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Abstract

Background: Animal and human studies suggest certain persistent organic pollutants (POPs) 

may impact glucose metabolism; however, few epidemiologic studies have examined 
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environmental determinants of glycemic outcomes during pregnancy. Our objective is to evaluate 

associations between exposures to individual and mixture of POPs and measures of prenatal 

fasting glucose, insulin, and insulin resistance during pregnancy in overweight women.

Methods: A cohort of overweight and obese pregnant women (N = 95) was recruited from 

California. Blood samples were collected during late first or second trimester (median = 16 weeks’ 

gestation; range = 10–24 weeks). Exposures included serum concentrations of polybrominated 

diphenyl ethers (PBDEs) and hydroxylated metabolites (OH-PBDEs), polychlorinated biphenyls 

(PCBs), and poly- and perfluoroalkyl substances (PFASs). Outcomes included serum 

concentrations of fasting plasma glucose, fasting plasma insulin, and calculated homeostatic 

model assessment of insulin resistance (HOMA-IR). Generalized linear models were used to 

evaluate cross-sectional associations between individual and aggregate POPs and mean percent 

difference in fasting glucose, fasting insulin, and HOMA-IR. Bayesian kernel machine regression 

(BKMR) was used to assess the relative importance of each exposure to the association with our 

outcomes, using conditional and group posterior inclusion probabilities (PIPs).

Results: Study participants were racially/ethnically diverse and nearly half were below the 

federal poverty level. Across PBDEs and OH-PBDEs, the direction of associations with fasting 

glucose, fasting insulin and HOMA-IR were varied. A doubling of PCB-138, PCB-153, PCB-180, 

and ΣPCBs concentrations was associated with a 2.10% mmol/L (95%CI: 0.49%, 3.74%), 2.10% 

mmol/L (95%CI: −0.14%, 4.39%), 2.10% mmol/L (95%CI: 0.12%, 4.12%), and 2.81% mmol/L 

(95%CI: 0.38%, 5.31%) increase in fasting glucose, respectively. Exposure to individual PCBs 

was positively associated with both fasting insulin and HOMA-IR. All PFAS were inversely 

associated with fasting glucose, fasting insulin, and HOMA-IR. In BKMR models of fasting 

glucose, all four chemical classes were important contributors to the overall mixture, with PFASs 

identified as the most important contributor.

Discussion: Prenatal PCB exposure was positively associated while certain PBDE and PFAS 

analytes were inversely associated with fasting glucose concentrations in overweight women. 

Further examination of the relationship between POPs exposure and glycemic functioning in a 

larger study population of women during pregnancy is warranted.

1. Introduction

Impaired glucose homeostasis during pregnancy, including hyperglycemia, pronounced 

insulin resistance, and hyperinsulinemia, can lead to adverse maternal cardiometabolic 

outcomes, pregnancy-related hypertension and gestational diabetes mellitus (GDM). A 

disease characterized by glucose intolerance first recognized at onset during pregnancy, 

GDM has increased over the past few decades in the United States (Lavery et al. 2017). 

Women with GDM are at an increased risk for pregnancy-related complications and type 2 

diabetes mellitus in the years following pregnancy. GDM can also impact infant health, 

including premature birth, macrosomia, stillbirth, hypoglycemia, and jaundice (Xiong et al. 

2001). Established risk factors for GDM include, older maternal age, pre-pregnancy 

overweight or obesity, family history of diabetes, and non-white race or ethnicity (Hunt and 

Schuller 2007).
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Environmental chemical exposures, including persistent organic pollutants (POPs), are also 

implicated as playing a role in glucose dysregulation and GDM during pregnancy (Rahman 

et al. 2019). In experimental studies, POPs have been shown to disrupt the body’s regulation 

of glucose homeostasis by activating certain nuclear (e.g., peroxisome proliferator-activated 

receptors) and hormone (e.g., estrogen) receptors that play critical roles in metabolic 

regulation (Diamanti-Kandarakis et al. 2009). Bioaccumulative and hazardous POPs such as 

per- and polyfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), and 

polybrominated diphenyl ethers (PBDEs) are highly prevalent in pregnant women, despite 

efforts to reduce their use in industrial processes, manufacturing, and consumer products 

over the past few decades (Woodruff et al. 2011, Parry et al. 2018). Our prior work suggests 

exposure to contemporary and phased out POPs in U.S. pregnant women is ongoing (Mehta 

et al 2019). These chemical groups are suspected to disrupt the metabolic system through 

receptor binding, hormone receptor activation, and alterations in hormonal balance (Casals-

Casals and Desvergne 2010).

In human observational studies, the association of POPs during pregnancy with maternal 

glycemic functioning is still unclear. Results are inconsistent for PFASs and GDM (Zhang et 

al. 2015, Shapiro et al. 2016, Smarr et al. 2016, Matilla-Santander et al. 2017, Valvi et al. 

2017, Liu et al. 2019, Rahman et al. 2019, Preston et al. 2020), PBDEs (Eslami et al. 2016, 

Smarr et al. 2016, Liu et al. 2018, Rahman et al. 2019), and PCBs (Jaacks et al. 2016, 

Shapiro et al. 2016, Valvi et al. 2017, Vafeiadi et al. 2017, Zhang et al. 2018, Rahman et al. 

2019); often one, but not all of the chemicals within a chemical class show an association 

with increased risk of GDM. Additionally, few studies have examined the relationship with 

more than one class of POPs or a mixture of POPs (Smarr et al. 2016, Shapiro et al. 2016, 

Rahman et al. 2019). Moreover, few studies have examined the glycemic indicators used to 

screen and diagnose GDM, such as blood glucose and/or insulin, as outcomes (Liu et al. 

2018, Zhang et al. 2018, Liu et al. 2019). Indeed, subtler changes in glucose metabolism 

based on elevations in blood glucose or insulin levels that could result from higher exposure 

to POPs could be indicative of future adverse cardiometabolic outcomes in both women and 

their children. In fact, studies have shown that elevated glucose levels that do not meet the 

clinical threshold for GDM are associated with an increased risk of obesity and insulin 

resistance in the offspring (Lowe et al. 2019; Scholtens et al. 2019).

While prior studies have evaluated associations between exposure to POPs and GDM 

diagnosis, the association of these POPs and more sensitive markers of glucose 

dysregulation have not been evaluated as readily, particularly among high-risk pregnancies, 

such as women who are overweight or obese prior to pregnancy. More than half of U.S. 

women are overweight or obese prior to pregnancy (Deputy et al. 2018), with a two to eight 

times increased risk of GDM compared to women with a normal pre-pregnancy weight (Chu 

et al. 2007). Further, obese pregnant women without diabetes have higher insulin than 

pregnant women of normal weight (Harmon et al. 2011, Barrett et al. 2014).

Accordingly, to address these multiple data gaps, the objective of our study was to 

investigate the relationship between individual and aggregate POPs and indicators of 

glycemic functioning, including glucose, insulin, and insulin resistance, in a group of 

overweight and obese pregnant women. Further, we employed a supervised mixtures 
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method, Bayesian kernel machine regression (BKMR), to examine the impact of chemical 

mixtures on our outcomes.

2. Methods

2.1. Study population

Our study population consists of a subset of pregnant women enrolled in the Maternal 

Adiposity, Metabolism, and Stress (MAMAS) study, a gestational weight gain intervention 

study for overweight and obese pregnant women living in or around San Francisco, 

California. The intervention’s goal was to control weight gain during pregnancy through 

reduced stress techniques (NC01307683 on www.clincicaltrials.gov). Details on the 

recruitment and intervention can be found elsewhere (Coleman-Phox et al. 2013, Vieten et 

al. 2018).

Eligible participants in the MAMAS study were pregnant women between 8–23 weeks’ 

gestation, 18–45 years old, with an annual household income <500% of the 2011 Federal 

poverty level, and a self-reported pre-pregnancy body mass index (BMI) between 25–40 

kg/m2. BMI was confirmed via medical records. Seven eligible participants were 

subsequently identified through medical record confirmation as having a pre-pregnancy BMI 

between 23.0 and 25.0 kg/m2, but were included in the intervention. Women were excluded 

from study participation for a variety of health and behavioral factors, including pre-existing 

diabetes or Metformin use; more detailed exclusion criteria can be found elsewhere (Vieten 

et al. 2018).

This study was approved by the University of California, San Francisco Committee on 

Human Research and the California Pacific Medical Center Institutional Review Board 

(IRB), University of California, Berkeley, and Contra Costa Regional Medical Center and 

Health Centers IRB. Informed consent was obtained from all participants.

Of the 215 participants in the MAMAS study, we only focus on women who participated in 

the intervention arm for which additional biological samples were available for analysis of 

environmental chemicals (N=106). We excluded women who were not pregnant (N=1), did 

not have chemical biomarker data (N=2), and did not have information on outcomes (N=1) 

or covariates of interest (N=7), leaving 95 participants.

2.2. Maternal POPs concentrations

Trained UCSF staff collected a 10 mL fasting maternal blood sample at the baseline visit 

(10–24 weeks’ gestation) in an additive-free red top tube (BD Vacutainer). Blood was 

allowed to clot for 1 h, then placed on ice for a subsequent 1 h. Samples were centrifuged at 

1300g for 10 min at 4°C, 1 mL serum was aliquoted into five vials, and samples were stored 

at −80°C for up to three months.

Analysis of collected serum for individual PBDE congeners, hydroxylated PBDE 

metabolites (OH-PBDEs), PCB congeners, and PFAS analytes were completed at the 

analytical laboratory at the Department of Toxic Substances Control (Berkeley, CA, USA). 

Additional details on analytical laboratory methods, including sample extraction, 
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instrumentation and procedures, validation, and quality control on the study samples can be 

found elsewhere (Zota et al. 2018). Briefly, serum samples were analyzed for 19 PBDEs, 8 

OH-PBDEs, and 15 PCBs. Sample extraction and analytical methods for PBDEs, OH-

PBDEs, and PCBs were performed based on commonly used techniques (Hovander et al. 

2000). An online solid phase extraction liquid chromatography tandem mass spectrometry 

(SPE-LC-MS/MS) method was employed to quantify concentrations of PFAS analytes in 

maternal serum. OH-PBDE, PBDE and PCB congener concentrations were measured using 

gas chromatography/ high-resolution mass spectrometry (GC-HRMS). Serum lipid analysis 

was conducted at Boston Children’s Hospital. Phillips formula (Phillips et al. 1989) was 

used to calculate total serum lipids based on measured total cholesterol and triglycerides. To 

address inter-individual variability of wet-weight chemical concentrations, PBDE and PCB 

concentrations were normalized by total serum lipids (ng/g lipid). OH-PBDE and PFAS 

concentrations were reported as wet-weight concentrations (ng/mL).

The following individual POPs had a detection frequency (DF) ≥ 50% of the methodological 

detection limit (MDL) and were included in our analyses: BDE-47, −99, −100, −153, 5-

OHBDE-47, 6-OHBDE-47, PCB-138, −153, −180, perfluorooctane sulfonate (PFOS), 

perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid 

(PFDeA), and perfluorohexane sulfonate (PFHxS). For these 14 chemicals, we used a 

distribution-based multiple imputation “fill in” method described elsewhere (Zota et al. 

2011, Baccarelli et al. 2005; Helsel et al. 1990). For concentrations below the MDL, we fit a 

log-normal probability distribution whose parameters were calculated using maximum 

likelihood estimation, then subsequently imputed nondetect values. We analyzed congeners 

or analytes by summing within chemical group, leaving ΣPBDEs, ΣOH-PBDEs, ΣPCBs, and 

ΣPFASs. Correlations within and across chemical groups were assessed using Spearman 

correlation.

2.3. Outcome assessment

As part of a comprehensive metabolic panel collected at baseline, a fasting blood draw of 5 

mL was centrifuged in a serum-separating tube for 10 minutes, placed on ice, then five 1 mL 

aliquots were sent to Quest Diagnostics for spectrophotometry. Serum fasting plasma 

glucose (mmol/L) and serum fasting plasma insulin (pmol/L) were collected. Insulin 

resistance was determined using the homeostatic model assessment for insulin resistance 

(HOMA-IR) using the formula by Levy et al. (1998) based on fasting glucose and insulin.

We were unable to use information from GDM screening and/or diagnostic testing 

abstracted via medical records due to substantial missing data. Specifically, blood glucose 

measures from the two-step method typically used to diagnose GDM were incomplete 

(initial clinical screening using a 1-hour nonfasting oral glucose loading test using 50g bolus 

[N=78] and, if warranted, a subsequent diagnostic 3-hour fasting oral glucose tolerance test 

using 100g bolus [N=32]). Furthermore, <10% of the study population (N=7) reported a 

diagnosis of GDM based on medical records; therefore, GDM diagnosis was not included as 

an outcome of interest.
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2.4. Covariates

Sociodemographic and behavioral information were collected via an in-person or phone-

based questionnaire administered at baseline. The questionnaire can be found elsewhere 

(Vieten et al. 2018). Gestational age at enrollment and estimated delivery date were affirmed 

using abstracted medical records, if available. Food security was measured with the ten-item 

adult Food Security Scale in the baseline questionnaire for all participants (Bickel et al. 

2001), then dichotomized into marginal-to-high food security (i.e., food secure households) 

and low-to-very low food security (i.e., food insecure households). All participants had 

information on gestational age and BMI at baseline measurement, though pre-pregnancy 

BMI was missing for four participants. Previously, we reported the strong correlation 

between pre-pregnancy and baseline BMI (Mehta et al. 2019). Among those who had 

complete BMI measures (pre-pregnancy and baseline), we generated a linear regression 

model with pre-pregnancy BMI as the dependent variable and age and BMI at baseline as 

independent variables. We verified that the model closely predicted the pre-pregnancy BMI 

in those with non-missing values and then used the coefficients from the model to provide an 

estimated value of the pre-pregnancy BMI for the four subjects missing pre-pregnancy BMI 

(e.g., applied individual age and baseline BMI to the estimated coefficients).

2.5. Statistical analysis

We calculated geometric means and geometric standard errors for all chemicals and 

outcomes of interest (fasting glucose, fasting insulin, HOMA-IR). All biochemical 

indicators of glycemic homeostasis are presented continuously. Both exposure and outcome 

biomarkers were natural log-transformed to normalize the distribution. The association 

between chemical concentrations and our outcomes of interest were examined using 

multivariable linear regression. To highlight the incremental change in biochemical 

concentrations, results were reported as the percent difference in fasting glucose, fasting 

insulin or HOMA-IR associated with a doubling of serum chemical concentrations, 

calculated as (exp[β × ln(2)] − 1) × 100%, and 95% confidence intervals (95%CI) calculated 

as (exp[ln(2) × (β ± 1.96 × SE)] − 1) × 100% .

Informed by a prior analysis on factors of importance to this population (Mehta et al. 2019), 

we identified sociodemographic and biological variables to control for in multivariable 

models, including race/ethnicity (Non-Hispanic White or other, Non-Hispanic Black, 

Latina), maternal age at enrollment (in years), gestational age at baseline (in weeks), 

household income (≤ or > 100% of the 2011 federal poverty line, accounting for household 

size), pre-pregnancy BMI (kg/m2; continuous), and parity (count).

Additional sensitivity analyses were conducted to include food security (marginal/high or 

low/very low food security households) and educational attainment (≤ high school graduate 

or > high school graduate), as these sociodemographic variables were previously shown to 

be associated with chemical exposures in this population (Mehta et al. 2019).

2.5.1. Multipollutant models—Our previous analysis identified exposure to multiple 

POPs within our study population, with high within-class and low across-class correlation 

(Mehta et al. 2019). To better understand the association of POPs and glycemic outcomes in 
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the context of a complex mixture, we ran multipollutant models. To account for the high 

within-chemical class correlation in our study population (Mehta et al. 2019), our first 

multipollutant model expanded our multivariable linear regression models to include 

additional terms to control for ΣPBDEs, ΣOH-PBDEs, ΣPCBs, and ΣPFASs.

Our second multipollutant model employed BKMR, a supervised mixtures method that 

estimates exposure-response relationships based on the relationship of components in a 

mixture to a particular outcome, while accounting for multicollinearity. BKMR incorporates 

a variable selection approach within the estimation of individual dose-response associations, 

accounting for potential non-linear relationships (Bobb et al. 2015, Bobb et al. 2019). The 

mixture-outcome association is evaluated by using a Gaussian kernel function within a 

Bayesian framework. The variable selection procedure is assessed with posterior inclusion 

probabilities (PIPs), which depict the relative importance of each exposure in the 

association. We used a hierarchical version of BKMR, grouping our 14 highly detected 

POPs into three groupings: PBDEs/OH-PBDEs, PCBs, and PFASs. This estimates the 

relative importance of each chemical group (group PIPs), as well as the conditional 

contribution of each chemical within groups (conditional PIPs). We considered chemical 

groups with a group PIP >0.50 important to the overall exposure-response of the mixture. 

Conditional PIPs examine the ranking of each chemical being selected within the chemical 

group. Next, we estimated individual dose-responses associations for each chemical, as well 

as potential interactions; however, no significant results were observed in this analysis (data 

not shown). We evaluate hierarchical BKMR using 50,000 iterations of a Markov chain 

Monte Carlo algorithm, controlling for race/ethnicity, maternal age, gestational age at 

baseline, household income, pre-pregnancy BMI, and parity, and estimating and presenting 

group and conditional PIPs. All log-transformed chemical concentrations and glycemic 

outcomes were standardized prior to BKMR.

All statistical analyses were completed in SAS version 9.4 (Cary, NC) and R version 3.6.2 

(cran.r-project.org), with BKMR completed using the ‘bkmr’ package.

3. Results

Detection frequencies, geometric means, and correlations of maternal serum POPs 

concentrations are presented in Table 1 and Supplemental Table S1. More than 90% of 

maternal serum samples had detectable concentrations of BDE-47, BDE-153, PFNA, PFOS, 

PFOA, and PFHxS. The study population was racially and ethnically diverse, 45.3% had a 

household income at or below 100% of the Federal poverty level, and 49.5% had an obese 

BMI (Table 2). Participants were mostly enrolled in their 2nd trimester and half were 

nulliparous. The geometric mean of concentrations of fasting glucose was 4.42 ± 0.04 

mmol/L, fasting insulin was 81.19 ± 4.73 pmol/L, and HOMA-IR was 1.65 ± 0.09 units. 

When examining our continuous outcomes by variables of interest, higher fasting glucose 

was associated with increasing maternal age. Women with a BMI >30 kg/m2 had higher 

concentrations of fasting glucose, insulin, and HOMA-IR.
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3.1. Individual and class-specific models

In multivariable models of individual and summed chemical concentrations and fasting 

glucose (Figure 1; Supplemental Table S2), we observed positive associations with PCBs, 

and inverse associations with PFASs and most PBDEs and OH-PBDEs. A doubling of 

BDE-153 and 5-OHBDE-47 were associated with a decrease in fasting glucose. For PFASs, 

PFNA, PFOS, PFOA, and ΣPFASs were all associated with a decrease in fasting glucose. 

Conversely, all PCBs were positively associated with fasting glucose, including PCB-138 

(2.10% mmol/L [95%CI: 0.49%, 3.74%]), PCB-153 (2.10% mmol/L [95%CI: −0.14%, 

4.39%]), PCB-180 (2.10% mmol/L [95%CI: 0.12%, 4.12%]), and ΣPCBs (2.81% mmol/L 

[95%CI: 0.38%, 5.31%]). For fasting insulin and insulin resistance (HOMA-IR) 

(Supplemental Figures S1 and S2; Supplemental Table 2), the direction of association was 

consistent with results from the fasting glucose models; positive for all PCBs, inversely 

associated with PFASs and most PBDEs/OH-PBDEs but ΣPBDEs and 6-OHBDE-47, which 

saw nonsignificant positive associations. The strongest associations for fasting insulin and 

insulin sensitivity (HOMA-IR) were seen for PCB-138; doubling of PCB-138 show a 

borderline significant positive percent difference in fasting insulin (9.43% mmol/L [95%CI: 

−0.96%, 20.91%], p=0.07) and HOMA-IR (10.19% mmol/L [95%CI: 0.10%, 21.30%], 

p=0.05).

Results were generally similar when food security and educational attainment were added as 

additional covariates to our models (Supplemental Table S3).

3.2. Multipollutant models

In our multipollutant linear regression models (Supplemental Table S4), effect estimates 

were similar to single-pollutant models. Applying BKMR model approach to estimate 

fasting glucose, we found that all three chemical groupings were important to the overall 

mixture (Table 3), with the PFAS group being the most important contributor (group PIP = 

0.79). Of the PBDEs/OH-PBDEs, both BDE-153 and 5-OHBDE-47 had the highest 

conditional PIPs (39% and 30%, respectively). All three PCBs had roughly 1/3rd probability 

of inclusion in the model. Among the PFASs, PFNA had the highest conditional PIP (58%), 

followed by PFOS (20%). Our BKMR models of fasting insulin and insulin resistance 

(HOMA-IR) (Supplemental Tables S5 and S6) similarly found the PFAS group to be the 

most important contributor to the overall mixture (group PIP=0.78 and 0.79, respectively), 

with PFNA having the highest conditional PIP among the PFAS analytes (54% and 49%, 

respectively).

4. Discussion

In our small cross-sectional study of exposure to POPs and markers of maternal glucose 

metabolism in a group of overweight and obese pregnant women, we found variability in 

both direction and magnitude of association between individual chemicals and fasting 

glucose, insulin, and insulin resistance. Individual and aggregate PCBs were positively 

associated with fasting glucose and insulin, as well as insulin resistance in maternal serum 

measured in early pregnancy. The positive associations between PCBs and fasting glucose 

were largely unchanged after adjustment for other chemical classes. On the other hand, 
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maternal PFAS concentrations were inversely associated with all three fasting glycemic 

measures. In particular, a doubling of PFNA, PFOS, PFOA and ΣPFASs were inversely 

associated with maternal fasting glucose in single and multipollutant models. PBDEs and 

OH-PBDEs, specifically BDE-153 and 5-OHBDE-47, were also inversely associated with 

fasting glucose in single and multipollutant models.

Heterogeneity in the magnitude and direction of our associations across individual chemicals 

from four chemical exposure groups largely mirrors the lack of consistency in published 

literature. Studies examining the association between PFASs, PBDEs, OH-PBDEs, and/or 

PCBs and biochemical indicators of abnormal glucose metabolism during pregnancy have 

been conducted (Liu et al. 2018, Zhang et al. 2018, Wang et al. 2018, Liu et al. 2019, 

Preston et al. 2020), though most report fasting glucose values of the oral glucose tolerance 

test for GDM diagnosis. We found positive associations between prenatal PCB 

concentrations and glycemic indicators across all analyses. Despite our limited sample size, 

our results may indicate PCB exposure is involved in glucose dysregulation during 

pregnancy. In contrast, a Chinese nested case-control study (Zhang et al. 2018) did not find 

any associations with PCB-138, −153, and −180 and fasting glucose during pregnancy. 

Animal studies have linked PCB exposure to insulin resistance and impaired glucose 

tolerance (Wahlang et al. 2013; Gray et al. 2013). The biological mechanisms by which 

PCBs may impact glucose homeostasis have yet to be determined, though aryl hydrocarbon 

receptor (AhR) activation is suspected to play a role (Casals-Casas and Desvergne 2010). 

Mechanistic studies suggest PCBs act via AhR activation resulting in increased insulin 

resistance and glucose homeostasis (Remillard and Bunce 2002; Baker et al. 2015).

Similarly, our BDE-153 findings are discordant with a nested case-control study that 

reported a 3.10% increase in fasting glucose (95%CI: 0.95%, 5.31%) associated with a 

doubling of BDE-153 (Liu et al. 2018). Preconception BDE-153 and BDE-47 concentrations 

in a US cohort were positively and inversely associated with GDM, respectively (Smarr et al. 

2016). One explanation for the differences seen may be due to the higher proportion of 

overweight and obese women in our study; our study population could be differentially 

impacted by these metabolic disruptors as it relates to our glycemic outcomes. Given the 

inconsistent results across studies, further investigation of PBDEs and both fasting measures 

and gestational diabetes is needed.

In our study, all PFASs were inversely associated with all glycemic outcomes. There are few 

studies to compare our results to because most other studies did not include fasting measures 

of glucose, insulin, and insulin resistance during pregnancy. A U.S.-based pregnancy cohort 

found positive associations with PFOS and nonfasting plasma glucose concentrations from 

the glucose loading test at late second trimester (Preston et al. 2020). Further, Preston et al. 

found suggestive evidence of differences by race/ethnicity. Among populations outside of 

the U.S. using fasting measures, a prospective study (Wang et al. 2018) found significant 

positive associations between PFOA and both fasting insulin and HOMA-IR among 

pregnant women in China. Another study among Chinese pregnant women examining 

fasting glucose found inverse associations with PFOS, long-chained perfluoroalkyl 

sulfonates, and perfluoroalkyl carboxylates, and positive association with PFOA (Liu et al. 

2019). Both PFOS and PFOA have been found to activate the peroxisome proliferator-
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activated receptor alpha (PPARα), a nuclear receptor in animals involved in the regulation of 

lipid and glucose homeostasis (Takacs and Abbott 2007). PCBs and PFASs also have over-

activated liver and intestinal nuclear receptors, including pregnane X receptor (PXR) and 

constitutive androstane receptor (CAR), in in vitro studies (Kamata et al. 2015, Dingermans 

et al. 2016). PXR and CAR over-activation by exogenous compounds have been associated 

with hyperglycemia (Banerjee et al. 2015). Despite these proposed mechanisms identifying 

PFASs as metabolic disruptors, the inverse associations seen with all PFASs were 

unexpected. Given our limited statistical power, an investigation with a more robust sample 

size, particularly among overweight and obese pregnant women, may help elucidate these 

findings. Further, future studies should investigate potential racial/ethnic differences of 

PFASs and metabolic disruption since evidence has suggested differences by race/ethnicity 

(Gaston et al. 2020).

Pregnancy is both a sensitive window of exposure and an increasingly insulin resistant state 

in women. Further perturbation due to environmental chemical exposures may permanently 

alter pancreatic beta cell functioning (Sargis and Simmons 2019), and, therefore, is a 

potentially unique period of susceptibility for metabolic disrupting chemicals. Our use of 

intermediate glycemic biomarkers of cardiometabolic health, including glucose, insulin and 

HOMA-IR, may allow for more sensitive predictors of the impact of POPs; more studies 

should consider inclusion of these outcome biomarkers to confirm their utility.

Our diverse study population consisting of underrepresented minorities and low-income 

pregnant women may bear a disproportionate risk for environmental chemical exposures and 

glycemic dysfunction. An updated review of epidemiological studies of cardiometabolic 

health among vulnerable populations from 2018–2019 found certain POPs, including 

PFASs, were associated with both an increased risk in GDM and abnormal glucose 

regulation (Gaston et al. 2020). Ruiz et al. (2018) hypothesized that higher exposure to 

diabetogenic chemicals, including PCBs, disproportionately impacts African Americans, 

Latinos, and low-income populations, leading to a higher risk of developing diabetes. 

Further research among these specific populations during pregnancy is needed to explain 

these potential disparities.

Our study was limited by its cross-sectional study design; thus, temporality cannot be 

adequately assessed. Furthermore, the possibility of reverse causation cannot be ruled out. 

For example, it is possible that abnormal glycemic functioning and high adiposity in our 

study population may, in turn, increase uptake and accumulation of lipophilic POPs. To 

avoid the potential for reverse causality, future investigations should employ a prospective 

study design. Our relatively small sample size of 95 women may have hindered our ability to 

conduct subsample analyses. We were unable to evaluate data involved in the screening and 

diagnosis of GDM in our study population; rather, we used glycemic measures reflective of 

one’s basal metabolic rate. Still, these measures may be informative to GDM. Studies 

examining early fasting glucose concentrations prior to 24 weeks gestation have found it a 

useful predictor of GDM risk (Smirnakis et al. 2005; Riskin-Mashiah et a. 2009; Harrison et 

al. 2015), and it has been proposed that a fasting glucose of ≥ 5.1 mmol/L before 24 weeks 

be used as the first pass early screening tool for dysglycemia during pregnancy (Cosson et 

al. 2017). Our summary measures by chemical class allowed us to examine the class-specific 
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burden regardless of the contribution of each individual chemical; however, we do note that 

this method may be driven by chemicals with higher absolute concentrations. While BKMR 

allowed us to identify relevant chemicals important to the chemical mixture, our limited 

sample size may have inhibited our ability to evaluate non-linearities and interactions. 

Additionally, the results from this population of overweight women limits generalizability to 

pregnant women with normal prepregnancy weight. Lastly, the timing of maternal exposure 

to POPs are unknown due to single-spot measurements taken in mostly second-trimester 

pregnancy.

There were several strengths to our study. We were able to examine a population that is 

typically under-sampled in environmental epidemiologic studies: pregnant women who were 

overweight and obese, low-income, and women of color. Given that over half of US 

pregnant women are overweight or obese before pregnancy (Deputy et al. 2018), 42% of 

deliveries are Medicaid financed (Martin et al. 2019), and almost half of women who give 

birth are a non-white race or ethnicity, greater efforts should be made to account for these 

understudied populations. Furthermore, we were able to analyze data from a group of 

women who are at a higher risk of glycemic outcomes, given high adiposity. We also 

included concurrent data from multiple chemical classes, including OH-PBDEs which are 

rarely included. Despite our limited sample size, we were able to correct for potential 

multicollinearity and assess for variable selection using an increasingly popular mixtures 

method. Additionally, we were able to assess multiple continuous outcome measures of 

basal glycemic functioning.

In conclusion, we found variability in the direction and magnitude of the association within 

and across four POPs chemical classes and biochemical indicators of dysglycemia during 

pregnancy in a diverse group of overweight and obese pregnant women. Future studies with 

a larger sample size may serve to further confirm our findings.
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Highlights

• Minorities, low income, and overweight/obese pregnant women remain 

poorly studied

• Maternal PCBs were associated with higher glucose, insulin, and insulin 

resistance

• PFASs, most PBDEs/OH-PBDEs were inversely associated with glycemic 

indicators

• Future studies on POPs exposure on maternal cardiometabolic health is 

warranted
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Figure 1. 
Percent difference in maternal fasting plasma glucose associated with a doubling of 

individual and aggregate maternal serum concentrations of PBDEs, OH-PBDEs, PCBs, and 

PFASs, after controlling for covariates (N=95)1.
1Final models adjusted for maternal age at enrollment, race/ethnicity, pre-pregnancy BMI 

(kg/m2), parity, and household income.

Note: Red diamonds = PBDEs; Purple triangles = OH-PBDEs; Green squares = PCBs; Blue 

circles = PFASs.
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Table 1.

Maternal serum concentrations of PBDEs, OH-PBDEs, PCBs, and PFASs at baseline (N=95).

Analyte/Congener % >MDL GM (GSE)

PBDE, ng/g lipid BDE-47 100.0 33.20 (2.88)

BDE-99 89.5 8.42 (0.67)

BDE-100 81.1 5.19 (0.48)

BDE-153 92.6 9.15 (0.85)

ΣPBDEs 59.53 (4.77)

OH-PBDE, ng/mL 5-OHBDE-47 50.0 0.004 (0.001)

6-OHBDE-47 55.8 0.004 (0.001)

ΣOHBDEs --- 0.01 (0.002)

PCB, ng/g lipid PCB-138 59.0 2.36 (0.22)

PCB-153 87.5 4.02 (0.26)

PCB-180 59.0 2.12 (0.18)

ΣPCBs --- 9.08 (0.62)

PFAS, ng/mL PFNA 100.0 0.57 (0.03)

PFDeA 69.5 0.17 (0.01)

PFOS 100.0 2.86 (0.17)

PFOA 97.9 1.19 (0.09)

PFHxS 99.0 0.53 (0.04)

ΣPFASs --- 5.81 (0.27)

Abbreviations: GM = geometric mean; GSE = geometric standard error of the mean; MDL = methodological detection limit.
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Table 3.

Group and conditional posterior inclusion probabilities (PIPs) for maternal serum concentrations of 

PBDEs/OH-PBDEs, PCBs, and PFASs and fasting plasma glucose using BKMR.

POP Group # Group PIP
1

Conditional PIP
2

BDE-47 1 0.67 0.06

BDE-99 1 0.67 0.07

BDE-100 1 0.67 0.09

BDE-153 1 0.67 0.39

5-OHBDE-47 1 0.67 0.30

6-OHBDE-47 1 0.67 0.08

PCB-138 2 0.70 0.32

PCB-153 2 0. 70 0.39

PCB-180 2 0. 70 0.29

PFNA 3 0.79 0.58

PFDeA 3 0.79 0.06

PFOS 3 0.79 0.20

PFOA 3 0.79 0.11

PFHxS 3 0.79 0.05

1
Group posterior inclusion probabilities are the likelihood that a group was included in the model based on 50,000 iterations of the Markov Chain 

Monte Carlo algorithm.

2
Conditional PIPs are the likelihood that a particular chemical was included in the model, conditional on the group being included in the model.

Note: All models adjusted for maternal age at enrollment, gestational age at baseline, race/ethnicity, pre-pregnancy BMI (kg/m2), parity, and 
household income.
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