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ARTICLE OPEN

Approaches for handling high-dimensional cluster expansions
of ionic systems
Julia H. Yang1,2, Tina Chen 1,2, Luis Barroso-Luque 1, Zinab Jadidi1,2 and Gerbrand Ceder 1,2✉

Disordered multicomponent systems attract great interest due to their engineering design flexibility and subsequent rich space of
properties. However, detailed characterization of the structure and atomic correlations remains challenging and hinders full
navigation of these complex spaces. A lattice cluster expansion is one tool to obtain configurational and energetic resolution. While
in theory a cluster expansion can be applied to any system of any dimensionality, the method has primarily been used in binary
systems or ternary alloys. Here we apply cluster expansions in high-component ionic systems, setting up the largest cluster
expansion ever attempted to our knowledge. In doing so, we address and discuss challenges specific to high-component ionic
systems, namely charge state assignments, structural relaxations, and rank-deficient systems. We introduce practical procedures to
make the fitting and analysis of complex systems tractable, providing guidance for future computational studies of disordered ionic
systems.

npj Computational Materials           (2022) 8:133 ; https://doi.org/10.1038/s41524-022-00818-3

INTRODUCTION
Disordered and partially disordered systems can contain a
relatively high number of components. In recent years, active
research in these high-component disordered systems has
spanned a range of breakthrough technologies1,2, including
high-temperature, strong, and lightweight high-entropy alloys3,
superionic lithium conductors4, ultra-high temperature ceramics
for structural applications in extreme environments5, and sustain-
able battery design with improved performance6,7.
It is known that local configurations are important for some

materials properties. For instance, in multi-principal element
entropy alloys (MPEAs), magnetic interactions can drive atomic
orderings which explain otherwise anomalous material proper-
ties8. Given the challenges in modeling multicomponent alloys9,
coarse-grained Hamiltonians such as the cluster expansion (CE)
approach have been remarkably useful, leading to the discovery of
hierarchical ground state orderings10, prediction of configurational
energetics11, and generation of mesoscale phase-field models12.
The CE approach which maps the configurational problem in a

crystalline solid on that of a lattice model has been used in
pseudo-binary and ternary ionic systems to predict solid state
phase diagrams in the CaO–MgO system13, understand fluorine
solubility14, observe lithium (Li)-gettering in fluorinated cath-
odes15, and characterize short-range-order16. In this work, we
apply the CE approach to study a new class of partially disordered
spinel (PDS) materials which exhibit ultrahigh energy and power
density17 and discuss new challenges specific to high-component
ionic CE. Since ionic systems have greater formation energy than
do metallic systems, prediction errors tend to be higher18,
motivating methodology studies such as this one to aid in
reducing sources of error and developing predictive CE models.
We first explain the complexity of PDS and summarize the theory
of multicomponent, multi-sublattice systems introduced in detail
elsewhere19,20. Next, we discuss ab-initio data generation and
preparation specific to ionic CEs, namely species charge assign-
ments and structural relaxations that maintain sublattice topology.

We then introduce new methods for fitting the CE by grouping
the thousands of possible effective cluster interactions which are
the expansion coefficients of the basis functions that describe the
configurational arrangement. We demonstrate how to group site
interactions required to address the compositional constraints
arising from the charge neutrality requirement in ionic systems.
Rank deficiency problems occur within groups of basis functions
on the same lattice figure because it is not possible to sample all
configurations with ab-initio calculations. We handle this by
applying sparse group lasso regularization when the energetics of
unsampled configurations is represented in lower-order features.
Finally, we show that models of high-component systems are
prone to higher errors compared to models of lower-dimensional
systems which have been well-explored, and bring the new
perspective that model predictability should instead scale with
configuration space size.

BACKGROUND: MOTIVATION TO USE CE TO STUDY HIGH-
COMPONENT IONIC SYSTEMS
Our work was inspired by a new class of Li-Mn-oxyfluorides in the
PDS structure, which have demonstrated ultrahigh power and
energy density in Li-ion batteries, delivering over 900Wh
kg−1 17,21. These materials are approximately based on an AB2X4
spinel structure which consists of a face-centered cubic (FCC)
anion (X) framework with half the octahedral sites occupied by
metal B (the “16d” sites) and the other half (“16c” sites)
unoccupied. A small number of tetrahedral sites (“8a” sites) are
occupied by the A metal. It is the requirement that these occupied
tetrahedral sites have no face-sharing with octahedral sites that
creates the 16d/16c cation ordering on the octahedral sites. PDS is
a significant departure from this classic stoichiometric spinel both
because it has a higher cation/anion ratio than spinel and is
partially disordered. For example, the PDS compound of Ji et al.17

has stoichiometry Li1.68Mn1.6O3.7F0.3 with 84% of the Mn in 16d
sites and 16% of the Mn in 16c sites. Li, which in LiMn2O4 would
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solely occupy the 8a site fills only 52% of the tetrahedral 8a sites,
30% of the octahedral 16d sites, and 28% of the octahedral 16c
sites. Note that in PDS the cation/anion ratio is higher than in a
stoichiometric spinel, where it is 3/4.
The structure of the PDS is challenging to understand because

the cation-excess space removes baseline understanding of how
cations can be arranged in the structure. For instance, it is unclear
how the Mn occupancy of the 16c site affects the occupancy of
the nearest neighbor 8a sites with which it is face-sharing, which is
usually not preferable in oxides. Because the 8a sites form a
percolating transport channel for Li one would expect their
blockage to lead to poor Li transport, but this is contrary to what is
observed experimentally.
In principle, a well-parametrized configurational CE would

enable equilibration of the local structure in the system with
Monte Carlo (MC) techniques, as is done to identify chemical
short-range order22–24, compute phase diagrams25–27, and find
ground states26,28,29. We show that in practice, simple assump-
tions and typical approaches to obtain the CE are difficult for this
system with such high configurational degrees of freedom. For the
PDS materials, which have the stoichiometries Li1.68Mn1.6O3.7F0.3
and Li1.68Mn1.6O3.4F0.6, the anion FCC lattice hosting binary
disorder (O2−, F−) forms two types of symmetrically distinct
cation sites with different allowed species on them: an octahedral
site with quinary disorder taken from the space of (Li+, Mn2+,
Mn3+, Mn4+, Vacancy) and a tetrahedral site with ternary disorder
among (Li+, Mn2+, Vacancy). Without symmetrizing, the config-
uration space in a primitive cell has dimension 90, obtained by
taking the product of all site spaces from the anion, octahedral,
and two tetrahedral sites30. It is clear that this CE transcends the
usual complexity of CE models which are typically done for
dimension two or three, resulting from one site space with binary
or ternary disorder31,32.

Background: introduction to CE theory
We provide only a brief introduction to the mathematics of CE,
referring the reader to classic works by Sanchez, Ducastelle, and
Gratias19 and van de Walle20 for a comprehensive explanation of
multi-component CE. For multi-sublattice ionic CE, we refer the
reader to work by Tepesch, Garbulsky, and Ceder30 and our recent
review33.
The CE approach assumes an underlying well-defined set of

sites (“the lattice”) over which species can distribute. The lattice
can be partitioned into “sublattices” with different allowed species
decorations. For instance, in ionic systems there are typically at
least two such sublattices: one for the cation species and another
for the anion species. Here, the terminology “lattice” is used in a
broader sense than in crystallography where in the strictest sense
of the term it only refers to the Bravais lattice of a structure.
The basic principle of the CE is that a relaxed DFT structure is

represented by an occupation string σ which describes exactly
which species occupy each site on all sublattices. A CE
representation of the energy is possible as long as this mapping
between a DFT-relaxed structure and occupation string σ is one-
to-one. This distinction is necessary because a lattice cluster
expansion model cannot capture the exact spatial positions of
atoms. Rather, it strictly specifies the decoration σ of a lattice.
Any scalar extensive quantity q can be represented as a function

of its decoration σ as:

q σð Þ ¼
X
β

mβJβhΦα σð Þiβ (1)

where β are symmetrically distinct groupings of site basis
functions on the lattice. The cluster α is a multi-index array with
entries which label the corresponding single-site basis functions.
mβ is the number of clusters α equivalent by symmetry in
whatever normalizing unit scalar q is taken (e.g. per cell, per site,

etc.), Jβ is the effective cluster interaction (ECI), and Φα is the
cluster function. The 48 symmetry operations for the CE lattice are
four C3 rotations, three C4 rotations, and an inversion, correspond-
ing to the point group m3m. Lastly, the average of cluster
functions evaluated over a crystal is the correlation function and
the concatenation of all correlation functions is referred to as the
correlation vector.
As an example, we demonstrate the construction of a single

cluster function Φα and evaluate it for a LiF structure using the
orthogonal sinusoidal basis20. The n number of site basis
functions, indexed from αj= 0, …, n− 1, for a single site σi with
ni possible species are:

ϕαj ;ni σið Þ ¼

1; if αj ¼ 0

�cos
2π

αj
2

� �
σi

ni

� �
; if αj > 0 and odd

�sin
2π

αj
2

� �
σi

ni

� �
; if αj > 0 and even

8>>>>><
>>>>>:

(2)

Given a set of single-site basis functions fϕαj ;nig, the cluster
function in Eq. (3) is the tensor product of the ni single-site basis
functions on each possible site in σ:

Φα σð Þ ¼
YN
i¼1

ϕαi ;ni σið Þ (3)

The product is a “cluster-like”19 because only the occupancies
on which the site function is not equal to the constant “1” are
relevant.
To be explicit, we write the cluster function for a specific

octahedral-tetrahedral “geometric cluster”. (A geometric cluster is
strictly a set of crystallographic sites, whereas a cluster α is, in full
technicality, a cluster of functions. However, for simplicity we refer
to α as a cluster.) We then evaluate the cluster function for the
occupancy string of Li1F1, which is σLiF ¼ ½σ1 ¼ 0; σ2 ¼ 2; σ3 ¼
2; σ4 ¼ 1� because the species on the octahedral (site 1),
tetrahedral (sites 2 and 3), and anion (site 4) are [“Li+”, “Vacancy”,
“Vacancy”, and “F-”]. In this example, we have chosen the site
variables for an octahedral Li, a tetrahedral vacancy, and an anion
fluorine to be 0, 2, and 1 respectively, but other site variables can
be chosen.
The cluster function for sites 1 and 2 is:

Φα σð Þ ¼ 1;�cos
2π 1

2d eσ1
5

� �
;�sin

2π 2
2d eσ1
5

� �
;

�

�cos
2π 3

2d eσ1
5

� �
;�sin

2π 4
2d eσ1
5

� ��
� 1;�cos

2π 1
2d eσ2
3

� �
;�sin

2π 2
2d eσ2
3

� �� �
(4)

This tensor product yields a basis set for the geometric cluster
comprising site 1 and site 2. The basis functions for sites 1 and 2
are indexed as αj; αj0

� 	
, where αj indexes the basis functions for

the octahedral site (with ni= 5) and αj0 indexes the basis functions
for the tetrahedral site (with ni= 3). So, this set of multi-indices for
cluster α is the Cartesian product of basis function indices,
specifically: αj; αj0

� 	
∈ {(1, 1), (2, 1), (3, 1), (4, 1), (1, 2), (2, 2), (3, 2),

(4, 2)}. The relevant set of basis functions has contracted multi-
indices, meaning that all labels that are 0 (i.e. not part of the
cluster in general) are dropped. When translational symmetry is
included as well, these contracted multi-indices make up a set we
call B, which is the set of symmetrically distinct orbits β. We will
demonstrate the use of B in our regularization scheme later on.
Using Eq. (4), we calculate that Φαj ;αj0¼ð1; 1Þ σLiFð Þ ¼ �0:5. The

entire set of correlation functions for the set of contracted multi-
indices are then: [−0.5, 0, −0.5, 0, −0.866, 0, −0.866, 0].
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RESULTS: HIGH-COMPONENT CE IN OXIDES: EXAMPLE OF
PARTIALLY DISORDERED SPINELS (PDS)
Besides the CE to capture energy configurational energy
dependence of the PDS, we also add an explicit term to capture
the electrostatic energy in Ewald form34. The Ewald summation is
a technique to efficiently sum up long-range electrostatic
interactions and their periodic images and is a sum of the direct
space, constant, and reciprocal space terms. The proportionality
constant for this term is also fitted and can be thought of as
representing the dielectric constant. We use Pymatgen35 to
calculate the total Ewald energy. Lastly, we apply a form of the
structure inversion method proposed by Connolly and Williams36

to determine the ECI and dielectric constant for the Ewald energy
by fitting to DFT energies.
In building our CE, we consider relevant geometric clusters

arising from multi-body interactions within a certain distance from
one another. Our geometric clusters consist of pairs of sites less
than 7 Å apart, triplets with points less than 5 Å apart, quadruplets
4 Å apart, and quintuplets 3 Å apart. Given that our lattice model
fixes the nearest-neighbor octahedral-tetrahedral cation distance
to 1.82 Å; the octahedral-anion bond length to 2.1 Å, and the
tetrahedral-anion bond length to 1.82 Å, the correlation vector for
a given structure has length 4587. Adding the Ewald energy adds
one more dimension to our feature vector, resulting in a total
length of 4588.
We use an in-house developed Python package, Statistical

Mechanics On Lattices (smol), to generate the correlation vectors
on the orthogonal sinusoidal basis in Eq. 2. Because of the large
number of possible ECI in these high-component systems, even
when limiting their interaction range to 7 Å, the fitting of cluster
interactions to DFT energies always starts off as an under-
determined system because the number of DFT-relaxed structures
used as training data will be fewer than the number of ECI. Well-
known statistical tools based on regularized regression exist to
handle model generation in under-determined systems: lasso37,
group lasso38, and sparse group lasso (SGL)39 all techniques which
we will discuss later.

Result: data preparation – automatic, optimized charge
assignments
In ionic systems, the same ion can behave differently in terms of
their size, site coordination preference, or local interactions when
it has a different formal valence. For instance, crystal field effects
lead to a strong preference for Mn2+ to be tetrahedral, which is
not observed for Mn3+ or Mn4+. This site and interaction
preference cannot easily be captured when all Mn ions are

treated as the same “Mn” species, as would be done in the CE of
metallic systems, and therefore different charge states of Mn ions
must be treated as different species. Prior work in ionic CE have
also explicitly treated these charge states40,41. In this section, we
describe how to optimally assign charge states to ions from
electronic structure data. The details of DFT calculations are
provided in Methods.
The charge density around a transition metal ion itself is often

remarkably invariant with respect to the formal valence42,43, due
to the hybridization shift with the anion that takes places when an
electron is removed from the metal44,45. For example, total charge
density integration upon Li insertion in λ-Mn2O4 (to spinel
LiMn2O4) reveals greater charge-transfer to the oxygen anion, in
that, upon Li insertion the Mn ion gains 0.136 electronic charge
per electron, whereas the oxygen accepts 0.171 electronic
charge43. Thus, there is a strong electron exchange with oxygen
and for this reason magnetic moments have instead been found
to be a much better guidance for the formal valence of an ion46.
We use the magnetic moment arising from d-orbital contribu-

tions to identify Mn charge states. These magnetic moments are
obtained by integrating the local (spin up minus spin down)
moments in a sphere around each Mn atom. Charge assignment is
non-trivial because the moment distribution around Mn ions
varies depending on its environment. For instance, we find that in
MnF3 and Mn2O3 the magnetic moments for Mn3+ are 3.770 μB
and 3.797 μB respectively, reflecting little difference between a F
and a O environment for Mn3+. Yet, in Mn3OF5, which contains
Mn2+ and Mn3+, the moment on Mn3+ is 4.077 μB which is
significantly higher than in MnF3 and Mn2O3. (The moments on
the two Mn2+, 4.351 μB and 4.393 μB, are clearly different from that
on Mn3+.) Evidently, knowing the Mn moments in the pure oxide
and pure fluorine reference states is not enough to assign charges
in mixed-valence Mn-oxyfluoride compositions.
The cation configurations may also influence the magnetic

moment distribution in non-obvious ways. To see this, we provide
the Mn moments for three different polymorphs of Li6Mn4O10, in
which the average Mn oxidation state is 3.5+, in Table 1, along
with their nearest neighbor (NN) cation environments. Table 1
shows that all three polymorphs of Li6Mn4O10 are assigned to be
“charge-balanced” if appropriate differentiation between
moments for Mn3+ and Mn4+ is made. The magnetic moments
for high-spin Mn3+ and Mn4+ are expected to be 4 μB (t2g3eg1) and
3 μB (t2g2eg1), which are reasonably represented in Polymorphs A
and C, given that moments in reality are lower on the metal center
since the surrounding oxygen hybridizes and shares some of the
magnetic moment45,47,48.

Table 1. Description of three polymorphs of composition Li6Mn4O10.

DFT structure information Cation environment around metal, i.e. number of
nearest neighbor Li+, Mn3+, Mn4+

Polymorph Mn3+ moments Mn4+ moments Energy above hull (meV/atom) Mn3+ Mn3+ Mn4+ Mn4+

A 3.501, 3.504 2.732, 3.005 21.7 8 Li+

2 Mn3+

2 Mn4+

8 Li+

2 Mn3+

2 Mn4+

8 Li+

2 Mn3+

2 Mn4+

8 Li+

2 Mn3+

2 Mn4+

B 3.232, 3.232 3.169, 3.169 45.9 8 Li+

1 Mn3+

3 Mn4+

8 Li+

1 Mn3+

3 Mn4+

7 Li+

3 Mn3+

2 Mn4+

7 Li+

3 Mn3+

2 Mn4+

C 3.442, 3.629 2.724, 3.027 113.5 8 Li+

1 Mn3+

3 Mn4+

8 Li+

1 Mn3+

3 Mn4+

8 Li+

2 Mn3+

2 Mn4+

6 Li+

4 Mn3+

2 Mn4+

The DFT structure information for the three polymorphs is Mn d-orbital magnetic moments and energy above hull per atom and the valence is classified by
the Bayesian optimization model. The 12 edge-sharing nearest neighbor cations, identified using the Bayesian optimization assignments, are also described
for each polymorph.
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Within the Mn4+ environments, we observe that the magnetic
moments on the Mn4+ ion are relatively rigid when there are six or
eight surrounding Li+ in polymorphs A and C. This is because the
moment is always about 2.7 or 3.0 μB even when the surrounding
environment is more Mn-rich as seen in polymorph C. However,
the Mn4+ moment can be higher (3.169 μB) if the environment
around Mn4+ has seven Li+, as seen in polymorph B.
Within the Mn3+ environments, the effects are even less clear:

Having eight surrounding Li+ is associated with having a range of
moments: from 3.232 μB to 3.629 μB. When Mn3+ is surrounded by
equal Mn3+ and Mn4+ the moment is about 3.5 μB (polymorph A),
but a more oxidized environment around Mn3+ can lead to either
lower (3.232 μB in polymorph A) or higher (3.629 μB in polymorph
C) moments. It may be necessary to know details of how the NN
cations are arranged around Mn3+ to systematically understand
how the moment is distributed.
Lastly, as a final indication of the effects which can influence

magnetic moment distribution, we observe that Polymorph B
does not have as well-separated magnetic moments, indicating
some degree of self-interaction error which could be reduced by
applying a Hubbard U correction49.
Given hundreds of relaxed DFT structures with moments arising

from the various effects described (chemical, configurational, and
remnant self-interaction), the challenge is to find an optimal
solution for differentiating among Mn2+, Mn3+, and Mn4+. Our
approach is to use Bayesian optimization via Gaussian Processes50

and assign charges to moments via some black box mapping
function f under the condition of maximizing the total number of
charge-neutral DFT structures. Black box optimization is particu-
larly useful in this situation where each set of magnetic moments
is computationally expensive, and the exact form of f is neither
known nor necessarily differentiable51. We formulate f to depend
on three magnetic moment upper cutoffs (corresponding to
upper cutoffs for the three Mn valence states) that determine the
charge for each Mn atom. The solution which minimizes the loss,
the sum of the absolute value of each structure’s charge, is the
final solution. We apply the Bayesian Optimization module in
scikit-learn52 to charge-balance 642 out of 775 structures. The
upper cutoffs are Mn3+: 4.082 μB, Mn4+: 3.228 μB, and Mn2+:
4.973 μB. Explanation S1 describes the approach in more detail. All
magnetic moments in all DFT structures and their Bayesian-
optimized cutoffs are plotted in Fig. 1.

Results: data preparation – structure mapping
As mentioned earlier, the rigorous implementation of the cluster
expansion to model configurational disorder relies on a one-to-

one mapping between relaxed DFT structures and a lattice
occupation53. Typically, mapping back to the lattice configuration
is done by performing structure matching after density rescaling,
such that the density of the relaxed DFT structure is a multiple of
the primitive cell14,16. Such mapping can be performed using the
StructureMatcher functionality in Pymatgen35. In this structure
mapping, an attempt is made to map all atoms from the relaxed
DFT structure onto a subset of the sites of a supercell of the
primitive cell within a set tolerance. Because the sites of the
supercell of the primitive cell are the ideal “rigid” lattice sites, the
mapping allows for each atom (and its species) in the relaxed DFT
structure to be associated with a lattice site, and the remaining
lattice sites (with no associated relaxed atom) are assumed to be
vacant.
However, in ionic systems significant relaxation may occur in

the DFT calculation of a structure. This may include distortions of
the anion lattice due to size differences of the cations, vacancies,
Jahn–Teller effects, and off-center relaxations of the cations in
their anion coordination polyhedron. As long as the relaxed DFT
structures maintain the topology of the CE lattice, they can in
principle be mapped onto the lattice model. In the previously
described structure mapping method, atoms that distort outside
of the set tolerance can no longer be mapped to lattice sites. For
example, in Fig. 2a, the relaxed Li+ (green sphere) should be
associated with the cation lattice site (white sphere) at the center
of the anion coordination polyhedra because it still sits within the
anion coordination polyhedra but is outside the set tolerance for
structure mapping. While one could attempt to include the case in
Fig. 2a by simply increasing the tolerance for mapping, such
increased tolerance can result in the mis-mapping of other atoms.
Because in ionic systems the identification of a cation with a
specific anion polyhedron is a key topological element, we
propose a new method to properly map moderately distorted
cations to cation lattice sites based on their anion coordination
polyhedra.
Figure 2b demonstrates how we can obtain mappings from the

relaxed DFT structures to the lattice configuration. Because the
anion FCC framework of the spinel materials defines the cation
sites, we first map only the anion sites (ai) in the relaxed structure
(srelaxed) to the anion lattice sites (slattice) directly using the
traditional StructureMatcher approach. This mapping must be
successful for the relaxed structure to be considered as having an
FCC anion lattice. For the cations, which can undergo larger
relaxations, we associate each cation (ci) in srelaxed to its anion
polyhedra by finding the set of nearest neighbor ai whose convex
hull is not broken by ci. Because we can map the anions from
structure srelaxed to its anion lattice sites (the anions in slattice), and
we can also locate the cations in srelaxed in their anion polyhedra,
we can map the cations to their cation lattice sites via an
intermediate mapping based on the anion polyhedra of the cation
sites in both srelaxed and slattice.
Using a combination of the StructureMatcher method and the

method for mapping cations based on their anion polyhedra in
the FCC lattice, we successfully obtain lattice configurations for
448 relaxed DFT structures, resulting in an overall efficiency of
70%. Of the 194 structures that fail to map, we are unable to map
106 structures due to a failure in the anion mapping (i.e., the anion
FCC lattice is not adequately maintained). An additional 16 struc-
tures contain mappings of species to cation lattice sites where
they are disallowed (i.e., Mn3+ or Mn4+ on the tetrahedral sites).
The remaining 72 structures cannot be mapped due to improper
identification of the anion polyhedra in the srelaxed. Improper
identification of the anion polyhedra can result when relaxation of
the cation is so severe that it distorts so far (>3.1 Å) away from one
or more of the anions constituting its polyhedra that the
neighboring anion is no longer identified as a possible member
of the cation’s anion polyhedra, as in Fig. 2c. In this case the Mn
ion in the octahedral has taken on a 2+ valence state which

Fig. 1 All Mn moments in 775 DFT-SCAN structures with
Bayesian-optimized moments (dashed line). The optimized cutoffs
results in 642 out of 775 charge-balanced structures.

J.H. Yang et al.
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strongly prefers tetrahedral coordination. In an octahedron, a
pseudo-tetrahedral environment can be achieved by relaxing to
the center of the pyramid that constitutes half of the octahedron.
Lastly, we de-duplicate all 448 structures by their correlation

vectors, finding a total of 428 distinct structures to be used for
training and testing. Figure S2a shows the 0 K DFT ground states.
The ground states are consistent with low-temperature experi-
mental phases reported in the phase diagram of Li-Mn-O spinel in
air by Paulsen and Dahn54.

Result: charge constraints on point basis functions in ionic CE
Given DFT structures which are charge-balanced and mapped to
all sublattices, we next describe fitting procedures specific to
reducing error in ionic CE. In statistics and machine learning, it is
standard to center the target vector, i.e. train on E ~σð Þ � E ~σð Þh i, so
we propose here that J0 can be fitted to the average energy of the
training set. However, note that since the zeroth basis function is
defined as 1, the true value of J0 is the average energy of the
random sample with sampled centered basis functions.

Next, the charge neutrality constraint limits the rank of the
point basis functions. By writing the charge constraint for the
number of species Ni, of each type i:

NLiþ þ 2NMn2þ þ 3NMn3þ þ 4NMn4þ ¼ NO2� þ NF� (5)

it is clear any function of N, such as the occupation mapping
function, f NLiþ ; ¼ð Þ ¼ σ, and functions of σ, such as the single
site basis functions, will also be constrained and have its rank
reduced by one arising from Eq. (5). This is why with the fitting of
the point ECI, the correct degrees of freedom need to also be
enforced such that one ECI is set to 0. Otherwise, overfitting of the
point ECI will result in higher out-of-sample error.

Results: applying structured sparsity due to rank deficiency
In principle a CE is always under-determined because there exist
an infinite number of basis functions for a finite number of
training data. In simple binary systems, we can sometimes posit
that a subset of basis functions are relevant and solve for their
corresponding ECI by fitting to an over-determined system.
However, with high-component systems this procedure becomes

Fig. 2 Details of structural mapping in Li-Mn-O-F rocksalt system. a Example of Li+ (green sphere) and its anion polyhedra in relaxed DFT
structure which cannot be mapped to its proper cation site (white sphere), but which can be mapped using the new mapping technique.
b Diagram of new structure mapping process, which involves mapping the anions (ai) of the relaxed structure srelaxed to the anion sites of the
lattice configuration slattice (left), followed by mapping the cations of srelaxed to the proper cation sites in slattice by matching the anions in their
anion polyhedra. c Example structure which fails to map using new mapping technique due to an Mn2+ that has relaxed too far from one of
the O2− anions in its anion polyhedra.
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complicated because even with a small set of clusters we have a
large number of ECI. In these cases, we will always start from an
under-determined system and use statistical approaches to
enforce sparse solutions. One might add a constraint to the
least-squares error function using Lagrange multipliers to penalize
the L1 norm of solutions, an approach known as lasso regulariza-
tion37. Lasso regularization returns more sparse models than least-
squares regression which always returns dense solutions. When
coefficients are set to zero in lasso regularization, their corre-
sponding basis functions play no role in energy prediction. Lasso
regularization has been used to study Ag-Pt, model protein
folding in the zinc-finger motif55, and construct models for Cu-Pt,
Ag-Pt, and Ag-Pd via reweighted Bayesian compressive sensing56.
We find that applying lasso regularization to our system results in
higher average training and testing errors (see Figure S1 for the
pure lasso case). Other approaches to select clusters in fitting CE
include using genetic algorithms57–59 or the steepest descent
algorithm to add or remove clusters one at a time as a function of
cross-validation score60.
In this section we introduce another regularization approach,

sparse group lasso (SGL)39, which builds on lasso regularization by
applying structured sparsity: starting from the usual penalized
lasso regression framework with an n by p covariate matrix X
(made of p–1 correlation functions and the Ewald energy, for n
structures) and a response vector with centered energies E’, SGL
further breaks down X into sub-matrices X(B), where each sub-
matrix has dimension n by pB where pB is the size of a member B
in B. (Remember that pB is the number of contracted multi-indices
labeling a geometric cluster, which, symmetrized and evaluated
over the random structure on this CE lattice, produces member B.)
pB is effectively a weighted penalization. The ECI Jβ are chosen
such that they minimize the objective function to solve the convex

optimization problem:

minJβ
1
2n

E0 �
X
B

X Bð ÞJ Bð Þ
β













2

2

þ λα Jβ


 



1 þ 1� λð Þα
X
B

ffiffiffiffiffi
pB

p
J Bð Þ
β




 



2

 !

(6)

The penalty parameter α > 0 bounds both the l1 norm of all ECI
Jβ and the l2 norm of the vector of ECI that are within each orbit B,

J Bð Þ
β . λ∈[0, 1] is a mixing parameter. In the limiting cases when λ=
1, the objective function becomes that of lasso; when λ= 0, the
objective function becomes that of group lasso38, an approach
which enforces orbit-wise sparsity. Intermediate values of λ

enforce sparsity in J Bð Þ
β . The mixing parameter λ is set to 0.5 and

α is 0.056 in this study, and details of the hyperparameter
optimization are given in Methods and Figure S1.
Our approach to enforce structured sparsity by applying SGL is

fundamentally different than enforcing structured sparsity via
hierarchical cluster selection rules by applying group lasso, the
approach used by Leong and Tan to study the ternary Mo-V-Nb
alloy61. In their work, cluster functions are selected only after their
sub-clusters are also selected. Here, we do not employ such
hierarchical constraints. Instead, structured sparsity is obtained by
grouping ECI by their corresponding orbit B, obtaining orbit-wise
sparse solutions when entire groups of ECI are set to zero.
Furthermore, within an orbit B, sparsity in J Bð Þ

β is attained. This is
a necessary approach to handle under-determined sub-matrices
X(B), which is common when including larger geometric clusters
such as quadruplets. Consider the tetrahedral site with basis
functions fγαj0;3g face-sharing with three of its nearest-neighbor
octahedral sites each with basis functions fγαj ;5g. The cluster α
labelled with these basis functions are shown in Fig. 3a. In total,
there are 80 contracted multi-indices, which can be obtained after

Fig. 3 Rank deficiency in high-component ionic systems. a Illustration of the cluster α with single site basis functions labelled by color. Since
the zeroth label is independent of occupation and is always 1, the colors are the same (orange). However, since the rest of the basis functions (
γαj>0;ni σið Þ) are dependent on occupation, they are differently colored. b Rank of all orbits B for the fully random set of structures and the (c)
rank deficiency of all orbits B for the set of structures in this study. The size of the cluster generating orbit B is indicated for points (1), pairs (2),
triplets (3), quadruplets (4), and quintuplets (5).
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taking the Cartesian product of the single site basis functions,
removing all labels where αj= 0 or αj0 ¼ 0, and applying
translation symmetry. During fitting of J Bð Þ

β , in order for the
submatrix corresponding to orbit B to be full rank, we need to
train with at least 80 unique, symmetrized decorations so that
nunique= pB= 80. We call the submatrix for our training data X(B)

and the submatrix of the fully random set of structures on this CE
lattice X Bð Þ

random. The fully random set of structures is the set that
contains every possible lattice configuration in a supercell with
size up to the largest cutoff (7 Å).
However, the rank in our DFT input set of this quadruplet is only

61 so X(B) is clearly rank-deficient. The complexity in part comes
from the ability of Li+ and Mn2+ to occupy the central tetrahedral
site when the neighboring octahedral sites host Mn2+, Mn3+, or
Mn4+. Such configurations exist in theory, but in reality,
tetrahedral Li+ or Mn2+ will only occur if its three nearest-
neighbor octahedral sites are also vacant or hosting Li+, since the
octahedral site and tetrahedral site are very close together
(around 1.8 Å apart) and experience strong electrostatic repulsion
when both are occupied. Between these two closely situated
cation sites there is little charge shielding. Thus, the configuration
space of this quadruplet cluster spans a larger space than
physically sampleable, so rank deficiency, defined as
rankðX Bð Þ

randomÞ � rank X Bð Þ� 	
, is observed.

This symptom of under-sampling is evident in submatrices X(B)

for other members B. Figure 3b shows the rank of the submatrices
for each member in B for the fully random set of structures on this
CE lattice, X Bð Þ

random, and Fig. 3c shows the rank deficiency observed
in the physical set of structures used in this study. There is clearly
rank deficiency across triplets, quadruplets, and quintuplets

ranging from five for triplets, to almost 30 for quadruplets. To
avoid overfitting in all cases, sparsity of the ECI within an orbit can
be enforced by using sparse group lasso. The lack of information
on the energetics of these configurations is not a problem as long
as their energies as represented by lower order clusters are high
enough so that they are never sampled in MC simulations with the
CE. Figure 4 shows examples of clusters with face-sharing cations,
where occupancy of the 8b or 48f site results in face-sharing with
octahedral sites. When Li+ or Mn2+ occupy the 48f site which face-
shares with two occupied octahedral sites (Fig. 4a, c), the defect
energies predicted by the CE are +0.052 eV/spinel formula unit
and +0.067 eV/spinel formula unit, respectively. Thus, the even
more cation-rich clusters in Fig. 4b, d, where Li+ or Mn2+ face-
shares with four octahedral sites, are unlikely to be sampled
during MC, since their CE-predicted energies are even higher.

Results: applying sparse group lasso
The testing and training error depend on the number of training
examples (known as the learning curve) and model complexity
(known as the capacity curve)62, and both evaluations are shown
in Fig. 5. The learning curve, which compares training data size
against a loss (root mean squared error (RMSE) per primitive cell in
our case), is a widely used metric to assess model convergence.
During this process which is shown in Fig. 5a, we conduct 50
cross-validation trials, setting aside 80% of the total sample size
for training and testing on the remaining 20%. Since the learning
curve converges in training and testing RMSE, SGL is neither
under-fit nor over-fit, and the validation dataset is representa-
tive63. The mark of an under-fit model is that training and cross-
validation RMSE continue to decrease with increasing examples,

Fig. 4 Examples of high-energy cation configurations predicted by the CE per spinel formula unit (f.u.), LiMn2O4, where the scenarios are
Li+ or Mn2+ insertions onto vacant sites in spinel (48f or 8b). The defect energies are calculated as either Efinal � Einitial � μLi

þ
tet for Li

+ insertion
and Efinal � Einitial � μMn2þ

tet for Mn2+ insertion. The chemical potentials are calculated, starting from the spinel structure, as: E Li8Mn16O32ð Þ �
E Li7Mn16O32ð Þ ¼ μLiþ and E Li7Mn2þ1 Mn16O32

� 	� E Li7Mn16O32ð Þ ¼ μMn2þ . a The Li+-occupied 48f site face-shares with two Mn, resulting in a
+0.052 eV/spinel f.u. increase in energy. b Adding Li+ to a more metal-rich cluster, the 8b site, results in an even higher increase in energy:
+0.071 eV/spinel f.u. c The Mn2+-occupied 48f site, face-sharing with two Mn, has a +0.067 eV/ spinel f.u. increase while the (d) Mn2+-
occupied 8b site increases by +1.12 eV/ spinel f.u.
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indicating the model fitting was halted prematurely. On the other
hand, over-fit models diverge in training and cross-validation
RMSE because the model has been over-fit to the training
samples.
The learning curve in Fig. 5a shows the typical behavior of

testing and training64, where with few training samples the model
has enough free parameters to completely model the training set,
so the training error is small. This sampling is not indicative of the
test set so the out-of-sample error is high. With increasing training
set size, the test error decreases. As we further increase the
training set size, a testing RMSE of around 70meV/primitive cell
and training error of around 60meV/primitive cell are reached.
Figure S3 applies early theoretical work by Cortes et al.65 in the
convergence of learning curves, to project that the asymptotic
RMSE convergence for PDS is 70 meV/primitive cell, indicating that
more structure sampling is not expected to reduce the error in Fig.
5a. This convergence is not a property of the group lasso, but the
best achievable performance among “all” models62,65.
In CE, it is generally known and demonstrated through

examples that better predictability can be achieved if more
interactions are considered66. We apply this concept in the
capacity curve in Fig. 5b, carrying out 50 cross-validation trials,
again setting aside 80% of the 428 structures for training and 20%
for testing. We build increasingly complex models by including
more orbits, and always fitting with the Ewald energy. By adding
more orbits in B, we find that both training and testing RMSE
converge to 60 meV/primitive cell and 70meV/primitive cell,
respectively, approaching the limiting performance or asymptotic
performance of the data62.
In fact, this convergence is almost achieved using solely orbits

from pairs and triplets. The lack of continuously decreasing RMSE
indicates that even with information from quadruplets or
quintuplets, the predictability does not improve, suggesting that

in capturing the configurational energetics of Li-Mn-O-F the most
critical information is contained in pairs and triplets. Figure S2
shows the convex hull of the CE which reproduces most of the
ground states predicted by DFT. However, the CE also stabilizes
additional ground state configurations along the MnO-MnO2 tie
line (Figure S2c). The depth of the hull in the CE and DFT phase
diagram are similar (−0.3 eV/atom).
Figure 5 shows conclusively that in training a model for this

high-component system, the out-of-sample average RMSE con-
verges to around 70meV/primitive cell or 35meV/atom, with on
average 176 selected features. This error is higher than errors
reported for CE fits in multicomponent rocksalt systems: less than
8meV/atom in ternary disorder for Li–Mn–Zr–O and
Li–Mn–Ti–O16, 18meV/oxygen in ternary Li–Ni–Vac–O67, and
21meV/atom in ternary-binary disorder for rocksalt
Li+–Vac–Cr3+–O2-–F−18. However, as we will discuss, this error
may be reasonable given the dimensionality of PDS system, as
lower-dimensional fits to subspaces of this dataset provide
comparable RMSE to those in the literature.

DISCUSSION: HIGH PREDICTION ERROR IN HIGH-COMPONENT
IONIC SYSTEMS
We demonstrated that charge constraints on point-orbits limit
their rank and showed that rank deficiency in higher-order orbits
can be handled by applying SGL. However, even with increasing
model complexity as shown in Fig. 5b, we are unable to converge
to lower RMSE than around 35meV/atom for out-of-sample RMSE.
In fact, Fig. 5b shows that including orbits after pairs and triplets
offer little improvement in RMSE.
Here we show data indicating that this higher RMSE may be

reasonable for high-component systems due to their
dimensionality.

Fig. 5 Loss as a function of sample size and model complexity. The green (red) colors indicate the average and standard deviation of the
loss for training (testing) in 50 cross-validation trials, setting aside 80% of the 428 structures for training and 20% for testing. a The learning
curve for SGL with a loss function of root mean squared error (RMSE) per primitive cell as a function of sample size. The chosen
hyperparameters are α= 0.056 and λ= 0.5. b The RMSE as a function of model complexity, starting from including only the first orbit in a pair
cluster and ending with including all geometric clusters up to quintuplets. Each individual model always uses the Ewald energy and all
features in orbits up to the orbit number indicated. The number of significant features selected for each model is in yellow, showing how the
number of ECI increases to over 150 in the last model.
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Table 2 illustrates the RMSE for increasing chemical complexity
in ternary, quaternary, ternary-binary, quaternary-binary, quinary-
binary, binary-quinary-binary, and ternary-quinary–binary systems,
subspaces of our cluster expansion model. We fit each system
using pairs up to 7 Å and triplets up to 5 Å because Fig. 5b
suggests predictability is mostly achieved with these interactions
in the Li–Mn–O–F space. We again perform 50 cross-validation
trials, training SGL on 80% of the number of structures available
and testing on the remaining 20% of structures. The average
number of features, average RMSE, and total number of applicable
structures (of the 428) are shown for each composition space
modeled. Where possible, we juxtapose with reported RMSE in the
literature in parentheses.
Even when using 126 structures, for the ternary

Li+–Mn3+–Mn4+–O system, we achieve a respectable RMSE of
13meV/atom, compared to values of 8 meV/atom for
Li–Mn–Ti–O16 and 18meV/atom for Li–Ni–Vac–O67. Including
another level of complexity, vacancies on the octahedral site,
results in a similar level of error of 13meV/atom. The error
increases to 25 meV/atom for a ternary-binary system, which is
similar to 22meV/atom18 for Li–Cr–O–F and 24meV/atom for
Li–V–O–F68. For quaternary-binary and quinary-binary disorder,
the RMSE are 28 meV/atom and 27meV/atom. Lastly, we observe
the RMSE of 35 meV/atom with the inclusion of binary or ternary
disorder on the third sublattice.

Table 2 shows that adding sublattices in ionic CE always
increases the RMSE, but the level of error in lower-dimensional
systems is still comparable to those reported in literature. This
finding is remarkable as it shows that ternary and ternary-binary
ionic systems do not require multiple hundreds of DFT data and
that pair and triplet interactions are reasonably sufficient starting
CE models, provided that they utilize the approaches described
here.
As this is the first high-component ionic CE that uses three

sublattices with 10 species, the high RMSE may be reasonable in
that the same approach is able to represent lower-dimensional
systems well. The analysis suggests that high-component systems
may be limited to higher RMSE compared to those in lower
component systems. New compressed sensing approaches, such
as one which employs coherency and redundancy to utilize the
compressibility of configurational energy, may be promising
alternative routes to increase predictability69.

CONCLUSIONS
We have described practical and theoretical advances in high-
component ionic CE models. Automated charge assignments and
modified structure mapping procedures enable more complex
data to be included during fitting. We show that electroneutrality
constraints decrease the rank of charge-constrained orbits, and
rank deficiency in orbits can be handled by using sparse group
lasso regularization. This lack of information is not a problem as
long as the energetics of high-energy configurations are
represented in lower order clusters so that they are never
sampled during Monte Carlo simulations. We discuss that the
new approaches predicting higher RMSE in this work still predict
lower RMSE consistent with those in literature dealing with lower-
dimensional systems, and suggest that, considering practical
limitations, the high RMSE may be unavoidable for high-
component ionic CE. In summary, the approaches outlined in this
work provide critical guidance for meticulous understandings of
other high-dimensional ionic systems not just limited to the FCC
anion lattice.

METHODS: FIRST-PRINCIPLES DATA GENERATION
We use Density Functional Theory (DFT) with the semi-local SCAN
meta-generalized gradient density functional approximation for
the exchange-correlation correction. Previous studies found
SCAN70 to be most suitable for ground state structure prediction
in ionic systems71 due to its ability to capture medium-range Van
der Waals interactions72. In addition, internal coordinate relaxa-
tions are closer to experimentally reported values for SCAN than
those observed in PBE and PBE+U73. These reasons make the DFT-
SCAN approximation a rational choice for parametrizing the
effective cluster interactions in an ionic system, despite its higher
computational cost.
For our system 775 DFT-SCAN structures are calculated using

the Vienna Ab Initio Simulation Package (VASP)74,75, using the
projector augmented wave (PAW) method76,77, with reciprocal
space discretization of 25 k-points per Å−1 and a plane wave
energy cutoff of 520 eV. Calculations use the VASP-recommended
pseudopotentials (Li_sv, Mn_pv, O, and F) are converged to 10−6

eV in total energy and 0.01 eV/Å on atomic forces. The initial set of
structures were generated by scraping an internal database for
structures within the Li-Mn-O-F composition space containing
fewer than 50 atoms to limit computational cost, ionic substitution
for Mn4+ onto spinel-like Li-Ti-O structures from another work78,
the Inorganic Crystal Structure Database for defect spinels, and
Monte Carlo CE searches for ionic configurations with low Ewald
energy. The typical iterative approach to refine structures79,80 was
completed using CE-Monte Carlo, concluding the search for new
structures when the cross-validation (CV) score is 65 meV/primitive

Table 2. The performance of various composition models using only
pairs up to 7 Å and triplets up to 5 Å and the Ewald energy.

Composition space
(system, total
configurational space)

Avg. out-of-sample
RMSE in meV/
atom, rocksalt
composition
(RMSE in literature)

Avg.
features

Number of
structures

Oct: Li+-Mn3+-Mn4+

Anion: O
(ternary, 3)

13 (816, 1867) 24 126

Oct: Li+-Vac-Mn3+-Mn4+

Anion: O (quaternary, 4)
13 44 161

Oct: Li+-Mn3+-Mn4+

Anion: O-F
(ternary-binary, 6)

25 (2118, 2468) 42 165

Oct: Li+-Vac-Mn3+-Mn4+

Anion: O-F (quaternary-
binary, 8)

28 71 222

Oct: Li+-Vac-Mn2+-Mn3+-
Mn4+

Anion: O-F
(quinary-binary, 10)

27 106 343

Oct: Li+-Vac-Mn2+-Mn3+-
Mn4+

Anion: O-F
Tet: Li-Vac
(binary-quinary-
binary, 40)

34 136 377

Oct: Li+-Vac-Mn2+-Mn3+-
Mn4+

Anion: O-F
Tet: Li-Vac-Mn2+

(ternary-quinary-
binary, 90)

35 150 428

The out-of-sample root mean squared error (RMSE) and number of features
are averaged over 50 CV trials, setting aside 80% of the number of
structures for training and testing on the remaining 20%. The composition
space, level of disorder, and total configurational space are also indicated
in the first column.
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cell, equivalently 33 meV/atom, assuming a rocksalt composition.
The smallest and largest cell sizes sampled are 1, corresponding to
Li2O, and 64, corresponding to Li32Mn32O64.

Methods: hyperparameter optimization in lasso, sparse group
lasso, and group lasso
Algorithm overview. Deviating from the algorithm described in39

which cyclically iterates through all groups, we iterate through
each member in B only once, from the first member B1 to the last
member.

(1) (Outer loop) For the current group Bi, execute step 2.
(2) Check if the coefficients are identically 0 by seeing if they obey

the sub-gradient equations in ref. 39. If not, apply step 3.

(3) (Inner loop) Solve for the coefficients J Bð Þ
β using Elastic Net

regularization, choosing a random coefficient to be
updated every iteration.

We test the hyperparameter α and degree of mixing λ for the
three approaches (Lasso, Group Lasso, and Sparse Group Lasso),
and show the results in Figure S1. We sample α from 25 evenly
spaced intervals on the log scale from 10−1.5 to 10−0.5 and λ for 0
(pure lasso), 0.25, 0.50, 0.75, and 1.0 (pure group lasso). The root-
mean squared errors, setting aside 80% for the training and 20%
for the testing, and number of features are averaged over 50
cross-validation trials. We find that the sparsest solutions and
lowest error result from even-mixing of lasso and group lasso (λ=
0.5) and α= 0.056.

DATA AVAILABILITY
The feature matrix, energies, groups, and 775 DFT-SCAN data used to train the sparse
group lasso are available at github.com/juliayang/high-component-ce-tools. Within
the public repository, we also make available codes for training Sparse Group Lasso
and for using the BayesianChargeAssigner. Finally, we include jupyter notebook
tutorials for using these codes.

CODE AVAILABILITY
The statistical mechanics on lattices (smol) package is a Ceder group repository and is
available at: https://github.com/CederGroupHub/smol.
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