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ABSTRACT OF THE DISSERTATION

Understanding Regional Ice Sheet Mass Balance: Remote Sensing, Regional Climate
Models, and Deep Learning

By

Yara Mohajerani

Doctor of Philosophy in Earth System Science

University of California, Irvine, 2019

Professor Isabella Velicogna, Chair

The Antarctic and Greenland ice sheets are experiencing significant mass change with het-

erogeneous spatial and temporal characteristics and global consequences such as sea level

rise affecting millions of people in low-lying coastal areas. Advances in large-scale satel-

lite remote-sensing, modeling, and machine learning have ushered a new era of improved

monitoring and understanding of these changes. In this dissertation, we analyze the mass

balance of glaciers across the ice sheets at basin and sub-basin scales using satellite gravi-

metric data from the Gravity Recovery and Climate Experiment (GRACE) mission using

a novel regionally-optimized mascon methodology, as well as Mass Budget Method (MBM)

estimates from grounding line discharge measurements and surface mass balance from re-

gional climate models. We find that Totten and Moscow University glaciers in the marine

sector of East Antarctica, with a total 5-meter sea level rise potential, have been losing mass

at a rate of 18.5±6.6 Gt/yr from April 2002 to August 2016. The MBM estimate obtained

with RACMO2.3p1 (Regional Atmospheric Climate Model version 2.3 part 1) is in excellent

agreement with GRACE at a sub-basin scale, while those obtained with RACMO2.3p2 and

MAR (Modèle Atmosphérique Régional) version 3.6.41 show less negative trends. These

results are robust with respect to Glacial Isostatic Adjustment (GIA) uncertainty. By ex-

tending this methodology to the Amery Ice Shelf drainage basin in East Antarctica, we find

xvi



this basin is in balance and is also in agreement with MBM/RACMO2.3p1 at a sub-basin

scale, while MBM/RACMO2.3p2 and MBM/MAR3.6.41 produce more positive trends. The

discrepancies shown by RACMO2.3p2 and MAR3.6.41 in these regions of East Antarctica

are attributed to larger mean monthly SMB magnitudes. By adjusting all models to have

the same mean magnitude as RACMO2.3p1, all MBM time-series fall into agreement with

the independent gravimetric data. Furthermore, we implement the regional optimization

approach in the Getz Ice Shelf drainage basin in West Antarctica, where previous studies

have shown disagreements between GRACE and MBM estimates, and find that by minimiz-

ing leakage in the GRACE estimate, all MBM estimates are in excellent agreement with the

gravimetric result. The Getz Ice Shelf basin is found to have a mass loss rate of 22.9±10.9

Gt/yr with an acceleration of 1.6±0.9 Gt/yr2 from April 2002 to November 2015 (the com-

mon time-period with the MBM estimates). We use an ensemble of 128,000 GIA forward

models to ensure the results are robust with respect to GIA uncertainty. Lastly, we focus on

improving the monitoring and understanding of glacier dynamics by implementing a deep

Convolutional Neural Network (CNN) to automatically delineate glacier calving fronts from

Landsat imagery on the Greenland Ice Sheet. By training the network on Jakobshavn, Sver-

drup, and Kangerlussuaq glaciers and testing it on Helheim glacier, we demonstrate that

the performance of the network is comparable to that of a human investigator, with a mean

CNN error of 1.97 pixels (96.3 meters) compared to a mean human error of 1.89 pixels (92.5

meters) on the same resolution images. Thus, we show that CNNs enable large-scale mon-

itoring of glacier dynamics across the globe, which offers new possibilities for an improved

understanding of the processes affecting the mass balance of glaciers. Ultimately, a better

understanding of the ice sheets is crucial for a better assessment of the effects of a changing

cryosphere and sea level rise around the globe.
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Chapter 1

Introduction

1.1 Background

The cryosphere – the portion of the Earth System with frozen water – composes up to 35%

of the world’s surface [Marshall, 2011]. This vast sub-system includes the polar ice sheets,

mountain glaciers, permafrost, snow cover, sea ice, lake and river ice, and even suspended ice

crystals in the atmosphere. The ice sheets are the most prominent component of all the land

ice. According to the official Glossary of Glacier Mass Balance and Related Terms [Cogley

et al., 2011], an ice sheet is defined as “An ice body that covers an area of continental size,

generally defined as covering 50 000 km2 or more”. At present the Earth contains two ice

sheets: The Greenland and Antarctic ice sheets. The Greenland ice sheet, covering an area

of 1.7 × 106 km2, contains 7.1 meters of sea level equivalent (the potential increase in sea

level if the mass of the entire ice sheet was added to the oceans). The Antarctic ice sheet

is much more massive with an area of 13.3 × 106 km2 and enough ice to raise sea level by

56.2 meters [Marshall, 2011]. While ice sheets encompass the continental-scale mass of ice,

individual glaciers are perennial bodies of ice that are massive enough to deform and flow as a
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viscoplastic fluid under the force of gravity [Marshall, 2011]. Given the global significance of

ice sheets and their large potential contribution to sea level rise, it is important to understand

the processes that control the mass balance of glaciers across the ice sheets.

The Mass Balance (MB) of the ice sheets is governed by the mass influx on the surface

through precipitation and out-fluxes as described below:

MB = SMB −D (1.1)

SMB refers to the Surface Mass Balance of the glacier, which is the sum of all the fluxes on

the surface of the ice. Formally, SMB is defined as:

SMB = snowfall + deposition−melt+ refreezing − sublimation (1.2)

(following Cuffey and Paterson [2010] where all deposition terms have been combined).

Secondly, D refers to ice discharge at the grounding line, which is the loss of ice mass due

to the flow of glaciers. While discharge is not an out-flux for land-terminating glaciers, it is

a significant component of the mass loss on the ice sheets (e.g. see Rignot et al. [2019]).

Not included in Equation 1.1 is melt at the base of the glacier due to friction and geothermal

heat flux. This term is significantly smaller than surface mass balance and discharge and

does not play an important role in the mass balance of ice sheets [Cuffey and Paterson, 2010].

The ice sheets have been losing mass at an accelerating rate in recent decades. The Antarctic

ice sheet has been losing an average of 109±56 Gt/yr from 1992 to 2017, leading to a total

of 7.6 ±3.9 millimetres of sea level rise [Shepherd et al., 2018]. The Greenland Ice Sheet lost

mass at a rate of 286±20 Gt/yr from 2010 to 2018, almost 6 times more mass loss than the

1980s [Mouginot et al., 2019]. Velicogna et al. [2014] found accelerations of -10.6±3.7 and
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-25.4±1.2 Gt/yr2 for the Antarctic and Greenland ice sheets, respectively. Given the vast

size of the ice sheets, the range of the processes affecting the mass balance, and the fast rate

of change, it is essential to bring together observational and analytical techniques to better

monitor and understand these changes across the ice sheets. There are three overarching

approaches to evaluating the mass balance of the ice sheets: 1) Gravimetric: directly measure

the change in gravity due to mass change; 2) Altimetry: measure the change in surface

elevation to infer mass change; 3) Mass Budget: use measurements and models to quantify

input and output mass fluxes. This dissertation focuses on the gravimetric and mass budget

methods, which are explained below. Furthermore, new developments in computer vision

and deep learning provide additional ways to analyze vast quantities of visual remote sensing

data to better understand the dynamics of glaciers. This is discussion in the last section.

Finally, we discuss the main objectives and the outline of the dissertation.

1.2 Gravity Recovery and Climate Experiment

The Gravity Recovery and Climate Experiment (GRACE) mission was launched in March

2002 as a collaboration between the German Space Agency (DLR) and the National Aero-

nautics and Space Administration (NASA) to provide monthly solutions of changes in the

Earth’s gravitational field [Tapley et al., 2019]. The GRACE mission provided the scientific

community with direct observations of mass change, from which changes in ice sheets and

glaciers, terrestrial water storage, ocean, and atmospheric dynamics could be inferred on

a monthly time-scale. GRACE was decommissioned in October 2017 [Tapley et al., 2019].

However, with the successful launch of the GRACE Follow-On (GRACE-FO) mission in

2018, the monthly gravity solutions continue to provide insights into changes of the earth

system [Tapley et al., 2019].

The GRACE mission was composed of a pair of twin satellites separated by a distance of
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220±50 km [Tapley et al., 2019]. At an altitude of 500 km, each twin satellite was equipped

with a microwave “K-band” ranging system for precise determination of the distance between

the two satellites. In addition, each satellite had a GPS (Global Position System) receiver,

altitude sensor, and accelerometer for non-gravitational forces on the surface [Tapley et al.,

2004]. In addition to these components, the GRACE-FO satellites are also equipped with

an experimental Laser Ranging Interferometer (LRI) that is 26 times more accurate than

the k-band system for measuring the inter-satellite distance [Tapley et al., 2019]. The twin

satellites experience gravitational anomalies by the change in the inter-satellite distance (the

range-rate data), as they fly over mass anomalies. As the satellites approach a positive mass

anomaly, the inter-satellite distance increases as the first satellite experiences a greater grav-

itational force along the direction of motion. As the satellites pass over the mass anomaly,

the first satellite decelerations as it is pulled back by the mass anomaly while the second

satellite speeds up towards the anomaly. Finally, once the satellites move passed the anomaly

along the orbit, the inter-satellite distance returns to normal. Thus, the range-rate data can

be used to produce monthly maps of the Earth’s gravitational field as the satellites orbit

around the planet.

The data processing is done through three primary centers: the Center for Space Research

(CSR) in Austin, Texas, NASA’s Jet Propulsion Laboratory (JPL), and the German Re-

search Centre for Geosciences (GFZ). These centers process the range-rate and auxiliary

data to provide monthly solutions at various levels of processing. Level-0 and Level-1A

represent raw or minimally processed data, such that the raw Level-0 data can mostly be

re-extracted from level-1A data. Level-1B (L1B) represents the processed range-rate data

with proper time tags and all the auxiliary data required for further processing. This level

of processing is not reversible for obtaining lower levels of data. Level-2 (L2) data provides

the monthly geoid field in the form of spherical harmonics. In this dissertation we work with

the spherical harmonic data to obtain regional estimates of mass balance.

4



The geoid, defined as an equipotential surface of the gravitational field corresponding to the

mean sea level, is conveniently expressed in spherical coordinates using spherical harmonic

sums [Wahr et al., 1998]:

N(θ, φ) = a
inf∑
l=0

l∑
m=0

P̃lmcos θ[Clm cos (mφ) + Slm sin (mφ)] (1.3)

where N is the geoid height, a is the radius of the Earth, θ is colatitude, φ, is longitude,

and P̃lm are normalized Legendre polynomials (see sections 1.7-1.8 of Hofmann-Wellenhof

and Moritz [2006]). Clm and Slm are the Stokes coefficients specifying the geometry of the

geoid. The time-variable gravity field measured by GRACE / GRACE-FO is expressed as

the change in the stokes coefficients (∆Clm and ∆Slm) to derive the monthly change in the

geoid.

Assuming most of the change in the gravity solutions are restricted to the surface of the

Earth on a short time-scale (due to the transport of mass on surface through processes such

as the transport of water), the corresponding change in mass density is given by [Wahr et al.,

1998]:

∆σ(θ, φ) =
aρavg

3

inf∑
l=0

l∑
m=0

2l + 1

1 + kl
P̃lmcos θ [∆Clm cosmφ+ ∆Slm sinmφ] (1.4)

where ρavg is the average density of Earth and kl is the Love number associated with the

additional solid Earth deformation due to the surface loading.

Note that while Equation 1.4 has an infinite sum, due to the limited resolution of the satellites

the harmonics are only provided up to degree (l) and order (m) 60. This roughly translates to
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a spatial resolution of 20,000
60

km ≈ 333 km [Swenson and Wahr, 2002]. This limitation leads

to a smoothed spatial field when the surface density is directly obtained from the global

Stokes coefficients. This smoothed and spatially-correlated field does not provide a true

isolated regional mass balance estimate at each point. Regional estimates of mass change

are obtained through several methods including averaging kernels (e.g. Velicogna and Wahr

[2006]), forward modeling (e.g. Chen et al. [2011]), as well as mascon processing. Here we

focus on the various mascon processing approaches.

The mascon approach for obtaining localized mass change estimates falls into two general cat-

egories: 1) simultaneous least-squares inversion in the spectral domain (from Level-2 data);

2) mascon inversion from range-rate (level-1 data). In the spherical harmonic approach, a set

of locally-defined regions or mascons are converted to the spectral domain assuming uniform

and unitary (1 unit) mass change. The mascons are simultanously regressed against the

global GRACE harmonics to find the mass of each mascon with the following cost function:

ε =
∑
l,m

[(
∆Cl,m(t)−

∑
i

Ci
l,mMi(t)

)2
+
(

∆Sl,m(t)−
∑
i

Si
l,mMi(t)

)2]
(1.5)

where the summation is over each mascon i with mass Mi. [Jacob et al., 2012].

Given the linearity of all the equations, the mass of mascon Mi can be related to the surface

density field by

Mi(t) =

∫
∆σ(θ, φ, t)Ai(θ, φ)r2 sin(θ)dθdφ (1.6)

Where Ai is the sensitivity kernel function, representing the mass being sampled by the

mascon [Jacob et al., 2012]. This approach relies on the fact that the mascons can be shown

to be orthogonal if the mass is distributed uniformly inside each mascon and zero outside.
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In other words, for two mascons i and j, we have

1

Sj

∫
sj

Ai(θ, φ) sin(θ)dθdφ = δi,j

Where S is the surface area of the mascon.

If the mass inside each mascon is not uniformly distributed, the kernels are not orthogonal

and the mascons can be contaminated by mass elsewhere on the ice sheet. Therefore, the

design of the mascons depends on a few important factors: firstly, the mascons should be

placed such that the mass change is roughly uniform inside and zero outside of the mascons.

Secondly, the size of the mascons depends on the signal-to-noise ratio in the data. Most of

the noise in the data are contained within the higher degree terms [Wahr et al., 2006], which

also contain the higher resolution spatial information. Therefore, the size of the mascons

should strike a compromise between the desired degree of spatial resolution and the noisy

higher degree harmonics.

While the harmonic approach provides more processing freedom to the user in terms of

regional optimization of the processing, there are also mascon products calculated directly

from the range-rate data from three different centers: the Center for Space Research (CSR),

the Jet Propulsion Laboratory (JPL), and the Goddard Space Flight Center (GSFC) mascon

solutions. JPL mascons use a weighted least-squares approach on a 3o spherical cap grid

with an a-priori covariance obtained from various observational and modeling outputs for

land hydrology, oceans, inland seas, land ice, earthquakes and glacial isostatic adjustment

[Watkins et al., 2015]. Additional processing such as the CRI (Coastal Resolution Improve-

ment) filter and gain factors are also provided for reduction of leakage [Wiese et al., 2016].

The Goddard mascons, presented in Luthcke et al. [2013] are also derived from range-rate

data in an iterative process with regional constraints. The oceanic, hydrological, and at-

mospheric constraints are obtained from forward modeling. The solution is provided on a
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set of 1o mascons. The fact that this is below the resolution of GRACE (≈330 km) means

that neighboring mascons are not fully separable and must be considered at a basin level in

light of the associated covariance matrix. Similarly, the CSR mascons are provided on a 1o

caps. These solutions are regularized with only GRACE data itself in a 2-step time-variable

regularization process [Save et al., 2016].

In addition to the processing of GRACE harmonics, there is the challenge of removing the

component of mass change from the solid earth. While GRACE measures the total mass

change in a given vertical cross section, we need to separate the surface ice mass change

signal from those below. As ice sheets change mass over millennia and the surface load

changes, the solid earth responds visco-elastically to the overhead mass change in a process

called Glacial Isostatic Adjustment (GIA) [Peltier and Andrews, 1976]. The GIA response

is calculated using forward models from the presumed history of ice loading, the viscoelastic

properties of the Earth, and present-day measurement constrains, such as GPS uplift rates

(e.g. see A et al. [2013]). In addition to global models, several regional models provide

ice-sheet specific optimized regional models (e.g. Ivins et al. [2013] and Whitehouse et al.

[2012] in Antarctica). The GIA response poses a particular challenge on the Antarctic Ice

Sheet, where the GIA response has a comparable magnitude to that of ice mass loss. Using

an ensemble of GIA models, Shepherd et al. [2018] estimated a mean GIA response of 54

Gt/yr with a standard deviation of 18 Gt/yr. An incomplete knowledge of ice history and

processing of low degree harmonics pose challenges to an accurate GIA assessment [Shepherd

et al., 2018]. Caron et al. [2018] have attempted to better quantify the uncertainty in GIA

estimates by obtaining a full probability distribution from 128,000 forward model runs to

capture the full covariance and the expectation value of the GIA response.
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1.3 Mass Budget and Regional Climate Models

Another methodology for quantifying the mass balance of glaciers is to evaluate the total

in and out fluxes (e.g. Rignot et al. [2008, 2011c, 2013, 2019]). As outlined in Equation

1.1, the mass balance is given by the surface mass balance (SMB) and discharge (D) terms.

While in-situ measurements of SMB exist in small areas of the ice sheets (e.g. Van de

Wal et al. [2012]), ice-sheet-wide observations of SMB are not available. However, regional

climate models constrained by reanalysis products at the boundaries are able to simulate

SMB at multi-kilometer scales across the ice sheets. Two such regional climate models are

the Regional Atmospheric Climate MOdel (RACMO) and Modèle Atmosphérique Régional

(MAR). RACMO, developed by the Royal Netherlands Meteorological Institute (KNMI)

simulates Antarctic SMB with a resolution of 27 km, with an addition of a high-resolution

5.5km model for the Antarctic Peninsula [van Wessem et al., 2018]. The corresponding

Greenland model is run at a resolution of 11 km [Noël et al., 2018]. RACMO uses the

dynamics of the High Resolution Limited Area Model (HIRLAM) [Undén et al., 2002] and a

multilayer snow model. The model is forced at the boundaries by the ERA-Interim reanalysis

[Dee et al., 2011] (and ERA-40 [Uppala et al., 2005] before 1979 in the case of Greenland) [van

Wessem et al., 2018, Noël et al., 2018]. MAR is also forced by ERA-Interim in Antarctica,

with additional runs available forced by MERRA-2 (Modern-Era Retrospective Analysis for

Research and Applications version 2) [Gelaro et al., 2017] and JRA-55 (Japanese 55-year

Reanalysis) [Kobayashi et al., 2015]. The Antarctic run is provided at a resolution of 35

km [Agosta et al., 2019]. The Greenland model, forced by ERA-40 (1958-1978) and ERA-

Interim (1979-), is provided on a 20 km resolution. MAR uses the SISVAT (Soil Ice Snow

Vegetation Atmosphere Transfer) surface model [De Ridder and Gallée, 1998], which includes

a multilayer energy balance model based on the CROCUS snow model [Brun et al., 1992,

Fettweis, 2007, Agosta et al., 2019].

The second component of the mass budget comes from measurements of discharge. A refer-
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ence flux is calculated from measurements of ice thickness and reference ice velocity. The flux

is then scaled based on ice velocity measurements at each time-step to produce the discharge

flux [Rignot et al., 2019]. Flux gates can also measure the discharge flux at the grounding

line [Rignot and Kanagaratnam, 2006]. Subtracting the total discharge at the grounding

line of the drainage basin of a glacier from the integrated SMB of the basin provides the

total mass balance of the glacier at each time step. By bringing together modeled SMB

products and discharge observations, the Mass Budget Method allows for a high-resolution

mass balance calculation of individual glaciers across the Greenland [Mouginot et al., 2019]

and Antarctic [Rignot et al., 2019] ice sheets.

1.4 Machine Learning in Cryospheric Remote Sensing

In addition to the aforementioned remote-sensing and modeling advancements in cryospheric

research, the ever-increasing wealth of data demands new approaches in the analysis and

interpretation of the data. For example, Landsat satellites have been gathering images of

the Earth since the launch of Landsat-1 in July of 1972 with a repeat cycle of 16 to 18 days

[Survey, 2015]. This visual imagery database provides an invaluable resource for a better

understanding of the behavior and dynamics of glaciers across the globe. Furthermore, with

the current advent of more numerous and higher resolution remote-sensing satellites such as

ICESat-2 (laser altimetry) [Markus et al., 2017], Sentinel-1 (synthetic aperture radar) [Potin

et al., 2018], Landsat-8 [Roy et al., 2014], and smaller scale CubeSat constellations [Gogineni

et al., 2018], it is a challenge to fully utilize the ever-increasing stream of data for scientific

purposes. Nevertheless, these finer scale observations provide unique information that is not

available with the larger scale observations such as GRACE gravity data or basin-scale mass

budget data. For example, high resolution images of glacier calving fronts provide valuable

information about the location of the glacier front over time. As glaciers advance and

10



retreat over time, the precise mapping of the calving front highlights the accumulation and

ablation processes acting on the glacier. Understanding the effect of ice-ocean interaction, a

major driver of ice mass loss, utilizes such mapping information (e.g. Rignot et al. [2016]).

Furthermore, the temporal resolution of the mapping information is crucial for a better

understanding of glacier dynamics, such as understanding the seasonal dynamics of tide-

water glaciers in Greenland [Wood et al., 2018]. However, much of this work relies on

manual procedures in Graphical Information Systems (GIS), such as the delineation of glacier

calving fronts from hundreds of remote-sensing products. The limited scalability of the

current procedures, combined with the expanding wealth of remote-sensing data has posed

a challenge for new approaches to monitoring and understanding cryospheric processes at

higher temporal and spatial resolutions across many products.

Developments in machine learning and artificial intelligence have, for the first time, allowed

us to match the scalability of data with that of interpretation. In particular, the utilization of

neural networks in computer vision has produced remarkable success. Classification of images

with neural networks has even been shown to surpass human performance in some cases [He

et al., 2015]. Artificial neural networks, roughly inspired by their biological counterparts, are

a connected network of nodes where each “neuron” gets a set of numerical inputs from the

previous layer of neurons, and calculates a new output based on a learned threshold or bias

and a given activation function. This is illustrated by a simple three layer network in Figure

1.1. The red node receives two inputs from the previous layer, x1 and x2, weighted by w1 and

w2 respectively. Given a bias b, the node has an input value of z =
∑

i(xiwi) + b. Finally, an

activation function produces the output of the unit given f(z) [LeCun et al., 2015]. Various

activation functions are used in neural networks, such as the Sigmoid, hyperbolic tangent

[Karlik and Olgac, 2011], and Rectified Linear Units (ReLU) [Nair and Hinton, 2010]. The

activation function applies nonlinear transformations to the outputs of the network at each

layer such that an elaborate function can be learned by the network through the adjustments

of the weights and biases using an optimization method such as stochastic gradient descent
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[LeCun et al., 2015]. Many neural network architectures have been developed for a variety of

tasks. Of particular importance to computer vision is the class of neural networks known as

Convolutional Neural Networks (CNNs). These networks are composed of a series of kernels

that are convolved across an image to extract features from different layers of the input

data, combined with pooling layers that combine patches of the image into one, thereby

course-graining the detected features and ensuring location-invariance of features within

small patches [LeCun et al., 2015]. CNNs provide a way to extract features from remote-

sensing products at a scale that is not achievable by human performance. With a stream

of images of glaciers around the globe, such tools can help us quantify the position of the

calving front and other desired quantities on a short temporal scale to better understand the

seasonal or interannual processes that affect the dynamics of glaciers.

1.5 Objectives and Outline

This research focuses on the remote sensing of the ice sheets and refined observations and

analyses to better assess regional mass balance and improve understanding of the governing

processes. Specifically, the objective is to evaluate the regional mass balance of glaciers at

basin and sub-basin scales, evaluate regional climate models and understand any disagree-

ments, and examine glacier fronts at a high temporal resolution to better understand calving

dynamics at seasonal or longer timescales across the ice sheets. To that end, the technical ob-

jectives are to 1) regionally optimize the GRACE mascon processing as described in section

1.2 based on the local characteristics to obtain meaningful basin and sub-basin estimates,

2) Evaluate corresponding sub-basin mass balance estimates with the Mass Budget method

(section 1.3) with different regional climate models to examine SMB differences, 3) Utilize

neural networks in the remote sensing of glaciers to examine glacier calving fronts at scale.

In light of these objectives, this dissertation is divided into three chapters. Chapter 2 uses

12



regionally-optimized GRACE mascons to evaluate the mass balance of Totten and Moscow

University glaciers in East Antarctica, and compare with independent estimates from the

Mass Budget method using RACMO2.3 and MAR3.6.4 regional climate models. The full

work can be found in Mohajerani et al. [2018].

Chapter 3 expands on the work presented in Chapter 2 by presenting regional mascon opti-

mization for other key areas on the Antarctic ice sheet where the Mass Budget has higher

uncertainty. Namely, we examine the mass balance of the Amery ice shelf basin in East

Antarctica and the Getz ice shelf basin in West Antarctica. With an improved methodology,

we examine potential biases in the regional climate models (RACMO2.3p1, RACMO2.3p2,

and MAR3.6.4) in the Amery, Getz, and Totten/Moscow University basins. This research

is currently submitted for publication.

Chapter 4 focuses on delineating the calving front of glaciers on the Greenland ice sheet using

Convolutional Neural Networks (CNNs). Specifically, we focus on Jakobshavn, Sverdrup,

Kangerlussuaq, and Helheim glaciers, where we show the delineations of the neural network

are comparable to manual delineation by experts. The full report is accessible in Mohajerani

et al. [2019b].

Finally, Chapter 5 provides a summary and conclusion of the presented work, the broader

implications, and future work. Note that Chapters 2 to 4 are taken from the corresponding

publications, with the permission of the publishers.
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Figure 1.1: Simple representation of a three-layer neural network. The red node receives two
weighted inputs and calculates an output based on a learned bias and and given activation
function.

14



Chapter 2

Mass loss of Totten and Moscow

University glaciers, East Antarctica,

using regionally-optimized GRACE

mascons

As Appears in:

Mohajerani, Yara, Isabella Velicogna, and Eric Rignot. “Mass Loss of Totten

and Moscow University Glaciers, East Antarctica, Using Regionally Optimized

GRACE Mascons.” Geophysical Research Letters 45.14 (2018): 7010-7018. doi:

10.1029/2018GL078173.
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Abstract

Totten and Moscow University glaciers, in the marine-based sector of East Antarctica, con-

tain enough ice to raise sea level by 5 meters. Obtaining precise measurements of their mass

balance is challenging owing to large area of the basins and the small mass balance sig-

nal compared to West Antarctic glaciers. Here, we employ a locally-optimized processing of

GRACE harmonics to evaluate their mass balance at the sub-basin scale and compare the re-

sults with Mass Budget Method (MBM) estimates using regional atmospheric climate model

version 2.3 (RACMO2.3) or Modèle Atmosphérique Régional version 3.6.4 (MAR3.6.4). The

sub-basin mass loss estimate for April 2002 to November 2015 is 14.8±4.3 Gt/yr, which is

weakly affected by glacial isostatic adjustment uncertainties (±1.4 Gt/yr). This result agrees

with MBM/RACMO2.3 (15.8±2.0 Gt/yr), whereas MBM/MAR3.6.4 underestimates the loss

(6.6±1.6 Gt/yr). For the entire drainage, the mass loss for April 2002 to August 2016 is

18.5±6.6 Gt/yr, or 15±4% of its ice flux. These results provide unequivocal evidence for

mass loss in this East Antarctic sector.

Plain Language Summary

Totten and Moscow University glaciers in East Antarctica drain a marine-based sector that

holds an ice volume equivalent to several meters of global sea level rise. Recent observations

of warm water intrusion on the continental shelf suggest that the glaciers may be changing

in response to ocean warming. Understanding this glacier evolution is therefore of global

significance. Measurements are difficult to obtain in this region due to the shear size of

the basins and small rate of mass loss compared to other parts of Antarctica. To resolve

this problem and evaluate independent estimates, we present a new methodology to process

Gravity Recovery and Climate Experiment satellite gravity data that is optimized at the
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regional scale for these basins. Our results are in excellent agreement with independent

estimates and provide unequivocal evidence that these glaciers have been losing mass rapidly

for the past 15 years. We also compare different reconstructions of surface mass balance and

determine that one model significantly underestimates the mass loss in this sector. A similar

approach would be applicable to other parts of Antarctica to resolve residual uncertainties

in its mass budget and contribution to sea level rise.

2.1 Introduction

The Antarctic Ice Sheet (AIS) has been losing mass at a mean rate of 67±44 Gt/yr for

the time period January 2003 to December 2013, with an acceleration of 10.6±3.7 Gt/yr2

[Velicogna et al., 2014]. Most of this mass loss originates in West Antarctica (WAIS) and the

Antarctic Peninsula (APIS) [Rignot et al., 2008]. Shepherd et al. [2012] found that WAIS and

APIS lost 65±26 and 20±14 Gt/yr between 1992 and 2011, while East Antarctica (EAIS)

gained 14±43 Gt/yr. There are, however, large drainage sectors in East Antarctica that

exhibit a significant mass loss and hold potential for major sea level rise. In particular,

Totten Glacier has a sea level rise potential of 3.9 m [Li et al., 2015] versus 3.3 m for the

entire marine sector of West Antarctica [Bamber et al., 2009]. Totten is the largest outlet

glacier in East Antarctica [Li et al., 2016, Pritchard et al., 2009] in terms of its grounding line

discharge of 71±3 Gt/yr between 2003 to 2008 [Rignot et al., 2013]. Li et al. [2016] reported

a significant mass loss for this glacier and linked its temporal variability to changes in oceanic

forcing from warm, modified, circumpolar deep water (mCDW) coming in contact with the

glacier. The glacier has been thinning rapidly, up to 1.9 m/yr at low elevation between

2003 to 2007 [Pritchard et al., 2009]; however, a period of cold polynya water production

that reduced intrusion of warm water beneath the ice shelf reduced thinning [Khazendar

et al., 2013]. The nearby Moscow University Ice Shelf Glacier - or Moscow University - has
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a grounding line flux of 52.3±1 Gt/yr [Rignot et al., 2013]. The glacier is marine based

[Young et al., 2011] and contains 1.3 m sea level rise equivalent; however, evidence for ice

thinning is less strong for Moscow University [Pritchard et al., 2009]. Actual ice shelf basal

melt rates for the time period 2003-2008 are about half (4.7±0.8 m/yr) of those estimated

for Totten (10.5±0.7 m/yr) [Rignot et al., 2013].

Recently, intrusion of warm (+0oC to +0.5oC), salty, mCDW was found at the entrance

of the sub-ice-shelf cavity in front of Totten Glacier [Silvano et al., 2017]. This relatively

warm mCDW is present year round and fuels intensified ice shelf melt rates of magnitudes

almost comparable to those observed in the Amundsen Sea Embayment of West Antarctica.

Oceanic wind stress upwells mCDW at the continental shelf break near the Totten ice tongue,

modulating its melt rate with a 19-month lag period [Greene et al., 2017]. Spence et al. [2014]

showed that the projected strengthening and poleward shift of southern hemispheric westerly

winds under a more positive Southern Annular Mode (SAM) phase can induce significant

warming of subsurface coastal waters, suggesting an acceleration in ice shelf melt in the

future. Due to the vulnerability of these glaciers to enhanced mCDW intrusion in the future

and its potential for considerable sea level rise, it is critical to evaluate, understand, and

monitor the mass changes of these glaciers and ice shelves.

Gathering measurements in these two basins is difficult for a number of reasons. First, the

glaciers have smaller rates of mass loss compared to their fast-moving counterparts in West

Antarctica [Rignot et al., 2013], which reduces the signal-to-noise ratio when estimating

mass balance. Second, the glaciers are difficult to access to airborne surveys and cover a

large area, especially Totten Glacier (537,900 km2 [Li et al., 2015] versus 221,600 km2 for

Moscow University). Third, there is a lack of reference velocity near the glacier fronts for

ice motion measurements, so that reference velocities required for calibration of ice motion

maps must be taken from the ice divides, hundreds of kilometers away inland, yielding long

calibration baselines [Li et al., 2016]. Fourth, strong katabatic winds and pronounced gradi-
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ents in snowfall accumulation along the coast compared to the rest of East Antarctica make

measurements from satellites challenging because of rapidly changing surface conditions [Li

et al., 2016]. It is therefore important to obtain and compare independent estimates of the

mass balance to gain confidence in the results and reduce uncertainties.

Li et al. [2015] documented a 3-km grounding line retreat of Totten Glacier between 1996

and 2013 with InSAR (Interferometric Synthetic-Aperture Radar) data. Li et al. [2016]

combined estimates of ice discharge with surface mass balance (SMB) data from the RACMO

2.3 regional atmospheric climate model [Van Wessem et al., 2014] to report a mass loss of

6.8±2.2 Gt/yr, with an acceleration of 0.55±0.27 Gt/yr2 for the time period 1989 to 2015.

The trend is dominated by the dynamic loss (73%), but the acceleration is almost entirely

due to SMB (80%). The Mass Budget Method (MBM) study is limited by the precision of

the SMB models in this region and by a time series of only 13 ice velocity measurements

from 1989 to 2015.

These limitations are partly overcome by comparing the results with monthly gravity data

from the Gravity Recovery and Climate Experiment (GRACE) satellite [Tapley et al., 2004],

which is not affected by the uncertainty of SMB models and provides data on a monthly

basis. GRACE estimates are provided at a coarse spatial resolution, however, due to the

truncation of spherical harmonics at degree 60, or 333 km [Wahr et al., 1998]. This coarse

resolution makes it difficult to derive basin-scale estimates of mass balance, especially if

the change signal is small. A few studies have used GRACE data to study the Totten

area. Chen et al. [2009] used a forward-modelling scheme to estimate the mass balance of

Antarctica as the sum of nine uniform areas of large change plus the remaining area of the

continent. For Wilkes Land, they found an ice loss rate of 13.4 Gt/yr for the period 2002

to 2009. More recently, Williams et al. [2014] used an AR1 autoregressive model to yield a

mass change of only 0.52±0.98 Gt/yr with no significant acceleration near Totten Glacier
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for the period March 2003 to July 2012. In contrast, Velicogna et al. [2014] used a uniform

spherical cap least-squares fit method to estimate the mass loss of the larger domain of

Totten/Moscow/Frost (TMF) sector at 17±4 Gt/yr, with an acceleration of 4.0±0.7 Gt/yr2

for the period January 2003 to December 2013.

In this study, we employ an optimized regional spherical cap basis to recover a regional time-

series at the sub-basin level in the Totten/Moscow area. The goal is to reduce the uncertainty

of the mass balance estimates and compare them with the MBM to improve confidence in the

results. Our methodology optimizes the signal retrieval over relatively small areas, where the

mass loss signal is the strongest, and fully quantifies the errors, especially those associated

with the leakage of the mascons. We compare MBM estimates using two SMB models to

evaluate the SMB models using GRACE. We conclude on the mass balance of the Totten

and Moscow University glaciers using these multiple estimates.

2.2 Data and Methodology

GRACE data: We use GRACE spherical harmonics of up to degree and order 60 provided

in the RL05 solution from the Center for Space Research (CSR) at the University of Texas

[Bettadpur, 2012]. Degree 1 harmonics, which are not measured in GRACE’s center-of-mass

frame, are calculated from the Ocean Model for Circulation and Tides (OMCT) that is

already removed from the GRACE harmonics [Dobslaw et al., 2013] following Swenson et al.

[2008]. In our calculation of degree 1, we destripe [Swenson and Wahr, 2006] and smooth

the harmonics with a 300 km Gaussian smoothing filter (as described by Wahr et al. [1998]),

apply pole-tide correction [Wahr et al., 2015], and subtract the Glacial Isostatic Adjustment

(GIA) signal from three different models: 1) IJ05 [Ivins et al., 2013], 2) AW13 (A et al.

[2013] combined with IJ05 in Antarctica) and 3) W12a [Whitehouse et al., 2012]. We use

an ocean function that extends 300 km from the coast. We solve the geocenter iteratively,
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starting from an initial estimate for ocean-land fluxes from Chen et al. [1999]. We replace the

C2,0 (degree 2, order 0) harmonic by monthly solutions obtained from satellite laser ranging

(SLR) estimates [Cheng et al., 2013] both for the calculation of the geocenter term and for

all subsequent calculations.

Spherical caps: To get regional estimates, we perform a simultaneous least-squares fit

of the corrected spherical harmonics to spatially-defined mascons as in Jacob et al. [2012].

These spatially-defined regions form an orthogonal basis that allows us to transform the

spherical harmonics into independent regional time-series. The key to obtaining regional

time-series is to find an optimized basis for a given area. We use the spherical cap formalism

outlined in Sutterley et al. [2014]. We assume that each cap has a uniform unitary mass

distribution, which is converted into the harmonic domain and smoothed with a 250 km

Gaussian filter [Wahr et al., 1998]. By simultaneously fitting the corrected GRACE harmon-

ics to the spherical caps, we get a coefficient for each cap, which allows us to evaluate the

regional time-series. In contrast to using uniform mascons, we optimize the size and position

of the spherical caps for the Totten/Moscow drainage basin. The size of a spherical cap is a

compromise between the desired spatial resolution and the minimization of leakage and mea-

surement errors. The noisy higher degree harmonics tend to increase the measurement error

as the size of the caps decreases. Where we have a large signal-to-noise ratio, e.g. in areas of

large mass loss in the lower reaches of Totten Glacier, we select smaller caps since the signal

will not be masked by higher noise levels. With variable sized caps, we minimize the ringing

that results from the truncation of the spherical harmonics (e.g. Swenson and Wahr [2002]).

To avoid the resulting leakage, both the size and position of the caps need to be optimized.

To have truly orthogonal caps in the harmonic domain, the sensitivity kernel described in

Jacob et al. [2012] needs to be 1 inside and 0 outside the cap. To optimize the spherical cap

basis at a sub-basin level, we place smaller caps on regions of fast change, minimize the gap

between the spherical caps, and position the caps to have more or less uniform change inside

each cap. To do this, a 3-layer hexagonal grid is used to inscribe caps of diameters 2.7◦, 2.9◦,
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and 3.2◦. The sizes are experimentally determined to take advantage of the signal to noise

ratio where there is large mass change while maintaining reasonable errors. The geometry of

the caps is optimized to avoid leakage into or out of the Totten/Moscow glacier basin. The

spherical cap configuration is shown in panel (a) in Figure 2.1.

We follow the procedure of Velicogna and Wahr [2013] to calculate the leakage error for a

given area of interest. We divide a synthetic field spatially into individual mascons, convert

them to harmonics, and perform a least-square regression with the spherical caps to see how

much signal is recovered. We perform the test in two ways: 1) fit each individual synthetic

mascon separately to see how much signal is recovered; and 2) fit all other mascons to see

how much signal leaks into the mascon of interest. We take the larger value as our leakage

error. For the synthetic field, we use SMB values from the RACMO2.3 regional climate

model [Van Wessem et al., 2014], and dynamic losses linearly spread as a function of speed

and thickness [Rignot et al., 2011b]. To quantify the land/ocean leakage, we scale the sea

level fingerprint of the sub-region of interest [Hsu and Velicogna, 2017, Farrell and Clark,

1976] with our GRACE-derived mass change and assume a 100% error in the leakage as

a conservative estimate. Note that the GRACE harmonics have atmospheric and oceanic

components removed from them [Swenson et al., 2008], and as such the non-zero sensitivity

kernel [Jacob et al., 2012] of the mascons over the ocean does not contribute significantly to

our estimates. We quantify the ocean-to-land leakage by fitting the GRACE-derived ocean

signal coefficients (representing ocean bottom pressure) to our mascons and assume 100%

error in the signal [Velicogna and Wahr, 2013]. We also use monthly ocean bottom pressure

from the Estimating the Circulation and Climate of the Ocean (ECCO) [Wunsch et al.,

2009] model, convert them to harmonics of degree and order 60 and fit them to our Totten

mascons. Taking the difference between the ECCO and GRACE-derived ocean leakages as

an error estimate decreases the total error in mass loss by 0.1 Gt/yr. We use the largest of

the two error estimates, i.e. we assume the leakage error is as large as the correction.

22



Mass Budget Method: To compare our estimates with independent data, we use the

MBM estimates from Li et al. [2016] for Totten, where the total mass balance is SMB

minus the grounding line ice flux. For Moscow University, we employ a similar approach,

calculating mass fluxes from 1989 to present using ice motion measurements from various

satellite data with ice thickness data from Operation IceBridge. We use SMB data from

RACMO2.3 [Van Wessem et al., 2014] and MAR3.6.4 [Gallée et al., 2013] extending from

January 1979 to December 2015. Cumulative SMB is calculated over the drainage area using

a reference period of January 1979 to December 2008 [Shepherd et al., 2012]. Total mass is

calculated as the difference between cumulative SMB and cumulative discharge. The choice

of the reference period does not affect the MBM results because the same value is subtracted

from both the anomalies in surface mass balance and discharge. SMB errors are calculated

assuming a 6.1% error in monthly values as in [Li et al., 2016]. Ice discharge errors are

calculated as fixed rates from the sum of percentage errors in thickness and speed, scaled

by the long-term flux [Li et al., 2016]. The monthly discharge errors are 2.6 Gt/yr and 2.1

Gt/yr for Totten and Moscow University glaciers, respectively, which are added cumulatively

in the time-series. The MBM time-series only extends to November 2015.

When comparing the MBM estimates to our sub-basin GRACE results, we integrate SMB

values only within the area covered by the mascons of interest to have comparable quantities.

Grounding line flux anomalies are calculated with respect to the mean discharge of the

entire basin for the reference period. We assume that most of the areas outside of the

sensitivity kernel are not contributing to dynamic thinning of the glacier, in accordance with

altimetry studies which show ice thinning only at low elevation, along fast-moving portion

of the glaciers with ICESat [Khazendar et al., 2013, Pritchard et al., 2009] and Cryosat-2

[McMillan et al., 2014]. We also calculate than the average ice velocity of the glaciers over

the sub-basins of interest is about 14 times larger than for the rest of the basin.
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2.3 Results

While the resolution and signal-to-noise ratio of GRACE data do not allow time-series to be

extracted from single caps, the most optimal sensitivity kernels are found for the triple-cap

configurations 1-6-7 and 1-5-7 (see cap numbers in Figure 2.1). Both of these configurations

pick up signal from the nearby Moscow University as well, especially 1-6-7. By examining the

sensitivity kernels with respect to the drainage basins, we conclude that while 1-5-7 is more

concentrated on Totten itself, it picks up a fraction of the signal from Moscow University,

which makes the results more difficult to interpret. Therefore, we pick 1-6-7 for the rest of

the sub-basin analysis and consider both Totten and Moscow University glaciers together.

The sensitivity kernel of this configuration superimposed on top of drainage Cp-D and ice

velocity (see Rignot et al. [2011b], Rignot et al. [2017]) is shown in Fig 1b.

We compare the optimized GRACE time-series with the MBM estimates over the sub-region

defined by our caps (Fig. 1b and 2a). The monthly GRACE error is 33 Gt for the three

caps combined. The annual MBM error is 6 Gt/yr Li et al. [2016], which translates into

a monthly error of 21 Gt. The annual MBM error does not change significantly with time

during the study period. The AW13 and W12a time-series produce slightly more negative

trends that IJ05, but the difference is within errors. The results range from 14.8±4.3 Gt/yr

to 17.7±4.1Gt/yr for the period April 2002 to November 2015. More important, the GRACE

time-series are in excellent agreement with the MBM time-series obtained with RACMO2.3

at 15.8±2 Gt/yr. The MBM time series using MAR3.6.4 shows a smaller trend of 6.6±2

Gt/yr (Table 2.1). Note that we include the autocorrelation of the residuals when calculating

the regression error. The sub-basin estimates are focused in areas with the stronger signal,

allowing for smaller mascons.

Farther inland, we experience more leakage from the surrounding areas and get a noisier

signal. We compare the MBM trends for the entire drainage basins vs the sub-basin area
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sampled by caps 1-6-7 to evaluate the proportion of the mass change that is sampled by our

sub-basin configuration. Using RACMO2.3 and MAR3.6.4, we find that we recover about

81.0±2.6% and 70.7±4.4% of the Totten basin, respectively, and 68.7±3.1% and 64.1±6.0%

of the Moscow University basin, respectively. The basin-wide estimates for the Totten and

Moscow University glaciers are obtained by adding up mascons 1,2,4,6,7,129,130, and 131.

As expected, this time-series has larger errors, with estimates ranging from 17.4±6.1 Gt/yr to

18.7±6.4 Gt/yr. The basin-wide MBM trend obtained from RACMO2.3 at 20.6±3 Gt/yr is

in good agreement with the GRACE estimates, although the trend obtained from MAR3.6.4

(9.5±2 Gt/yr) is also within uncertainty for the AW13 and W12a GIA model estimates

(Table 2.1 and Figure 2.3).

For the period April 2002 to August 2016, we consider a linear model based on the Akaike

information criterion (AIC) Burnham and Anderson [2004] with annual and semi-annual

components. We obtain a trend in mass loss of 18.5±6.6 Gt/yr using IJ05 GIA for the entire

Totten and Moscow University basins. For the sub-basin, the trend is 14.6±4.1 Gt/yr. We

take into account the autocorrelation of the residuals with an AR1 model for the residuals,

which gives us an autocorrelation coefficient of 0.08±0.04. The error in the autocorrelation

coefficient is found by a bootstrapping method where random Gaussian errors with a stan-

dard deviation equal to the satellite measurement error are introduced into the time-series

and the spread in coefficient was found within 50 iterations. The trends and the associated

errors obtained from the optimized spherical cap solutions for the sub-basin and basin-wide

estimates are outlined in Table 2.1.

2.4 Discussion

Our results indicate a remarkable agreement at the 5% level between the optimized GRACE

time-series using IJ05 GIA and the MBM time-series with RACMO2.3 at a sub-basin scale.
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The trends for the period April 2002 to November 2015, as reported in Table 2.1, with all

GIA models, are within error of the MBM trend obtained using RACMO2.3. The results

obtained from AW13 and W12a in the Totten and Moscow University drainage basins are

also in agreement, although slightly more negative than for the IJ05 time-series. While all

estimates agree within error, IJ05 display the best agreement with the MBM estimates using

RACMO2.3.

The MBM estimates obtained with MAR3.6.4 underestimate the mass loss in these two

drainage basins, with the sub-basin trends falling outside of uncertainty bounds. Given

that the same reference mean is subtracted from the surface mass balance and discharge

time-series in the calculation of cumulative anomalies, we attribute the difference between

the MBM time series to a low-bias in MBM/MAR3.6.4 cumulative ice loss in this region.

Spatial differences in trend between the two SMB models (Figure 2.4) reveal that MAR3.6.4

shows less negative trends in cumulative surface mass balance close to the grounding line.

The same conclusion may not apply to other basins.

The basin-wide estimates of mass change have a larger leakage error from the surrounding

areas than the sub-basin estimates. The GIA uncertainty increases as we include more

interior regions in the estimate. The IJ05 GIA error increases from 0.87 Gt/yr for the

sub-basin estimate to 3.13 Gt/yr for the basin-wide estimate, or 360%. The drainage-basin

estimates are still in agreement with the MBM estimates. For the common period between

April 2002 to November 2015, the GRACE estimate is a mass loss of 18.6±6.4 Gt/yr using

IJ05 GIA versus MBM estimates of 20.6±2.7 Gt/yr and 9.5±2.1 Gt/yr with RACMO2.3 and

MAR3.6.4, respectively. While showing smaller losses over the entire drainage, MAR3.6.4 is

within error of the AW13 and W12a GRACE time-series.

Few studies have evaluated SMB models in this part of Antarctica. Wang et al. [2016] used

in-situ data to evaluate precipitation - evaporation/sublimation from global reanalyses and

regional climate models including RACMO2.1 and RACMO2.3, but not MAR3.6.4. They

26



found that RACMO2.3 shows the best agreement with in-situ measurements over the whole

ice-sheet and in particular over the coastal sector Cp-D of the Totten and Moscow University

drainage basins, which provides independent support to our findings. Velicogna et al. [2014]

reported a good agreement between GRACE and RACMO2.3 cumulative SMB anomalies in

the larger Totten-Moscow-Frost area, but the study did not take ice discharge into account

and did not evaluate other SMB models. Gallée et al. [2005] evaluated MAR along the

Wilkes Land transect in the vicinity of the Totten and Moscow University drainage basins

and found discrepancies with in-situ measurements in precipitation and wind transport at

different locations.

The use of regionally-optimized variable spherical caps for the processing of GRACE har-

monics allows us to reconcile up-to-date estimates of the mass balance of Totten and Moscow

University glaciers. Our results suggest a state of negative mass balance, with multiple lines

of evidence. With this approach, we evaluate the performance of SMB models and identify

a bias in the long-term SMB values from MAR3.6.4. The agreement indirectly provides ad-

ditional confidence to the MBM results of Li et al. [2016]. Our findings are weakly affected

by the uncertainties in the GIA correction. Even for the basin-wide estimates where the

GIA errors are larger, the GIA errors do not affect the agreement between GRACE and

MBM estimates. We recommend that a similar approach be employed in other basins of

Antarctica where the mass balance signal is small and not well constrained by observations.

The approach also provides a pathway to evaluate and compare various SMB models.

Our study illustrates that even though the whole-basin estimates are most useful to inform

us about the total contribution of each basin to sea level rise, the sub-basin analysis enables

a more refined comparison, with lower uncertainties, of various estimates of the mass loss. A

comparison at the sub-basin level hence provides more opportunities to interpret differences

between models, here caused by a difference in the long-term average SMB between models.

The study demonstrates that the sub-basin approach with optimized spherical caps helps
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evaluate mass balance over small areas, with low errors because we focus on the areas with the

largest signal. This methodology could be applied to similarly small parts of the ice sheets.

More broadly, our approach could be used in geophysics and hydrology, e.g. to evaluate

ground water withdrawal more precisely over a small region. Data from the GRACE Follow-

On (FO) [Flechtner et al., 2014] mission will likely improve the quality of sub-basin estimates

due to the expected lower noise levels of GRACE-FO than with GRACE.

2.5 Conclusions

We use a set of regionally optimized spherical caps to evaluate the mass balance of the Totten

and Moscow University glaciers, East Antarctica using GRACE harmonics at the sub-basin

and entire basin scales. The spherical cap basis is designed from the signal to noise ratio and

the geometry of mass change to extract regional time series with the lowest error. We find

a good agreement with the MBM estimates using the RACMO2.3 SMB model, independent

of the GIA corrections, whereas the MAR3.6.4 results yield an underestimation of the mass

loss in the sub-basin region. MAR3.6.4 is within error for the whole basin with W12a and

AW13 GIA corrections, but not with IJ05. For the entire Totten and Moscow University

basins, the trend is 18.5±6.6 Gt/yr using IJ05 for the period April 2002 to September 2016.

Our results provide reduced uncertainties and higher confidence that the Totten/Moscow

sector of East Antarctica has been losing mass relatively rapidly in the last 15 years. We

recommend that a similar sub-basin approach using optimized spherical caps be used over

other parts of Antarctica where independent mass balance methods must be compared or in

Greenland at the regional scale.
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Table 2.1: GRACE trends and corresponding errors obtained for the Totten/Moscow Uni-
versity glaciers and comparison with the MBM estimates at the sub-basin and whole-basin
scales. Leakage Error refers only to the mascon-to-mascon leakage error quantified by a
synthetic field on land, while Ocean Leakage refers to the full ocean/land leakage deter-
mined from GRACE GAD coefficients. GRACE = Gravity Recovery and Climate Experi-
ment; RACMO2.3 = regional atmospheric climate model version 2.3; MBM = mass budget
method.

Trend
[Gt/yr]

Total
Error

[Gt/yr]

Leakage
Error

[Gt/yr]

Regression
Error

[Gt/yr]

Ocean
Leakage
[Gt/yr]

GIA
Error

[Gt/yr]
Sub-Basin Estimates
04/2002 - 08/2016

GRACE (IJ05) -14.6 4.1 2.9 2.5 0.9 0.9
GRACE (AW13) -17.2 4.0 2.8 2.5 0.9 0.8
GRACE (W12a) -17.5 3.9 2.8 2.5 0.9 0.8
04/2002 - 11/2015

GRACE (IJ05) -14.8 4.3 3.0 2.7 1.0 0.9
GRACE (AW13) -17.5 4.2 2.9 2.7 1.0 0.8
GRACE (W12a) -17.7 4.1 2.8 2.7 1.0 0.8
MBM (MAR3.6.4) -6.6 1.6
MBM (RACMO2.3) -15.8 2.0
Whole-Basin Estimates
04/2002 - 08/2016

GRACE (IJ05) -18.5 6.6 5.2 2.4 0.5 3.1
GRACE (AW13) -17.6 6.3 5.0 2.4 0.5 2.8
GRACE (W12a) -17.3 6.3 4.9 2.4 0.5 3.1
04/2002 - 11/2015

GRACE (IJ05) -18.6 6.8 5.3 2.7 0.4 3.1
GRACE (AW13) -17.7 6.4 5.1 2.7 0.4 2.8
GRACE (W12a) -17.4 6.4 4.9 2.7 0.4 3.1
MBM (MAR3.6.4) -9.5 2.1
MBM (RACMO2.3) -20.6 2.7
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Figure 2.1: a) Spherical cap basis used to derive sub-basin regional estimates of the mass
balance of Totten and Moscow University glaciers, East Antarctica using GRACE data. Caps
are inscribed in a 3-layer hexagonal grid with diameters 2.7◦ (dark grey), 2.9◦ (light grey),
and 3.2◦ (white). Black lines show Antarctic drainage basins (see Rignot et al. [2011b])
Red lines show the Totten and Moscow University glacier basins. The caps used for the
sub-basin estimates are labelled with bold bright green numbers. b) Sensitivity kernel for
configuration 1-6-7 superimposed on ice velocity [Rignot et al., 2011b, Mouginot et al., 2012,
Rignot et al., 2017]. Grey lines show the major Antarctic drainage basins as in a. Black
lines show the contour levels of the sensitivity kernel. The zero-contour lines displays small
fluctuations in the kernel throughout the ice sheet which result in minimal leakage. EAIS =
East Antarctica; GRACE = Gravity Recovery and Climate Experiment.
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Figure 2.2: Optimized GRACE time-series of the mass (in gigatons = 1012 kg) of the Totten
and Moscow University glaciers, East Antarctica using IJ05 GIA correction (red) compared
with ice discharge subtracted from surface mass balance estimates from RACMO2.3 (blue)
and MAR3.6.4 (green) for the (a) sub-basin and (b) whole-basin configurations. GRACE
= Gravity Recovery and Climate Experiment; RACMO2.3 = regional atmospheric climate
model version 2.3; GIA = glacial isostatic adjustment.
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Figure 2.3: Optimized GRACE time-series of the mass (in gigatons = 1012 kg) of the Totten
and Moscow University glaciers, East Antarctica using IJ05 (red), AW13 (aqua) and W12a
(gray) GIA corrections compared with ice discharge subtracted from surface mass balance
estimates from RACMO2.3 (blue) and MAR3.6.4 (green) for the (a) sub-basin and (b)
whole-basin configurations.
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Figure 2.4: Trend in cumulative surface mass balance for RACMO2.3 (left), MAR3.6.4
(middle), and the difference between the two (right) from April 2002 to the end of 2015. Basin
lines for Totten and Moscow University glaciers are drawn in purple. Elevation contours
with 500 m intervals are drawn in black, with the bright green line representing the 2500
m contour. Note trends are negative because cumulative surface mass balance is decreasing
over the time period.
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Abstract

We develop regionally-optimized GRACE solutions to evaluate the mass balance of the

drainage basins of Amery Ice Shelf, East Antarctica and Getz Ice Shelf, West Antarctica.

We find that the Amery region is near-balance, while the Getz region is rapidly losing mass.

We compare the results with the Mass Budget Method (MBM) combining ice discharge

along the periphery with surface mass balance derived from three regional climate models:

1) Regional Atmospheric Climate Model (RACMO) 2.3p1 and 2) 2.3p2, and 3) Modèle At-

mosphérique Régional 3.6.41. For Amery, MBM/RACMO2.3p1 agrees with GRACE while

MBM/RACMO2.3p2 and MBM/MAR3.6.41 suggest a positive mass balance. For Getz,

all estimates agree with a mass loss and the GRACE results are robust to uncertainties in

Glacial Isostatic Adjustment (GIA) derived from an ensemble 128,000 forward models. Over

the period 04/2002-11/2015, the mass loss of the Getz drainage basin is 22.9±10.9 Gt/yr

with an acceleration of 1.6±0.9 Gt/yr2.

Plain Language Summary

We use a regional optimization methodology for processing data from the Gravity Recovery

and Climate Experiment (GRACE) to evaluate the ice mass change of the drainage basins

of two major ice shelves in Antarctica and evaluate the performance of Regional Climate

Models (RCMs). The Getz Ice Shelf basin in West Antarctica has shown previous disagree-

ments between various mass balance estimates and is influenced by heterogenous conditions

that make it vulnerable and challenging to study. We find this region to be in a state of

accelerating mass loss. Furthermore, all three examined RCMs are in good agreement with

GRACE in this region. The Amery Ice Shelf in East Antarctica is the third largest Antarctic

ice shelf with a basin that has enough ice to raise sea level by 7.8 meters, but has presented
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challenges in previous mass balance efforts. We find the mass in this drainage basin is not

changing significantly. Furthermore, only one out of the three examined RCMs agrees with

GRACE observations in this region. These results suggest that the RCMs may need to be

revisited in some regions of the ice sheet.

3.1 Introduction

The Antarctic ice sheet has been losing mass at an average rate of 109±56 Gt/yr from 1992

to 2017, equivalent to 7.6±3.9 mm of sea level rise [Shepherd et al., 2018]. During that

time period, the mass loss has been accelerating [Velicogna et al., 2014, Rignot et al., 2019].

The evaluation of ice sheet mass balance has been primarily achieved using a combination of

three techniques: 1. gravimetric estimates from the GRACE (Gravity Recovery and Climate

Experiment) mission [Velicogna et al., 2014, Sasgen et al., 2013, Velicogna and Wahr, 2006];

2. volume changes estimated from a series of altimeter measurements [Pritchard et al.,

2012, McMillan et al., 2014, Sutterley et al., 2018]; and 3. Mass Budget Method (MBM)

combining ice discharge along the periphery with Surface Mass Balance (SMB) reconstructed

by regional climate models (RCMs) in the interior [Rignot et al., 2008, 2019]. While there

is reasonable agreement between these large-scale estimates in West Antarctica [Shepherd

et al., 2018, 2012], differences exist in East Antarctica. For instance, Shepherd et al. [2018]

finds a standard deviation of 37 Gt/yr across the various mass balance estimates for East

Antarctica. Moreover, regional differences between mass balance estimates have not been

fully evaluated around Antarctica. Differences in RCMs affect not only the confidence on

mass budget and altimetry estimates, with the latter due to firn compaction models forced

by RCMs [Shepherd et al., 2012], but also impact the estimation of the partitioning in mass

loss between SMB processes and ice dynamics for all techniques.

In a prior study, Mohajerani et al. [2018] used a regional optimization approach for GRACE
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to calculate the mass balance of Totten and Moscow University glaciers at the basin and

sub-basin scales and evaluate different RCMs. Here, we extend the methodology to two

major drainage systems in Antarctica. First, we examine the drainage basin feeding into

the Amery Ice Shelf, which includes three major glaciers: Fisher, Lambert, Mellor, and two

large sectors on the flanks of Amery Ice Shelf: MacRobertson Land and American HighLand.

Amery is the third largest ice shelf in area in Antarctica [Pittard et al., 2017]. Here we are

interested in the mass balance of the drainage basin of the Amery Ice Shelf, which holds

enough ice to raise sea level by 7.8 m [Rignot et al., 2019]. At present, the basin appears

to be in balance based on the mass budget method [Rignot et al., 2019]. This region has

presented challenges in past studies caused by differences in the estimation of the position

of the grounding line. While some studies place it north of the 35 km Minimum Ice Shelf

Width (MISW) [Winkelmann et al., 2012, Golledge et al., 2015], others placing it to the

south [DeConto and Pollard, 2016]. Such differences result in major uncertainties in the

mass balance of the Amery drainage basin.

Second is the drainage basin of the Getz Ice Shelf, which, according to the MBM, tripled

its mass loss in 2017 compared to the 1979-2013 average, from 5 Gt/yr to 16.5 Gt/yr,

for a cumulative contribution of 1 mm to sea level rise from 1979 to 2017 [Rignot et al.,

2019]. Most of the glaciers feeding into Getz Ice Shelf have no name and are labeled using

a latitude-longitude convention [Rignot et al., 2019]. The ice shelf, which has a strong effect

on the mass balance of the drainage basin due to its buttressing effect [Dupont and Alley,

2005], is located at a critical position in the Pacific-Antarctic coastline and strongly affected

by decadal Pacific Oscillations [Jacobs et al., 2013]. Spatial heterogeneity due to different

oceanic regimes to the west and east of the ice self, as well as the complex bathymetry of

the region make the analysis of the ice shelf evolution difficult [Jacobs et al., 2013], which

in turns introduces uncertainty in the long-term mass balance of the drainage basin. In

addition, previous assessments of the mass balance of the drainage basin have suggested

major disagreements between GRACE and MBM estimates. For example, Sasgen et al.
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[2010] found that the GRACE estimate for the Getz Ice Shelf and Pine Island Glacier basins

were 26 Gt/yr lower than the MBM estimate. This discrepancy could not be accounted for

by the choice of the Glacial Isostatic Adjustment (GIA), or leakage from the atmosphere,

ocean, or changes in other basins. The authors attributed it to an anomalous mass gain that

took place during the GRACE period (August 2002 - August 2008) that was not included in

their MBM estimate from 1980-2004, or possible errors in ice thickness along the grounding

line. More recently, Chuter et al. [2017] used ice thickness values derived from Cryosat-2 to

reassess the mass budget of Getz and deduced a near mass balance of 5±17 Gt/yr for 2006

to 2008. This estimate is within one standard deviation of prior radar altimetry estimates

[Shepherd et al., 2012] but far more positive than prior estimates. The authors attributed

this difference to a 9 m positive bias in elevation near the grounding line in the ERS-1

digital elevation model [Griggs and Bamber, 2011]. The most recent MBM estimates from

this area are however based on actual thickness data, not on hydrostatic equilibrium [Rignot

et al., 2019]. In this study, we compare the mass balance estimates from GRACE and MBM

using various RCMs to establish a greater level of confidence in the results, evaluate different

RCMs, and resolve uncertainties from prior studies. We conclude on the mass loss of these

major sectors and on the evaluation of RCMs.

3.2 Data and Methodology

We use three RCMs: 1) Regional Atmospheric Climate Model version 2.3p1 (RACMO2.3p1)

[Van Wessem et al., 2014], 2) version 2.3p2 (RACMO2.3p2) [van Wessem et al., 2018],

and 3) Modèle Atmosphérique Régional version 3.6.41 (MAR3.6.41) [Agosta et al., 2019].

RACMO2, developed by the Institute for Marine and Atmospheric Research Utrecht (IMAU)

at Utrecht University, uses the physics package of the Integrated Forecast System (IFS)

of the European Centre for Medium-Range Weather Forecasts (ECMWF) along with the
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HIRLAM (High Resolution Limited Area Model) [Undén et al., 2002] dynamics to model

SMB [Van Wessem et al., 2014] at 27 km resolution. RACMO2.3p2 provides several updates

to part 1, including improved topography, precipitation, and snow properties [van Wessem

et al., 2018]. RACMO2.3p1 is available from 1979 to 2015. RACMO2.3p2 is available from

1979 to 2016. MAR3.6.41 is a coupled surface-atmosphere regional climate model that uses

the SISVAT surface scheme (Soil Ice Snow Vegetation Atmosphere Transfer) [De Ridder and

Gallée, 1998], which uses the CROCUS snow model [Brun et al., 1992]. The model estimates

SMB at a spatial resolution of 35 km for 1979 to 2017 [Agosta et al., 2019]. We use the

version of the model forced by the ECMWF ERA-Interim reanalysis [Dee et al., 2011] at the

boundary to be consistent with RACMO2 [Agosta et al., 2019, Van Wessem et al., 2014].

While the choice of the forcing reanalysis product introduces additional uncertainty, here

we are interested in how the RCM parameterizations and processes diverge under the same

forcing at the boundary.

To calculate MBM with each RCM, we interpolate the SMB fields to a 1km×1km polar

stereographic grid and integrate the monthly values within each basin. Ice discharge is

from Rignot et al. [2019] with the following errors: 3.6 Gt/yr for Amery and 4.8 Gt/yr

for Getz. The regional SMB uncertainty is also from Rignot et al. [2019]. The SMB and

discharge time-series are added up cumulatively, and the difference of the cumulative time-

series provides the total mass budget. By subtracting total cumulative discharge from SMB,

we eliminate the reliance on calculating anomalies with respect to a chosen reference period,

i.e. the calculation of total mass budget numbers does not depend on the choice of a reference

period. Only the SMB and discharge anomalies depend on a reference period, not the total

mass budget. Finally, a rate-of-change time-series is calculated by using a 36-month sliding

window as described in the Supporting Information.

For each region, we get gravimetric estimates from GRACE [Tapley et al., 2004] for 2002

to 2017. We use RL06 Level-2 spherical harmonic coefficients from the Center for Space
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Research (CSR) at the University of Texas [Bettadpur, 2018] for the period April 2002 to

August 2016. The C2,0 coefficients, representing the oblateness of the geoid, are replaced

with Satellite Laser Ranging coefficients [Cheng et al., 2013]. Furthermore, in order to re-

cover degree-1 terms representing geocenter translations not measured by GRACE in the

gravitational frame of reference, we follow the methodology of the improved geocenter solu-

tion by Sutterley and Velicogna [2019], using the same corrections applied to the GRACE

harmonics used in the spherical cap mascon calculation, outlined below, for consistency. The

Sutterley and Velicogna [2019] solution uses an iterative method to calculate geocenter terms

with the effects of self-attraction and loading. The Max-Planck-Institute for Meteorology

Ocean Model (MPIOM) [Jungclaus et al., 2013] harmonics provided as part of the RL06 data

release are used in combination with the GRACE mass change coefficients on land to itera-

tively solve for geocenter terms. The GRACE coefficients are de-striped following Swenson

and Wahr [2006], smoothed with a 300-km radius Gaussian smoothing kernel [Wahr et al.,

1998], and corrected with the A et al. [2013] GIA model for the geocenter calculation.

To ensure that our results are robust with respect to the GIA correction, we use the GIA

statistics provided by Caron et al. [2018], which uses regional constraints and variations of ice

history and earth structure through 128,000 forward modeling runs to provide a probability

distribution function from which the expectation value of present-day GIA and the full

covariance matrix associated with the errors are derived. Using a probability distribution

function as opposed to a single GIA product allows us to assess the robustness of our results

with regards to the GIA correction. We assess the GIA error using the full covariance matrix

following Wahr et al. [2006]. The GIA probability distribution samples a wide range of upper

and lower mantle viscosities, lithosphere thicknesses, and ice history through separate scaling

factors for Antarctic, Greenland, Laurentide, Cordilleran, and Fennoscandian ice sheets. The

resulting covariance matrix from the Bayesian treatment of the ensemble of forward models

provides larger uncertainty bounds than previous reports [Caron et al., 2018], allowing a

conservative estimate of the role of GIA in the GRACE estimate.
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To produce regionally-optimized estimates of mass balance from Level-2 GRACE harmonics

we use the least-squares mascon approach, which uses variable-sized spherical caps described

in Mohajerani et al. [2018]. This procedure generates a set of regionally configured spherical

caps based on the characteristics of the local mass change to calculate localized mass balance

estimates from the GRACE harmonics. The caps are organized to sample roughly uniform

distributions of mass. The design allows the sum of the designated mascons to capture

the mass change only within the area of interest with minimal leakage from outside regions

that exhibit significant mass change. A smaller size allows each cap to sample a more

uniform region and refine the spatial extent of the area being sampled. However, smaller

caps are more heavily influenced by noisier higher degree (shorter wavelength) harmonics

[Wahr et al., 2006]. Therefore, a higher mass change signal in the area of interest allows the

use of slightly smaller caps without being dominated by noise. GRACE stokes coefficients

are regressed against these regionally defined spherical caps with uniform and unitary mass

using a simultaneous least-squares fit to calculate weights for each mascon [Jacob et al., 2012,

Velicogna et al., 2014, Sutterley et al., 2014]. For the areas of interest, multi-layer hexagonal

grids with different resolutions are used to create the spherical caps. In the Amery region,

the caps range from 2.7◦ to 3.2◦ in diameter. Our study area focuses on the sub-basin region

spanning the Fisher, Lambert, Mellor, American HighLand, and MacRobertson Land basins.

The basins are defined according to [Rignot et al., 2019]. The sampled area is shown by caps

1,5,7 in the inset of Figure 3.1a. In the Getz region, the diameters range from 2.6◦ to 3.0◦.

Our study region is the drainage basin of the Getz Ice Shelf, and also covers some of the

smaller neighboring regions of Hull, Land, Frostman, Lord, Shuman, Anandakrishnan, and

Jackson-Perkins. The sampled area is shown by caps 1 and 2 in the inset of Figure 3.1b. The

SMB under the kernel from these regions and the corresponding grounding line discharge

are also included in our MBM estimate for the Getz region. The total discharge error for

the region is 4.9 Gt/yr by adding regional errors from Rignot et al. [2019] in quadrature.

The sensitivity kernel of the mascon configuration [Jacob et al., 2012] shows that the signal
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is being captured by the mascons of interest in each configuration (Figure 3.1). Ideally, the

kernel should have a value of 1 over the regions of interest and 0 elsewhere. The configurations

focus on the areas of high ice velocity within each basin, or highest mass loss, with minimal

uncertainty. In each region, the sensitivity kernel captures the areas of highest change and

has minimal leakage elsewhere. Furthermore, by showing where the signal is being sampled,

the kernel in Figure 3.1 illustrates that there are no effects from the small gaps between

the spherical caps due to the tails of the truncated harmonics extending beyond the exact

boundaries of the caps [Swenson and Wahr, 2002]. While most of the ringing is diverted to

the ocean where the mass change signal is smaller, there are small variations of the kernel

around the zero contour throughout the ice sheet, yet both the land/ocean leakage and the

leakage from other basins are fully quantified, as outlined below.

The land/ocean leakage is calculated in two ways. First, the sea level fingerprint of the

region of interest [Hsu and Velicogna, 2017] is scaled by the total mass change derived from

GRACE. This calculation produces an estimate of the contribution from land to ocean,

which is used to adjust the mass loss trend. We assume a conservative error of 100% in the

error budget for this correction. In addition, we take into account the contribution of the

ocean signal that leaks into the mascons of interest. While the sensitivity kernels in Figure

3.1 have ringing over the ocean, the atmospheric and oceanic components are removed from

the GRACE GSM harmonics and therefore there is minimal signal in these areas. As a

conservative estimate, we use the total ocean signal provided by the GRACE ocean (GAD)

harmonics, which correspond to the MPIOM ocean model [Jungclaus et al., 2013] to calculate

the ocean leakage error. This is accomplished by fitting the GAD coefficients to the mascons

of interest and calculating the trend and acceleration of this leakage signal. The mascon-to-

mascon leakage on the ice sheet is taken into account in the error budget. We use a synthetic

mass budget field derived from modeled SMB and linearly-distributed dynamic loss as a

function of ice thickness and speed following Rignot et al. [2011b]. The synthetic field is

divided up between the spherical caps for each configuration and converted to harmonics.
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The leakage is calculated by fitting the synthetic harmonics derived from each spherical cap

to the mascons and quantifying the recovered signal for each cap. The leakage is calculated

using two distinct measures: 1) “island leakage”, which refers to how much signal leaks

outward from a mascon of interest to other mascons, and 2) “hole leakage”, which refers to

how much signal leaks inward from other regions to the mascon of interest. This is similar

to the leakage calculation in Mohajerani et al. [2018] with a few important updates: instead

of taking the maximum value between the “island” and “hole” leakages as the total leakage,

we calculate the difference between the two. This approach produces a better assessment of

the overall effect of leakage in the regions of interest. While taking the differences reduces

the leakage value in some cases, it may also increase it if the two leakage solutions have

opposite signs. The other change in the leakage calculation is to use an updated synthetic

field with discharge values from Rignot et al. [2019] and RACMO2.3 p1 and p2 SMB values.

The total mass budget synthetic field is calculated by spreading the total discharge value

in each basin as a function of the flux density calculated from ice speed and ice thickness.

The ice speed is obtained from the MEaSUREs ice velocity data [Rignot et al., 2017] and

ice thickness is from Bedmap2 [Fretwell et al., 2013]. We use the total mass budget as the

synthetic field instead of taking the maximum leakage obtained from SMB-only and MBM

fields, which provides a more accurate leakage estimate with a more realistic synthetic field.

The interpolated SMB values are integrated within the kernel to produce analogous estimates

to the GRACE measurements. We use a threshold of 5% in how much signal is captured by

the kernel to construct polygons around the regions of interest for the integration. In other

words, anything that is captured by GRACE at the 0.95 level will be present in the MBM

integration. This threshold reduces the effect of small fluctuations near zero in the kernel

field. However, because the mascons are designed around the areas of high mass change, the

low values of the kernel are in regions of smaller change and thus the value of the threshold

does not have a significant impact on the results.
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3.3 Results

Figure 3.1 shows the time-series of mass change, dM/dt, of the regionally-optimized GRACE

solutions and the corresponding mascon configuration and sensitivity kernels, and the MBM

time-series derived from RACMO2.3p1, RACMO2.3p2, and MAR3.6.41 for Amery and

Getz. The GRACE trend errors are calculated using the leakage, regression, GIA, and

ocean leakage errors as described in the previous section. The corresponding errors for

the MBM time-series are calculated from the regression error combined with the SMB

and discharge errors outlined in the previous section. The full breakdown of the trend

errors is in Table 3.1. For each region, we calculate a trend and acceleration according

to the Bayesian Information Criterion (BIC) [Burnham and Anderson, 2004]. For Amery,

the GRACE estimate indicates near balance, with a linear trend of 1.8±5.0 Gt/yr. The

MBM estimate using RACMO2.3p1 agrees with the GRACE estimate within -0.4±2.7 Gt/yr.

While the GRACE and MBM/RACMO2.3p1 estimates are statistically in near-balance, the

MBM/RACMO2.3p2 and MBM/MAR3.6.41 exhibit statistically significant positive trends.

Table 3.1 lists all trends for the common period of April 2002 to November 2015.

In contrast to Amery, none of the RCMs show a bias with respect to GRACE in the Getz

region. As shown in panel (b) of Figure 3.1, the GRACE and MBM time-series are in

excellent agreement. As outlined in Table 3.1 the GRACE estimate yields a loss of 22.9±10.9

Gt/yr. The GRACE errors are larger in this area as a result of a larger leakage error.

The leakage error poses a special challenge in this small sub-basin region given that it is

adjacent to the highest mass loss of the entire ice sheet recorded in the Amundsen Sea

Embayment sector of West Antarctica [Velicogna et al., 2014]. The corresponding MBM

mass loss estimates are 23.7±6.2 Gt/yr, 23.8±6.3 Gt/yr, and 25.4±6.3 Gt/yr for MAR3.6.41,

RACMO2.3p1, and RACMO2.3p2 models, respectively, which are in excellent agreement

with GRACE. The close agreement between estimates provide confidence in the mass balance

assessment using these independent methods. This area also exhibits an acceleration in
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mass loss. Table 3.1 outlines the acceleration and corresponding error for regions where a

quadratic regression model is applicable. This is analogous to Table 3.1, excluding the GIA

errors, which do not affect the acceleration since the GIA correction is a constant signal.

We find an acceleration in mass loss of 1.6±0.9 Gt/yr2 with GRACE, in agreement with the

acceleration of 2.0±0.2 Gt/yr2 from MBM.

3.4 Discussion

Our regionally-optimized GRACE estimates indicate that the Amery region is near balance,

which confirms Rignot et al. [2019] using the MBM/RACMO2.3p1. This is also in agreement

with previous in-situ measurements. Wen et al. [2007] used a combination of remote-sensing

and in-situ data to find a near-balance mass budget of -2.6±6.5 Gt/yr for Lambert, Mellor,

and Fisher glaciers. Similarly, Wen et al. [2014] found these glaciers to be in balance within

2.9±3.6 Gt/yr by combining SMB from RACMO2.1 with discharge derived from interfer-

ometric synthetic-aperture radar (InSAR)-derived ice velocity and BEDMAP [Lythe and

Vaughan, 2001] and PCMEGA (Prince Charles Mountains Expedition of Germany and Aus-

tralia) [Damm, 2007] derived ice thickness, which is in agreement with MBM/RACMO2.3p1.

In contrast, Yu et al. [2010] found a significantly more positive trend of 22.9±4.4 Gt/yr for

the grounded portion of the Amery Ice Shelf system by utilizing ICESat and InSAR with a

refined grounding line position derived from SAR and MODIS data. However, our findings

suggest that this result overestimates mass gain in the region, which may reflect the quality

of the SMB model in Vaughan et al. [1999]. The RACMO model used by Wen et al. [2014]

has lower accumulation levels in the Lambert region compared to that in Vaughan et al.

[1999].

In the Getz area, GRACE yields a mass loss of 22.9±10.9 Gt/yr and acceleration of 1.6±0.9

Gt/yr2, within errors of the mass loss of 16.5 Gt/yr in 2017 from Rignot et al. [2019]. Our
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estimate agrees with radar altimetry results from McMillan et al. [2014] (22±3Gt/yr for

2010-2013) and GRACE from King et al. [2012] (23±3Gt/yr for the larger drainage basin in

2002-2010). Previous MBM estimates using ice thickness from Cryosat-2 [Chuter et al., 2017]

however yielded a positive trend of 5±17Gt/yr, which does not agree with GRACE despite

the large uncertainty bound. Our MBM trends, all in excellent agreement with GRACE,

do not confirm this positive estimate, which implies that the Cryosat-2 derived thicknesses

were probably too low, which is probably a result of uncertainties in firn depth correction.

Similarly, the gravimetric estimate of Bouman et al. [2014] yields a significantly larger loss of

55±9 Gt/yr from November 2009 to June 2012 by combining GRACE with GOCE (Gravity

Field and Steady-State Ocean Circulation Explorer) [Visser et al., 2002]. The agreement

between our independent GRACE and MBM estimates suggest that this earlier estimate of

the mass loss is too high. Furthermore, with the regionally-optimized mascon approach, we

successfully isolated the mass balance of the Getz drainage basin with a mascon-to-mascon

leakage error that is only 45% of the total signal (Table 3.1). Considering the proximity of

this region to the high mass change signal of Amundsen Sea Sector glaciers, we conclude

that this demonstrates the practicality of our approach at the sub-basin scale in Antarctica.

In the Amery region, we find that MBM/RACMO2.3p1 is in agreement with GRACE, while

MBM/RACMO2.3p2 and MBM/MAR3.6.41 produce trends that are too positive. This re-

sult is consistent with those of Mohajerani et al. [2018] on Totten and Moscow University

glaciers in East Antarctica (Figure A1). Given that all mass budget estimates in a given

region share the same discharge values, the differences must be attributed to the SMB mod-

els. As outlined in Section 3.2, the cumulative time-series are calculated by integrating the

total monthly SMB and discharge values through time. As a result, different trends in the

MBM time-series must be attributed to either disagreeing temporal variability or differences

in mean SMB across models. The monthly SMB time-series do not exhibit statistically sig-

nificant trends in any of the regions. However, there are considerable differences in the mean

magnitude of monthly SMB time-series, as outlined in Table A1 Larger monthly magnitudes
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lead to faster cumulative growth compared to the cumulative discharge time-series, resulting

in a more positive MBM time-series. It is important to emphasize that this result does not

depend on a reference period since the mass balance is simply the difference between absolute

SMB and absolute discharge.

In the Amery region, where MBM/RACMO2.3p2 and MBM/MAR3.6.41 do not agree with

GRACE, the mean SMB values appear to be more than 10 Gt/yr larger compared to

RACMO2.3p1, yielding a more positive MBM trend consistent with Table 3.1. In the Getz

area, the mean SMB values are in better agreement across all models, consistent with the

agreement between MBM estimates and GRACE in Figure 3.1 and Table 3.1. Given that

the monthly SMB time-series do not exhibit significant trends and the discharge values

are the same across the MBM estimates, we conclude that the differences in mean SMB

account for most of the disagreement between various MBM estimates. This conclusion

enables us to perform a simple adjustment of the SMB time-series with the ratio of mean

magnitude of RACMO2.3p1 to that of each model during the reference period, given that

MBM/RACMO2.3p1 has the best agreement with GRACE. Figure A2 shows the adjusted

time-series for Amery, where the mean SMB from RACMO2.3p2 and MAR3.6.41 are lowered

by 87.9%, and 87.1% respectively.

The modifications brought to RACMO2.3 version p2 compared to p1 made the coastline

of East Antarctica drier and the interior regions wetter. Our assessment suggests that the

model modifications may need to be revisited in light of our multi-sensor assessment, at least

in the regions examined herein. In contrast, the impact of the model upgrade is negligible

in the examined portions of West Antarctica, where the multi-sensor results agree within

errors. Importantly, our results increase confidence in the large mass loss observed in the

Getz Ice Shelf sector of West Antarctica and its acceleration in mass loss. We posit that this

sector is strongly affected by enhanced intrusion of warm circumpolar deep water (CDW) on

the continental shelf and beneath the ice shelf, which melts the ice shelf and glaciers, allows
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the glacier grounding lines to retreat, speed up the ice flow, which contributes to sea level

rise. In contrast, the Amery region is far from the sources of warm CDW and its unique

geometry provides buttressing on three sides of the ice shelf. The drainage basin appears to

be in a state of mass balance.

3.5 Conclusions

We quantify the mass balance of the drainage basins of two major regions of Antarc-

tica, the Amery Ice Shelf in East Antarctica, and the Getz Ice Shelf in West Antarc-

tica, using regionally-optimized GRACE mascons with minimal leakage. We compare the

GRACE results with the Mass Budget Method (MBM) estimates using three different RCM

output products. The Amery basin is in a state of mass balance, in agreement with

MBM/RACMO2.3p1, but not with higher previous estimates of Yu et al. [2010]. Fur-

thermore, we find MBM/RACMO2.3p2 and MBM/MAR3.6.41 produce significant positive

trends of 8.8±2.9 and 9.4±2.7 Gt/yr, respectively. These differences are attributed to the

magnitude of the mean monthly SMB values. Over Getz, we report a significant mass loss

of 22.9±10.9 Gt/yr, in agreement with all MBM estimates. These estimates do not confirm

positive trends derived with Cryosat-2 [Chuter et al., 2017] and more negative trends from

other gravimetric results [Bouman et al., 2014]. The Getz region exhibits an accelerating

loss at 1.6±0.9 Gt/yr2, hence contributing to sea level rise at an accelerated pace. Overall,

the regionally-optimized GRACE solutions provide an independent evaluation of the RCMs.

Documenting and understanding the sources of these differences provides valuable insights

about model performance that will subsequently help improve RCMs and remove residual

uncertainties in the mass budget of Antarctica.
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Table 3.1: Trends and accelerations and associated errors for the Amery and Getz drainage
basins, Antarctica, from April 2002 to November 2015 (shifted to mid-month values to match
GRACE). For each drainage basin the results obtained from GRACE corrected with Caron
et al. [2018] GIA model from the expectation of a probability distribution from 128,000 for-
ward models, and the Mass Budget Method (MBM) estimates obtained from RACMO2.3p1,
RACMO2.3p2, and MAR3.6.41 are shown. The leakage between mascons is estimated from a
synthetic field, while the ocean leakage is obtained from the GRACE coefficients representing
ocean-only changes (GAD coefficients).

Trend
/ Acc.

Total
Error

Leakage
Error

Regression
Error

Ocean
Leak-
age

GIA
Error

Trend[Gt/yr]
Amery
GRACE 1.77 5.04 2.36 1.55 -0.73 4.11
MBM/MAR3.6.41 9.45 2.72
MBM/RACMO2.3p1 -0.39 2.65
MBM/RACMO2.3p2 8.85 2.88
Getz
GRACE -22.91 10.91 10.28 1.44 0.56 3.21
MBM/MAR3.6.41 -23.64 6.19
MBM/RACMO2.3p1 -23.84 6.27
MBM/RACMO2.3p2 -25.35 6.28
Acceleration[Gt/yr2]
Getz
GRACE -1.57 0.88 0.25 0.82 0.04 –
MBM/MAR3.6.41 -1.56 0.21
MBM/RACMO2.3p1 -2.01 0.19
MBM/RACMO2.3p2 -1.77 0.24
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Amery Getza) b)

Figure 3.1: The rate of mass change time-series (dM/dt) in gigatons per year (1012 kg per
year) obtained from a 36-month sliding window for (a) Amery and (b) Getz drainage basins,
Antarctica, comparing the regionally optimized GRACE time-series (red) with the Mass
Budget Method (MBM) estimate using RACMO2.3p1 (blue), RACMO2.3p2 (cyan), and
MAR3.6.41 (orange). The dotted lines represent the mean trend during the common period.
The corresponding mascon configurations and sensitivity kernels are shown below each time-
series. The spherical caps are shown in gray circles, with the corresponding numerical labels
in green. The caps used for the mass balance estimate are labelled in bright green. The
insets show zoomed-in views of the caps of interest, with the lighter colors corresponding to
increasing diameter — Amery: 2.7◦ (black), 2.9◦ (gray), and 3.2◦ (white); Getz: 2.6◦ (black),
2.8◦ (gray), and 3.0◦ (white).
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Chapter 4

Detection of Glacier Calving Margins

with Convolutional Neural Networks:

A Case Study

As appears in:

Mohajerani, Y.; Wood, M.; Velicogna, I.; Rignot, E. “Detection of Glacier Calv-

ing Margins with Convolutional Neural Networks: A Case Study.” Remote

Sensing 11.1 (2019): 74. doi: 10.3390/rs11010074. Available under the Creative

Commons Attribution License which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited (CC

BY 4.0)
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Abstract

The continuous and precise mapping of glacier calving fronts is essential for monitoring and

understanding rapid glacier changes in Antarctica and Greenland, which have the poten-

tial for significant sea level rise within the current century. This effort has been mostly

restricted to the slow and painstaking manual digitalization of the calving front positions

in thousands of satellite imagery products. Here, we have developed a machine learning

toolkit to automatically detect glacier calving front margins in satellite imagery. The toolkit

is based on semantic image segmentation using Convolutional Neural Networks (CNN) with

a modified U-Net architecture to isolate the calving fronts from satellite images after having

been trained with a dataset of images and their corresponding manually-determined calving

fronts. As a case study we train our neural network on a varied set of Landsat images with

lowered resolutions from Jakobshavn, Sverdrup, and Kangerlussuaq glaciers, Greenland and

test the results on images from Helheim glacier, Greenland to evaluate the performance of

the approach. The neural network is able to identify the calving front in new images with a

mean deviation of 96.3 m from the true fronts, equivalent to 1.97 pixels on average, while the

corresponding error for manually-determined fronts on the same resolution images is 92.5

m (1.89 pixels). We find that the trained neural network significantly outperforms common

edge detection techniques, and can be used to continuously map out calving-ice fronts with

a variety of data products.

4.1 Introduction

In recent decades, tidewater glaciers discharging ice from the Greenland Ice Sheet have been

thinning, speeding up and retreating inland [Howat et al., 2005, Moon and Joughin, 2008,

Seale et al., 2011, Bjørk et al., 2012, Murray et al., 2015, Wood et al., 2018]. The position of
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glacier ice fronts reflects a delicate balance of advection and ablation processes [Rignot et al.,

2016] and hence is an important proxy for the impacts of regional changes in climate and

ocean state on the mass balance in the Greenland Ice Sheet. To assess records of ice front

retreat over time, ice front positions are typically manually digitized from aerial imagery

Bjørk et al. [2012] or satellite imagery [Moon and Joughin, 2008, Murray et al., 2015] using

Geographic Information System (GIS) software. Since the launch of Landsat 5 in 1984,

the Landsat fleet has captured images of the Greenland Ice Sheet with a repeat cycle of 16

days. However, because the manual ice front digitization process requires a considerable time

investment, most current records of calving front retreat are limited to only a few ice front

positions per glacier per year, if any. This shortage of data poses a challenge to seasonal

analyses of calving glaciers (e.g., [Schild and Hamilton, 2013, Motyka et al., 2017, Catania

et al., 2018, Fried et al., 2018]), yet seasonal factors may be critical to understanding the

pattern of long term retreat of Greenland’s glaciers [Moon et al., 2015] or to understand

for instance the level above which a glacier may be pushed out of balance compared to its

state of seasonal, natural variability [Wood et al., 2018]. In effect, an automated system

to rapidly delineate calving front positions would provide a foundation for understanding

regional changes on the periphery of the ice sheet over the past several decades, especially

with the emergence of a new generation of satellites with high data volume, a high number

of acquisitions and higher resolution (e.g., [Wu et al., 2017, Roy et al., 2014, Potin et al.,

2018, Markus et al., 2017]).

Detecting glacier calving fronts in images falls under a more general category of problems

that deal with image segmentation. Generally, image segmentation techniques focus on either

dividing an image into different regions (e.g., clustering, classification, region extraction) or

finding the boundaries between regions (i.e., detection of discontinuities, edge detection). A

detailed overview of these categories and techniques is given by [Fu and Mui, 1981]. Vari-

ous techniques have been developed in the past for this class of problems. One of the most

prominent of these analytical techniques is the Sobel filter, which uses gradients with a given
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threshold to detect edges [Sobel, 1990]. Other approaches include the “Scale-Space” tech-

nique, which, first developed by Witkin et al. [1987], detects the desired feature at a coarser

scale and tracks it continuously at a higher resolution. This approach was further improved

by Perona and Malik [1990] by using an anisotropic diffusion process to keep the spatial

accuracy of the features and detect edges. Applying these techniques to geophysical images

such as ice-covered fjords and geologic formations is challenging due to the noisy nature of

the data, variable atmospheric conditions (particularly clouds) and temporal changes on the

ground. Seale et al. [2011] analyzed the evolution of calving fronts for 32 glaciers in Green-

land using a Sobel filter as well as a brightness profiling technique applied to MODIS data.

While achieving reasonable results below the resolution of MODIS (0.25 km), this approach

relies on the proper selection of subregions around the calving front and heavy use of qual-

ity assurance and post-removal of anomalies. Furthermore, analytical techniques relying on

brightness gradients in images are dependent on the particular nature of the data. For exam-

ple, the same gradient thresholds may not be applicable to other instruments and spectral

bands. They would also not be applicable to other data types such as radar interferometry

(see Massonnet and Feigl [1998]). Finally, while this process provides an approximation of

overall glacier retreat, it does not yield a digitized-front product which can be used by the

glaciological community.

An alternative approach for overcoming these problems is the use of neural networks (see Le-

Cun et al. [2015]) that can be trained on any data type to detect glacier fronts. Image segmen-

tation techniques have improved rapidly in recent years due to the progress in deep learning

and semantic image segmentation with Convolutional Neural Networks (CNNs) (e.g., see

Krizhevsky et al. [2012]). Large neural networks with thousands or millions of parameters

have allowed much more accurate classification and segmentation of images. In fact, deep

neural networks with rectified activation units have already surpassed human performance

in some visual recognition tasks (see He et al. [2015]).
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The issue with such deep neural networks for image segmentation is the need for very large

training datasets where the desired features (in this case calving fronts) have already been

determined for thousands of images. For many fields of research the shortage of vast training

data limits the use of such tools. However, a recent deep neural network architecture devel-

oped for biomedical image segmentation, U-Net [Ronneberger et al., 2015], has been shown

to provide highly accurate image segmentation with minimal training data through the use

of data augmentation in a deep convolutional neural network. Here we develop a modified

version of the U-Net architecture that can identify and extract glacier calving fronts from

optical satellite imagery. We discuss our results for a set of glaciers on the Greenland ice

sheet. We compare our trained network with the Sobel filter. We conclude on the application

of CNN technology to the detection of ice sheet calving margins.

4.2 Materials and Methods

We detect and reconstruct glacier calving fronts from Landsat imagery with the use of an

image segmentation technique that relies on a deep convolutional neural network using a

modified U-Net architecture [Ronneberger et al., 2015]. The methodology is divided into

three overarching areas:

1. Discussion of raw satellite images, production of training data, and pre-processing of

images before training

2. Semantic image segmentation and the architecture of the neural network

3. Reconstruction of new calving fronts on new data and the post-processing of the out-

puts of the neural network

Figure 4.1 summarizes the steps required to pre-process the data, train the network, make pre-
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dictions, and get the glacier front positions after post-processing. Each of these steps are

discussed in the following sections.

4.2.1 Data and Pre-Processing

We retrieve Level 1 Landsat Data from the USGS Earth Explorer portal for Landsat 5,

Landsat 7, and Landsat 8. Calving fronts must be visually discernible in the images in

order to be delineated. We mainly rely on L1TP products, but we do use some L1GT/L1GS

products as we found the geo-referencing to be sufficient for our purposes. For Landsat 5,

we utilize the “green” band (0.52–0.60 µm, where ice boundaries appear clearly) with a

resolution of 30 m, while for Landsat 7 and 8 we utilize the “panchromatic” band (0.52–0.90

µm and 0.503–0.676 µm respectively) with a resolution of 15 m. We utilize images from

8 September 1985 to 26 July 2016 for Helheim glacier, 12 July 1994 to 20 October 2002

for Jakobshavn glacier, 3 October 1985 to 5 August 2016 for Kangerlussuaq glacier, and 29

May 1985 to 4 August 2015 for Sverdrup glacier. Furthermore, the seasonal distribution

of the images is depicted in Figure B2.1. The scenes are delivered in the UTM projection

corresponding to their longitude and latitude to maintain linear and areal distances. We

crop the images to the region around the glacier ice front with a buffer of 300 m, an area

we define using ice fronts that have previously been digitized manually. SLC-off images may

also be used as long as these subset areas of interest are within the unaffected portions of

the images.

In order to make it easier for the Neural Network (NN) to detect glacier fronts, we perform

a series of pre-processing steps on the input images. Firstly, the cropped input images are

mapped onto a rotated uniform grid (200×300 pixels) using cubic interpolation and oriented

such that the glacier ice flow is in the y-direction for consistency, in order to improve the

performance of the NN across a variety of images. Note that the size of the input images
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are fixed in the neural network during training. Training the network on different fjord

orientations through the use of additional rotation angles would significantly increase training

time. Because the total retreat distance varies between glaciers, the scale of the 200 × 300

pixel images will also vary. In effect, the resolution of the image subsets are different for

each glacier and the approach described herein does not operate on the native resolution of

the Landsat products, but rather provides a benchmark for evaluating the performance of

different neural network configurations compared to the analytical filter and manual results.

The lower resolution images reduce computational resource and training time requirements

for our case study. The pixel resolution varies per fjord based on the span of the retreat

distance of each glacier over time. The pixel resolutions of the training data are as follows:

61.4 m for Sverdrup, 57.7 m for Kangerlussuaq, and 88.1 m for Jakobshavn. The pixel

resolution of the test images on Helheim glacier is 49.0 m. Note that the test data has a

slightly higher resolution than the training data, allowing us to test the performance of the

NN across resolutions. The location of each fjord and the frames of the input images are

shown in Figure B2.2. The corresponding calving front targets, hereinafter referred to as

“labels”, are manually determined on the original Landsat images and rasterized as single-

pixel-thick lines for maximal spatial precision. We also further crop the input images to a

size of 150 × 240 pixels with the aim of improving the training time while keeping all the

calving fronts within the image frame. Note that this additional cropping is only for faster

training and does not have to be applied to the test data. In addition, the architecture of

the NN requires the dimensions to be divisible by the number of pooling steps described in

the next section. With three pooling layers, the images are padded to be divisible by 8 (see

Figure 4.2), resulting in 152× 240 images.

Furthermore, we apply a series of alterations to the images to make the input more suitable

for training the neural network. After a series of experiments with high-pass and low-pass

filters, changes of contrast, and application of preliminary edge-detection algorithms, we

find the following pre-processing steps provide datasets with consistent and interpretable
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features for training of the NN, which lead to the best delineation results provided that the

same steps are applied to the test data: First, we normalize the image contrasts such that

the darkest and lightest points in every image are black and white, respectively. Next we

equalize the gray-scale intensities to create a uniform distribution, followed by smoothing

and edge-enhancement of the images using the SMOOTH and EDGE ENHANCE operations of the

Python Image Library http://www.pythonware.com/products/pil/.

4.2.2 Semantic Image Segmentation

We develop a Convolutional Neural Network (CNN) [Rawat and Wang, 2017] with a U-Net

architecture [Ronneberger et al., 2015] with custom sample weights for the segmentation

of glacier fronts. U-Net has been very successful for semantic segmentation of biomedical

images. It is built based on the architecture of Fully Convolutional Networks (FCN) [Long

et al., 2015]. The challenge in semantic segmentation is resolving desired features (“what”)

and their contextual location (“where”). The idea of FCN is to combine fine, detailed features

with coarse, contextual information. U-Net is a modification of such an architecture, which

can be conceptualized as having two main components: (1) A “down” component that

uses convolutional layers to detect desired features in images in progressively smaller layers

with higher numbers of filters or “feature channels”, and (2) An “up” component that

has up-sampling layers to convey contextual information to higher resolution layers and

reconstruct output images through convolutional layers. These components are labelled in

the architecture of our neural network depicted in Figure 4.2. Convolutional layers consist

of a series of kernels that are convolved across the input, mapping each group of pixels into

single values in a new layer. These kernels act as filters that map out particular features

from the image (such as features associated with glacier fronts). See LeCun et al. [2015] for a

discussion of convolutional neural networks. Convolutions are represented by red, purple, or

gray arrows, as discussed in the following paragraph. During the “down” component, pooling
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layers are applied to downsample the output of each set of convolutional layers [LeCun et al.,

2015]. Pooling is represented by blue arrows in the figure. This dimensionality reduction is

a way of introducing location-invariance by combining similar features and coarsening the

output of the convolutional kernels. In our neural network we use 2× 2 max-pooling layers,

which take the maximum value between each group of 4 pixels, resulting in location invariance

within local batches and faster convergence of the network [Nagi et al., 2011]. In the second

stage, the images are upsampled by doubling the rows and columns of the previous layer

by repeating the rows and columns (represented by cyan arrows) and concatenated with the

last convolutional layer with the same dimensions as the upsampled image (yellow arrows).

Thus, the detailed global features in the last convolutional layer are combined with the

contextual information of the previous layer. This combined upsampled layer is then fed to

convolutional layers, as before. The reconstructed image by the last convolutional layer will

have the same size as the input images and contain the desired segmented features.

The architecture of our neural network is depicted in Figure 4.2. Our network is composed

of 29 total layers, with 3 downsampling steps and 4 sets of convolutional layers going from

32 to 256 feature channels and the corresponding upsampling steps. We apply 3× 3 convo-

lutional layers with padding (such that the output of each convolutional layer has the same

image size as the input) and a step size (“stride”) of 1 as the kernel moves across the image.

We use Rectified Linear Units (ReLU) [Nair and Hinton, 2010] as our non-linear activation

function, which has been shown to be very successful in convolutional neural networks [Le-

Cun et al., 2015]. In order to apply regularization and avoid over-fitting to training data,

we use Dropout layers [Srivastava et al., 2014] between convolutional layers with an elim-

ination fraction of 0.2. This randomly drops some units at each iteration from the neural

network in order to minimize over-fitting and excessive reliance on individual units. We

find that increasing the dropout fraction significantly increases the “noise” (number of false-

positives) in our results. The successive operations of 3 × 3 ReLU convolutions→Dropout

with 0.2 elimination fraction → 3 × 3 ReLU convolutions are depicted by single red ar-
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rows in Figure 4.2 for succinct graphical representation. Our downsampling is performed by

2 × 2 MaxPooling layers with no padding and strides of 2, which are represented by blue

arrows. Therefore, at every step the height and width of the layer is reduced by half while

the number of convolutional kernels or bands (also known as feature channels) doubles. The

same convolution→dropout→convolution architecture (red arrows) is used in the upsampling

stage, where the number of feature channels is halved in each iteration. The 2×2 upsampling

is done by repeating the rows and columns of the previous layer (cyan arrow), and concate-

nating the resulting matrix with the corresponding higher-resolution layer (yellow arrow).

We get performance improvements by also adding a final 3× 3 ReLU convolution to go from

the final 32 channels to 3 (represented by a purple arrow), followed by a convolutional layer

with a Sigmoid activation function (gray arrow) to get the final reconstructed image. The

reconstructed image is flattened into a 36,480 ×1 vector for the implementation of pixel-by-

pixel sample weights during training, discussed below, which is represented by a black arrow

in the final layer in Figure 4.2. The architecture of the network is also summarized in Table

B1.

We use a binary cross-entropy loss function (see Mannor et al. [2005]) with custom sample

weights for each input image. Note that images of glacier fronts pose a severe class imbalance

problem, since the vast majority of pixels are not calving fronts. As a result, the NN learns

to obtain high accuracy by simply classifying every pixel as not being part of the calving

front. To avoid this false-negative classification artifact, we develop custom sample weights

such that for every training example the pixels containing calving fronts have much higher

penalties in the loss function if misidentified. In order to have an equal contribution from each

class of pixels, the weight is determined as the average ratio of the number of non-boundary

pixels to pixels including glacier front boundaries, which is 241.15 in our training set with

123 input images with dimensions 152 × 240. Note that while the weight is distributed

individually for each training instance based on the position of the calving front, the value

of the weight reflects the class imbalance of the training data in its entirety and is a constant
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value for all pixels located on calving fronts. We also take advantage of data augmentation by

mirroring the horizontal orientation of glaciers (i.e., flipping the images from left to right) to

provide different fjord geometries and inverting the grayscale intensities to mimic different

shadows. However, we get accurate results even without the use of augmentation, which

speeds up the training process (discussed in the next section).

4.2.3 Post-Processing

To retrieve the geo-located ice front position from the output of the NN, we restore the

padding and cropping of the images to the original 200 x 300 pixel size and identify the

ocean/glacier area using pre-defined boundaries which delineate the fjord walls. These were

obtained by digitizing the fjord boundaries in the same manner as the digitized “true labels”.

Note that these lines correspond only to the lateral boundaries of the fjords (i.e., independent

of the calving front positions) and therefore only need to be defined once per glacier and may

be used for all additional fronts obtained via the NN. We iterate through pairs of pixels on

the fjord boundaries to find a least-cost path through the array, where the weights of each

“step” are given by the output of the NN. A 500 m buffer is used from the fjord walls. The

extracted path of pixels with the least weight is identified as the ice front, and converted

to the geographical coordinates of the original clipped Landsat scene used to generate the

subset. The geographical coordinates are stored as both raster data and shapefiles which

may be used in Geographic Information System (GIS) software.

4.3 Results

We train the neural network on a set of 123 preprocessed 152×240 input images from Jakob-

shavn, Sverdrup, and Kangerlussuaq glaciers. Note that while this may seem like a limited
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number of training instances, one of the advantages of the utilized network architecture used

in this study is its ability to perform well with an extremely limited set of training data.

In fact, the U-Net architecture used by Ronneberger et al. [2015] used a training set that

consisted of 30 512× 512 pixel images. Training success with few training images is in part

enabled by data augmentation, which plays an important role in reducing our output errors,

as discussed below. We leave aside 10% of the images chosen randomly during training for

cross-validation. The validation dataset is used to prevent overfitting. The training is halted

when the validation loss starts to increase as a result of overfitting. In addition, in order to

test the ability of the neural network to predict calving fronts beyond the training set for

different glacier geometries, we test the trained network on images of Helheim glacier, whose

geometry is unknown to the NN during training. Note that this test dataset is in addition

to the cross-validation data used during training. We minimize the custom-weighted binary

cross-entropy loss function discussed in Section 2 using the Adam optimizer [Kingma and

Ba, 2014] with batches of 10 images at a time. Furthermore, we use a variable learning rate,

which is reduced by half after every 5 epochs without any improvements to the accuracy. We

test the performance of a variety of NN configurations (discussed in the next section) and

find that training the NN described in Figure 4.2 with horizontal mirroring augmentation

with batches sizes of 10 leads to excellent agreement between the “generated” and “true”

fronts. Training the network for 54 epochs leads to an accuracy of 92.4% in the training set

and 93.6% in the validation set, after which the validation loss starts to increase as a result

of over-fitting. Figure 4.3 shows the result of the NN network on a particularly noisy test

image.

Panel (a) shows the pre-processed input image. Note that we pick this example as an instance

of an image that can mislead analytical edge detection filters, but the reported results and

errors are drawn from the complete test dataset. The raw output of the NN is shown in

Panel (b). It is evident that the neural network is able to extract the calving front from the

input image. Figure 4.3 also compares the output of the NN to the Sobel filter, a common
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analytic edge detection algorithm that has been used in previous studies (e.g., see Seale

et al. [2011]). It is clear from Panel (c) that the Sobel filter is very sensitive to noise and

identifies many gradients in the texture of the glacier, the icebergs, and the surrounding

topography as calving boundaries, which could lead to a false identification of the position

of the calving front. Panel (d) shows the extracted fronts in post-processing (as discussed

in Section 2.3). Note that we have also included a manually-determined front in addition

to the “true” front. While the true front has also been determined manually on the original

high resolution (i.e., uninterpolated) geocoded data, the “manual” comparison in Figure 4.3

refers to hand-drawn fronts on the pre-processed lower resolution rasterized images that are

also used for the NN and Sobel processing for an equal comparison of the performances.

The neural network performs remarkably well compared with the true boundary. However

it is evident that the Sobel filter is not able to extract the calving front as accurately as

the NN. Furthermore, the performance of the neural network appears to be comparable to

manually-determined front. Results for other test images are provided in the Supplementary

Material (Figure B3.1–10).

While Panels (a)–(d) of Figure 4.3 showcase the output of one image, Panels (e) and (f) show

the error analysis obtained from the complete set of test images for the NN, Sobel filter, and

manual results. We quantify the errors by breaking the extracted calving fronts of Helheim

glacier (which was not used during training) into 1000 smaller line segments and calculating

the mean difference between the corresponding segments of the generated and true fronts.

Figure 4.3 shows the distribution of the differences for the NN (e) the Sobel filter (f), and

manual results (g). We calculate the total error in the glacier fronts as the mean deviation

between all 10,000 line segments in the outputted and true glacier front boundaries. The NN

has a mean difference of 96.3 m, equivalent to 1.97 pixels, which is more than 8 times smaller

than that of the Sobel filter. The manual output has a mean error of 92.5 m (1.89 pixels),

only slightly below the error of the NN. Considering line segments only from the 8 scenes

were the Sobel filter is able to successfully delineate the calving front, the errors are 85.3 m
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(1.74 pixels), 193.0 m (3.94 pixels), and 89.1 m (1.82 pixels) for the NN, Sobel, and manual

approaches, respectively. Most of the error in the NN output is attributed to the edges of

the calving front, as can be seen in the Supplementary Material. Furthermore, it appears

that the Sobel errors have a multimodal distribution. In other words, when the Sobel filter

identifies the correct gradient as the calving front, it is in good agreement with the NN

results. However, the filter can be easily mislead by other gradients in the image, resulting

in a complete mis-identification and large errors for some images, leading to additional peaks

in the histogram and larger overall errors. However, even when only the successful Sobel

cases are compared, the NN mean error is less than half of that of the Sobel. The manual

error histogram shows a more narrow distribution of errors, similar to the NN. The results

from the NN, Sobel filter, and the manual technique for individual test images, along with

the corresponding errors, can be viewed in the Supplementary Material.

Note that the errors are dependent on the resolution of the input images. As noted before,

the resolution of our inputs are less than that of the native Landsat images in order to

account for the possible span of ice fronts while minimizing image sizes and training time.

However, the errors could be improved further by increasing the resolution and the areal

extent of the input images, requiring more computational resources and increased training

time. Thus, our benchmark analysis shown above is conducted on the same glacier to limit the

influence of resolution and image size on the performance comparison of NN configurations

and analytical filter and manual results. We performed the training with the interpolated

images on an Intel 2.9 GHz CPU node with 5 Gigabytes of allotted memory. The training

took 2 m and 17 s per epoch, resulting in just over two hours of training in total. More

computational resources, in particular the use of Graphical Processing Units (GPUs), could

result in significant improvements to the training time.
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4.4 Discussion

Images of glacier calving fronts are inherently noisy, with a variety of surfaces and boundaries.

Therefore, the application of analytical edge detection schemes such as the Sobel filter [Sobel,

1990] results in many false-positive predictions, where any sharp gradients on the surface

of the glacier, icebergs, valley walls, and surrounding topography are likely to labeled as

glacier calving fronts. In contrast, a convolutional neural network is able to learn the desired

features in the images in order to correctly identify the calving front and mostly ignore other

boundaries and sharp gradients. As discussed in Figure 4.3, the glacier fronts extracted

from the output of the NN are in very close agreement to the true front and have similar

errors as manually-determined fronts on the same resolution. The analytical filter, however,

appears to be very sensitive to noise. It returns noisy images of sharp gradients from which

the calving front cannot be correctly extracted in some cases. While customized analytical

edge-detection schemes may be able to achieve reasonable results (see Seale et al. [2011]),

they often rely on dataset-specific parameterizations and thresholds that are not readily

applicable to various imagery solutions. The application of neural networks, on the other

hand, does not require analytical customization for different datasets. The NN can be trained

on any imagery product with the proper training labels. The applicability of NNs for the

detection of calving fronts goes beyond optical imagery, and can be potentially applied to

other forms of data such as radar, which will be explored in future studies.

The proper configuration and training of the NN can have a significant effect on the accu-

racy of the generated calving fronts. Figure 4.4 showcases various alterations to the NN on

the same image used in Figure 4.3. Panels (a)–(c) use the architecture of the NN shown in

Figure 4.2 without any data augmentation (a), horizontally mirroring the images (b), and

horizontally mirroring and inverting the colors of the images (c) during training. We find

that data augmentation results in more continuous calving fronts while generally reducing

the “noise” (number of false-positives). However, color inversion does not seem to contribute
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further to the performance of the network. In fact, while horizontal mirroring produces a

mean deviation error of 96 m, the addition of inversion increases the error to 138 m. Further-

more, note that data augmentation increases the training time by several fold, depending on

the number of alterations. Adding color inversion augmentation increases the training time

per epoch from 137 to 217 seconds. As a result, it is desirable to use minimal augmentation

while maintaining a low error. Therefore, we restrict the augmentation to horizontal mirror-

ing. Furthermore, Panel (d) shows the effect of increasing the width of the glacier front lines

in the training labels from 1 pixel to 3 pixels. While the mean error increases due to the loss

of spatial precision, it is interesting to note that the noise, or number of false-positives, also

decreases noticeably. This may be a result of the smaller class imbalance and weight ratio

in the loss function (which decreases from 241.15 to 82.22), reducing the relative cost for a

false classification of the calving fronts compared to background pixels. Therefore, if more

pronounced calving front lines with minimal noise are required in post-processing, thicker

labels may be desired.

We also find that the number of batches used during training has a significant effect on the

results. We use batch sizes of 10 in the chosen NN. On the one hand, using larger batch sizes

increases the noise in the output of the neural network, significantly decreasing the accuracy

metric in the validation dataset. On the other hand, while using smaller batch sizes reduces

the background noise, it also decreases the accuracy, with the mean error changing from

107 m (10 batches) to 152 m (3 batches), as shown in Panel (e). However, smaller batch

sizes might be desirable if fewer false-negatives (at the cost of less continuous calving fronts)

are required. Note that while smaller batch sizes increase training time per epoch, fewer

iterations are required before overfitting in validation loss becomes evident.

Lastly, we also examine the effect of the depth and size of the neural network on the test

results. While increasing the depth leads to smaller errors compared to increasing the width

or the number of units in each layer (not shown), there are no improvements with respect
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to the 29-layer NN, as shown in Panel (f). This may be due to the limited availability of

training data for a deeper NN. The 37-layer NN (with one more downsample/upsamppling

step compared to Figure 4.2) shows a more noisy output with a mean error of 112 m,

slightly larger than the mean error of the corresponding 29-layer output in Panel (a). Note

that the same relationship is true with the addition of augmentation. However, in the case

of a larger and more varied training dataset, a deeper NN could potentially lead to further

improvements.

4.5 Conclusions

We have used a Convolutional Neural Network (CNN) with a U-Net architecture [Ron-

neberger et al., 2015] to automatically detect glacier calving fronts in images obtained from

Landsat 5 (“green” band) and Landsat 7 and 8 (“panchromatic” band). After exploring

different network architectures and training and augmentation configurations, we find re-

markable agreements between the true hand-drawn calving fronts and those obtained by a

29-layer deep neural network with 3× 3 ReLU convolutional layers [Nair and Hinton, 2010],

regularization with 0.2 Dropout layers [Srivastava et al., 2014], 2× 2 downsamplinig (Max-

Pooling [Nagi et al., 2011]) and upsampling layers, a sample-weighted loss function based on

the ratio of calving-front vs. non-calving-front pixels, and the utilization of data augmen-

tation. We test the performance of the network not only on new images in the validation

dataset, but also on an entirely new glacier with higher spatial resolution to test the effect

of different fjord geometries and spatial resolutions on the trained network. After training

the NN on Jakobshavn, Sverdrup, and Kangerlussuaq glaciers, we test it on Helheim glacier

and obtain a mean deviation error of 96.3 m, equivalent to 1.97 pixels on average, which

is comparable to the mean error of 92.5 m obtained from hand-drawn results on the same

resolution. As a comparison, the Sobel filter [Sobel, 1990], a commonly used analytical edge-
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detection method (e.g., see Seale et al. [2011]) results in a mean error of 836.3 m on the

same dataset. Comparing only the successful cases of the Sobel filter, the errors are 85.3 m

(1.74 pixels), 193.0 m (3.94 pixels), and 89.1 m (1.82 pixels) for the NN, Sobel, and manual

techniques, respectively.

The success of the neural network (NN) in automatically detecting calving fronts, along with

the need for a relatively small training set and short training times, makes this approach

highly desirable for the continuous monitoring of numerous glaciers around the globe with

the ever-growing wealth of remote-sensing data. The use of more spectral bands from various

satellites can potentially improve the performance of the NN in the future. Furthermore, un-

like analytical edge-detection techniques, the use of neural networks is not limited to optical

imagery and can potentially be extended to many data forms such as radar. Therefore, the

use of convolutional neural networks in the detection of calving fronts can be a widely appli-

cable and powerful approach for future studies in order to monitor the retreat of numerous

glaciers in real time.
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Geocoded Landsat Rotated Tile Pre-processed Convolutional Neural Network (CNN)

CNN OutputPost-processedGeocoded Result

240×152×1
240×152×32

120×76×32
120×76×64

60×38×64

60×38×128

30×19×128

30×19×256

Input Layer

60×38×256

60×38×128

120×76×128

120×76×64
240×152×64

240×152×32
240×152×3
240×152×1
36480×1

Figure 4.1: The outline of our methodology: Geocoded Landsat images are trimmed and
rotated so that glacier flow is in the y-direction. The images are pre-processed and fed into
to a Convolutional Neural Network (CNN) for training (refer to Figure 4.2 for a zoomed- in
version of the CNN panel). The CNN is used to predict new calving front positions, which
are post-processed and converted back to geocoded images.
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Convolution (3×3 – ReLU) 
+ Dropout (0.2) 
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Copy & Concatenate
Convolution (3×3 – ReLU)
Convolution (1×1 – Sigmoid)
Flatten

“Down” 
Component

“Up” 
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Figure 4.2: Architecture of the neural network. The length and width of each layer cor-
respond to the pixel dimensions and the number of feature channels (bands) respectively.
Convolutional and pooling kernel sizes and upsampling dimensions indicated in parentheses
(e.g., 3× 3 for convolutional layers and 2× 2 for pooling). Dropout ratio indicated in paren-
theses (0.2). The activation function is also stated for convolutional layers (ReLU=REctified
Linear Unit, and Sigmoid)
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Figure 4.3: The output of the neural network shown for a sample test image of Helheim
Glacier from Landsat 5. The pre-processed input image is shown in Panel (a). Panels
(b,c) show the raw outputs of the neural network and the Sobel filter, respectively. Panel
(d) depicts the corresponding extracted calving fronts compared to the true front, with the
addition of the manually-determined front on the same resolution rasterized image used for
the NN and Sobel filter. Note that the output of the NN shows remarkable agreement with
the true front. Panels (e–g) show the distribution of differences between the generated and
true fronts across all test images, with the corresponding mean differences with the true
fronts for the NN, Sobel, and manual results, respectively. The NN difference of 96.3 m
corresponds to 1.97 pixels. Considering only the 8 of 10 cases where the Sobel filter correctly
identifies the calving front, the mean differences for the NN, Sobel, and manual techniques
are 85.3 m (1.74 pixels), 193.0 m (3.94 pixels), and 89.1 m (1.82 pixels), respectively.
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= 107 m

a) No Augmentation

= 96 m

b) Augmented:
Mirrored

= 138 m

c) Augmented:
Mirrored & Inverted

= 170 m

d) 3-pixel Label
(No Augmentation)

= 152 m

e) batch-size 3
(No Augmentation)

= 112 m

f) 37 Layers
Max Channels 512
(No Augmentation)

Figure 4.4: A comparison of raw outputs for various architecture and training configurations
of the NN (a–f). ε represents the mean deviation from the true front for each case. Note
the best results presented in the Results section correspond to Panel (b).
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Chapter 5

Conclusions

The research presented in this dissertation focuses on improving regional mass balance es-

timates on the ice sheets and our understanding of the underlying processes using GRACE

gravimetric remote sensing, evaluation of regional climate models using the Mass Budget

Method, and the application of deep learning in satellite imagery products for the delin-

eation of glacier calving fronts. Section 5.1 provides a summary of the results presented in

chapters 2 to 4. Lastly, Section 5.2 discusses some of the implications and future directions

of this work.

5.1 Summary of Results

The content of this dissertation can be divided into two overarching themes. Chapters 2

and 3 discuss the development of regionally-optimized spherical caps for the evaluation of

basin and sub-basin mass balance from GRACE time-variable gravity data. In addition to

the discussion of mass balance and the underlying processes in multiple Antarctic basins,

these results help evaluate regional climate models and analyze the sources of discrepancies
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between them. The second overarching theme is the application of deep convolutional neural

networks for the analysis of the glacier calving fronts, as presented in Chapter 4. Each of

these is summarized below.

In the first study, presented in Chapter 2, we illustrate a novel methodology for processing

time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE)

to improve regional mass balance estimates. The spherical cap methodology developed in

Farrell [1972], and implemented in Velicogna et al. [2014] and Sutterley et al. [2014] as

uniform caps, has been extended to locally-optimized variable-sized caps designed based on

the regional geophysical signal to minimize leakage. The size, configuration geometry and

placement of the caps is optimized such that each mascon samples a roughly uniform mass

distribution, with the size reflecting the signal-to-noise ratio to avoid dominance of noisy

higher-degree harmonics in smaller caps. Chapter 2 focuses on sub-basin and basin-wide

mass balance estimates of the Totten and Moscow University glaciers. Together these two

basins have 5 meters of sea level rise potential. In addition, their placement in the marine-

sector of East Antarctica with a bed that’s situated below sea-level [Young et al., 2011]

makes them particularly important to understand and monitor.

We find a combined mass loss rate of 18.5±6.6 Gt/yr for Totten and Moscow University

glaciers from April 2002 to August 2016 using the IJ05 R2 GIA model [Ivins et al., 2013].

The results are weakly affected by the choice of the GIA model. We also compute the mass

budget using the grounding line discharge [Li et al., 2016] and SMB from two regional climate

models: RACMO2.3 (p1) and MAR3.6.4. We show that MBM/RACMO2.3 is in excellent

agreement with GRACE at a sub-basin scale, while MBM/MAR3.6.4 shows a less negative

trend. These results confirm the state of mass loss in this part of the East Antarctic Ice

Sheet, and suggest the need for further analysis of regional climate models.

This work is expanded on in Chapter 3, where regionally-optimized mascons are developed

for the drainage basins of the Getz and Amery ice shelves. The Getz drainage basin in
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West Antarctica is buttressed by an ice shelf with heterogenous influences and complex

bathymetry that make it difficult to model and study [Jacobs et al., 2013]. Furthermore,

this region has shown discrepancies between previous GRACE and Mass Budget estimates

(e.g. Sasgen et al. [2010]). We show that with locally-optimized mascons that minimize

leakage from nearby areas, the GRACE estimate is actually in excellent agreement with the

Mass Budget estimates obtained from any of the regional climate models (RACMO2.3p1

[Van Wessem et al., 2014], RACMO2.3p2 [van Wessem et al., 2018], and MAR3.6.41 [Agosta

et al., 2019]). We found a mass loss rate of 22.9±10.9 Gt/yr with an acceleration of 1.6±0.9

Gt/yr2 for this region using GRACE with GIA correction from the expectation value of a set

of 128,000 forward models for a comprehensive error analysis [Caron et al., 2018]. Previous

estimates have produced a large range of inconsistent estimates in this region from 5±17

Gt/yr [Chuter et al., 2017] to -55±9 Gt/yr [Bouman et al., 2014]. Our regional GRACE

estimate, in agreement with the Mass Budget Method, provides improved insight into the

state of this drainage basin. Moreover, given the proximity of the Getz drainage basin to the

high mass change signal of Amundsen Sea Sector glaciers, the agreement between GRACE

and MBM illustrates that our regional optimization method can indeed be implemented on

most locations across the ice sheets.

The Amery Ice Shelf drainage basin in East Antarctica has different characteristics. The

ice shelf buttresses the drainage basin on 3 sides, and it appears to be in balance [Rignot

et al., 2019]. Our gravimetric results confirm that the Amery basin is indeed in balance. This

increases confidence that previous studies indicating a positive mass balance [Yu et al., 2010]

overestimate the mass gain, which is attributed to the SMB model [Wen et al., 2014]. Indeed,

we find that while MBM/RACMO2.3p1 is in agreement with GRACE, MBM/RACMO2.3p2

and MBM/MAR3.6.41 show positive trends as a result of the larger mean monthly magni-

tudes of RACMO2.3p2 and MAR3.6.41. The differences arise as a result of more than 10

Gt/yr difference in the mean monthly SMB values, as opposed to differences in SMB vari-

ability or trend. We show that the results for Totten and Moscow University glaciers in
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Chapter 2 also exhibit these differences in East Antarctica due to mean SMB magnitude

differences. By adjusting the SMB mean magnitude of each model by that of RACMO2.3p1,

all MBM estimates fall into agreement with GRACE. This suggests that new developments

in RACMO in East Antarctica may need to be revisited in the regions discussed here, while

the same effect has not been detected in West Antarctica.

In the second portion of this dissertation, we showcase the implementation of deep convolu-

tional neural networks (CNN) to delineate glacier calving fronts in Chapter 4. A modified

U-Net architecture [Ronneberger et al., 2015] is developed to automatically delineate glacier

calving fronts from Landsat imagery. The best results are obtained with a 29-layer CNN

using custom sample weights (based on the proportion of calving front to non-front pixels).

Furthermore, the results are significantly improved using additional augmentation where each

image is horizontally mirrored to increase the variability and number of training samples.

The CNN is trained on 123 images of Jakobshavn, Sverdrup, and Kangerlussuaq glaciers

from Landsat 5, 7 and 8 (“green” band for the former and “panchromatic” band for the lat-

ter two). The trained network is tested on images of Greenland’s Helheim glacier to test the

ability of the network to perform on new sites. Remarkably, the performance of the neural

network is comparable to the manual performance of human investigators. The CNN shows

a mean deviation of 1.97 pixels between the recovered fronts and the true fronts (equivalent

to 96.3 meters on the modified images of Helheim glacier with lowered resolution), while

the manual human results have a corresponding mean deviation of 1.89 pixels (92.5 meters).

These results show the potential for large-scale and automated delineation of the calving

fronts of glaciers worldwide with properly trained convolutional neural networks. The im-

plications and future directions of the research presented throughout this dissertation are

discussed in the next section.
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5.2 Implications and Future Work

The results presented in this dissertation enable an improved understanding of the mass

balance of the ice sheets and the underlying processes at a regional level. Changes in the ice

sheets have significant implications across the globe. Kopp et al. [2017] projected a median

sea level rise value of 146 cm by the year 2100 under Representative Concentration Pathway

(RCP) 8.5. However, there remains significant uncertainty in such estimates, with the 17–83

percentile range spanning 109 to 209 cm of sea level rise [Kopp et al., 2017]. The more

recent Intergovernmental Panel on Climate Change (IPCC) Special Report on the Ocean

and Cryosphere in a Changing Climate (SROCC) projected a median sea level rise value of

84 cm by 2100 relative to 1986–2005 under RCP 8.5, with a 17–83 percentile range (“likely

range”) of 61 to 110 cm [Oppenheimer et al., 2019]. Such differences and uncertainties,

largely driven by the ice sheets, have important ramifications for millions of people living in

low-lying coastal areas. The median projection for sea level rise by 2100 by Kopp et al. [2017]

is expected to displace 153 million people around the globe in the absence of any mitigation

strategies. Economic losses due to flooding are expected to increase from US$6 billion per

year globally in 2005 to more than US$1 trillion by 2050 without any protective measures

[Hallegatte et al., 2013]. Furthermore, sea level rise is expected to disproportionately affect

less privileged people around the world. For example, 46% of the population of Bangladesh,

77% of the population of Suriname, and 88% of the population of the Bahamas are currently

located in low elevation coastal zones, making them particularly vulnerable to the effects of

sea level rise [McGranahan et al., 2007]. Thus, better understanding and monitoring of the

ice sheets are of global importance. Careful regional assessments of mass balance, evaluation

of model outputs, and continuous and wide-spread monitoring of glacier calving dynamics

allow the scientific community to gain a better understanding of how the ice sheets respond

to a changing climate. While we have taken several steps in this direction, future work

remains, as outlined below.
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The regional optimization methodology for GRACE harmonics has only been applied to

a few regions on the Antarctic ice sheet in this dissertation. However, as illustrated by

the success of the mascons on the Getz Ice Shelf basin in proximity to the large signal of

Amundsen Sea Sector glaciers, this approach is applicable to most regions across the ice

sheets. There is need for future work to design regionally-optimized mascon configurations

for other regions to further assess the issue of larger monthly SMB magnitudes in East

Antarctica in RACMO2.3p2 and MAR3.6.41, as well as the agreement of all MBM estimates

with GRACE in West Antarctica. Similar estimates in Greenland are also invaluable for

assessing regional climate models and GRACE on that ice sheet. Some preliminary work

has shown excellent agreement between GRACE and extended MBM estimates in Greenland

as well as West Antarctic sectors with large dynamic loss. In addition, these evaluations

provide an excellent benchmark for evaluating the new GRACE Follow-On (FO) gravimetric

data on the ice sheets.

The GRACE-FO mission was launched on May 22 2018 from the Vandenberg Air Force Base

after the conclusion of the GRACE mission in October 2017 [Tapley et al., 2019]. Similar

to the original GRACE satellite pair, GRACE-FO contains a microwave ranging system for

measuring the inter-satellite distance, from which the time variable gravity field is obtained.

However, GRACE-FO also includes a Laser Ranging Interferometer (LRI) system that allows

a 26-fold improvement in inter-satellite distance measurement [Tapley et al., 2019]. While

numerous factors, such as dealiasing models, affect the gravity product [Wiese et al., 2009],

the LRI instrument may contribute to lower noise levels in GRACE FO data. Future work is

needed to assess the size and configuration of regional mascon designs based on the noise level

of the harmonics. It is important to emphasize this does not change the spatial resolution

of the GRACE FO data, which is still limited to around 330 km (harmonics truncated at

degree 60).

In addition, it is important for future work to assess the continuity of the gravimetric record
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between GRACE and GRACE FO missions. Independent Mass Budget estimates presented

in this dissertation can be particularly helpful in bridging the gap between the missions

(June 2017 to June 2018). Preliminary analyses have not shown any biases between the

two missions, with both being in agreement with regional MBM estimates. However, future

work remains to carefully assess the continuity of the record across the ice sheets, analyze

noise levels, and bridge the gap in the mass balance record between the two missions. For

example, one of the accelerometers on the GRACE pair had to be shut down after August

2016, requiring an accelerometer transplant solution [Bandikova et al., 2019]. These months

at the end of the GRACE mission exhibit significantly higher noise levels. An accelerometer

transplant solution has also been implemented for GRACE-FO due to technical problems

that led to one of the accelerometers being turned off. Analysis of the effects of these

solutions, differences between GRACE and GRACE FO noise levels, impacts on ice sheet

mass balance, and verification against independent mass balance estimates are crucial in

future studies for a continuous and robust assessment of ice sheet mass balance.

Another valuable approach for the continual assessment of mass balance from independent

observations is the recent launch of ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) and

the onboard Advanced Topographic Laser Altimeter System (ATLAS) instrument. ICESat-

2 was launched in September of 2018 [Smith et al., 2019], led by NASA’s Goddard Space

Flight Center (GSFC) [Martino et al., 2019]. As opposed to its predecessor ICESat with

a single laser beam [Schutz et al., 2005], ICESat-2 carries an array of six beams with a

photon-counting sensor, recording the return time of individual photons. In addition, the

design of three pairs of beams separated by 3.3 km allows the measurement of slopes on

the surface of the ice [Smith et al., 2019]. This mission provides the opportunity for future

studies to evaluate the mass balance of the ice sheets at a much finer resolution. While

altimetry-driven mass balance estimates are dependent on firn density models for volume to

mass conversion (see Shepherd et al. [2012, 2018]), they still provide a valuable opportunity

for the inter-comparison of independent estimates in future studies. In addition, the different
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natures of the gravimetry and altimetry data allows future studies to combine the data in

unique ways to create higher-resolution hybrid solutions. Joint inversions of gravimetry,

altimetry, and GPS data have been attempted in previous studies such as Mart́ın-Español

et al. [2016] and Engels et al. [2018]. However, ICESat-2 and GRACE-FO missions provide

unique opportunities to combine the data either at the normal-equation level or at a post-

processing level for improved regional estimates, taking advantage of the temporal and spatial

characteristics of each mission.

It is also important for future studies to delve deeper into the differences between regional cli-

mate models that lead to varying agreement levels with gravimetric data. In Chapters 2 and

3 we showed that the Mass Budget estimates derived from RACMO2.3p2 and MAR3.6.41

SMB show more positive trends than those of RACMO2.3p1 and GRACE in the drainage

basins of the Amery Ice Shelf and Totten and Moscow University glaciers in East Antarc-

tica. The differences in magnitude between RACMO2.3p1 and RACMO2.3p2 are mostly

attributed to wetter conditions in the interior and drier conditions on the coastline of East

Antarctica in RACMO2.3p2 [Mohajerani et al., 2019a, van Wessem et al., 2018]. It is impor-

tant for future investigations to explore differences in model physics and parameterization

to improve the representation of surface mass balance that better match observations.

There is also significant need for future investigations to improve and build on the neural

network approach for the delineation of calving fronts described in Chapter 4. Our investi-

gation was a case-study with Landsat images of four glaciers with lowered resolutions. There

is a need for future investigations to use more elaborate computational resources to train

larger samples of high resolution images on many more glaciers and test the network along

the Greenland and Antarctic ice sheets. Recent studies have made such attempts, includ-

ing the use of a similar U-Net architecture with TerraSAR-X products [Zhang et al., 2019].

These Synthetic Aperture Radar (SAR) products have a much higher resolution of 3.3 to 3.5

meters. However, Zhang et al. [2019] only trained and tested the data on Jakobshavn Isbræ
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and found an uncertainty of 38 meters. A more recent study by Baumhoer et al. [2019] used

a similar U-Net architecture to delineate calving fronts on four training sites and four test

sites around Antarctica using Sentinel-1 radar imagery and the Antarctic TanDEM-X digital

elevation model. They found slightly larger delineation errors of 108 meters or 2.69 pixels

compared to our study. Future studies are needed to test and improve the out-of-sample

performance of these neural networks, and incorporate multiple data sources from visual

and radar remote sensing products for a continuous and reliable delineation of calving front

positions across the globe.

Furthermore, the use of machine learning can be extended to analyze other important as-

pects of the ice sheets. In addition to calving fronts, the determination of the grounding line,

the boundary between the grounded and floating portions of a glacier [Cogley et al., 2011],

is both crucial and challenging for a better assessment of the behavior of marine-terminating

glaciers. The position of the grounding line is needed to determine the mass budget of

glaciers and their contribution to sea level rise (e.g. Rignot et al. [2019]). Moreover, the

dynamics of the grounding line are crucial to understanding and assessing the stability of

glaciers and the role of Marine Ice Sheet Instability (MISI) in the long-term evolution of the

ice sheets [Schoof, 2007]. Determining the position of the grounding line from observations

has traditionally been done by the manual examination Differential Interferometric Synthetic

Aperture Radar (DInSAR) [Rignot et al., 2011a]. This is done by differencing interferograms

and manually delineating the grounding line in a labor-intensive process. Future investiga-

tions can extend the methodology of our study to interferometric data to delineate grounding

lines in an automated fashion at a large scale. However, the different nature of this data

poses challenges that may require different neural network architectures or training schemes.

The desired features in the interferometric data can be much subtler, making it unclear

whether convolutional kernels can successfully extract the desired boundary. It may be nec-

essary to use a combination of machine learning and analytical techniques to overcome these

difficulties. A recent study showcases the ability of convolutional neural networks to detect
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continuous slow deformations in the solid Earth from interferograms [Anantrasirichai et al.,

2019]. The authors remark that while there is potential utility in this approach, further

developments may be needed for the wide applicability of convolutional neural networks in

InSAR data. Additional challenges may also be posed by the less steady changes in glacier

dynamics and the delineation of grounding lines. Future investigations are needed to iden-

tify and solve such challenges. These advancements will allow comprehensive monitoring of

groundling lines across the ice sheets, not only allowing an improved assessment of present

mass balance, but also future contributions to global sea level rise by a better understanding

of the dynamics at grounding lines.

More generally, we are currently on the cusp of a big data revolution in remote sensing that

will shift the bottleneck in understanding of glaciological processes from limited observations

to limited analysis and interpretation of the large amount of data collected around the

world. In addition to the aforementioned new missions such as ICESat-2 and GRACE-

FO, numerous satellite imagery missions across the electromagnetic spectrum such as the

WorldView [Anderson and Marchisio, 2012] and Landsat [Roy et al., 2014] series, Sentinel-

2 [Drusch et al., 2012], commercial constellations such as RapidEye [Tyc et al., 2005] and

SkySat [Murthy et al., 2014], and other small CubeSat operations [Wu et al., 2017] will

provide a wealth of observational data. At the same time, developments in machine learning

and artificial intelligence (AI) open up a range of new possibilities to take advantage of this

data to lower uncertainties and improve our understanding of glaciological processes. In

addition to feature recognition, such as delineation of calving fronts and grounding lines,

deep learning techniques can be used to derive highly complex, nonlinear relationships that

would not be easily found through traditional analytical approaches. For example, there

is significant uncertainty in sea level projections due to calving dynamics and potential

instability of tall ice cliffs (∼1 km thickness with more than 90 m above water) without

the support of buttressing ice shelves, referred to as Marine Ice Cliff Instability (MICI)

[DeConto and Pollard, 2016, Bassis and Walker, 2011]. By considering ice cliff instability

84



and hydrofracturing, DeConto and Pollard [2016] predicted more than a meter of sea level

rise by the end of the century from Antarctica alone. More recent studies have pointed

out large uncertainties in MICI, emphasizing the lack of observational evidence [Edwards

et al., 2019]. Continuous and global monitoring of all glaciers across the globe with machine

learning techniques and the wealth of remote sensing data allows future investigations to

dramatically increase observational constraints on the dynamics of glaciers. Furthermore,

we aim to take advantage of deep learning to determine key variables relevant to calving

dynamics in future studies. By using numerous characteristics such as strain rate, cliff

height, and stress field for all glaciers on the Greenland and Antarctic ice sheets as inputs to

a deep neural network and hind-casting observed calving events, not only can we determine

the most important controllers of calving, but also determine nonlinear relationships that

are not easily accessible through an analytical approach. New developments such as Layer-

wise Relevance Propagation (LRP) [Montavon et al., 2019] allow us to peek into the neural

network and learn potentially useful relationships between the variables. Such analyses

have great potential for future studies to expand our understanding of glacier dynamics and

processes controlling the long-term evolution and mass balance of the ice sheets.

All in all, there are still large uncertainties in the global and regional contribution of the ice

sheets to future sea level rise, and significant work remains to reduce uncertainties, improve

understanding, and assess the effects of the ice sheets in the 21st century. The new generation

of remote-sensing missions such as GRACE-FO and ICESat-2 provide the opportunity to

continue reducing mass balance uncertainty at all scales, evaluate regional climate models,

and improve our understanding of processes. Improved real-time observational assessments

at a large scale aided by novel approaches in machine learning and big data have the potential

to significantly improve our understanding of processes governing ice sheet mass balance and

potential instabilities. These multi-faceted approaches provide a rich and exciting arena for

glaciological research in the years to come, the results of which are crucial for the adaptability

and well-being of millions of people around the world.
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Appendix A

Supplementary Material to Chapter 3

Introduction Additional details are provided in the following two figures: Figure A.1 shows

the GRACE-derived rate of mass change time-series of Totten and Moscow University glaciers

using the sub-basin mascon configuration of Mohajerani et al. [2018] and corrected with the

expectation value of the ensemble of 128,000 forward modeling runs of the Caron et al. [2018]

GIA model, compared to mass budget time-series derived from RACMO2.3p1 [Van Wessem

et al., 2014], RACMO2.3p2 [van Wessem et al., 2018], and MAR3.6.41 [Agosta et al., 2019].

Consistent with the results from Amery, MBM/RACMO2.3p2 and MBM/MAR3.6.41 pro-

duce less negative trends.

Figure A.2 shows the rate of mass change time-series for Amery where the mass budget data

has been adjusted as follows: the mean monthly SMB magnitude of each model is scaled by

that of RACMO2.3p1 such that all models have the same overall mean magnitude.

The rate-of-change time-series are calculated using a 36-month sliding window. For each

time-step i, the rate of mass change is calculated as

dm

dt

∣∣∣∣
t=t

≈ mi+36 −mi

ti+36 − ti
(A.1)
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where t is the arithmetic mean of the time interval [ti, ti+36].

In addition, Table A.1 compares the mean monthly SMB values for RACMO2.3p1, RACMO2.3p2,

and MAR3.6.41 for the Amery and Getz basins. In the Amery basin, where the MBM es-

timates differ, the mean mangitudes of RACMO2.3p2 and MAR3.6.41 are more than 10

Gt/yr larger than that of RACMO2.3p1, resulting in more positive mass budget estimates.

In contrast, the RCMs show similar magnitudes in the Getz region.

Figure A.1 Comparison of regionally-optimized mascons for Totten and Moscow University

glaciers sub-basin region using the mascon configuration of Mohajerani et al. [2018] with the

corresponding mass budget estimates.

Figure A.2 Time-series of adjusted Mass Budget results in Amery where the surface mass

balance is adjusted based on the mean magnitude of RACMO2.3p1, compared with the

corresponding GRACE results.

Table A.1 Comparison of mean monthly SMB magnitudes from January 1979 to December

2015 in the Getz and Amery regions for RACMO2.3p1, RACMO2.3p2, and MAR3.6.41.
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Totten and Moscow University 

Figure A.1: Time-series of rate of mass change in gigatons per year (1012 kg per year) of Tot-
ten and Moscow University glaciers using the sub-basin mascon configuration of Mohajerani
et al. [2018], where the GRACE estimate (red) has been corrected by the expectation value
of the ensemble of GIA models from Caron et al. [2018], compared with Mass Budget esti-
mates derived from RACMO2.3p1 (blue), RACMO2.3p2 (cyan), and MAR3.6.41 (orange).
The dotted lines represent the mean trend during the common period.
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Amery

Figure A.2: Adjusted MBM time-series of rates of mass change in gigatons per year (1012 kg
per year) in Amery for RACMO2.3p2 (cyan) and MAR3.6.41 (orange) using the reference
period mean of RACMO2.3p1 (blue), compared with the GRACE time-series (red). The
dotted lines represent the mean trend during the common period.

Table A.1: Comparison of mean monthly SMB magnitudes from January 1979 to December
2015 in Gt/yr. The errors are calculated following Rignot et al. [2019].

Amery Getz
RACMO2.3p1 (Gt/yr) 75.6±4.5 100.8±5.9
RACMO2.3p2 (Gt/yr) 85.8±5.1 100.2±5.9
MAR3.6.41 (Gt/yr) 87.1±5.1 101.3±6.0
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Appendix B

Supplementary Material to Chapter 4

B.1 Architecture of Neural Network

Architecture of the neural network corresponding to Figure 4.2. ”Conv” denotes a convolu-

tional layer with ReLU activation a 3 × 3 kernel, unless specified otherwise as in layer 28.

All layers are as described in Methods.

B.2 Seasonal Distribution of Location of Data

The seasonal distribution, location, and frames of the images used for training and testing.

B.3 Outputs and Errors on Helheim Glacier

The outputs and corresponding errors of the Neural Network (NN), Sobel filter, and manual

technique for 10 test images from Helheim Glacier.
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Table B.1

Layer Type Output Size
1 Input 240×152×1
2-4 Conv → Dropout (0.2) → Conv 240×152×32
5 MaxPool (2×2) 120×76×32
6-8 Conv → Dropout (0.2) → Conv 120×76×64
9 MaxPool (2×2) 60×38×64

10-12 Conv → Dropout (0.2) → Conv 60×38×128
13 MaxPool (2×2) 30×19×128

14-16 Conv → Dropout (0.2) → Conv 30×19×256
17 Upsample (2×2) and Concatenate with layer 12 60×38×256

18-20 Conv → Dropout (0.2) → Conv 60×38×128
21 Upsample (2×2) and Concatenate with layer 8 120×76×128

22-24 Conv → Dropout (0.2) → Conv 120×76×64
25 Upsample (2×2) and Concatenate with layer 4 240×152×64

26-28 Conv → Dropout (0.2) → Conv 240×152×32
27 Conv 240×152×3
28 Conv (1×1 - Sigmoid) 240×152×1
29 Flatten for dynamic weighting 36480×1

Jan Feb Mar Apr May Jun Jul Aug Se
p Oct Nov Dec

Helheim

Jakobshavn

Kangerlussuaq

Sverdrup

Figure B2.1: The seasonal distribution of the images used for training (top three rows: Sver-
drup, Kangerlussuaq, and Jakobshavn glaciers), and testing (bottom row: Helheim glacier).
The marker sizes correspond to the number of images for each month (normalized).
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2001/06/30

2014/08/01 2016/07/29

1989/06/29

Figure B2.2: The location of the training (Sverdrup, Kangerlussuaq, and Jakobshavn
glaciers) and testing (Helheim glacier) sites, with examples of each fjord to show the ex-
tent of the frames used in the neural network.
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Figure B3.1: Landsat 5 - June 29, 1989
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Figure B3.2: Landsat 5 - August 30, 1994
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Figure B3.3: Landsat 5 - September 8, 1985
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Figure B3.4: Landsat 7 - June 25, 2002
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Figure B3.5: Landsat 7 - July 21, 2000
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Figure B3.6: Landsat 7 - March 31, 2000
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Figure B3.7: Landsat 7 - March 18, 2001
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Figure B3.8: Landsat 8 - July 25, 2016
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Figure B3.9: Landsat 8 - July 7, 2015
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Figure B3.10: Landsat 8 - August 21, 2014
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