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ABSTRACT OF THE DISSERTATION

Representations of FI-Like Categories Associated to Subgroups of Wreath Products

by

Anthony N. Muljat

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2024

Dr. Wee Liang Gan, Chairperson

The category FIG has been studied in relation to the representation theory of the wreath

products G ≀ Sn, where G is a finite group. We take G = A to be abelian and define the

category FIH
A associated to certain subgroups Jn of A ≀ Sn, including the finite complex

reflection groups G(m, p, n) defined by Shepard and Todd. We also give axioms for “FI-like”

categories C, and prove the equivalence of the noetherian property for C-modules over

k with the noetherian property for A-modules over k, where A is a suitably restricted

subcategory of C and k is a commutative noetherian ring with unity. We apply this result to

show that representation stability for a sequence of finite-dimensional Jn-representations

over C is equivalent to finite generation of the corresponding FIH
A -module. We also prove the

analogous result for representations of the alternating groups. Lastly, we prove homological

stability for the family {Jn} with twisted coefficients from a finitely generated FIH
A -module

over Z, as well as the equivalence of certain Serre quotient categories of locally noetherian

C- and A-modules.

vi



Contents

1 Introduction 1
1.1 Representation stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 FI-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Noetherian property for C-modules 12
2.1 FI-Like Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 C-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Representation stability 23
3.1 Alternating groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Wreath products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Homological stability 36
4.1 G-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Homological stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Serre quotients 48

References 54

vii



Chapter 1

Introduction

We begin by recalling the notion of representation stability as originally defined by Church

and Farb [CF]. Then we describe the categorical framework introduced by Church, El-

lenberg, and Farb [CEF] and expanded upon by later works (such as [SS], [W2], and the

present work) in terms of which many of the major known results concerning representation

stability are formulated.

Throughout this work, all sequences {Xn} are assumed to be indexed by the nonnegative

integers, unless otherwise stated.

1.1 Representation stability

In general, stabilization results concerning a sequence {Xn} are characterized by descrip-

tions of how the objects in higher degrees (i.e. the objects Xn for n ≫ 0) are determined

by the objects in lower degrees in a manner which restricts the “growth” of the sequence.

The authors of [CF] formulated representation stability in order to precisely describe this

phenomenon as it pertains to certain naturally-arising sequences of group representations.

We describe the sort of sequences for which representation stability is defined below.
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Fix a field k of characteristic zero. Let {Gn} : G0 ↪→ G1 ↪→ G2 ↪→ · · · be an ascending

chain of finite groups, and consider a sequence

{Vn, φn} : V0 V1 V2 · · ·φ0 φ1 φ2

where, for each n ≥ 0, Vn is a Gn-representation over k and φn : Vn → Vn+1 is a homomor-

phism of k-vector spaces.

Definition 1.1 ([CF, p. 19]). The sequence {Vn, φn} is consistent if both of the following hold

for all n ≥ 0:

(a) Each v ∈ Vn is contained in a finite-dimensional Gn-representation Wn ⊆ Vn.

(b) The map φn is Gn-equivariant.

Condition (a) of Definition 1.1 guarantees that Vn decomposes into a direct sum of

finite-dimensional irreducible representations of Gn with well-defined multiplicities, while

condition (b) ensures that the map φn, considered as a map Vn → ResGn+1
Gn

Vn+1, is a homo-

morphism of Gn-representations.

Definition 1.2. Let {Vn, φn} be a consistent sequence of Gn-representations.

(a) We say {Vn, φn} satisfies the injectivity condition if the map φn : Vn → Vn+1 is injective

for all n ≫ 0.

(b) We say {Vn, φn} satisfies the surjectivity condition if the k-span of the Gn+1-orbit of

φn(Vn) is all of Vn+1 for all n ≫ 0.

Definition 1.2 describes two of the three conditions imposed for the sequence {Vn, φn} to

be representation stable. The third condition, called multiplicity stability, may be formulated

when the irreducible representations of Gn admit an indexing by some datum λ that does

not depend on n. Such an indexing exists when Gn is the symmetric group Sn, as described

in Notation 1.3 below.
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Notation 1.3. Let n be a positive integer. By a partition of n, we mean a sequence of positive

integers

λ = (λ1, . . . , λℓ)

such that λ1 ≥ · · · ≥ λℓ and

|λ| := λ1 + · · ·+ λℓ = n.

A partition λ = (λ1, . . . , λℓ) may be visualized by the Young diagram Yλ, which is an array

of boxes with λ1 boxes in the top row, λ2 boxes in the second row, and so on. For example,

the partition (4, 2, 1) of 7 corresponds to the Young diagram

Y(4,2,1) = .

Denote by P the set of all partitions of positive integers. Given λ ∈ P , define the padded

partition λ[n] for n ≥ |λ|+ λ1 by setting

λ[n] := (n − |λ|, λ1, . . . , λℓ).

We have |λ[n]| = n; moreover, every partition of n may be written uniquely in this form.

Recall that the (isomorphism classes of) irreducible representations of the symmetric group

Sn over k are in one-to-one correspondence with all possible partitions of n. We write V(λ)n

for the irreducible Sn-representation over k corresponding to λ[n]. If n < |λ|+ λ1, we set

V(λ)n to be the trivial representation.

Let {Vn, φn} be a consistent sequence of Sn-representations over k. Maschke’s theorem

guarantees that there exists a decomposition of Vn as a direct sum of the V(λ)n with

multiplicities 0 ≤ cλ,n ≤ ∞:

Vn ∼=
⊕
λ∈P

V(λ)
⊕cλ,n
n (1.4)
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We may now define mutliplicity stability (in the terminology of [CF], uniform multiplicity

stability) for {Vn, φn} as follows.

Definition 1.5 ([CF, Def. 2.6]). We say that {Vn, φn} is multiplicity stable if there exists

N ≥ 0 not depending on λ such that, for all λ and all n ≥ N, the multiplicity cλ,n in the

decomposition (1.4) satisfies cλ,n = cλ,N .

Multiplicity stability {Vn, φn} in the range n ≥ N for means that, for each n ≥ N, the

decomposition for Vn+1 may be obtained by adding exactly one box to the top row of each

Young diagram corresponding to each irreducible component in the decomposition of Vn.

Definition 1.6 ([CF, Def. 2.3]). We say that the sequence {Vn, φn} is representation stable if

the sequence {Vn, φn} satisfies the injectivity and surjectivity conditions, and is multiplicity

stable.

1.2 FI-modules

The authors of [CEF] introduced FI-modules as a means of encoding the information con-

tained in certain consistent sequences of Sn-representations. In this section, we recapitulate

the main structural results concerning FI-modules.

For this section, we set k to be a commutative noetherian ring with unity.

Definition 1.7. The category FI is defined by the following data:

• The objects of FI are the sets n = {1, . . . , n} for all n ≥ 0, where 0 is the empty set.

• For all m and n, the set of morphisms FI(m, n) consists of all injective functions

m ↪→ n. Composition of morphisms is defined as the usual composition of functions.

Originally, the authors of [CEF] defined FI to be the category of all finite sets and injective

functions. However, the results cited below remain valid when stated in terms of Definition

1.7.
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An endomorphism σ : n → n in FI is a permutation on n elements, so the set of

endomorphisms FI(n, n) together with the operation of composition forms the symmetric

group Sn for all n ≥ 0.

Definition 1.8. An FI-module (over k) is a covariant functor V from the category FI to the

category of k-modules. An FI-module morphism V → W is a natural transformation of

functors.

Fix an FI-module V. For each n ≥ 0, we will denote the k-module V(n) by Vn. Given an

FI-morphism α, we will denote the k-module homomorphism V(α) by α∗.

The endomorphsisms FI(n, n) = Sn act on Vn by

σv = σ∗(v) (σ ∈ Sn, v ∈ Vn)

thus making Vn an Sn-representation over k, i.e. a kSn-module.

For each pair of nonnegative integers m ≤ n, let ιm,n denote the inclusion m ↪→ n. An FI-

module V naturally determines the consistent sequence of Sn-representations {Vn, (ιn,n+1)∗}.

However, not every consistent sequence of Sn-representation may arise from an FI-module,

as specified by the next proposition.

Proposition 1.9 (FI-module criterion, [CEF, Rem. 3.3.1]). Let {Wn, φn} be a consistent sequence

of Sn-representations. Then there exists an FI-module W with W(n) = Wn and φn = W(ιn,n+1) if

and only if the following condition is satisfied: for all m < n, the stabilizer of ιm,n under the action

of Sn by postcomposition acts trivially on the image W(ιm,n)(Wm).

For instance, the consistent sequence of the regular representations kSn with the inclu-

sion maps kSn ↪→ kSn+1 for all n ≥ 0 cannot arise from an FI-module.

Definition 1.10. Let U be an FI-module. We say U is an FI-submodule of V if the following

hold for all n ≥ 0:

(a) Un is an kSn-submodule of Vn.
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(b) For all 0 ≤ m ≤ n and all α ∈ FI(m, n), the map U(α) is the restriction of α∗ to Um. In

other words, the following diagram commutes for all 0 ≤ m ≤ n and all α ∈ FI(m, n):

Um Vm

Un Vn

U(α) α∗

Remark 1.11. Any FI-morphism α : m → n may be written

α = σ ◦ ιn−1,n ◦ ιn−2,n−1 ◦ · · · ιm,m+1

for some σ ∈ Sn. Thus, using the functorial properties of FI-modules, it suffices for

condition (b) of Definition 1.10 that the map U(ιn,n+1) is the restriction of (ιn,n+1)∗ for all

n ≥ 0. It follows from Proposition 1.9 that a consistent sequence {Un, φn}, where Un is a

kSn-submodule of Vn for all n ≥ 0, may be promoted to an FI-submodule of V if and only if

the following diagram commutes for all n ≥ 0:

Un Vn

Un+1 Vn+1

φn (ιn,n+1)∗

where the horizontal arrows are the natural inclusions.

Definition 1.12. Let S be a subset of
⊔

n≥0 Vn. We say S generates V if the following equivalent

conditions hold:

(a) The only FI-submodule U of V with S ⊆ ⊔
n≥0 Un is U = V.

(b) For all n ≥ 0, the span of the Sn-orbit of
⋃

m≤n(ιm,n)∗(S ∩ Vm) is all of Vn.

If there is a subset of
⊔

n≤d Vn that generates V, we say V is generated in degrees ≤ d. If

there is a finite set that generates V, we say V is finitely generated.

We recall the following two structural results concerning finitely generated FI-modules.
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Theorem 1.13 (Noetherian property, [CEFN, Thm. A]). Let k be a commutative noetherian ring

with unity. If V is finitely generated, then any FI-submodule of V is also finitely generated.

The statement of Theorem 1.13 is also expressed by saying that the category FI is locally

noetherian (over k).

Theorem 1.14 ([CEF, Thm. 1.13]). Let k be a field of characteristic zero. An FI-module V is finitely

generated if and only if the consistent sequence {Vn, (ιn,n+1)∗} is representation stable and Vn is

finite-dimensional for all n ≥ 0.

In chapters 2 and 3 of the present work, we will prove analogues of Theorems 1.13 and

1.14 for certain categories which resemble FI. The first of these is FA, which plays the role

of FI for representations of the alternating groups An.

Definition 1.15. Let FA be the subcategory of FI defined by the following data.

• The objects of FA are all the objects of FI, i.e. the sets n = {1, . . . , n} for all n ≥ 0,

where 0 is the empty set.

• If m ̸= n, then FA(m, n) = FI(m, n).

• For all n ≥ 0, the set of endomorphisms FA(n, n) is the alternating subgroup An of

FI(n, n) = Sn.

Next we consider the category FIG which generalizes FI. Analogous results to Theorems

1.13 and 1.14 are known for FIG when G is a finite group ([SS, Theorem 1.2.1] and [GL,

Theorem 1.12] respectively).

Definition 1.16 ([SS]). Let G be a finite group. The category FIG is defined by the following

data.

• The objects of FIG are the sets n = {1, . . . , n} for all n ≥ 0, where 0 is the empty set.

• For each m, n ∈ Ob FIG, the set of morphisms FIG(m, n) consists of pairs (α, f ) where

α : m → n is an injection and f : m → G is a map. The composition of (β, g) ∈

7



FIG(n, p) and (α, f ) ∈ FIG(m, n) is defined by

(β, g) ◦ (α, f ) = (γ, h)

where

γ(r) = β(α(r)), h(r) = g(α(r)) f (r) for all r ∈ m.

Setting G to be the trivial group recovers the category FI. For every nonnegative integer

n, the group of endomorphisms FIG(n, n) is isomorphic to the wreath product

G ≀ Sn = Gn ⋊ Sn

via the map

(α, f ) 7→ ( f (1), . . . , f (m), α) ((α, f ) ∈ FIG(n, n)).

For each positive integer m, we denote the cyclic group of m-th roots of unity by Cm.

Following Shephard and Todd [ST], we will denote the wreath product Cm ≀ Sn by G(m, 1, n).

This notation is defined in general below.

Notation 1.17. [LT] Given positive integers m, p, n where p|m, let

A(m, p, n) = {(r1, . . . , rn) ∈ Cn
m | (r1 · · · rn)

m/p = 1}

and

G(m, p, n) = A(m, p, n)⋊ Sn.

The group G(m, p, n) is a normal subgroup of G(m, 1, n) = Cm ≀ Sn with index p. Some

of these groups are commonly known by other names:

• G(m, p, 1) is the cyclic group of order m/p.

• G(1, 1, n) is the symmetric group Sn.

8



• G(2, 1, n) is the Coxeter group (or Weyl group) Bn.

• G(2, 2, n) is the Coxeter group (or Weyl group) Dn.

• G(m, m, 2) is the dihedral group of order 2m.

In fact, any irreducible complex reflection group either belongs to the family G(m, p, n) or

is one of 34 exceptional cases. This family also arises from certain subcategories of FICm that

we will define below. First we will fix the following notation.

Notation 1.18. Let A be a finite abelian group. For each n ≥ 0, we write Gn for the wreath

product A ≀ Sn. In particular, G0 is the trivial group. Fix a subgroup H of A and n ≥ 0. We

define the subgroup H′ of An by setting

H′ := {(a1, . . . , an) ∈ An | a1 · · · an ∈ H}.

For each n ≥ 0, we set Jn to be the subgroup H′ ⋊ Sn of Gn. In particular, J0 = G0 is the

trivial group and

J1 = H′ ⋊ S1 = H ⋊ ⟨(1)⟩ ∼= H.

In the case where H = ⟨e⟩ is the trivial subgroup of A, we will write Kn = Jn = ⟨e⟩′ ⋊ Sn

for all n ≥ 0.

The groups Jn and Kn may also be described as follows. Define the map

πn : A ≀ Sn → A

by setting

πn(a1, . . . , an, σ) = a1 · · · an (a1, . . . , an ∈ A, σ ∈ Sn).

Then Jn = π−1(H) and Kn = ker πn. Some special cases are noteworthy:

• If H = A, then H′ = An and Jn = A ≀ Sn = Gn for all n ≥ 0.

• If A = Cm and H = Cm/p, then Jn ∼= G(m, p, n) and Kn ∼= G(m, m, n) for all n ≥ 0.

9



Definition 1.19. Let A be a finite abelian group and H a subgroup of A. Define the

subcategory FIH
A of FIA by the following data.

• The objects of FIH
A are the sets n = {1, . . . , n} for all n > 0 and 0 = ∅.

• If m ̸= n, then FIH
A(m, n) = FIA(m, n).

• For all n ≥ 0, the set of endomorphisms FIH
A(n, n) is the subgroup Jn of FIA(n, n) =

Gn.

Setting H = A recovers the category FIA. In particular, the category FI⟨e⟩C2
is equivalent

to the category FID defined by Wilson [W2, Definition 1.1] and which is associated to the

Coxeter groups Dn = G(2, 2, n). Indeed, much of chapters 2 and 3 of the present work is

based on Wilson’s proofs of analogues of Theorems 1.13 and 1.14 for FID ([W2, Theorem

4.21] and [W2, Theorem 4.22] respectively).

The plan of the rest of this paper is as follows. In chapter 2, we define FI-like categories

and say that a subcategory A of an FI-like category C is almost-full if A has all the objects

of C and all of the morphisms of C which are not endomorphisms. We prove structural

results on FI-like categories and their almost-full subcategories, the main result being the

following:

Theorem A. The category C is locally noetherian if and only if A is locally noetherian.

In particular, the categories FA and FIH
A are locally noetherian.

In chapter 3, we define representation stability for consistent sequences of An- (resp.

Jn-) representations and prove the following analogue of Theorem 1.14 for the category FA

(resp. FIH
A ):

Theorem B/C. Let W be an FA-module (resp. FIH
A -module) over a field k of characteristic 0 (resp.

over C). Then W is finitely generated if and only if the sequence {Wn, (ιn,n+1)∗} is representation

stable and Wn is finite-dimensional for all n ≥ 0.

In the case where W is an FIH
A -module, the map (ιn,n+1)∗ : Wn → Wn+1 is the one

induced by the inclusion n ↪→ n + 1 and the trivial map n → A.

10



Chapter 4 concerns stabilization for the homology groups of the family {Jn} with trivial

coefficients. We obtain explicit bounds for the homology groups to stabilize in the following

sense:

Theorem D. If n ≥ 2m + 2, then the map ι∗ : Hm(Jn−1) → Hm(Jn) is an isomorphism.

Here the map ι∗ : Hm(Jn−1) → Hm(Jn) is induced by the inclusion Jn−1 ↪→ Jn. As a

corollary, we deduce homological stability for the family {Jn} with twisted coefficients

{Wn}, where W is a finitely-generated FIH
A -module over Z.

Finally, chapter 5 deals with the Serre quotient categories

QC =
C−fgMod
C−fdMod

and QA =
A−fgMod
A−fdMod

where A is an almost-full subcategory of an FI-like category C, and C−fgMod (resp.

C−fdMod) is the functor category of finitely generated (resp. finite-dimensional) C-modules.

We prove that these Serre quotients are equivalent when C is locally noetherian:

Theorem E. Let C be a locally noetherian FI-like category and A an almost-full subcategory of C.

The restriction functor Res : C−fgMod → A−fgMod induces an equivalence of categories

QC
∼−→ QA.

In the case where C = FIA and A = FIH
A , we may apply a theorem of [GLX] to deduce

an equivalence
FIH

A−fgMod
FIH

A−fdMod
∼= FIA−fdMod

which is independent of the choice of the subgroup H ≤ A.

11



Chapter 2

Noetherian property for C-modules

The settings of the present investigations are modules over a certain class of categories

which we call FI-like. Throughout this chapter, we set k to be a commutative noetherian ring

with unity.

2.1 FI-Like Categories

Definition 2.1. A category C is said to be FI-like if it satisfies the following axioms:

(1) The objects of C are the sets n = {1, . . . , n} for all n ≥ 0, where 0 is the empty set.

(2) The category C is hom-finite, that is, the class of morphisms C(m, n) is a finite set for

all m, n ∈ ObC.

(3) If m > n, then C(m, n) is the empty set.

Example 2.2. The categories FI, FA, FIG, and FIH
A are all FI-like, and the general results in

this chapter will be applied to these particular cases in subsequent chapters.

Definition 2.3. Let C be an FI-like category. A subcategory A of C is called almost-full if it

satisfies the following properties.

(1) The objects of A are all the objects of C.

12



(2) If m ̸= n, then A(m, n) = C(m, n).

Remark 2.4. The categories FA and FIH
A are almost-full subcategories of FI and FIA respec-

tively. Note that any almost-full subcategory of an FI-like category is also FI-like.

2.2 C-modules

For the remainder of this chapter, we fix an FI-like category C and an almost full subcategory

A of C. For each pair of nonnegative integers m, n, let kC(m, n) be the free k-module with

basis C(m, n).

Definition 2.5. A C-module (over k) is a covariant functor V : C → k-Mod. A homomorphism

of C-modules V → W is a natural transformation of functors.

Denote by C-Mod (resp. A-Mod) the functor category of C-modules (resp. A-modules).

Fix a C-module V. For each n ≥ 0, we will denote the k-module V(n) by Vn, and given a

C-morphism α : m → n, we will denote the k-module homomorphism V(α) : Vm → Vn by

α∗. Each Vn is naturally a kC(n, n)-module via the action defined by

α · v = α∗(v) (α ∈ C(n, n), v ∈ Vn).

Definition 2.6. Let U be a C-module. We say that U is a C-submodule of V if Un is a kC(n, n)-

submodule of Vn for all n ≥ 0 and the following diagram commutes for all 0 ≤ m ≤ n and

all α ∈ C(m, n):
Um Vm

Un Vn

U(α) α∗

Definition 2.7. Let S be a subset of
⊔

n≥0 Vn. Define the C-span of S as the set

SpanC(S) :=

{
v ∈

⊔
n≥0

Vn

∣∣∣∣∣ v = ∑
i

ci(αi)∗(si), ci ∈ k, αi is a C-morphism, si ∈ S

}
.

13



Remark 2.8. It is clear from Definition 2.3 that SpanA(S) ⊆ SpanC(S) for any subset

S ⊆ ⊔
n≥0 Vn.

Definition 2.9. Let V be a C-module, and let S ⊆ ⊔
n≥0 Vn be a subset.

(a) We say S generates V if the only C-submodule W of V with S ⊆ ⊔
n≥0 Wn is W = V.

Equivalently, the set S generates V if
⊔

n≥0 Vn = SpanC(S).

(b) We say V is generated in degrees ≤ d if there is a subset S ⊆ ⊔
m≤d Vm that generates V

as a C-module.

(c) We say V is finitely generated if there exists a finite set S that generates V as a C-module.

Lemma 2.10. Let V, W be C-modules with V finitely generated, and suppose there exists a surjective

homomorphism of C-modules f : V → W. Then W is finitely generated.

Proof. Choose a finite set of generators S for V. We claim that the finite set T = f (S)

generates W as a C-module. Let T̃ be the C-submodule of W generated by T, and let

U = f−1(T̃). Since U is a C-submodule of V containing S, we have U = V. Therefore

W = f (U) = T̃, which proves the claim.

Definition 2.11. We say V is noetherian if every C-submodule of V is finitely generated. If

every finitely generated C-module over k is noetherian, we say that C is locally noetherian

over k.

Remark 2.12. If V is an C-module, we may regard V as an A-module via the restriction

functor Res : C-Mod → A-Mod where Res V = V|A. Suppose S ⊆ ⊔
n≥0 Vn generates Res V

as an A-module. By axiom (1) of Definition 2.3, we have (Res V)n = Vn for all n ≥ 0. Then

by Remark 2.8, we have

⊔
n≥0

Vn =
⊔

n≥0

(Res V)n = SpanA(S) ⊆ SpanC(S) ⊆
⊔

n≥0

Vn.

So S generates V as a C-module. In particular, if Res V is finitely generated as an A-module

then V is finitely generated as a C-module.
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Definition 2.13. Given m ≥ 0, the free C-module MC(m) is defined by setting

MC(m)n = kC(m, n) (n ≥ 0)

with the action of C-morphisms by postcomposition.

The next proposition is proved similarly to the analogous [CEF, Prop. 2.3.5] and [W2,

Prop. 3.15].

Proposition 2.14. The C-module V is finitely generated in degree ≤ d if and only if there is a

surjection of C-modules
⊕

i MC(mi) → V for some finite sequence of integers m1, . . . , mℓ ≤ d.

Proof. Assume V is finitely generated in degree ≤ d. Then there exist vectors

v1, . . . , vℓ ∈
d⊔

m=1

Vm

that generate V as a C-module. Suppose vi ∈ Vmi for each 1 ≤ i ≤ ℓ. Then m1, . . . , mℓ ≤ d,

and the maps

ℓ⊕
i=1

MC(mi)n → Vn

α ∈ C(mi, n) 7→ α∗(vi)

define a surjective homomorphism of C-modules.

Now suppose there is a finite sequence of integers m1, . . . , mℓ ≤ d such that there exists

a surjective C-module homomorphism
⊕

i MC(mi) → V. The maps idm1 , . . . , idmℓ
generate⊕

i MC(mi) as a C-module, so Lemma 2.10 implies that V is finitely generated.

Definition 2.15. Given an A-module W, define the C-module Ind W by the following data.

Let Un be the k-submodule of
⊕

r≤n MC(r)n ⊗ Wr generated by elements of the form

α2α1 ⊗ w − α2 ⊗ α1w (w ∈ Wr, α2 ∈ C(s, n), α1 ∈ A(r, s), r ≤ s ≤ n).
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We define the k-module (Ind W)n by setting

(Ind W)n =

(⊕
r≤n

MC(r)n ⊗ Wr

)/
Un

with the action of β ∈ C(n, m) given by

β · (α ⊗ w) = βα ⊗ w (α ∈ C(r, n), w ∈ Wr).

Remark 2.16. We may regard Ind as a functor A-Mod → C-Mod in the following manner.

Let f : V → W be a homomorphism of A-modules, i.e. a collection of k-linear maps

{ fn : Vn → Wn | n ≥ 0}

such that, given any m, n ≥ 0, one has fnV(β) = W(β) fm for every β ∈ A(m, n). Define the

corresponding collection of k-linear maps

(Ind f )n : (Ind V)n → (Ind W)n

α ⊗ v 7→ α ⊗ fr(v) (α ∈ C(r, n), v ∈ Vr).

Given m, n ∈ ObC, one can verify that the following diagram commutes for every β ∈

A(m, n):

(Ind V)m (Ind V)n

(Ind W)m (Ind W)n

(Ind f )m

(Ind V)(β)

(Ind f )n

(Ind W)(β)

Proposition 2.17. The functor Ind is left adjoint to Res. The unit η : idA-Mod → Res Ind of this

adjunction is given by the collection of A-module homomorphisms

{ηW : W → Res Ind W | W ∈ A-Mod}
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where, given W ∈ A-Mod and n ≥ 0, the map ηW is given by w ∈ Wn 7→ idn ⊗ w.

Remark 2.18. As k-modules, we have Vn = (Res V)n for every V ∈ C-Mod and n ≥ 0. In

particular, given a homomorphism f : V → W of C-modules, the maps

fn : Vn → Wn and (Res f )n : Res Vn → Res Wn

have the same kernel and cokernel. Thus Res is exact. The functor Ind is right exact because

it has a right adjoint.

The next result is analogous to [W2, Prop. 3.26].

Proposition 2.19. For each m ≥ 0, there is a natural isomorphism of C-modules

Ind MA(m) ∼= MC(m).

Proof. Let m, r, s, n be nonnegative integers such that m ≤ r ≤ s ≤ n. Define the k-modules

Ar := MC(r)n ⊗k MA(m)r and A :=
⊕

m≤r≤n
Ar.

Let Φ : A → MC(m)n be the k-linear map given by Φ(α ⊗ β) = αβ. Given γ ∈ C(m, n), the

map Φ sends γ ⊗ idm ∈ Am to γ. Every generator of MC(m)n may be obtained in this way,

so Φ is surjective. Furthermore, we have

Φ(α ⊗ τβ) = α(τβ) = (ατ)β = Φ(ατ ⊗ β) (α ∈ C(s, n), β ∈ A(m, r), τ ∈ A(r, s)).

Therefore ker Φ contains the submodule Un in Definition 2.15. Let Φ̃ be the (surjective)

k-linear map induced by Φ on the quotient A/U = Ind MA(m). Suppose α ∈ C(s, n),

β ∈ A(m, r) satisfy Φ̃(α ⊗ β) = γ. Then αβ = γ, and by definition of the quotient we have

α ⊗ β = αβ ⊗ idm.
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Define a k-linear map Ψ : MC(m)n → A by Ψ(γ) = γ ⊗ idm. Clearly Φ(Ψ(γ)) = γ.

Furthermore, for all α ∈ C(r, n) and β ∈ A(m, r), we have

Ψ(Φ(α ⊗ β)) = Ψ(αβ) = αβ ⊗ idm = α ⊗ β.

where the last equality follows from the relations in the quotient A/U.

Definition 2.20. Suppose V is finitely generated. We say V is finitely presented with generator

degree ≤ g and relation degree ≤ r if there exists an exact sequence

r⊕
m=0

MC(m)⊕ℓm

g⊕
n=0

MC(n)⊕cn V 0.

Remark 2.21. Note that if V is generated in degrees ≤ d and has generator degree ≤ g,

then g ≤ d. If the category C is locally noetherian, then all finitely generated C-modules are

finitely presented.

The following proposition is proved similarly to [W2, Cor. 3.28].

Proposition 2.22. Suppose W is a finitely presented A-module with generator degree ≤ g and

relation degree ≤ r. Then Ind W is finitely presented with generator degree ≤ g and relation degree

≤ r.

Proof. By Definition 2.20, there is an exact sequence

r⊕
m=0

MA(m)⊕ℓm

g⊕
n=0

MA(n)⊕cn W 0.

Applying the right exact functor Ind produces the exact sequence

r⊕
m=0

Ind MA(m)⊕ℓm

g⊕
n=0

Ind MA(n)⊕cn Ind W 0.
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Using Proposition 2.19, we may write this sequence as

r⊕
m=0

MC(m)⊕ℓm

g⊕
n=0

MC(n)⊕cn Ind W 0

which is what we wanted to show.

Lemma 2.23. If C is locally noetherian over k, then every A-submodule of MA(m) is finitely

generated.

Proof. Let V be an A-submodule of MA(m), and let Ṽ be the C-submodule of MC(m)

generated by
⊔

n≥0 Vn. By assumption, Ṽ is finitely generated as a C-module, say by

v1, . . . , vr ∈
⊔d

m=1 Ṽm where vi ∈ Ṽmi for each i. Since Ṽ is generated as a C-module by V,

for i = 1, . . . , r we may choose ui,j ∈
⊔

i≥0 Vi and C-morphisms αi,j : ri,j → mi such that

vi =
s

∑
j=1

(αi,j)∗(ui,j).

Fix n > d and let v ∈ Vn. Then v ∈ Ṽn, and we may write

v =
r

∑
i=1

bi(βi)∗(vi) (bi ∈ k, βi ∈ C(mi, n)).

Hence

v =
rs

∑
i,j=1

bi(βi ◦ αi,j)∗(ui,j).

Since |ri,j| ≤ d < n for all i = 1, . . . , r and j = 1, . . . , s, each C-morphism βi ◦ αi,j : ri,j → n is

an A-morphism. Therefore
⊔

i≥d Vi is in the A-span of the ui,j, meaning V is generated as an

A-module in degree ≤ d. By assumption, the k-module Vi is finitely generated for all i ≥ 0,

so it follows that V is finitely generated as an A-module.
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Proposition 2.24. Let W be an A-module finitely presented with generator degree ≤ g and relation

degree ≤ r. Then the natural map

(ηW)n : Wn → (Res Ind W)n

is a bijection for all n > max{g, r}.

Proof. By assumption, there is an exact sequence

q⊕
j=1

MA(nj)
p⊕

i=1

MA(mi) W 0

for some integers m1, . . . , mp ≤ g and n1, . . . , nq ≤ r. Applying the right exact functor Ind

and then the exact functor Res, we obtain the exact sequence

q⊕
j=1

Res Ind MA(nj)
p⊕

i=1

Res Ind MA(mi) Res Ind W 0 (2.25)

Using the identification in Proposition 2.19, we may write (2.25) as

q⊕
j=1

Res MC(nj)
p⊕

i=1

Res MC(mi) Res Ind W 0

Thus for n ≥ 0, we have the following commuting diagram with exact rows:

q⊕
j=1

MA(nj)n

p⊕
i=1

MA(mi)n Wn 0

q⊕
j=1

Res MC(nj)n

p⊕
i=1

Res MC(mi)n Res Ind Wn 0

(ηW)n (2.26)
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Suppose n > max{m1, . . . , mp, n1, . . . , nq}. Note that if n > m, the k-modules MA(m)n and

MC(m)n are freely generated on the same basis. It follows that the two vertical maps on the

left in (2.26) are bijective. This implies the vertical map on the right is bijective.

Proposition 2.27. The C-module V is finitely generated if and only if Res V is finitely generated as

an A-module.

Proof. The “if” statement is established by Remark 2.12; we will prove the “only if” state-

ment. Using Proposition 2.14, we will reduce to the case where V = MC(m). In particular,

we claim that Res MC(m) is generated as an A-module by the finite set C(m, m).

Let v ∈ MC(m)n and write

v =
r

∑
i=1

ci(αi ◦ idm) (c1, . . . , cr ∈ k, α1, . . . , αr ∈ C(m, n)). (2.28)

If n > m, then C(m, n) = A(m, n), so equation (2.28) means that v is in the A-span of

{idm} ⊆ C(m, m). Now suppose n = m. Then equation (2.28) implies

v =
r

∑
i=1

ci(idm ◦ αi). (2.29)

Since idm is an A-morphism, equation (2.29) means that v is in the A-span of {α1, . . . , αr} ⊆

C(m, m). This proves the claim.

Now suppose V is any finitely generated C-module. By Proposition 2.14, there is an

exact sequence
ℓ⊕

i=1

MC(mi) V 0.

Since Res is exact, we thereby obtain an exact sequence

ℓ⊕
i=1

Res MC(mi) Res V 0.
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By the claim,
⊕ℓ

i=1 Res MC(mi) is finitely generated. It follows from Lemma 2.10 that Res V

is finitely generated.

We are now prepared to prove Theorem A:

Theorem A. The category C is locally noetherian if and only if A is locally noetherian.

Proof. (⇒) Suppose C is locally Noetherian. Let W be a finitely generated A-module over k.

By Proposition 2.14, there exists a surjection of A-modules

f :
ℓ⊕

i=1

MA(mi) → W.

Given an A-submodule U of W, Lemma 2.23 implies that its preimage f−1(U) is finitely

generated as an A-module. Then Lemma 2.10 implies f ( f−1(U)) = U is finitely generated.

(⇐) Now suppose A is locally noetherian. Let V be a finitely generated C-module over

k, and let U be a C-submodule of V. By Proposition 2.27, Res V is finitely generated as an

A-module. Then by assumption, Res U is finitely generated. Thus U is finitely generated as

a C-module by Remark 2.12.

Corollary 2.30. The categories FA and FIH
A are locally noetherian.

Proof. The categories FI and FIA are locally noetherian (Theorem 1.13; [SS, Thm 1.2.3]). Since

FA and FIH
A are almost-full subcategories of FI and FIA respectively, Theorem A implies that

FA and FIH
A are locally noetherian.
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Chapter 3

Representation stability

Our goal in this chapter is to prove analogues of Theorem 1.14 for A-modules, where A

is one of the categories FA or FIH
A . First we define representation stability for consistent

sequences of representations of each of the families of groups {An} and {Jn} over a suitably

chosen field. We then prove the equivalence of representation stability for such sequences

to finite generation of the corresponding A-modules.

3.1 Alternating groups

Throughout this subsection, we work over a field k with characteristic zero, and fix a

FA-module W over k.

Lemma 3.1. Let m, n be positive integers such that n ≥ m + 2. The group An = FA(n, n) acts

transitively on the set FA(m, n) by postcomposition.

Proof. Let α and β be elements of FA(m, n). Choose σ ∈ Sn such that β = σα. If σ is

even, then σ ∈ An, as desired. Suppose σ is odd. By assumption, there are distinct

positive integers a, b ∈ n that are not contained in α(m). Denote the product of σ with the

transposition (a, b) by τ. Then τ is in An and satisfies β = τα.

Note that if W is finitely generated, then the sequence {Wn, (ιn,n+1)∗} is consistent.
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Lemma 3.2. Suppose W is finitely generated as an FA-module. Then {Wn, (ιn,n+1)∗} satisfies the

injectivity and surjectivity conditions of Definition 1.2.

Proof. First we show that {Wn, (ιn,n+1)∗} satisfies the surjectivity condition. Assume W is

generated by S in degrees ≤ d. Let n > d and w ∈ Wn+1. We may write

w = ∑
i

ci(αi)∗(si) (ci ∈ C, αi ∈ FA(mi, n + 1), si ∈ S) (3.3)

where mi ≤ d < n for all i. This last inequality implies (n + 1) − mi ≥ 2, so (Lemma

3.1) An+1 acts transitively on FA(mi, n + 1). For each i, choose βi ∈ An+1 such that αi =

βi · ιmi ,n+1. Then we may write equation (3.3) as

w = ∑
i

ci(βi · (ιmi ,n+1)∗(si)) = ∑
i

ci(βi · (ιn,n+1)∗((ιmi ,n)∗(si)))

So w is in the span of the An+1-orbit of (ιn,n+1)∗(Wn), as desired.

Now we will show that {Wn, (ιn,n+1)∗} satisfies the injectivity condition. Let Un =

ker(ιn,n+1)∗ for each n ≥ 0. We claim that Un is trivial for sufficiently large n. By an

argument similar to Remark 1.11, the consistent sequence consisting of the Un together

with the zero maps Un → Un+1 determines an FA-submodule U of W. By the noetherian

property for FA (Corollary 2.30), U is finitely generated, say in degrees ≤ d. Let n > d;

since the surjectivity property holds in the range n > d, the span of the An+1 orbit of

(ιn,n+1)∗(Un) = {0} is all of Un+1. Therefore Un+1 is trivial, as claimed.

Let P denote the set of all partitions. Given a partition λ = (λ1, λ2, . . . , λℓ) of n,

let Yλ denote the Young diagram corresponding to λ and let Vλ denote the irreducible

representation of Sn corresponding to λ. Denote by λ′ the conjugate of λ, i.e. the partition

corresponding to the Young diagram obtained by transposing the rows and columns of Yλ.

We say λ is symmetric if λ = λ′.
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Proposition 3.4 ([FH, 5.1]). Let n ≥ 2 and let λ be a partition of n. If λ is non-symmetric, then

the restrictions of Vλ and Vλ′ to An are isomorphic irreducible representations of An.

On the other hand, if λ is symmetric then the restriction of Vλ = Vλ′ to An decomposes

as the direct sum of two non-isomorphic irreducible representations of An. Moreover, every

irreducible representation of An may be obtained in one of these two ways.

Notation 3.5. Let λ = (λ1, λ2, . . . , λℓ) be a partition of m. Define the An-representation

W(λ)n to be the restriction of V(λ)n to An.

Remark 3.6. Note that W(λ)n is reducible precisely when λ[n] is symmetric, which for

fixed λ occurs for at most one value of n. Furthermore, the padded partition λ[n] is non-

symmetric, and thus W(λ)n is irreducible, whenever n > 2m + 1.

For the remainder of this section, let {Wn, ψn} denote a consistent sequence of An-

representations.

Definition 3.7. We say {Wn, ψn} is multiplicity stable with stable range n ≥ N if there exists a

positive integer N such that the following hold for all n ≥ N:

(a) There exists a decomposition of Wn into irreducible An-representations as

Wn ∼=
⊕
λ∈P

W(λ)
⊕cλ,n
n .

In particular, W(λ)n is irreducible for all λ.

(b) cλ,n = cλ,N for all λ ∈ P .

Definition 3.8. We say {Wn, ψn} is representation stable if it satisfies the injectivity and

surjectivity conditions of Definition 1.2, and is multiplicity stable in the sense of Definition

3.7.

The following theorem is proved in a similar manner as [W2, Thm. 4.27].

Theorem B. Let k be a field of characteristic zero. An FA-module W is finitely generated if and

only if {Wn, (ιn,n+1)∗} is representation stable and Wn is finite-dimensional for all n ≥ 0.
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Proof. To prove the “if” direction, suppose {Wn, (ιn,n+1)∗} is representation stable and Wn

is finite-dimensional for all n ≥ 0. The surjectivity property for {Wn, (ιn,n+1)∗} implies the

existence of a generating set S of W. Since the Wn are finite-dimensional, the generating set

S must be finite.

To prove the “only if” direction, suppose W is finitely generated. Then {Wn, (ιn,n+1)∗}

satisfies the injectivity and surjectivity properties (Lemma 3.2). It remains to show that

{Wn, (ιn,n+1)∗} is multiplicity stable.

The FA-module W is finitely presented (Remark 2.21), say with generator degree ≤ g

and relation degree ≤ r. It follows (Proposition 2.22) that Ind W is finitely presented,

hence finitely generated as an FI-module. Therefore (Theorem 1.14) the consistent sequence

{(Ind W)n, (ιn,n+1)∗} is multiplicity stable, meaning that there exists a positive integer N

not depending on λ such that, in the decomposition

(Ind W)n ∼=
⊕
λ∈P

V(λ)
⊕cλ,n
n (3.9)

the multiplicities cλ,n do not depend on n for all n ≥ N and all λ. Furthermore, since each

Vn is finite-dimensional, there are at most finitely many λ such that cλ,n ̸= 0. Let m be the

maximum of |λ| over all such λ.

Let n > max{N, 2m + 1, g, r}. By Proposition 2.24, there is an isomorphism Wn ∼=

(Res Ind W)n, and by Remark 3.6, the An-representation W(λ)n is irreducible. So, restricting

the decomposition 3.26 to An, we obtain

(Res Ind W)n ∼= Wn ∼=
⊕
λ∈P

W(λ)
⊕cλ,n
n

where the W(λ)n are irreducible and the multiplicities cλ,n do not depend on n for all λ.

Hence W is multiplicity stable.
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3.2 Wreath products

The exposition in this section proceeds in similar order as the previous section, although

we now assume k = C.

Lemma 3.10. Let m, n be positive integers such that n ≥ m. The group Jn = FIH
A(n, n) acts

transitively on the set FIH
A(m, n) by postcomposition.

Proof. The result is trivial in the case m = n. Suppose n > m. Let (α, f ) and (β, g) be

elements of FIH
A(m, n). Choose σ ∈ Sn such that β = σα, and choose t ∈ n \ α(m). Define

h : n → A by setting

h(s) =



g(α−1(s)) f (α−1(s))−1 if s ∈ α(m)

∏
i∈m

g(i)−1 f (i) if s = t

e otherwise.

Then

h(1) · · · h(n) =

(
∏

s∈α(m)

h(s)

)
h(t) =

(
∏
i∈m

g(i) f (i)−1

)(
∏
i∈m

g(i)−1 f (i)

)
= e ∈ H.

Therefore (σ, h) is in Jn. Moreover, we have (σ, h) ◦ (α, f ) = (β, g′) where

g′(i) = h(α(i)) f (i) = g(α−1(α(i))) f (α−1(α(i)))−1 f (i) = g(i) f (i)−1 f (i) = g(i)

for all i ∈ m.

For the remainder of this section, let µn : n → n + 1 denote the the FIH
A -morphism

consisting of the inclusion ιn,n+1 : n ↪→ n + 1 and the trivial map T : n → A. Given

(σ, f ) ∈ Jn, we may regard (σ, f ) as an element of Jn+1 where σ(n + 1) = n + 1 and

f (n + 1) = e. Thus,

(σ, f ) ◦ µn = (σ ◦ ιn,n+1, ( f ◦ ιn,n+1)T) = (ιn,n+1 ◦ σ, (T ◦ σ) f ) = µn ◦ (σ, f ).
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It follows that, given an FIH
A -module W, the sequence {Wn, (µn)∗} is consistent.

The following lemma corresponds to Lemma 3.2, and is proved in a similar manner.

Lemma 3.11. Suppose W is finitely generated as an FIH
A -module. Then {Wn, (µn)∗} satisfies the

injectivity and surjectivity conditions of Definition 1.2.

Proof. First we show that {Wn, (µn)∗} satisfies the surjectivity condition. Assume W is

generated by S in degrees ≤ d. Let n ≥ d and w ∈ Wn+1. We may write

w = ∑
i

ci(ηi)∗(si) (ci ∈ C, ηi ∈ FIH
A(mi, n + 1), si ∈ S) (3.12)

where mi ≤ d ≤ n for all i. Lemma 3.10 implies that Jn+1 acts transitively on FIH
A(mi, n + 1).

For each i, choose θi ∈ Jn+1 such that ηi = θi · (ιmi ,n+1, T). Then we may write equation

(3.12) as

w = ∑
i

ci(θi · (ιmi ,n+1, T)∗(si)) = ∑
i

ci(θi · (µn)∗((ιmi ,n, T)∗(si)))

So w is in the span of the Jn+1-orbit of (µn)∗(Wn), as desired.

Now we will show that {Wn, (µn)∗} satisfies the injectivity condition. Let Un = ker(µn)∗

for each n ≥ 0. We claim that Un is trivial for sufficiently large n. By an argument similar

to Remark 1.11, the consistent sequence consisting of the Un together with the zero maps

Un → Un+1 determines an FA-submodule U of W. By the noetherian property for FIH
A

(Corollary 2.30), U is finitely generated, say in degrees ≤ d. Let n ≥ d; since the surjectivity

property holds in the range n ≥ d, the span of the Jn+1 orbit of (µn)∗(Un) = {0} is all of

Un+1. Therefore Un+1 is trivial, as claimed.

Recall from Notation 1.18 the definition of the groups Kn ≤ Jn ≤ Gn. We now move

towards defining multiplicity stability for consistent sequences of C-linear representations of

the groups Jn. First, we recall the representation theory of the wreath products Gn = A ≀ Sn,

where A is a finite abelian group, over the complex numbers. For a general treatment, see

[S, 8.2].
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Notation 3.13. Let Irr(A) be a complete system of distinct irreducible characters of A. We

write

Irr(A) = {ψi : A → C∗ | i ∈ I}

where |I| = |A|.

Let {ci}i∈I be a collection of nonnegative integers such that ∑i∈I ci = n. Then the map

χ : An → C∗ given by

χ =
⊗
i∈I

ψ⊗ci
i (3.14)

is an irreducible character of An. Moreover, any irreducible character of An may be written

uniquely (up to equivalence) in this form. Let Irr(An) denote the complete system of

pairwise inequivalent irreducible characters of An obtained in this manner.

The symmetric group Sn acts on χ ∈ Irr(An) by permuting the order of the ψi in the

decomposition (3.14). Let Stab(χ) be the stabilizer in Sn of χ; we have

Stab(χ) ∼= ∏
i∈I

Sci .

Let λ : I → P be a partition-valued function such that |λ(i)| = ci for all i, so that

|λ| = n, where

|λ| := ∑
i∈I

|λ(i)|.

As before, Vλ(i) denotes the irreducible representation of Sci corresponding to the partition

λ(i).

The following is a special case of [S, Prop. 25]:

Proposition 3.15. Let λ : I → P be a partition-valued function such that |λ| = n. Then λ

determines an irreducible representation of Gn given by

IndGn
An⋊Stab(χ)

(
χ ⊗

⊗
i∈I

Vλ(i)

)
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where ci = |λ(i)| for all i ∈ I and χ =
⊗

i∈I ψ⊗ci
i . Moreover, every irreducible representation of

Gn (up to equivalence) has this form for some unique λ.

In order to define multiplicity stability for consistent sequences of Gn-representations

over C, it is necessary to define some labelling of the irreducible representations of Gn that

does not depend on n. This is done in [GL, p. 3], which we recall below.

Notation 3.16. Let λ : I → P be a partition-valued function with |λ| = m. Suppose that ψt

is the trivial character of A, and write λ(t) = (λ1, . . . , λℓ). For n ≥ m + λ1, we define the

“padded” partition-valued function λ[n] : I → P by setting

λ[n](i) =


(n − m, λ1, . . . , λℓ) if i = t

λ(i) if i ̸= t.

We have

|λ[n]| = ∑
i ̸=t

|λ(i)|+ |λ[n](t)|

= (m − |λ(t)|) + (n − m + |λ(t)|)

= n.

Therefore (Proposition 3.15) the function λ[n] determines a unique (up to equivalence)

irreducible representation of Gn. Denote this representation by V(λ)n. Given n such that

n < m + λ1, we set V(λ)n to be the trivial representation.

Definition 3.17. [GL, Def. 1.10] Let {Vn, φn} be a consistent sequence of finite-dimensional

Gn-representations. We say {Vn, φn} is multiplicity stable if there exists a positive integer N

such that, in the decomposition

Vn ∼=
⊕

λ:I→P
V(λ)

⊕cλ,n
n

the multiplicities cλ,n do not depend on n for all λ and all n ≥ N.
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We may similarly define multiplicity stability for a consistent sequence {Jn, φn} of the

subgroups Jn = H′ ⋊ Sn of Gn. Given one of the functions λ : I → P , let W(λ)n denote

the restriction of the Gn-representation V(λ)n to Jn. Note that W(λ)n is not necessarily

irreducible as a Jn-representation.

Definition 3.18. Let {Wn, φn} be a consistent sequence of finite-dimensional Jn-representations.

We say {Wn, φn} is multiplicity stable if there exists a positive integer N such that the follow-

ing hold for all n ≥ N:

(a) We may decompose Wn as

Wn ∼=
⊕

λ:I→P
W(λ)

⊕cλ,n
n

where W(λ)n is irreducible for all λ such that cλ,n ̸= 0.

(b) cλ,n = cλ,N for all λ.

Given χ ∈ Irr(An), we will denote the restriction of χ to the subgroup ⟨e⟩′ ≤ An by χ′.

Note that since χ has degree 1, its restriction χ′ also has degree 1, hence is irreducible.

Lemma 3.19. Let χ1 = ψi1 ⊗ · · · ⊗ ψin and χ2 = ψj1 ⊗ · · · ⊗ ψjn be characters of An, where

n ≥ 2. The characters χ′
1 and χ′

2 of ⟨e⟩′ are identical if and only if

ψi1 ψ−1
j1

= ψi2 ψ−1
j2 = · · · = ψin ψ−1

jn .

Proof. To prove the “if” direction, suppose that ψi1 ψ−1
j1

= ψi2 ψ−1
j2

= · · · = ψin ψ−1
jn . This is an

irreducible character of A, say ψk. We have

χ1χ−1
2 = (ψi1 ⊗ · · · ⊗ ψin)(ψj1 ⊗ · · · ⊗ ψjn)

−1 = ψn
k .

In particular, for any (a1, . . . , an) ∈ ⟨e⟩′ we have

(χ1χ−1
2 )(a1, . . . , an) = ψk(a1) · · ·ψk(an) = ψk(a1 · · · an) = ψk(e) = 1.
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Hence χ′
1 = χ′

2.

To prove the “only if” direction, suppose χ′
1 = χ′

2 and choose any element a ∈ A. For

each positive integer m ≤ n − 1, let xm = (e, . . . , e, a, a−1, e, . . . , e) be the element of ⟨e⟩′ with

a in the m-th position, a−1 in the (m + 1)-th position, and e in every other position. Then

the hypothesis implies

χ1(xm) = χ2(xm)

ψim(a)ψim+1(a)−1 = ψjm(a)ψjm+1(a)−1

ψim(a)ψjm(a)−1 = ψim+1(a)ψjm+1(a)−1

for every 1 ≤ m ≤ n − 1.

Lemma 3.20. Let χ = ψi1 ⊗ · · · ⊗ ψin
∼=
⊗

i∈I ψ⊗ci
i be an irreducible character of An. If there

exists j ∈ I such that the multiplicity cj of ψj in χ is nonzero and distinct from ci for all i ̸= j, then

Stab(χ) = Stab(χ′).

Proof. Suppose j ∈ I satisfies the hypothesis. We will show that Stab(χ′) is contained in

Stab(χ). Let σ be an element of Stab(χ′), so that χ′ = (σ · χ)′. By Lemma 3.19, we have

ψi1 ψ−1
iσ(1)

= ψi2 ψ−1
iσ(2)

= · · · = ψin ψ−1
iσ(n)

. (3.21)

This is an irreducible character of A, say ψk. Equation (3.21) yields the system of equations

ψi1 = ψiσ(1)
ψk, . . . , ψin = ψiσ(n)

ψk. (3.22)

By assumption, ψj is the only component of χ that occurs exactly cj times. On the other hand,

(3.22) shows that ψjψk also occurs exactly cj times. Therefore ψk is the trivial representation,

so (3.22) reduces to

ψi1 = ψiσ(1)
, . . . , ψin = ψiσ(n)

.

Hence σ · χ = χ, meaning that σ is in Stab(χ).
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Remark 3.23. The hypothesis of Lemma 3.20 is satisfied in the following instance. Let

λ : I → P be a partition-valued function with |λ| = m and λ(t) = (λ1, . . . , λℓ), where ψt

is the trivial character of A. Write ci = |λ(i)| for all i ∈ I. Suppose n > 2m, and consider

the “padded” partition-valued function λ[n]. Since λ1 ≤ m, we have n ≥ m + λ1. Hence by

Notation 3.16, the irreducible character of An associated to λ[n] is given by

χ ∼= ψ
⊗(n−m+ct)
t ⊗

⊗
i ̸=t

ψ⊗ci
i .

We have n > m, so n − m + ct > 0. Furthermore, since ci − ct ≤ m for all i ∈ I, we have

n > m + ci − ct

n − m + ct > ci

for all i ∈ I. So Lemma 3.20 implies that Stab(χ) = Stab(χ′).

Theorem 3.24. Let V(λ)n be an irreducible representation of Gn, where |λ| = m. If n > 2m, then

the restriction W(λ)n of V(λ)n to Jn is irreducible.

Proof. It suffices to show that the restriction of V(λ)n to the subgroup Kn of Jn is irreducible.

Let χ be the irreducible character of An associated to λ[n]. Then the representation V(λ)n is

given by

V(λ)n = IndGn
An⋊Stab(χ)

(
χ ⊗

⊗
i∈I

Vλ[n](i)

)

= (An ⋊ Sn)⊗An⋊Stab(χ)

(
χ ⊗

⊗
i∈I

Vλ[n](i)

)

∼= Sn ⊗Stab(χ)

(
χ ⊗

⊗
i∈I

Vλ[n](i)

)
.
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By Remark 3.23, the hypothesis implies Stab(χ) = Stab(χ′). Hence

ResGn
Kn

V(λ)n ∼= Sn ⊗Stab(χ′)

(
χ′ ⊗

⊗
i∈I

Vλ[n](i)

)

∼= (⟨e⟩′ ⋊ Sn)⊗⟨e⟩′⋊Stab(χ′)

(
χ′ ⊗

⊗
i∈I

Vλ[n](i)

)

= IndKn
⟨e⟩′⋊Stab(χ′)

(
χ′ ⊗

⊗
i∈I

Vλ[n](i)

)
.

Thus by [S, Prop. 25], W(λ)n = ResGn
Kn

V(λ)n is irreducible.

The proof of Theorem C is similar to the proof of Theorem B. First, let us recall the

analogous result for FIA-modules:

Theorem 3.25 ([GL, Theorem 1.12]). An FIA-module V over C is finitely generated if and only if

{Vn, (µn)∗} is representation stable and Vn is finite-dimensional for all n ≥ 0.

Theorem C. Let W be an FIH
A -module over C. Then W is finitely generated if and only if

{Wn, (µn)∗} is representation stable and Wn is finite-dimensional for all n ≥ 0.

Proof. To prove the “if” direction, suppose {Wn, (µn)∗} is representation stable and Wn

is finite-dimensional for all n ≥ 0. The surjectivity property for {Wn, (µn)∗} implies the

existence of a generating set S of W. Since the Wn are finite-dimensional, the generating set

S must be finite.

To prove the “only if” direction, suppose W is finitely generated. Then {Wn, (µn)∗}

satisfies the injectivity and surjectivity properties (Lemma 3.11). It remains to show that

{Wn, (µn)∗} is multiplicity stable.

The FIH
A -module W is finitely presented (Remark 2.21), say with generator degree ≤ g

and relation degree ≤ r. It follows (Proposition 2.22) that the induced FIA-module Ind W

is finitely presented, hence finitely generated as an FIA-module. Therefore (Theorem 3.25)

the consistent sequence {(Ind W)n, (µn)∗} is multiplicity stable, meaning that there exists a
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positive integer N not depending on λ such that, in the decomposition

(Ind W)n ∼=
⊕

λ:I→P
V(λ)

⊕cλ,n
n , (3.26)

the multiplicities cλ,n do not depend on n for all n ≥ N and all λ. Furthermore, since each

Vn is finite-dimensional, there are at most finitely many λ such that cλ,n ̸= 0. Let m be the

maximum of |λ| over all such λ.

Let n > max{N, 2m, g, r}. By Proposition 2.24, there is an isomorphism Wn ∼= (Res Ind W)n.

By Theorem 3.24, the Jn-representation W(λ)n is irreducible. So, restricting the decomposi-

tion (3.26) to Jn, we obtain

(Res Ind W)n ∼= Wn ∼=
⊕

λ:I→P
W(λ)

⊕cλ,n
n

where the W(λ)n are irreducible and the multiplicities cλ,n do not depend on n for all λ.

Hence W is multiplicity stable.
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Chapter 4

Homological stability

We begin this chapter by recalling the construction of the homology groups Hi(G, X) of

a group G with nontrivial coefficients in X and the corresponding notion of stabilization.

We also state some basic facts about induced G-modules. In section 4.2, we generalize

homological stability for the groups Gn = A ≀ Sn with trivial coefficients (shown indepen-

dently by [HW] and [G]) to the family of subgroups Jn ≤ Gn described in Notation 1.18. An

easy corollary extends this result to twisted coefficients Vn arising from a finitely generated

FIH
A -module V over Z.

4.1 G-modules

Definition 4.1. Let G be a group. The category G-Mod is defined by the following data:

• An object of G-Mod is a G-module, which is an abelian group X equipped with an

additive left action of G.

• A G-module morphism X → Y is a G-equivariant group homomorphism.

The category G-Mod may be identified with ZG-Mod, the category of left modules over

the group ring ZG. Given G-modules X and Y, we write X ⊗G Y for their tensor product in

G-Mod.
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Definition 4.2. Let G be a group and F• a projective resolution of the trivial G-module Z.

For each integer i ≥ 0, we define Hi(G, X) by setting

Hi(G, X) = Hi(F• ⊗G X).

The abelian group Hi(G, X) is called the i-th homology group of G with coefficients in X.

The groups Hi(G, X) are well-defined up to canonical isomorphism (see e.g. [W1,

Lemma 2.4.1]). We write Hi(G) = Hi(G, Z) when Z is the trivial G-module.

For notational convenience, we will write H∗(G, X) when the index ∗ ≥ 0 is arbitrary.

Remark 4.3 ([B, p.78f]). It is useful to consider H∗(−,−) as a functor of two variables in the

following way. Let C be the category consisting of the following data.

• An object of C is a pair (G, X), where G is a group and X is a G-module.

• A C-morphism (G, X) → (G′, X′) is a pair (α, f ) of group homomorphisms α : G → G′

and f : X → X′ which satisfy f (g · x) = α(g) · f (x) for all g ∈ G and x ∈ X. In other

words, f is compatible with the G-action via α. Composition of morphisms is defined

by (β, g) ◦ (α, f ) = (β ◦ α, g ◦ f ).

Let F• and F′
• be projective resolutions of the trivial G-module Z over ZG and ZG′ respec-

tively. We may regard F′
• as an (acyclic) complex of G-modules where G acts via α. By

[B, Lemma I.7.4], the identity map on Z lifts to a chain map τ : F• → F′
• that is compatible

with the G-action. Then the chain map τ ⊗ f : F• ⊗G X → F′
• ⊗G X′ induces a map on

homology (α, f )∗ : H∗(G, X) → H∗(G′, X′). The assignments (G, X) 7→ H∗(G, X) and

(α, f ) 7→ (α, f )∗ make H∗(−,−) a covariant functor C → Ab.

In the case where G is a subgroup of G′ and ι : G ↪→ G′ is the inclusion map, we will

write f∗ = (ι, f )∗. Similarly, in the case where X is a G-submodule of X′ and ι : X ↪→ X′ is

the inclusion map, we will write α∗ = (α, ι)∗.
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Suppose H is a subgroup of G and X is a H-module. The induced G-module IndG
H(X) is

defined by setting

IndG
H X = ZG ⊗H X.

Remark 4.4 ([B, p.67ff]). We have IndG
H X =

⊕
g∈G/H gX where g ranges over a set of

representatives of the cosets of H in G. Thus, in the case where X is the trivial H-module Z,

there is a G-module isomorphism IndG
H Z ∼= Z[G/H] where G acts on the family of cosets

G/H by left translation.

We recall the following well-known result:

Lemma 4.5 (Shapiro’s lemma). The inclusion map ι : H ↪→ G and the map X → IndG
H X defined

by x 7→ e ⊗ x for x ∈ X induce an isomorphism

H∗(H, X) ∼−→ H∗(G, IndG
H X).

Definition 4.6. Let {Gn} : G0 ↪→ G1 ↪→ G2 ↪→ · · · be an ascending chain of groups. We

say {Gn} is homologically stable if, for each i ≥ 0, there exists Ni ≥ 0 such that the map

Hi(Gn) → Hi(Gn+1) induced by the inclusion Gn ↪→ Gn+1 is an isomorphism for all n ≥ Ni.

4.2 Homological stability

For the remainder of this chapter, we set Gn to be the wreath product Gn = A ≀ Sn. Unless

otherwise stated, we regard Z as the trivial Gn-module. Most of the following discussion

follows the proof in [G] of homological stability of arbitrary wreath product groups with

trivial coefficients.

Definition 4.7. Let r be a nonnegative integer ≤ n. An injective word of length r on Gn is

a finite sequence j1, . . . , jr, a1, . . . , ar, where j1, . . . , jr are pairwise distinct positive integers

≤ n and a1, . . . , ar are any elements of A. In particular, an injective word of length 0 is the

empty sequence.

38



Notation 4.8. The set of all injective words of length r on Gn is denoted ∆r(n). For r ≤ n,

we set Cr(n) to be the free abelian group with generating set ∆r(n). We define an additive

action of Gn on Cr(n) where, given

x = (j1, . . . jr, a1, . . . , ar) ∈ ∆r(n) and g = (a′1, . . . , a′n, σ) ∈ Gn,

we set g · x ∈ ∆r(n) to be

g · x = (σ(j1), . . . , σ(jr), a′j1 a1, . . . , a′jr ar).

Thus Cr(n) is endowed with the structure of a Gn-module. For r > n, we set Cr(n) = Z.

For i ≤ r, let dr,i−1 : Cr(n) → Cr−1(n) be the abelian group homomorphism defined by

dr,i−1(j1, . . . , jr, a1, . . . , ar) = (j1, . . . , ĵi, . . . , jr, a1, . . . , âi, . . . , ar)

that is, dr,i−1 acts on (j1, . . . jr, a1, . . . , ar) ∈ ∆r(n) by deleting the elements ji and ai. The

dr,i−1 are compatible with the Gn-action, so the Gn-modules Cr(n) assemble to a Gn-chain

complex C•(n) with differentials ∂r : Cr(n) → Cr−1(n) defined by the alternating sum

∂r =
r

∑
i=1

(−1)i−1dr,i−1.

A key result concerning the complex C•(n) is the following:

Proposition 4.9 ([G, Theorem 3]). If i < n then Hi(C•(n)) = 0.

Fix one of the subgroups Jn ≤ Gn and regard C•(n) as a Jn-chain complex. The identity

map on Jn and the map dr,i−1 induce a map

(dr,i−1)∗ : H∗(Jn, Cr(n)) → H∗(Jn, Cr−1(n)).
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Similarly, the identity map on Jn and the differentials ∂r induce a map

(∂r)∗ =
r

∑
i=1

(−1)i−1(dr,i−1)∗ : H∗(Jn, Cr(n)) → H∗(Jn, Cr−1(n)).

Lemma 4.10. If r < n, then Jn acts transitively on Cr(n).

Proof. It suffices to show that Jn acts transitively on ∆r(n). The case where r = 0 is trivial.

Assume 0 < r < n, and let x and y be elements of ∆r(n), where

x = (j1, . . . , jr, a1, . . . , ar) and y = (k1, . . . , kr, b1, . . . , br).

By assumption, the set n \ {j1, . . . , jr} is nonempty; let c be an element of this set. For each

ℓ ∈ {1, . . . , n}, define the element γℓ ∈ A by setting

γℓ =



a−1
i bi if ℓ = ji
r

∏
i=1

aib−1
i if ℓ = c

e otherwise.

Note that γ1 · · · γn = e. Choose σ ∈ Sn such that σ(ji) = ki for i = 1, . . . , r. Then the

element t = (γ1, . . . , γn, σ) in Jn satisfies

t · x = (σ(ji), . . . , σ(jr), γj1 a1, . . . , γjr ar) = (k1, . . . , kn, b1, . . . , bn) = y.

Notation 4.11. Fix r < n and let xr be the element of Cr(n) given by

xr = (n − r + 1, n − r + 2, . . . , n, e, . . . , e).

Let Z be the trivial Jn-module. Denote by Jn−r the stabilizer of xr in Jn. By Remark 4.4,

we may identify IndJn
Jn−r

Z with Z[Jn/Jn−r]. Furthermore, the group Jn acts transitively on
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Cr(n) by Lemma 4.10, so the Jn-module map f : Z[Jn/Jn−r] → Cr(n) which sends each

coset representative g ∈ Jn/Jn−r to g · xr ∈ Cr(n) is an isomorphism.

Define the Jn-module map α(xr) : Z → Cr(n) by the assignment λ 7→ λxr. Note that

α(xr) factors through the isomorphism f via the map Z → IndJn
Jn−r

Z given by λ 7→ e ⊗ λ.

Hence for r < n, Shapiro’s lemma implies that the inclusion map Jn−r ↪→ Jn and the map

α(xr) induce an isomorphism

α(xr)∗ : H∗(Jn−r) ∼−→ H∗(Jn, Cr(n)).

The following Lemma 4.12 is proved in a similar manner as [G, Lemma 7].

Lemma 4.12. Let r < n and let ι : Jn−r ↪→ Jn−r+1 be the inclusion map. For i = 1, . . . , r, there is

a commuting diagram

H∗(Jn−r) H∗(Jn−r+1)

H∗(Jn, Cr(n)) H∗(Jn, Cr−1(n))

α(xr)∗

ι∗

α(xr−1)∗

(dr,i−1)∗

Proof. For the case i = 1, it suffices to observe that the map dr,0 : Cr(n) → Cr−1(n) satisfies

dr,0(xr) = ( ̂n − r + 1, n − r + 2, . . . , n, e, . . . , e) = xr−1

so that the diagram commutes. Suppose i > 1. Write y = di−1(xr) and let j : Jn−r ↪→ Stab(y)

be the inclusion map. Then we have the commuting diagram

H∗(Jn−r) H∗(Stab(y))

H∗(Jn, Cr(n)) H∗(Jn, Cr−1(n))

α(xr)∗

j∗

α(y)∗
(dr,i−1)∗

(4.13)

Let µ ∈ Sn be the cyclic permutation (n − r + 1, . . . , n − r + i) and define t ∈ Jn by setting

t = (e, . . . , e, µ). Let κ be the inner automorphism on Jn given by conjugation by t. The map
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f : Cr−1(n) → Cr−1(n) defined by f (x) = t · x is compatible with the Jn-action via κ, so

δ = (κ, f ) induces a map δ∗ : H∗(Jn, Cr−1(n)) → H∗(Jn, Cr−1(n)). Moreover, by [B, Prop.

III.8.1], the map δ∗ is the identity on H∗(Jn, Cr−1(n)). Now consider the diagram

H∗(Jn−r) H∗(Stab(y)) H∗(Jn−r+1)

H∗(Jn, Cr(n)) H∗(Jn, Cr−1(n)) H∗(Jn, Cr−1(n))

α(xr)∗

j∗ κ∗

α(y)∗ α(xr−1)∗

(dr,i−1)∗ δ∗

(4.14)

We just showed that the left square of (4.14) commutes. Furthermore, we have

t · y = (µ(n − r + 1), . . . , ̂µ(n − r + i), . . . , µ(n), e, . . . , e)

= (n − r + 2, . . . , n, e, . . . , e)

= xr−1

so the right square of (4.14) also commutes. Therefore all of (4.14) commutes. Since

κ∗ ◦ j∗ = ι∗ and δ∗ ◦ (dr,i−1)∗ = (dr,i−1)∗, the diagram (4.14) reduces to the diagram in the

statement of the lemma.

Remark 4.15. The upshot of Lemma 4.12 is that the map ι∗ : H∗(Jn−r) → H∗(Jn−r+1) may

be identified with (dr,i−1)∗ : H∗(Jn, Cr(n)) → H∗(Jn, Cr−1(n)) for any choice of i ≤ r < n.

Hence, if r < n, then

(∂r)∗ =
r

∑
i=1

(−1)i−1(dr,i−1)∗ = ι∗ − ι∗ + ι∗ − · · · =


ι∗ if r is odd

0 if r is even.

Remark 4.16. Choose a free resolution F• of Z over ZJn. Define a first-quadrant double

complex D by setting Dr,s = Fs ⊗Jn Cr(n), and denote the total complex of D by Tot•(D).
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Consider the spectral sequence associated to the vertical filtration of Tot•(D). The E1

terms of this sequence are given by

E1
r,s = Hs(Fr ⊗Jn C•(n)).

Since Fr ⊗Jn − is exact, it follows from Proposition 4.9 that E1
r,s = 0 for s < n. This spectral

sequence converges to Hr+s(Tot•(D)), so we conclude that Hi(Tot•(D)) = 0 for i < n.

Now consider the spectral sequence associated to the horizontal filtration of Tot•(D).

This sequence also converges to Hr+s(Tot•(D)), so we have

E∞
r,s = 0 if r + s < n. (4.17)

The E1 terms are

E1
r,s = Hs(F• ⊗Jn Cr(n)) = Hs(Jn, Cr(n)).

By Remark 4.15, for r < n, the differential d1 : E1
r,s → E1

r−1,s is

d1 = (∂r)∗ =


ι∗ : Hs(Jn−r) → Hs(Jn−r+1) if r is odd

0 if r is even.
(4.18)

Theorem D. If n ≥ 2m + 2, then the map ι∗ : Hm(Jn−1) → Hm(Jn) is an isomorphism.

Proof. By equation (4.18), the map ι∗ : Hm(Jn−1) → Hm(Jn) is the differential d1 : E1
1,m →

E1
0,m. We will show that E2

1,m = E2
0,m = 0, so that d1 is an isomorphism.

We proceed by strong induction on m. For the base case m = 0, suppose that n ≥ 2.

Then the map d1 : E1
1,m → E1

0,m is the identity on Z, and we are done.

Suppose m ≥ 1 and n ≥ 2m + 2. Thus n ≥ 4, and we have

m + 1 ≤ n
2
< n − 1

43



which by equation (4.17) implies E∞
0,m = 0 and E∞

1,m = 0. We will show that E2
0,m = E∞

0,m and

E2
1,m = E∞

1,m. To do this, we will use the following claim:

Claim: If r + s ≤ m + 2 and s < m, then E2
r,s = 0.

Pf. of Claim: Suppose r ≤ 3. Then r < n, so equation (4.18) implies that row m − 1 on

the E1 page of the spectral sequence looks like

· · · 0 Hm−1(Jn) Hm−1(Jn−1) Hm−1(Jn−2) Hm−1(Jn−3) · · ·ι∗ 0 ι∗

(4.19)

Furthermore, if r ≤ 2 then

n − r ≥ 2(m − 1) + 2

so the induction hypothesis implies that the maps ι∗ in the diagram (4.19) are isomorphisms.

Then it is clear that E2
r,s = 0 for r ≤ 3 and s = m − 1.

The preceding is sufficient to prove the claim for m = 1; now suppose m ≥ 2, s ≤ m − 2

and r + s ≤ m + 2. We have

r + 1 ≤ m + 3 ≤ n − m + 1 ≤ n − 1

so equation (4.18) implies that row s on the E1 page of the spectral sequence looks like

· · · Hs(Jn−r+1) Hs(Jn−r) Hs(Jn−r−1) · · ·
d1

r,s d1
r+1,s

(4.20)
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where d1
r,s = ι∗ and d1

r+1,s = 0 if r is odd and d1
r,s = 0 and d1

r+1,s = ι∗ if r is even. Furthermore,

we have

n − r ≥ n − m − 2 + s

≥ 2m + 2 − m − 2 + s

= m + s

≥ s + 2 + s

= 2s + 2

so the induction hypothesis implies that the maps ι∗ in the diagram (4.20) are isomorphisms.

Then it is clear that E2
r,s = 0, and we have proved the claim.

Suppose k ≥ 2. The claim implies that Ek
r,s = 0 if r + s ≤ m + 2 and s < m. In particular,

Ek
k,m−k+1 = 0 and Ek

k+1,m−k+1 = 0. Considering the differentials on the Ek page

Ek
k,m−k+1 → Ek

0,m → 0 and Ek
k+1,m−k+1 → Ek

1,m → 0,

it is clear that Ek
0,m = Ek+1

0,m and Ek
1,m = Ek+1

1,m . Hence E2
0,m = E∞

0,m and E2
1,m = E∞

1,m, as

desired.

Let V be an FIH
A -module over Z. Recall that, for each n ≥ 0, the inclusion map n ↪→ n + 1

and the trivial map n → A induce a map of Jn-modules Vn → Vn+1. Hence the functor

H∗(−,−) provides a well-defined map H∗(Jn, Vn) → H∗(Jn+1, Vn+1).

Lemma 4.21. Let M(m) be the free FIH
A -module generated on m. For n ≥ 2i + 2, the induced map

Hi(Jn, M(m)n) → Hi(Jn+1, M(m)n+1) is an isomorphism.

Proof. By Lemma 3.23, there is an isomorphism M(m)n ∼= IndJn
Jn−m

(Z), where Jn−m is the

stabilizer in Jn of the FIH
A -morphism consisting of the inclusion m ↪→ n and the trivial map

m → A. By Shapiro’s lemma, there is an isomorphism

Hi(Jn, M(m)n) ∼= Hi(Jn−m).
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If n ≥ 2i + 2, then Theorem D implies that the induced map

Hi(Jn−m) → Hi(Jn+1−m)

is an isomorphism. Thus, the induced map Hi(Jn, M(m)n) → Hi(Jn+1, M(m)n+1) is an

isomorphism, as desired.

Corollary 4.22. Let V be a finitely generated FIH
A -module over Z. For n ≫ i, the natural inclusion

Jn → Jn+1 and the induced map Vn → Vn+1 induce an isomorphism Hi(Jn, Vn) → Hi(Jn+1, Vn+1).

Proof. Set H−1(Jn, Vn) = 0. We proceed by induction on i. The case i = −1 is trivial. Let

i ≥ 0. There exists an exact sequence of FIH
A -modules

0 W P V 0

where P is finitely generated and projective. By the noetherian property (Corollary 2.30), W

is also finitely generated. This sequence gives rise to the following commuting diagram

with exact columns:
...

...

Hi(Jn, Wn) Hi(Jn+1, Wn+1)

Hi(Jn, Pn) Hi(Jn+1, Pn+1)

Hi(Jn, Vn) Hi(Jn+1, Vn+1)

Hi−1(Jn, Wn) Hi−1(Jn+1, Wn+1)

Hi−1(Jn, Pn) Hi−1(Jn+1, Pn+1)

...
...

f1

f2

f3

f4

f5
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By Lemma 4.21, the maps f2 and f5 are isomorphisms for n ≫ i, and by the induction

hypothesis f4 is an isomorphism for n ≫ i. The five lemma implies that f3 is surjective for

n ≫ i. Since W is also finitely generated, we may apply the same argument to deduce that

f1 is surjective for n ≫ i. Then the five lemma implies that f3 is injective for n ≫ i. Hence

f3 is an isomorphism.
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Chapter 5

Serre quotients

We recall the following definitions.

Definition 5.1. Let A be an abelian category. A nonempty full subcategory B of A is called

a Serre subcategory of A if it satisfies the following property: for any exact sequence in A

X Y Z

with X, Z ∈ Ob(B), then also Y ∈ Ob(B).

Lemma 5.2 ([SP, Lemma 02MS]). Let A be an abelian category with Serre subcategory B. There

is an abelian category A/B and an exact functor P : A → A/B which is essenitally surjective and

whose kernel is B. Moreover, the category A/B and the functor P are characterized by the following

universal property: given an exact functor F : A → C and a subcategory B ⊂ ker(F), there is a

unique exact functor G : A/B → C such that F = G ◦ P.

Such a category A/B is called the Serre quotient of A with B. We may realize A/B as the

category whose objects are the objects of A and whose morphisms X → Y are given by

HomA/B(X, Y) = colim(X′,Y′) HomA(X′, Y/Y′)
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where the limit is taken over pairs of subobjects X′ ⊂ X and Y′ ⊂ Y such that X/X′, Y′ ∈

Ob(B), with ordering ≤ defined by (X′, Y′) ≤ (X′′, Y′′) if and only if X′′ ⊂ X′ and Y′ ⊂ Y′′.

In particular, if X is an object of B, then X is isomorphic (in A/B) to 0.

For the remainder of this chapter, fix a field k and let C be a locally noetherian FI-like

category.

Definition 5.3. We say that a C-module V is finite-dimensional if
⊕

n≥0 Vn is finite-dimensional

as a k-vector space.

Remark 5.4. Suppose V is finitely generated. Then V is finite-dimensional if and only if

there is a nonnegative integer N such that Vn = 0 for all n ≥ N. When the latter condition

holds, we say that V vanishes in degrees ≥ N.

Denote by C−fgMod the functor category of finitely generated C-modules over k. Since

C is locally noetherian, C−fgMod is abelian. Denote by C−fdMod the full subcategory of

C−fgMod whose objects are the finite-dimensional C-modules.

Lemma 5.5. The category C−fdMod is a Serre subcategory of C−fgMod.

Proof. Consider an exact sequence in C−fgMod

U V W

where U vanishes in degrees ≥ N1 and W vanishes in degrees ≥ N2. For each n ≥ 0, the

induced sequence of vector spaces

Un Vn Wn

is exact. If n ≥ max{N1, N2}, then Un = Wn = 0, hence Vn = 0 by exactness. Hence V is

finite-dimensional.

Recall from Definition 2.3 that a subcategory A of C is almost-full if ObA = ObC and

A(m, n) = C(m, n) whenever m ̸= n. Fix an almost-full subcategory A of C. Since C is
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locally noetherian, the subcategory A is also locally noetherian (Theorem A). In particular,

every finitely generated C-module (resp. finitely generated A-module) is finitely presented.

We denote

QC =
C−fgMod
C−fdMod

and QA =
A−fgMod
A−fdMod

.

Let us recall the following proposition (Proposition 2.24):

Proposition 5.6. Let V be a finitely generated C-module generated in degrees ≥ d and related in

degrees ≥ r. Let ηV : V → Res Ind V denote the unit map of the adjunction Ind ⊣ Res. In degrees

n > max{d, r}, the map

(ηV)n : Vn → (Res Ind V)n

is an isomorphism of vector spaces.

Descending to the quotient QC yields the following:

Lemma 5.7. Let P be the canonical functor C−fgMod → QC. Given V ∈ Ob(QC), the QC-

morphism

P(η) : V → Res Ind V

is an isomorphism.

Proof. Consider the exact sequence (in C−fgMod)

0 ker η V Res Ind V coker η 0.
η

Exactness of the canonical functor P : C−fgMod → QC ensures that the sequence in QC

0 ker η V Res Ind V coker η 0
P(η)

(∗)

is also exact. Suppose V is generated in degrees ≤ d and related in degrees ≤ r. Then

Proposition 5.6 implies (ker η)n = (coker η)n = 0 for all n > max{d, r}. Hence ker η and

coker η are finite-dimensional, and moreover ker η ∼= coker η ∼= 0 in QC. So we obtain from
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(∗) the exact sequence

0 V Res Ind V 0
P(η)

which ensures that P(η) is an isomorphism.

Proposition 5.8. Let V be a C-module finitely generated in degrees ≤ d and related in degrees ≤ r.

In degrees n > max{d, r}, the k-linear map

Tn : (Ind Res V)n → Vn

α ⊗ v 7→ αv (α ∈ MC(m)n, v ∈ Vm)

is an isomorphism.

Proof. Given v ∈ Vn, the element idn ⊗ v ∈ (Ind Res V)n satisfies Tn(idn ⊗ v) = idnv = v.

So Tn is surjective for all n > 0. We claim that Tn is injective for n > max{d, r}.

First consider the case V = MC(m). We will show that, given n > m, the map

Un : MC(m)n → (Ind Res MC(m))n

α 7→ α ⊗ idm

is an inverse to Tn. Given α ∈ MC(m)n, we compute

(Tn ◦ Un)(α) = Tn(α ⊗ idm) = αidm = α

Hence Tn ◦Un is the identity map on MC(m)n. Now, given α ∈ MC(r)n and β ∈ Res MC(m)r,

we have

(Un ◦ Tn)(α ⊗ β) = Un(αβ) = αβ ⊗ idm.

If r > m then β is an A-morphism, so the relations of (Ind Res MC(m))n (Definition 2.15)

imply

αβ ⊗ idm = α ⊗ β.
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Now suppose r = m. Then n > r, so α and αβ are A-morphisms. The relations of

(Ind Res MC(m))n then imply

αβ ⊗ idm = idm ⊗ αβ = α ⊗ β.

Hence Un ◦ Tn is the identity map on MC(m)n. This proves the claim in the case V = MC(m).

Now suppose V is any C-module finitely generated in degrees ≤ d and related in degrees

≤ r. Then there exists g ≤ d such that, for all n > max{r, g}, the rows of the diagram

r⊕
m=1

(Ind Res MC(m))⊕ℓm
n

g⊕
m=1

(Ind Res MC(m))⊕cm
n (Ind Res V)n 0

r⊕
m=1

MC(m)⊕ℓm
n

g⊕
m=1

MC(m)⊕cm
n Vn 0

⊕
Tn

⊕
Tn Tn

are exact. The two vertical arrows on the left are isomorphisms. Thus the third vertical

arrow is injective by the four lemma.

The maps Tn comprise a natural transformation T : Ind Res V → V. By an argument

similar to Lemma 5.7, we obtain the following:

Lemma 5.9. Let P be the canonical functor C−fgMod → QC. Given V ∈ Ob(QC), the QC-

morphism

P(T) : Ind Res V → V

is an isomorphism.

Lemmas 5.7 and 5.9 provide the following:
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Theorem E. Let C be a locally noetherian FI-like category and A an almost-full subcategory of C.

The restriction functor Res : C−fgMod → A−fgMod induces an equivalence of categories

QC
∼−→ QA.

Corollary 5.10. Let A be a finite abelian group and H a subgroup of A. Assume k has characteristic

0. There is an equivalence of categories

FIH
A−fgMod

FIH
A−fdMod

∼= FIA−fdMod.

Proof. Taking C = FIA and A = FIH
A in Theorem E, we obtain an equivalence of categories

FIH
A−fgMod

FIH
A−fdMod

∼=
FIA−fgMod
FIA−fdMod

.

Furthermore, by [GLX, Theorem 4.2], the Nakayama functor ν : FIA−fgMod → FIA−fdMod

induces an equivalence of categories

FIA−fgMod
FIA−fdMod

∼= FIA−fdMod.

It is notable that the Serre quotient in Corollary 5.10 does not depend on the choice of

the subgroup H of A.
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