives has a significant effect on the probability of their

owning a smartphone. This effect does not diminish even after controlling for macroeconomic

variables. Living in Chungnam, Jeonnam, Gyeongbuk, or Gyeongnam, which are located in

the Southern part of the Korean peninsula, significantly decreases the probability of ones

having a smart phone by more than 5%. A possible reason for this is regional imbalance. The

areas that show significantly lower probabilities are far from the Seoul Metropolitan Area

(SMA). Over the last two decades, the development of economy, education, public welfare,

culture, and communication in Korea has been concentrated in the SMA, which may play a

role in usage of smartphones and other ICT, as well as informatization.

This paper is organized as follows. In the remainder of this section, I will briefly review

the previous literature related to the subject. The mobile phone industry and current social

issues related to ageing and informatization among the elderly in Korea will be discussed in

Section 2. Section 3 presents the data used for analysis in this paper. Section 4 includes a

description of a consumer preference model. Estimation results are presented and discussed

in Section 5, and conclusions are presented in Section 6.

Related Literature

There are two streams of literature on the digital divide. One stems from the Technology Ac-

ceptance Model (TAM), which derives from Davis (1989). Davis suggested that the adoption

of a technology is potentially influenced by consumers general perceptions of it as a useful

communicating and interactive medium. The TAM literature suggests that when an ICT
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adoption choice is made, providing that it is not influenced unduly by peer pressure, percep-

tions as to a technologys usefulness and ease-of-use are key drivers. The original TAM model

included a psychological framework that did not consider personal or household factors or

product characteristics. Brown and Venkatesh (2005) point out that key demographics play

significant roles throughout family lifecycles. They model computer adoption in terms of

attitudinal beliefs, hedonic outcomes, word-of-mouth, media effects, and control beliefs, as

well as household socio-demographics (e.g., age, income, marital status, child age).

Another stream of study concerning personal and household technology choices involves

the application of econometric analyses. For example, Kridel et al. (1999) utilized a binary

response model on high-speed internet choice using survey data captured from individuals

that had residential internet access. Underlying this model is a concept of consumer utility

that assumes consumers will always seek to maximize product-specific utility according to

any constraints, such as product price and disposable income. Chaudhuri et al. (2005) utilize

a direct residential internet model with a focus on the digital divide. They show how deter-

minants of internet access may be assessed using a binary choice framework, expanding upon

the work of Kridel et al. (1999) by assessing residential ICT choice across all households, not

among those that already use the internet. Robertson et al. (2007) combine two approaches.

They applied the basic findings of a technology adoption model into a discrete choice frame-

work, heteroscedastically utilizing a heterogeneous probit model to study heterogeneity in

household computer adoption.

The above-mentioned literature focuses on computer purchases and fixed-line Internet

subscriptions as sources of digital divide. There are very few studies dealing with the dis-

persion of smartphones and other personalized digital devices as sources of digital divide.

Researchers that have examined fixed-to-mobile substitutions (FMS) in telecommunications

industry contexts have not considered substitutions between traditional desktop internet

access and internet access on mobile devices. Grzybowski (2014) analyzes the substitutabil-

ity between fixed-line and mobile telephony in 27 EU countries using cross-country panel

data on household choices of telecommunications technologies. Rennhoff and Routon (2016)
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examine both wired and wireless US telephone services markets to understand consumer

behaviors and welfare, estimating demand for both landline and wireless telephone services,

and compute the consumer welfare due to the introduction of the smartphone.

2.2 Mobile Phone Industry and Informatization of the Elderly in

Korea

2.2.1 Mobile Phone Industry

The first smartphone appeared in 2008 in Korea, but it was after the introduction of Apples

iPhone 3G in 2009 that the smartphone came into wide use. The first model of Android

smartphone, the Motorola Motoroi, came on the market in January of 2010. From there

forward, the adoption of smartphones occurred rapidly. The proportion of smartphone users

increased from 15.6% in 2010 to 70.9% in 2014. As expected, younger generations switched

to the new service earlier than their elders. According to Gallup Korea Daily Opinion, more

than 90% of 20- and 30-year-olds used smartphones by the end of 2012, with 90% of people

in their 40s adopting smartphones by July 2014. The elderly have been reluctant to buy

the new devices. By the second half of 2014, only 40% of people over 60 began to use a

smartphone. Table 2.1 shows an overview of the smartphone distribution rate in Korea.

The rapid diffusion of the smartphone is due to the marketing strategies of mobile service

Table 2.1: Mobile Phone Service

Year Mobile Phone Users
Portion of Smartphone Users

Total Over 50

2010 50,767,241 15.6% 1.0%

2011 52,506,793 43.0% 6.2%

2012 53,624,427 61.1% 18.8%

2013 54,680,840 68.6% 41.5%

2014 57,207,957 70.9% 51.4%

Source: Ministry of Science, ICT and Future Planning
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providers and device manufacturers. In relation to these, three kinds of subsidies are granted

to consumers. Many device manufacturers offer a subsidy or cash rebate to boost demand

for their devices. Mobile service providers offer discounts in terms of one- or two-year phone

contracts. Lastly, authorized retail stores offer discounts on phone charges by utilizing

commission. As a result, consumers can purchase new devices much lower than factory

price. The size of a subsidy is typically larger for a new device, and therefore consumers are

more likely to adopt smartphones.

As the Korean mobile phone market reached saturation in 2011, subsidy competition be-

came severe. Three mobile network operators (MNO), SK Telecom (SKT), Korea Telecom

(KT) and LG U+, differentiated consumers to entice brand switching. To safeguard con-

sumers welfare, the Korean government regulated subsidy competition, setting a maximum

subsidy amount of KRW 270,000, and charging a fine or imposing suspensions of business

if they were caught offering more than the limit. Furthermore, to revitalize the telecom-

munication market, the government promoted the entry of mobile virtual network operators

(MVNO).2

Table 2.2: Market Shares of Mobile Service Operator

Year
SKT KT LG U+

MNO MVNO Total MNO MVNO Total MNO MVNO Total

2011 50.46% 0.11% 50.57% 30.95% 0.60% 31.54% 17.82% 0.06% 17.89%

2012 49.52% 0.76% 50.28% 29.55% 1.22% 30.77% 18.55% 0.40% 18.95%

2013 48.07% 1.95% 50.02% 27.95% 2.14% 30.09% 19.43% 0.46% 19.89%

2014 46.27% 3.74% 50.02% 26.65% 3.63% 30.29% 19.06% 0.64% 19.69%

Source: Ministry of Science, ICT and Future Planning

Table 2.2 shows the market shares of three Korean mobile network operators and MVNOs

using their network infrastructure. SK Telecom is the largest wireless carrier in Korea,

leading the market with a 50% share of the total market. Korea Telecom is the second

2A mobile virtual network operator, or MVNO, is a wireless communications services provider that does
not own the network infrastructure, especially the frequency and base transceiver station, and that obtains
bulk access to network services from a mobile network operator at wholesale rates, then sets retail prices
independently.
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Figure 2.1: Billing ARPU by Operator (Unit: KRW)

largest provider, with a market share of 30%. Lastly LG U+ holds 20% of the market share.

Following the governments revitalization policy, the market shares of MVNOs increased from

0.77% in 2011 to 8.01% in 2014. The government also tried to implement a fourth kind of

mobile network operator into the market, but it failed in 2016.

Figure 2.1 shows the billing average revenue per user (ARPU) across different operators.3

Interestingly, the ranking of operators by the ARPU turns out much differently than when

done by market share. LG U+ earned the smallest in 2011, but caught up with Korea

Telecom and SK Telecom in 2012 and 2013, respectively. Due to the governments policy

on 3G mobile services, LG U+ was forced to apply the EV-DO technology rather than

WCDMA, based on GSM. The former included many problems, such as slow download

speeds and few device models. To recover its deficit from the failure of the 3G mobile market,

3ARPU is a measure used primarily by consumer communications and networking companies. ARPU is
the total revenue divided by the number of subscribers. Billing ARPU excludes the sign-up fee from the
total revenue.
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LG U+ invested aggressively in a 4G LTE network infrastructure, launching a nationwide

LTE network in March 2012. KoreaTelecom failed to retain frequencies for LTE service,

and therefore could not provide an LTE network until the company discontinued its 2G

service. Around roughly half a million KT subscribers 4 ARPU is a measure used primarily

by consumer communications and networking companies. ARPU is calculated in terms of

total revenue, excluding sign-up feeds, divided by number of subscribers. moved to LG U+

in 2012 for the fast data service. SK Telecom was also reluctant to expand its LTE network

infrastructure, as the companys service focused more on voice service. These factors explain

why, despite its low market share, LG U+ was able to earn the highest ARPU among its

competitors following its adoption of smartphones and 4G LTE service.

2.2.2 Population Ageing and Informatization of the Elderly

Population ageing in Korea has become accelerated by an extremely low fertility rate and

increased longevity. The fertility rate of South Korea fell as low as 1.30 in 2012, even lower

than Japans 1.41. Furthermore, the population of the elderly aged over 60 has increased over

time. The ageing index4 reached 51.0 in 2006 and 77.7 in 2012. This index is anticipated to

be over 100 in 2017. The speed of ageing is very fast in Korea compared to other developed

countries. Table 2.3 shows a comparison in terms of speed of ageing. The ratio of the elderly

was 7.2% in 2000, when Korea entered the ageing society, and is expected to reach 14.3%

and 20.8% in 2018 and 2026, respectively.

Along with the increasing elderly demographic in the country, fast informatization in

South Korea has made the digital divide problem severe. Older private and public services

in the country have been converted into information-based services, with e-commerce, online

banking, and online trading becoming standard. Some people even order their groceries over

the internet in the country instead of going to a supermarket. With the informatization of

South Korean society and the development of the ICT industry, however, the elderly have

4The ageing index is calculated as the number of persons 60 years old and over per hundred persons under
age 15.
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Table 2.3: The Speed of Ageing by Countries

Country
Year Reached Year needed to reach

7% (Ageing) 14% (Aged) 20% (Hyper-aged) 7% → 14% 14% → 20%

Japan 1970 1994 2006 24 12

France 1864 1979 2018 115 39

United Kingdom 1929 1976 2026 47 50

United States 1942 2015 2036 73 21

South Korea 2000 2018 2026 18 8

Source: Korean Statistical Information Service

become more alienated. The elderly are reluctant to adapt the information technology for

many reasons, including their lack of desire to obtain a personal digital device, and health

problems, such as presbyopia, which prevent them from using small devices. Furthermore,

the elderly are most familiar with the delivery of information via centralized media, such as

TV and radio, and thus have difficulty searching for information they need on distributed

information systems, such as the internet.

Table 2.4 shows the informatization level of the elderly compared to that of the overall

population. The access level measures the ownership of traditional/smart digital devices,

Table 2.4: Informatization Level

Category 2008 2010 2011 2012 2013 2014

PC-based

Overall 64.2 67.5 69.2 71.2 72.6 74.3

Access 92.5 93.8 94.3 94.9 94.3 94.9

Ability 34.5 39.4 42.8 48.0 53.9 59.0

Application 44.9 49.5 51.9 54.4 57.5 59.3

Smart

Overall 22.2 38.8 54.3

Access 32.9 55.8 79.2

Ability 16.1 30.7 35.5

Application 22.9 32.1 53.0

Source: NIA (2012, 2013, 2014, 2015)
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such as PC, smartphones, and other mobile devices, as well as subscriptions to fixed/mobile

internet services. The ability level measures ability to use traditional/smart digital devices.

People were asked the degree to which they can use computer programs and internet services.

The application level indicates actual use of information services in terms of daily hours of

use and the degree of use for certain purposes. The overall level of informatization among the

elderly in terms of traditional ICT service use has improved over time, reaching nearly the

same level as that of the entire population. However, ability and actual use of information

services still remains at a low level. If we consider those in their 50s and 60s separately, the

difference is much larger. In 2014, the ability and application level of persons aged 60 and

over was 36.6 and 34.6, respectively, with the ability to use information services below 40%

of the total population.

When it comes to the smart digital divide, the problem becomes more severe. Smart

devices have been rapidly distributed among the elderly, yet they do not know how to utilize

them. If owning a smartphone, the elderly commonly only use basic features, such as using

the feature phone. They do not use a smart device to communicate using a mobile messaging

app, to search for information over mobile Internet, or watch live streaming video. These

services may not be indispensable to them, but a survey on smartphone usage has shown

that the elderly do not know how to use them. Furthermore, for old persons using infor-

mation services, there is a large gap in terms of SNS usage, network formation, community

activity, information processing, and social activity between groups using both wired and

mobile Internet or wired internet only. Persons using both services actively to participate

in social activities, such as joining an internet community and writing replies to online arti-

cles, make up 47.5%, whereas only 13.4% of persons using fixed-line internet services do so.

This difference results in an information differential that in turn leads to income and social

differentials.

66



2.3 Data

I explore smartphone adoption among the elderly by examining the KISDI’s (Korea Infor-

mation Society Development Institute) Korean Media Panel Survey dataset. Since 2010, the

KISDI annually conducts a survey on a sample of approximately 5,000 households and 10,000

members across them ages six and over using stratified sampling based on the distribution

of Korean demographics. The 2010 dataset includes only six metropolitan areas, but the

number respondents has been expanded nationwide since 2011, including into rural areas.

Hence, I used the datasets from 2011 to 2014 in this analysis.5

The survey asks respondents if they subscribe to a wireless phone service. Respondents

indicating wireless phone ownership are also asked to indicate which service provider they

are connected to, if their mobile phone is a smartphone, how much they pay for the ser-

vice on average, and who pays the bill. In addition to this usage information, the survey

collects individual and household information on consumers, including extensive informa-

tion on media device ownership, media device connectivity, and the media use patterns of

each household and individual. A feature that is lacking from this survey is a range de-

tailed phone characteristics. While the survey contains information on the manufacturer

and general characteristics of a phone, such as digital camera and camcorder features, Wi-Fi

connectivity, and Wibro connectivity, this information is not examined across different phone

models. For example, nearly every new feature phone has a camera and camcorder function,

yet none utilizes Wi-Fi, all smartphones have camera and camcorder functions with Wi-Fi

connectivity. Therefore, we cannot identify the marginal effects of each product character-

istic based on preference. Furthermore, the model number, as well as specific information,

such as operating system (e.g., iOS, Android), processor, size of memory, and resolution,

which have been used to analyze consumer choice in the literature, are not collected. Hence,

this analysis was undertaken without this product information, which makes up part of the

5The first model of iPhone was introduced in 2009 in South Korea, and the first model of Android
smartphone in 2010. The data says that only 1% of consumers over 50 adopted a smartphone in 2010, so
the exclusion of year 2010 would not affect the analysis.
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socioeconomic variables that determine smartphone preference.

The objective of this study is to determine the factors responsible for smartphone adop-

tion among the elderly. The range of age referred to as elderly is 65 and over in traditional

economics literature; however, in the context of the digital industry, people aged 50 and over

have been considered an older, information alienated group. I follow this convention and

focus on individuals aged 50 and over in 2014. 6 I examine those who used a mobile phone

at least once and had no missing data for all variables used in the analysis. For individuals

using more than one mobile phone, the primary phone information reported in the survey

is used. The dataset has a balanced panel data structure, containing four periods (years

2011–2014) and 2,375 individuals from 1,752 households.

Table 2.5 presents the sample means of the individual and household demographic vari-

ables in the analysis. These variables include a gender (female) dummy, age, an indicator

variable for those living in rural areas, an indicator for whether or not phone bills are paid

out of ones own pocket, two dummies for the degree of internet use, and 16 area dum-

mies. The dataset also contains categorical variables pertaining to educational attainment

and household income. From the educational attainment variable, two indicator variables

were created, one for lower education and the other for higher education. Lower education

refers to those who only finished middle school, including high school dropouts, whereas

higher education refers to those who hold a post-secondary school degree, including asso-

ciate, bachelor, masters, and Ph.D. degree holders. For household income, I generated two

indicator variables, one for low income and one for high income. In the original dataset,

there are over 20 categories for household income, but for the households of the elderly, most

samples are concentrated within the lower income categories. I therefore set upper and lower

cutoff points from the middle household income to be a monthly income from KRW 500,000

to KRW 3,500,000, respectively. As a result, low family income refers to households earning

less than KRW 500,000 per month, and high family income refers to households earning

6I performed the analysis including the individuals who reach their 50s in 2011, and found no significant
changes in the result. So, I include those at the boundary for efficiency.
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Table 2.5: Means of demographic variables by the user

Variable Full sample Feature phone Smartphone

Female 0.527 0.543 0.462

Age 63.556 64.802 58.432

Rural area 0.228 0.256 0.111

Higher education 0.093 0.063 0.216

Lower education 0.579 0.663 0.235

Regular Internet use 0.223 0.169 0.444

Heavy Internet use 0.090 0.043 0.281

Payer 0.711 0.678 0.849

High family income 0.100 0.072 0.217

Low family income 0.096 0.115 0.017

N 9500 7641 1859

more than KRW 3.5 million per month. This classification of the income category is similar

to that found in Rennhoff and Routon (2016).

The means for each type of the mobile phone user are presented in Table 2.5 alongside

the full sample means to show how socioeconomic characteristics vary across stated choice

alternatives. From these simple descriptive statistics, it appears that males are more likely

to adopt a smartphone. The same can be said for youth, the residents of a city, the educated,

internet users, and those who pay a phone bill out of their own pockets. Members of high

income households are more concentrated within the smartphone group, while those of low

income households are more concentrated within the feature phone group.

2.4 Empirical Model

As in Fairlie (2004), a simple linear random utility model of the decision to purchase a

smartphone is used in this study, which explores the underlying causes of racial differences

in rates of computer and internet access. The difference from the approach in Fairlie is that
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I allowed for a panel data structure in the model,7 assuming that the utility associated with

having (purchasing) a smartphone or a feature phone is a function of an individuals charac-

teristics, x, and an additive error term, ε. Let uift and Uist stand for the ith persons indirect

utilities associated with having a feature phone and a smartphone at year t, respectively.

These indirect utilities can be expressed as

Uijt = δjt + νij + x′itβj + εijt j ∈ {f, s} (2.1)

The ith person at year t has a smartphone if Uis > Uif . Let yit = 1 if the ith person at year

t owns a smartphone. Then:

P (yi = 1) = P (Uis > Uif ) = F [(δst − δft) + (νis − νif ) + x′i(βs − βf )], (2.2)

= F (x′iβ + δt + νi)

where F is the cumulative distribution function of εis − εif . The model can be estimated

using standard random effect logit regression assuming that εis−εif has a logistic distribution

and νi has a normal distribution with some variance.

Indirect utilities are functions of several measurable individual characteristics. Income is

likely to be a key factor, as it has an effect on budget constraints underlying (2.1) and (2.2),

and may also relate to preferences for owning a smartphone and the affordability of charges,

as the charges for a smartphone are higher than that of a feature phone due to data plans.

I consider household income rather than personal income for two reasons. First, though the

mandatory retirement age is 65 in Korea, many workers retire in their 50s. Second, many

females over 50 in Korea have never worked, even during their working age, and share their

husbands income or pension for a living. I do include, however, the variable of who pays the

phone bill to control for another aspect of ones decision to purchase a new smartphone.

Preferences for using a smartphone are likely to vary across individuals and may depend

on exposure to and familiarity with information technology. Furthermore, these preferences

7An alternative approach is to estimate the choice decision among three alternatives, a smartphone, a
feature phone, and no use. The model cannot be estimated, however, because of the lack of variation in
measurable characteristics of the alternative choices.
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may be related to a persons age, gender, education level, region of the country, and ability

to use the internet. While the price of a mobile device and a mobile phone plan also affect

the decision to use a smartphone, I have not included these two variables as independent

variables, as these data are not available in the dataset.8 As an alternative, I include brand

as a variable in the model. There are three major mobile service providers in Korea: SK

Telecom (SKT), Korea Telecom (KT), and LG U+. According to the market shares of each

provider and government regulations, each company charges different prices for a similar

service, which can serve as proxy variables for the price of a mobile service. In addition,

network effect can be captured by including provider dummy variables. To control for the

dispersion of a smartphone over time and by region, I include year and area dummy variables

in certain specifications.

2.5 Result

Table 2.6 shows the estimates of logit regression concerning the probability of owning a

smartphone. Both the marginal effects and their standard errors are reported.9 Specification

1 includes age and a dummy variable for gender. The coefficient estimates capture the

age effects, showing that elderly females tend to use smartphones less than older males.

Specification 2 controls for personal characteristics, such as education, use of the internet,

rural areas, and the payer of a phone bill, in addition to age and gender, though no household

characteristics. Here, the high education dummy indicates whether or not a person received

post-secondary education, and low education indicates whether or not a person finished high

school, including dropping out. The use of the internet variable is a level variable that either

has a value of one if a person can use basic applications, such as web-browsing and e-mail,

or a value of two if a person participates in more advanced activities, such as social media or

8Vogelsang (2010) identifies the lack of price variation and information as one of the primary difficulties
in studying the wireless industry.

9The reported marginal effect provides an estimate of the effect of a 1-unit increase in the independent
variable on the smartphone probability. In regards to the dummy variable, the marginal effect provides the
change of the probability by deviating from the baseline group. The standard error is computed by the
cluster-robust standard error estimator.
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online polls, etc. The payer dummy has a value of one if a phone bill is paid in full by a user

without financial help from others or other benefits. The coefficient of the female dummy

becomes statistically insignificant after controlling for the individual characteristics. As the

descriptive statistics suggests, females in this age group are likely to be less educated and

to use the internet less, so there may be an omitted variable bias in the coefficient of the

female dummy in specification 1.

As expected, education is an important determinant of owning a smartphone, with per-

sons who did not graduate high school having a roughly 10% lower probability than those

who graduated high school. Individuals holding a college degree have a 3.6% higher prob-

ability of using a smartphone than high school graduates. Education may be a proxy for

familiarity with new technologies, or may have an effect on preferences for smartphones in

terms of taste, exposure, perceived usefulness, or conspicuous consumption. The use of the

internet also plays a major role in determining who uses a smartphone, with the relationship

between smartphone probability and internet utilization monotonically increasing. People

who know how to use the basic internet services have a 10% higher probability to use smart-

phones, with those who actively participate in network environments have a probability of

21%. These percentages are not surprising, as people who use the internet on their home

computers are already familiar with various information and communication technologies,

and therefore are likely not afraid of adopting new devices, as well as desire to search and

gather information from all locations. The inclusion of education, internet utilization, and

other controls was found to have a notable effect on the age coefficients, with the marginal

effect of age becoming cut in half in Specification 1, from -0.016 to -0.008. However, it still

accounts for a large portion of the differences in smartphone penetration rate.

Household characteristics may also affect the probability of owning a smartphone. While

there are many variables that can be used for controlling household effects, none of them

except family income were statistically significant. I categorize family income into three

categories: low, middle, and high. The low family income group earns less than KRW 500,000

a month, whereas the high family income groups earn more than KRW 5 million a month. All
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Table 2.6: Logit Regressions for Probability of Having a Smartphone

Explanatory Variables (1) (2) (3) (4) (5)

Age −0.0162∗∗∗ −0.0081∗∗∗ −0.0077∗∗∗ −0.0080∗∗∗ −0.0080∗∗∗

(0.0007) (0.0006) (0.0006) (0.0006) (0.0006)

Female −0.0578∗∗∗ −0.0072 −0.0065 −0.0139 −0.0145

(0.0096) (0.0091) (0.0091) (0.0093) (0.0093)

Higher Education 0.0362∗∗ 0.0323∗∗ 0.0293∗ 0.0291∗

(0.0155) (0.0153) (0.0152) (0.0152)

Lower Education −0.0974∗∗∗ −0.0934∗∗∗ −0.0752∗∗∗ −0.0752∗∗∗

(0.0117) (0.0117) (0.0119) (0.0119)

Regular Internet use 0.1061∗∗∗ 0.1051∗∗∗ 0.1044∗∗∗ 0.1046∗∗∗

(0.0091) (0.0090) (0.0090) (0.0090)

Heavy Internet use 0.2104∗∗∗ 0.2075∗∗∗ 0.2016∗∗∗ 0.2010∗∗∗

(0.0155) (0.0154) (0.0153) (0.0152)

Rural area −0.0321∗∗∗ −0.0290∗∗∗ −0.0189∗ −0.0191∗

(0.0103) (0.0102) (0.0115) (0.0115)

Phone bill payer 0.0165∗∗ 0.0166∗∗ 0.0150∗∗ 0.0152∗∗

(0.0076) (0.0076) (0.0076) (0.0076)

High family income 0.0353∗∗∗ 0.0297∗∗ 0.0298∗∗∗

(0.0118) (0.0115) (0.0115)

Low family income −0.0305∗ −0.0263 −0.0256

(0.0173) (0.0171) (0.0172)

Area: Busan −0.0520∗∗∗ −0.0308

(0.0200) (0.0649)

Area: Daegu −0.0679∗∗∗ −0.0431

(0.0227) (0.0765)

Area: Gwangju −0.0566∗∗∗ −0.0337

(0.0207) (0.0697)

Area: Chungnam −0.0901∗∗∗ −0.1084∗∗

(0.0225) (0.0524)

Area: Jeonnam −0.0661∗∗∗ −0.0703∗∗∗

(0.0212) (0.0245)

Area: Gyeongbuk −0.0791∗∗∗ −0.0801∗∗∗

(0.0206) (0.0203)

Area: Gyeongnam −0.0842∗∗∗ −0.0802∗∗∗

(0.0199) (0.0226)

Notes: (1) Marginal effects and their standard errors are reported.

(2) ∗: p < 0.10, ∗∗: p < 0.05, ∗∗∗: p < 0.01
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other households belong to the middle family income group. The third column in Table 2.6

reports the marginal effects after controlling for household characteristics. The relationship

between smartphone probability and income can be seen to be monotonically increasing.

However, the effect is rather small. In fact, when I use a different specification with finer

categorical family income variables, most of the coefficients are not statistically significant,

save for the high family income group. Even if a husband earns most of a households

income and a wife does not work in a typical household in this group, family factors seem

not to affect the purchasing probability of a smartphone. This suggests that individual

characteristics are more important determinants of owning a smartphone than household

variables. Indeed, smartphones are personal belongings, and their personal utilization is

more important to users in terms of their preferences. Furthermore, consumers can receive

discounts on devices and phone bills in one- or two-year contracts, so family and individual

income may not serve as constraints.

Specification 4 (shown in Table 2.6) includes dummy variables for 17 areas in Korea.

After adding a regional control, an interesting result was found. Adding the area dummy

variables did not change the marginal effects of personal and household variables, but re-

vealed that elderly living in Busan, Daegu, and Gwangju, which are metropolitan cities in

Korea, have far less probability of owning a smartphone than those living in Seoul. Com-

pared to the elderly living in Seoul, those living in Busan have a 5.2% lower probability,

those in Daegu have a 6.8% lower probability, and those in Gwangju have a 5.7% lower

probability of using a smartphone. Furthermore, living in Gangwon province, which has the

lowest GRDP per capita and most mountainous areas, the latter of which may potentially

damage the quality of mobile service, was found to have no significant effect on probability.

One plausible explanation for this is regional imbalance. The areas that show significantly

lower probabilities of smartphone usage are far from the Seoul Metropolitan Area (SMA).

Over the past two decades, the development of the economy, education, public welfare, cul-

ture, and communications in Korea has been concentrated in the SMA, which may influence

the dissemination of smartphones, the utilization of other ICTs, and informatization. The
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Table 2.7: Basic Information of Selected Areas

Area
Population Land area GRDP per capita

Total Over 50 (km2) (in KRW thousands)

Busan 3,411,930 1,306,223 770 21,614

Daegu 2,459,901 836,417 884 18,941

Gwangju 1,515,992 444,403 501 20,448

Gangwon 1,501,041 590,911 16,826 24,574

Chungnam 2,078,771 741,908 8,214 47,024

Jeonnam 1,758,340 764,327 12,309 35,883

Gyeongbuk 2,640,441 1,058,604 19,029 34,711

Gyeongnam 3,273,079 1,139,034 10,538 31,311

Source: Korean Statistical Information Service

marketing strategies of mobile service providers are also affected by regional imbalances, as

marketers have little incentive to sell new devices to areas where there is little demand. To

control for the effect, I added the GRDP of each area in specification 5. The majority of the

coefficients of the regional dummy variables were insignificant, save for those of Chungnam,

Jeonnam, Gyeongbuk, and Gyeongnam province. Controlling for regional economic situa-

tion did not change other marginal effects. I will leave the detailed analysis of this issue for

future research.

2.6 Conclusion

This paper discussed the effects of individual, household, and regional factors that may

influence preferences among the elderly with regard to obtaining a smartphone. Ownership

of a smartphone was found to predominantly be affected by personal characteristics. Age,

education and familiarity with traditional information technologies have a significant effect

on the probability of owning a smartphone, while family characteristics, such as income

and structure, were found not to have an effect. These results are in contrast with the

determinants affecting the purchase of a personal computer and traditional internet service
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subscription, which were found to be shared by family members. Moreover, the area where

a person lives can have an impact on his or her adoption of a smartphone. Individuals living

in regions far from the Seoul Metropolitan Area were found to be far less likely to use a

smartphone. Considering the regional income and purchasing power of these areas, lack of

smartphone usage may reflect the imbalance of development between regions. Policymakers

should thus consider these effects when drafting informatization policy for future ICTs.

My analysis includes several limitations that speak to various avenues for future research.

Product characteristics such as the price of a device and mobile phone subscription plan were

not considered in the analysis due to lack of information or little variation of characteristics.

Using a smartphone requires a mobile data subscription, which increases ones monthly phone

charge in addition to a voice service charge. Furthermore, the higher price of a smartphone

compared to that of a traditional feature phone may prevent the elderly from purchasing

a new device. Many mobile virtual network operators have entered the market since 2014

with low phone charges that attract consumers. Changes in the mobile phone market such

as this one can alter incentives to use a smartphone among the elderly. One can obtain a

more accurate decomposition if detailed product characteristics are available. Moreover, the

regional effect should be investigated in detail.
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2.7 Appendix

2.7.A Tables

Table 2.8: Full Results of Logit Regressions for Probability of Having a Smartphone

Explanatory Variables (1) (2) (3) (4) (5)

Age −0.0162∗∗∗ −0.0081∗∗∗ −0.0077∗∗∗ −0.0080∗∗∗ −0.0080∗∗∗

(0.0007) (0.0006) (0.0006) (0.0006) (0.0006)

Female −0.0578∗∗∗ −0.0072 −0.0065 −0.0139 −0.0145

(0.0096) (0.0091) (0.0091) (0.0093) (0.0093)

Higher Education 0.0362∗∗ 0.0323∗∗ 0.0293∗ 0.0291∗

(0.0155) (0.0153) (0.0152) (0.0152)

Lower Education −0.0974∗∗∗ −0.0934∗∗∗ −0.0752∗∗∗ −0.0752∗∗∗

(0.0117) (0.0117) (0.0119) (0.0119)

Regular Internet use 0.1061∗∗∗ 0.1051∗∗∗ 0.1044∗∗∗ 0.1046∗∗∗

(0.0091) (0.0090) (0.0090) (0.0090)

Heavy Internet use 0.2104∗∗∗ 0.2075∗∗∗ 0.2016∗∗∗ 0.2010∗∗∗

(0.0155) (0.0154) (0.0153) (0.0152)

Rural area −0.0321∗∗∗ −0.0290∗∗∗ −0.0189∗ −0.0191∗

(0.0103) (0.0102) (0.0115) (0.0115)

Phone bill payer 0.0165∗∗ 0.0166∗∗ 0.0150∗∗ 0.0152∗∗

(0.0076) (0.0076) (0.0076) (0.0076)

High family income 0.0353∗∗∗ 0.0297∗∗ 0.0298∗∗∗

(0.0118) (0.0115) (0.0115)

Low family income −0.0305∗ −0.0263 −0.0256

(0.0173) (0.0171) (0.0172)

Area: Busana −0.0520∗∗∗ −0.0308

(0.0200) (0.0649)

Area: Daegua −0.0679∗∗∗ −0.0431

(0.0227) (0.0765)

Area: Incheona −0.0090 0.0091

(0.0242) (0.0573)

Area: Gwangjua −0.0566∗∗∗ −0.0337

(0.0207) (0.0697)
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Table 2.9: Full Results of Logit Regressions (Continued)

Explanatory Variables (1) (2) (3) (4) (5)

Area: Daejeona −0.0270 −0.0043

(0.0264) (0.0715)

Area: Ulsana −0.0162 −0.0684

(0.0316) (0.1339)

Area: Gyeonggi −0.0207 −0.0078

(0.0179) (0.0409)

Area: Gangwon −0.0338 −0.0172

(0.0279) (0.0550)

Area: Chungbuk 0.0168 0.0210

(0.0216) (0.0252)

Area: Chungnam −0.0901∗∗∗ −0.1084∗∗

(0.0225) (0.0524)

Area: Jeonbuk −0.0758∗∗∗ −0.0610

(0.0207) (0.0482)

Area: Jeonnam −0.0661∗∗∗ −0.0703∗∗∗

(0.0212) (0.0245)

Area: Gyeongbuk −0.0791∗∗∗ −0.0801∗∗∗

(0.0206) (0.0203)

Area: Gyeongnam −0.0842∗∗∗ −0.0802∗∗∗

(0.0199) (0.0226)

Area: Jeju −0.0794∗∗ −0.0636

(0.0311) (0.0552)

Notes: (1) Marginal effects and their standard errors are reported.

(2) a: Metropolitan city

(3) ∗: p < 0.10, ∗∗: p < 0.05, ∗∗∗: p < 0.01
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CHAPTER 3

The Evolution of Preferences for Brands in Digital

Camera Market

3.1 Introduction

An economic agent considers the brand and the characteristics of products to decide which

product to buy. Some features of a product are observed both by consumers and by econo-

metricians, while others affecting the purchase decision of a consumer are observed only by

consumers, not by econometricians. One way to capture this effect is to use brand-specific

dummy variables. Nevo (2000, 2001) expanded the random coefficient logit model in Berry

et al. (1995, BLP henceforth) by using dummy variables in order to capture brand-specific

fixed effects.

When purchasing a digital camera, consumers examine attributes of a camera: the reso-

lution of an image sensor, zoom function, the size of LCD, and the price. Also, they consider

the brand of a camera, since each manufacturer has some intrinsic characteristics; for ex-

ample, Nikon and Canon have been two major manufacturers in film camera industry, so

their products have better optical features. Fuji and Kodak have produced film for a long

time so that their cameras are said to have good chromatic features. Sony is a well-known

manufacturer of home appliance, and its products are easy to use.

During the period from April 1997 through May 1999, the data on unit sales of digital

cameras show that the unit sales of Sony has increased steadily, while those of Casio has

decreased gradually, as shown in Figure 3.1. However, as other consumer electronics, the

technological development of a camera does not vary across manufacturers. For instance,
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the maximum resolution of the newest camera is not quite different between each other. It

suggests that the difference of technological features across brands is not sufficient to fully

explain the trend of unit sales in the digital camera industry. Even including brand-specific

dummy variables does not account for the variation of the unit sales. In this sense, we may

assume that the preference for digital camera brands changes over time.

This paper suggests a method to capture the time-varying brand preference under the

specification of BLP model. In particular, I assume that the brand preference is affected

by the advertising expenditure of each brand as well as the reputation among consumers.

I assume that the brand preference at time period t is a linear function of a preference at

time t − 1 and advertisement expenditure of the brand at time t − 1. Then, this is a state

equation related to the brand preference in two consequential time periods. Furthermore, to

allow for flexible price elasticities among products, I admit the heterogeneity of a household

with an aggregate data. Hence, the estimation strategy can be considered as an extension

of the random coefficient logit model in BLP. For estimation, I use data for the U.S. digital

camera market over 26 months from April 1997 through May 1999.

My work is based on Sriram et al. (2006), in which they used a nested logit model.

However, when fitting the nested model, I faced a problem that estimated market shares do

not converge to a certain value since some of them diverged to infinity. For this technical

reason, I changed my model to “standard” logit model. Except that, I used exactly the same

dataset as of Sriram.

3.2 The Empirical Framework

3.2.1 Model

During each period t, a household h faces a decision problem of choosing a digital camera

j offered by brand b. Specifically, a consumer chooses to buy a model from the set of

Mbt = {1, 2, · · · , Jbt} models offered by brand b where b = 1, 2, · · · , B and Jbt is the number
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of models offered by brand b at time t. Under the discrete choice model framework, the

indirect utility function of a household h from choosing model j offered by brand b at time

t is given by

Uhjbt = αt + β0hbt + θHbt + βhXjbt + ηjbt + εhjbt, (3.1)

where β0hbt is the household h’s intrinsic preference for the brand b at time t, Hbt is a set

of dummy variables of holiday seasons, Xjbt is the vector of attributes of model j offered by

brand b at time t such as the resolution of the image sensor, the maximum number of images

that can be stored in the internal memory, the type of external storage media and the price,

and βh is the vector of coefficients corresponding to the product attribues, varying across

households. In addition, Xjbt might include other factors such as the age of a model, which

may have an effect on the consumer’s preference for the model. To allow for the possibility

of the nonlinear effect of the age, we include the quadratic term of an age in addition to

the linear term. The term αt is a time-specific dummy variable, common to all brands and

models, which captures the utility of owning a digital camera at time t. As in Nevo (2000),

ηjbt is the utility derived from unobserved product characteristics, and εhjbt is a mean-zero

stochastic error term which is distributed according to a Type-I extreme-value distribution.

Also, we may normalize the utility from choosing the outside option as Uh00t = εh00t for

identification.

Under the assumptions of the standard random coefficient multinomial logit model, we

can express the probability of household h purchasing model j offered by brand b at time t,

phjbt, as

phjbt = Pr[yhjbt = 1] =
exp(δjbt + µhjbt)

1 +
∑B

b′=1

∑
j∈Mb′

exp (δjb′t + µhjb′t)
, (3.2)

where δjbt is the mean (across households) utility of model j offered by brand b at time t, and

µhjbt is the deviation in the utility of household h from this mean, which captures household

heterogeneity. Specifically,

δjbt = αt + β0bt + θHbt + βXjbt + ηjbt, (3.3)
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µhjbt = (β0hbt − β0bt) + (βh − β)Xjbt = ∆β0hbt + ∆βhXjbt. (3.4)

The parameters β0bt and β are the mean level of the brand preference and average marginal

effects of product characteristics, respectively. ∆β0hbt and ∆βh are the household-specific

deviation from β0bt and β, respectively.

If there is no household heterogeneity, that is, µhjbt ≡ 0 for all h, j, b, t, we obtain a

standard multinomial logit model. However, this model suffers from IIA property without

allowing for the heterogeneity. To overcome this limitation, we need to account for unob-

served heterogeneity in the model by allowing µhjbt to be different from zero. For simplicity,

I assume that the vector ν = (∆β0hb,∆βh, b = 1, 2, · · · , B) follows a multivariate normal

distribution ν ∼ N(0,Σ), independent from all other variables and error terms. Given the

distributional assumption on ν, the market share of model j offered by brand b at time t can

be obtained by integrating over ν, that is,

sjbt =

∫
A

Pr[yhjbt=1]φ(v)dv =

∫
A

exp(δjbt + µhjbt)

1 +
∑B

b′=1

∑
j∈Mb′

exp (δjb′t + µhjb′t)
φ(v)dv, (3.5)

where φ(·) denotes the density of a multivariate normal distribution and A is the region of

integration which results in the choice of model j of brand b. Hence, our model is a random

coefficient multinomial logit model, as in Berry et al. (1995) and Nevo (2001).

As mentioned in Equation (3), I allow the parameter β0bt, the intrinsic preference for

brand b, to vary over time. With the intuition that advertising activity of a brand has an

effect on the evolution of the intrinsic brand preference, we model the dynamics of the mean

brand preferences as

β0bt = β̄b + λβ0bt−1 + ωbADbt + ψbt, ψbt ∼ N(0, σ2
ψb), (3.6)

where β0bt is the mean preference for brand b at time t, β̄b is the time-invariant part of the

mean preference for brand b, and ADbt is the advertising cost of brand b at time t. The

parameters ωb capture the effects of advertisement on brand b’s intrinsic preference. The

parameter λ captures the extent to which the intrinsic brand preference carries over from

period to period.
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3.2.2 Estimation

The parameters which needs to be estimated are categorized into three sets: Θ1 = {αt, θ,

β̄b, λ, ω
}

, Θ2 = {β}, and Θ3 = {σ∆hβ}. The first set Θ1 is the collection of parameters that

correspond to the mean preferences and other response parameters that influence the utility

of all the models offered by a brand, not varying across each model offered by the same

brand. The second set Θ2 captures the effects of consumers’ mean valuations of product

characteristics. And the last set, Θ3, corresponds to the Cholesky decomposition of the

matrix Σ, the covariance matrix corresponding to the heterogeneity distribution in Equation

(5). As suggested in BLP, for a given set of the heterogeneity parameters Θ3, we can uniquely

obtain the mean utility level δjbt. After recovering the mean utilities δjbt, we estimate the

parameter Θ2 by an instrumental variables regression, and then estimate the parameter Θ1

by the Kalman filter algorithm.

Recall that ηjbt captures the effects of omitted characteristics of a specific model j as well

as the brand-specific effect of brand b, both of which are observed by consumers but not by

researchers. We can express this as

ηjbt = ηbt + ∆ηjbt (3.7)

where ηbt is the brand-specific unobserved factors common to all the models offed by brand b

at time t, and ∆ηjbt captures the model-specific unobserved heterogeneity. To identify these

two effects, I make a strong assumption that the model-specific deviation ∆ηjbt is equal to

zero for one of the models of each brand for all time periods, which is called as a baseline

model. Without loss of generality, I set ∆η1bt = 0 for all b and t.

Using the contraction mapping of BLP, we could obtain the estimates of {δjbt}. Under

the assumption that ∆η1bt = 0, denote the mean utility of baseline models for each b and t

as δ1bt. Therefore, the deviation of mean utility of each model from each baseline model can

be represented as

δjbt − δ1bt = δ′jbt = β∆Xjbt + ∆ηjbt, (3.8)

where ∆Xjbt = Xjbt − X1bt. Observe that the brand-specific unobserved effect ηbt is can-
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celled out in equation (8). Since the left term of Equation (8) is uniquely determined, the

parameters β(= Θ2) can be estimated by an instrumental variables regression that accounts

for potential correlation between ∆ηjbt and the prices embedded in ∆Xjbt.

Given the heterogeneity parameter Θ3, we have obtained δjbt and β so far through the

above estimation procedure. Now, we need to estimate the parameters that influence choices

at the brand level, Θ1. For doing this estimation, we define the term Rbt, the total value of

brand b at time t as follows:

Rbt = ln {Σj∈Mb
exp (δjbt)} . (3.9)

If we plug δjbt from (3) into (9), we have

Rbt = ln
{

Σj∈Mb
exp

(
βX1bt + δ′jbt

)}
+ (αt + β0bt + θHbt + ηbt). (3.10)

Therefore, we have

Qbt = αt + β0bt + θHbt + ηbt, where (3.11)

Qbt = Rbt − ln
{

Σj∈Mb
exp

(
βX1bt + δ′jbt

)}
. (3.12)

The second term in the right-hand side of Equation (12) is similar to the inclusive value of

a nest (or a brand in our analysis) in the nested logit model, and so it can be regarded as a

measure of the effect of a brand’s product line on its performance in the market. Similarly,

Qbt can be interpreted as the intrinsic value of a brand. Given Qbt, the parameters in

Equation (11) can be estimated by a simple linear regression. However, it is impossible to

directly apply the linear regression, since we cannot observe the values of brand preferences,

β0bt, at each time period t. Thus, regarding Equation (11) as an Observation Equation and

Equation (6) as a System Equation, we can apply the Kalman filter algorithm to our model.

The method how we estimate Θ1 and Θ2 given the heterogeneity parameters Θ3 are

explained above. Through these two estimation procedures, we have the system of error

terms ∆ηjbt and ηbt. Then, the heterogeneity parameters Θ3 can be achieved by minimizing

a quadratic function of these error terms. The quadratic object can be entertained by
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a generalized method of moments (GMM) procedure. In short, similar to BLP method,

{Θ1,Θ2} are computed in an inner loop for a fixed {Θ3}, and {Θ3} are the arguments which

minimize the GMM object in an outer loop.

3.3 Data

3.3.1 The Data

The data set used in estimation is collected from two different sources. One is aggregate

monthly observations on unit sales of compact digital cameras in United States for a period

of 26 months from April 1997 through May 1999. These data include information on the

features of each model, such as the price, maximum resolution of the image sensor, maximum

number of photos, the availablity of internal and external memory, type of storage media,

and the presence of self-timer capabilities. The other is monthly advertising expenditures

by each of the brands during the corresponding period. Sales, price and attribute data are

at the model level, while advertising data are at the brand level.

We perform the analysis on the four leading brands in this category: Casio, Kodak,

Olympus, and Sony. These brands account for more than 93% of the sales in this category,

and the four brands are present during all the 26 months of the data. We report the

descriptive statistics for the four brands in Table 3.1. From Table 3.1, we can see Sony has

the highest market share, which is almost twice that of the nearest competitor, Kodak. Note

that Sony has the highest market share in spite of the highest price. It may be attributed to

the attractiveness of models in its product line (inclusive value) and/or to a high intrinsic

preference for the brand.

Figure 3.1 shows the time trend in monthly sales of each brand over 26 months. As

said before, Figure 3.1 reveals that while Casio possessed the largest market share at the

beginning of the time periods, its unit sales steadily decreased over time and it ended up

as the lowest selling brand. In contrast, although Sony has the lowest proportion at the
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Table 3.1: Descriptive Statistics for the Digital Camera Brands

Brand
Average Total Market Total Average Average

price ($) unit sales share (%) advertising($ 1,000) age (months) number of model

Casio 320 176,049 10.69 848.3 13.79 10.50

Kodak 485 360,778 21.90 9,223.4 14.18 8.00

Olympus 606 305.385 18.54 4,432.0 9.92 6.31

Sony 675 691,457 41.98 11,890.6 8.43 4.96

beginning, it soon overtook all the other brands. It also shows the seasonality of compact

digital camera sales, which reached its peak every December. It suggests the necessity of

dummy variables to control this seasonal effect, which are the holiday dummy variables in

the model.

3.3.2 Description of Variables

3.3.2.1 Product Characteristics

We estimate the consumer valuation of five features, maximum resolution of the image

sensor, maximum number of photos, size of external memory, type of storage media, and the

presence of self-timer capabilities. The price variable was operationalized as the logarithm

of the price of the model. In addition, we constructed the age and square of age for each

model. The age is measured by the number of month since it was first introduced to the

market.

3.3.2.2 Market Size and Outside Alternative

In order to compute share of the model, we need to define the potential size of the market

and the outside or no-purchase alternative. Song and Chintagunta (2003) used the number

of households that used computers at home as the potential size of the market, since using

digital cameras requires access to a computer. Following this approach, we set the total

potential market size as 10 million (U.S. Census Bureau 1997).
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3.3.2.3 Instrument Variables

Due to the endogeneity of the price, we need to find instruments for the price for IV regression

step in 2.2.1. As in Berry et al. (1995), we use three sets of instruments variables: the

observed product characteristics, the sums of the values of the same characteristics of other

products offered by the manufacturer, and the sums of the values of the same characteristics

of products offered by other firms. In addition, we also use producer price index for computer

peripheral equipment (SIC code 3577) from the U.S. Bureau of Labor Statistics.

3.4 Result

3.4.1 Result from the model

Through the estimation procedure discussed in Section 2, the results for parameters are being

reported in Table 3.2. As expected, the effect of a price is negative on a model choice. The

presence of a self-timer and resolution has a significant positive effect on a model’s share.

The results of age and age squared parameters present that, when the age of a camera

becomes 4 months, the effect of the age on a choice probability is maximum. This can be

explained by the claim that some period after the introduction of a new model is necessary

for a consumer to believe it as a flawless model. Next, in the case of parameters for brand

choice part, The parameter λ that captures the carry-over of brand preferences from period

to period is 0.947. This means that the intrinsic brand preferences are highly persistent. In

addition, the parameters for advertising effects on brand preferences show positive estimates.

The positive estimate for holiday seasonal dummy is consistent with the high unit sales in

December.

3.4.2 Intrinsic Brand Preferences and Inclusive Values over Time

I present the intrinsic brand preferences and the inclusive values of the brands over time in

Figure 2 and 3, respectively. The time trend in the intrinsic brand shows that the brand
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Table 3.2: Model Results
Parameter Estimates Heterogeneity

Model Choice

Price -0.229 0.022

(0.124)

Resolution 0.296 0.015

(0.149)

No. of Images -0.006 0.008

(0.003)

External Memory -0.170 0.047

(0.047)

Self-timer 0.703 0.022

(0.261)

Age 0.252 0.010

(0.036)

Agesq -0.030 0.020

(0.001)

Brand Choice

Carry-over(λ) 0.947

Constant (Casio) -0.069

Constant (Kodak) 0.080

Constant (Olympus) 0.023

Constant (Sony) 0.020

Advertising (Casio) 0.516

Advertising (Kodak) 0.090

Advertising (Olympus) 0.304

Advertising (Sony) 0.409

Holiday 1.019
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preference for Casio has a declining trend. This is consistent with the facts that Casio’s

advertising expenditure is the smallest among four brands and the brand preference evolves

by an advertisement in Equation (6). On the other hand, the brand preference for Sony

shows the highest brand preference among four brands, though it starts with the lowest

brand preference at the beginning period. The brand preferences for Kodak and Olympus

have slightly increasing trends. In the case of the inclusive values, Kodak and Olympus

show smoother trends than Casio and Sony. Kodak and Olympus have an almost flat trend,

while the inclusive values of Casio and Sony have lots of fluctuation. However, The inclusive

values of both companies coincide between period 10 and period 18. which is difficult to

explain the overturn of market shares. Hence, The increasing and decreasing market shares

of Sony and Casio, respectively, are better explained by the intrinsic brand preferences than

by the inclusive values. Roughly speaking, it seems that the effects of the brand preferences

for unit sales are more significant than the effects of the product lines of the brands.

3.5 Conclusion

This paper extends the work of Berry et al. (1995) and Nevo (2000, 2001) to allow for the

time-varying brand preference. In particular, the model considered in this paper answers

two questions: (a) What are the relative importances of intrinsic brand preferences, prices

and product attributes in driving the performance of a brand, or the market share of a

manufacturer? (b) Does advertising have any short-term and/or long-term effect in driving

preferences? Even though set in the context of high-technology device markets, my model

can be applied to the analysis of consumer packaged goods markets.

We find that intrinsic brand preferences have a much bigger effect on the performance

of the brand than the inclusive values, which reflects model-level prices and product charac-

teristics. Furthermore, we find that some brands can increase their advertising expenditures

and increase their profitability. Casio, which has dominance in the earlier age of compact

digital camera market but which has a relatively small advertising budget, lost their advan-
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tage and fell to the smallest competitor. On the other hand, Sony succeeded in obtaining the

dominance by aggressive advertisement. Furthermore, very high value of carry-over param-

eter λ, which was close to 1, may imply that the reputation of a brand last for a long time.

Also it implies that the empirical analysis considering only the product characteristics, not

the marketing factors such as advertisement, promotion or discount, could fail to recover the

true demand parameters.

Our approach is subject to several caveats and limitations. First of all, we tried to build

a “nested” logit model, since each digital camera has its own brand and it seems to exist

a correlation in choices within a brand, and people tend to choose the brand of a camera

first and compare a few models within that brand when purchasing a camera. However, in

the contraction mapping of the nested logit BLP model, we faced on the problem that the

estimated market share, δbjt, does not converge to a certain value. It may be because the

method proposed by BLP is very sensitive to the initial conditions and others. Recently, Dubé

et al. (2012) suggest the nest fixed point algorithm to improve the numerical performance

of BLP model. This paper could be a starting point to solve the problem. Additionally,

our framework does not account for the dynamics in the consumer valuation of individual

attributes in any general way. This issue also should be solve in a further study.
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3.6 Appendix

3.6.A Figures
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Figure 3.1: Unit Sales of Digital Camera Brands
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Figure 3.2: Brand Preferences of Digital Camera Brands
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Figure 3.3: Inclusive Values of Digital Camera Brands

93



Bibliography

Angrist, J. D. and J.-S. Pischke (2010). The credibility revolution in empirical economics:

How better research design is taking the con out of econometrics. Journal of Economic

Perspectives 24 (2), 3–30.

Berry, S., J. Levinsohn, and A. Pakes (1995). Automobile prices in market equilibrium.

Econometrica 63 (4), 841–890.

Berry, S. T. and P. A. Haile (2010). Nonparametric identification of multinomial choice

demand models with heterogeneous consumers. Cowles Foundation Discussion Papers

1718, Cowles Foundation for Research in Economics, Yale University.

Berry, S. T. and P. A. Haile (2014). Identification in differentiated products markets using

market level data. Econometrica 82 (5), 1749–1797.

Blau, D. and J. Currie (2006). Pre-school, day care, and after-school care: who’s minding the

kids?, Volume 2 of Handbook of the Economics of Education, Chapter 20, pp. 1163–1278.

Elsevier.

Blau, D. M. and P. K. Robins (1988). Child-care costs and family labor supply. The Review

of Economics and Statistics 70 (3), 374–381.

Blundell, R. and R. L. Matzkin (2014). Control functions in nonseparable simultaneous

equations models. Quantitative Economics 5 (2), 271–295.

Blundell, R. W. and J. L. Powell (2004). Endogeneity in semiparametric binary response

models. The Review of Economic Studies 71 (3), 655–679.

Brown, B. W. (1983). The identification problem in systems nonlinear in the variables.

Econometrica 51 (1), 175–196.

Brown, S. A. and V. Venkatesh (2005). Model of adoption and technology in households: a

94



baseline model test and extension incorporating household life cycle. MIS Quarterly 29 (3),

399–436.

Buchmueller, T. and J. Dinardo (2002). Did community rating induce an adverse selection

death spiral? Evidence from New York, Pennsylvania, and Connecticut. The American

Economic Review 92 (1), 280–294.

Chaudhuri, A., K. S. Flamm, and J. Horrigan (2005). An analysis of the determinants of

internet access. Telecommunications Policy 29 (9), 731–755.

Chen, X., V. Chernozhukov, S. Lee, and W. K. Newey (2014). Local identification of non-

parametric and semiparametric models. Econometrica 82 (2), 785–809.

Chen, X. and D. Pouzo (2012). Estimation of nonparametric conditional moment models

with possibly nonsmooth generalized residuals. Econometrica 80 (1), 277–321.

Chernozhukov, V. and C. Hansen (2005). An iv model of quantile treatment effects. Econo-

metrica 73 (1), 245–261.

Chernozhukov, V., G. W. Imbens, and W. K. Newey (2007). Instrumental variable estimation

of nonseparable models. Journal of Econometrics 139 (1), 4–14.

Chiappori, P. and I. Komunjer (2009). On the nonparametric identification of multiple choice

models.

Clemens, J. et al. (2015). Regulatory redistribution in the market for health insurance.

American Economic Journal: Applied Economics 7 (2), 109–34.

Connelly, R. (1992). The effect of child care costs on married women’s labor force partici-

pation. The review of Economics and Statistics 74 (1), 83–90.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of

information technology. MIS Quarterly 13 (3), 319–340.

95



Deaton, A. (2010). Instruments, randomization, and learning about development. Journal

of economic literature 48 (2), 424–455.
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