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Abstract

INTRODUCTION: Relationships between brain atrophy patterns of typical aging and 

Alzheimer’s Disease (AD), white matter disease, cognition, and AD neuropathology were 

investigated via machine-learning in a large harmonized MRI database (11 studies;10,216 

subjects).

METHODS: Three brain signatures were calculated: Brain-Age, AD-like neurodegeneration, and 

white matter hyperintensities (WMH). Brain-charts measured and displayed these signatures’ 

relationships to cognition, and molecular biomarkers of AD.

RESULTS: WMH were associated with advanced brain aging, AD-like atrophy, poorer cognition, 

and AD neuropathology in MCI/AD and cognitively normal (CN) subjects. High WMH volume 

was associated with Brain-Aging and cognitive decline occurring in a ~ten year-period in CN. 

WMH were associated with doubling β-amyloid positivity likelihood after age 65. Brain aging, 

AD-like atrophy, and WMH were better predictors of cognition than chronological age in 

MCI/AD.

DISCUSSION: A brain-chart quantifying brain aging trajectories was established, enabling the 

systematic evaluation of individuals’ brain aging patterns relative to this large consortium.

1 Introduction

Aging is a complex and multi-factorial process, heterogeneously affecting brain 

structures1–3, due to multiple potential age-associated pathological processes superimposed 

upon changes related to the ‘normal’ brain aging that occur in the absence of concurrent 

pathology. While a variety of neurodegenerative conditions associated with deposition of 

abnormal protein deposits in the brain, such as Alzheimer’s disease (AD), increase in 

prevalence with age and cause neuronal injury and loss, aging itself appears to be linked to 
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synaptic and neuropil loss in the absence of a proteinopathy4. Brain aging in the absence of 

known co-pathology appears to be associated with gray matter loss using MRI and can be 

quantified via pattern analytic methods as a measure of “brain age”, which is somewhat 

separable from but overlapping with patterns of atrophy associated with neurodegenerative 

conditions5–10. Evidence from several studies shows that multiple risk factors may 

accelerate the brain aging process5,11, functionally manifested by an acceleration in 

cognitive decline. Brain aging and neurodegenerative atrophy have been linked to cognitive 

impairment affecting memory and executive function, however, each may differentially 

affect various cognitive domains. For example, typical brain aging and small vessel ischemic 

disease have been linked to deterioration of executive function12 and working memory13. 

AD, which is associated with abnormal deposition of tau in neurofibrillary tangles (NFTs) 

and β-amyloid in neuritic plaques, usually results in an amnestic-predominant, multi-domain 

syndrome.

Recent advances in machine learning and neuroimaging have enabled the development of 

imaging markers that provide a summary measure of deviation of an individual’s brain 

structure or function from typical brain aging trajectories. Deviations from such models 

reflect biological processes that may reflect disease or resilience to age-associated 

conditions. Patterns of brain change across multiple dimensions, such as brain aging, white 

matter disease burden and neurodegenerative signatures, capture heterogeneity across 

individuals, leading to a multi-dimensional conceptualization of aging related disorders 

where every individual shows unique patterns of brain alterations.

Structural magnetic resonance imaging (MRI) captures patterns of neurodegeneration and 

small vessel ischemic disease. Although there is now considerable information on brain 

aging using morphometric MRI methods5–10,14,15, the complexity and heterogeneity of 

factors affecting brain aging necessitate much larger and diverse cohorts. Critically, clinical 

adoption of imaging biomarkers requires stability and generalization across populations and 

scanner characteristics. Larger, diverse cohorts can be assembled by pooling together and 

harmonizing data from multiple studies to enable detection of complex associations between 

brain structure, neuropathology, and cognition using advanced quantitative metrics, although 

harmonization must be carefully performed to minimize removal of clinically relevant 

information. The current study overcomes previous limitations by pooling and harmonizing 

data from 11 cohorts with 10,216 brain MRIs to develop a unique resource defining brain 

normative curves of brain aging throughout the AD continuum, termed the Brain Chart.

The Brain Chart is developed using advanced image-analysis, machine-learning-based 

imaging indices, and the large harmonized sample. Importantly, it provides the potential for 

personalized quantification of white matter disease and patterns of brain atrophy in brain 

aging and AD, allowing investigation of the clinical utility of these biomarkers. We modeled 

structural MRI brain changes using the following summary signatures: i) the SPARE-BA 

index (MRI brain age), which measures “typical” age-related brain atrophy patterns derived 

from cognitively normal adults across the lifespan 5,6, ii) the SPARE-AD index5,16, a 

relatively specific imaging signature of AD-like brain atrophy, which has also been found to 

predict progression from normal cognition to MCI16; and iii) total white matter 

hyperintensity (WMH) volume, a measure of white matter disease1.
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These measurements provide individualized metrics of three types of age-related brain 

changes and can be used to determine the relationships between these changes as well as to 

chronological age and cognition. We hypothesized that these Brain Chart indices derived 

using machine learning and harmonized data from a large, diverse consortium of studies 

pooled. Together will demonstrate associations with cognitive performance. In addition, we 

hypothesized that cerebrovascular disease captured by WMH volume would be associated 

with worsened SPARE-BA and worsened cognitive testing. Further, given prior work linking 

cerebrovascular disease with AD, we hypothesized both WMH volume and SPARE-AD 

index would predict the presence of cerebral amyloid deposition. We anticipated these 

results would be present in both cognitively normal adults and those with cognitive 

impairment.

2 Materials and Methods

2.1 Participants in iSTAGING

We included 10,216 participants encompassing a wide age range (22–90 years) from the 

Imaging-based coordinate SysTem for AGing and NeurodeGenerative diseases (iSTAGING) 

consortium, with cognitively healthy individuals (n=8,284) and patients with mild cognitive 

impairment (MCI) and Alzheimer’s disease (AD) (n=1,932) to build the Brain Chart. The 

iSTAGING consortium included data from the following cohorts: The Alzheimer’s Disease 

Neuroimaging Initiative (ADNI 1 and ADNI 2), The University of Pennsylvania Aging 

Brain Cohort (Penn-ABC), The University of Pennsylvania Memory Center cohort (Penn-

PMC), The Study of Health in Pomerania (SHIP), The UK Biobank (UKBIOBANK), The 

Baltimore Longitudinal Study of Aging (BLSA), The Australian Imaging, Biomarker, and 

Lifestyle (AIBL) Study, The Coronary Artery Risk Development in Young Adults 

(CARDIA) Study, The Adult Children Study at Washington University (ACS), The 

Biomarkers of Cognitive Decline Among Normal Individuals in the Johns Hopkins 

University (BIOCARD) and The Wisconsin Registry for Alzheimer’s Prevention (WRAP). 

Fig. 1 shows a flowchart for the included subjects. The supervisory committee of each 

cohort approved its inclusion in this study, and this study was approved by the institutional 

review board of the University of Pennsylvania.

2.1.1 Clinical assessment and cognitive tests in iSTAGING—iSTAGING cohorts 

included a diverse and heterogeneous set of clinical data. Our main objective in this analysis 

was to collect a common subset of brain aging-related risk factors5 and neuropsychological 

tests, while also maximizing the possible sample sizes from different cohorts. With this 

objective in mind, we included cognitive testing and focused on tests of executive function 

and memory. Selection of cognitive testing varied widely across the different cohorts. We 

selected the Trail Making Test (TMT) considering the difference between the sub-scores 

(TMT-B – TMT-A) as a measure of executive function (n= 4,757). We selected the 

California Verbal Learning Test long-delay free recall (CVLT-long) as the most sensitive 

measure for memory function (n= 1128) across cohorts in the cognitively normal group; 

CVLT was not widely available across the AD/MCI groups so mini-mental status 

examination (MMSE) was used as a measure of cognitive impairment in these participants 
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(n= 1,918). Details of the neuropsychological tests for the individual participating cohorts 

are given in Supplement S.1 and Supplementary Tables 3 and 4.

2.1.2 β-amyloid and tau status—In contrast to other clinical variables, measurements 

of Aβ and tau protein, the pathologic hallmarks of AD, were only available for a relatively 

small set of participants (Supplementary Tables 3 and 4). We considered Aβ status as a 

binary variable (negative or positive), as derived from CSF or PET (n=1,382). Additionally, 

we considered phosphorylated tau assessed from CSF, as a tau measure that is more specific 

to AD (n=1,215). We used previously established thresholds for amyloid and tau positivity; 

more detail on molecular markers of AD pathology in iSTAGING can be found in 

Supplementary Table 1 and Section S.2.

2.2 Imaging protocols and image pre-processing

We chose a sample that varied across MRI acquisition protocols from 11 cohorts in 

iSTAGING so that results would be more generalizable across populations. Imaging 

parameters for each of the individual studies of iSTAGING are described in Supplementary 

Table 2. We used a standardized and fully automated processing pipeline to derive final 

imaging variables from this highly heterogeneous data set. Preprocessing included bias 

correction17 and multi-atlas skull stripping on the T1-weighted images18. A robust multi-

atlas label fusion-based method was applied for segmentation of the brain into a set of 

anatomic regions of interest (ROIs)19. ROI volumes were quantified for all iSTAGING 

participants with T1 images (n=10,216). WMH segmentation was performed using a deep 

learning-based method that operated on raw FLAIR and T1-weighted images20 (n=8,596). 

The details of the processing algorithms are given in the Supplementary S.3.

2.3 Harmonization of ROI volumes

Removal of cohort-related effects, such as protocol-specific variability, is critical for pooling 

such diverse data together for analysis. Imaging measures were harmonized using 

regression-based methods that removed cohort effects for each measure21. For each ROI 

Volume, a Location/Scale adjustment is made for each cohort21,22. The location adjustment 

corrects for mean shifts across sites, and the scale adjustment corrects for differences in 

variance across sites. Our harmonization method models ROI Volumes as a nonlinear 

function of age and sex, using cubic splines; adjusting only Location/Scale effects and 

thereby preserving age and sex differences across sites. We perform the harmonization 

exclusively using cognitively healthy subjects from each dataset, and then apply the same 

correction towards the entire dataset. This procedure is based on the method described in 

detail by Pomponio et al 21 (Supplementary Section S3).

2.4 Dimensions of the Brain Chart coordinate system

We projected complex imaging data into a lower-dimensional coordinate system that reflects 

important different aspects of brain structural changes related to aging and disease using 

three summary indices. These indices have been previously validated and reflect patterns of 

brain changes measuring predicted brain age (SPARE-BA)5,6, AD-like atrophy patterns 

captured by SPARE-AD23,5, and white matter disease as measured by WMH volume. The 

SPARE indices were derived from the harmonized ROI using machine learning methods. 
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While we calculated the SPARE-BA index for the entire sample, we calculated SPARE-AD 

using the amyloid positive AD participants and age-matched amyloid negative cognitively 

normal participants, resulting in using participants aged >55 years. Higher SPARE-BA 

values indicate greater age-related atrophy compared to normative trends of age-related 

changes in brain structure. Higher SPARE-AD scores indicate more AD-related atrophy, 

while lower and negative scores indicate more normal appearance. Total WMH volume was 

calculated from deep learning-based segmented images20. More detail on these indices is 

provided in the Supplementary Section S.3.

2.5 Brain Chart in Aging

We investigated associations between Brain Chart imaging dimensions and multiple other 

variables. Since we can only display at most three dimensions at a time, we demonstrate 

associations of interest via projection charts. Each of these charts represents in the x-axis the 

chronological age of the subject and in the y-axis one of the iSTAGING dimensions. The 

associations with a third target variable, e.g., cognitive test results, are shown using 

colormaps, with red/blue indicating higher/lower values. To further assist in the 

interpretation of these maps, we display isocontours, which are curves of constant value for 

the third variable overlaid over the colormaps. As an example, consider an isocontour of a 

memory score in a SPARE-BA vs. age plot. This isocontour indicates (age vs. SPARE-BA) 

measurements from all individuals having the same level of memory performance. Vertical 

isocontours in such a map would indicate that SPARE-BA has no effect on memory for a 

given age. Conversely, horizontal isocontours would indicate that SPARE-BA, and not age, 

is more predictive of memory performance. More on the implementation of the brain aging 

charts can be found in the supplementary section S4. The brain aging charts code can be 

downloaded 24 and the models used in this work can be also accessed as a reference in an 

online stand-alone application, in which independent dimensions of interest could also be 

plotted 25.

2.6 Statistical analysis

We studied patterns of advanced brain aging and AD-like atrophy independently in two age 

categories: middle age (40–65 years old) and old age (>65 years old). In each age category, 

we modeled the relationship between age as the independent variable and SPARE-AD as the 

dependent variable in a quantile regression approach, to identify high SPARE-AD (75th 

percentile) and low SPARE-AD (25th percentile) individuals. We identified “advanced brain 

aging” versus “resilient to brain aging” subjects as those with SPARE-BA scores 5 years 

higher than their actual age and those with SPARE-BA scores 5 years lower than their actual 

age, respectively. We applied Student’s t-test on brain ROIs between groups and only results 

that survived Bonferroni correction were considered significant. We computed age-specific 

regional patterns of WMH load by averaging WMH maps aligned to a common atlas space 

in 5 different age categories from 5th decade to 9th decade.

In order to estimate isocontours in the Brain-Charts, we fit a Generalized Additive Model26 

with the age and one of the iSTAGING dimensions used as the predictors, and the single 

selected outcome variable, e.g. a specific cognitive test score or marker of AD pathology, as 

the response. All models included a term for the parent study. Models that included 
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cognitive testing as an outcome variable were also corrected for education. We performed a 

likelihood ratio test for model comparison between a model with age as the single predictor 

and a model with age and an additional predictor. All resulting p-values were corrected 

using the Benjamini-Hochberg approach controlling 5% false-discovery rate (FDR) and 

those <0.05 were reported as significant. We calculated the 95% confidence bands of each 

isocontour to ensure robustness in the level of the isocontour using a bootstrapping approach 

and plotted only significant isocontours, for which the confidence bands do not overlap 

(Supplementary S.4). Due to skewness in the raw data, TMT score, the difference between 

TMT-B and TMT-A, and WMH were cube-root transformed to achieve normal distribution. 

Statistical analyses were performed using R software v3.3.

3 Results

3.1 Subjects

We included 10,216 participants (age 22–90 years) from iSTAGING. Cognitively normal 

(CN) individuals (n=8,284) had a mean (SD) age of 60.5 (13.1) years; 54.5% were female. 

Among the patients with MCI or AD (n=1,932), the mean (SD) age was 74.3 (7.7) years; 

47.2% were female. A detailed description of the CN cohorts is presented in Supplementary 

Table 3. The description of MCI and AD cohorts is given in Supplementary Table 4.

3.2 SPARE-BA, SPARE-AD and white matter disease dimensions in CN

Fig. 2.A shows the SPARE-BA scores calculated for the iSTAGING CN sample. 

Neuroanatomical pattern of advanced (SPARE-BA 5+ years older) vs. resilient (SPARE-BA 

5+ years younger) brain aging suggests that advanced brain aging (overall a >10-year 

SPARE-BA difference) was associated with lower gray matter volumes that were 

widespread but most pronounced in the frontal operculum, superior temporal, insular, frontal 

and inferior parietal cortex, in addition to enlargement of the ventricles (Fig. 2.B, 

Supplementary Fig.1 and Tables 5–6). While the spatial pattern was similar, those with older 

chronologic age (65–90 years) had smaller effect sizes than middle age (40–65 years) groups 

(Fig. 2.B, Supplementary Fig.1 and Supplementary Tables 5–6).

SPARE-AD scores of CN subjects in iSTAGING are shown in Fig. 2.C. SPARE-AD values 

displayed predominantly negative values, and a consistently increasing trend with age. 

Importantly, at middle age, high SPARE-AD subjects showed a more notable deviation from 

the norm compared to older ages. AD-like atrophy showed a more specific regional pattern 

compared to SPARE-BA (Fig. 2.D). Lower gray matter volumes associated with higher 

SPARE-AD were most pronounced in the hippocampus, amygdala, entorhinal cortex and 

inferior temporal cortex. Effect sizes were smaller in the older age (>65 years) than in the 

middle age (40–65 years) group (Fig. 2.D, Supplementary Fig.1 and Supplementary Tables 

7–8).

In CN individuals, WMH started to appear after the 5th decade of life with a highly non-

linear trend of increase in WMH volume with age (Fig. 2.E). WMH showed a regional 

pattern of burden that becomes apparent in periventricular areas around the 6th decade of age 
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and that increases with older age, both in terms of the spatial extent and the frequency of 

occurrence across subjects (Fig. 2.F).

3.3 Brain Charts of BA, AD-like atrophy and WMH in CN subjects

Associations between the iSTAGING imaging dimensions and other variables were 

evaluated using the Brain Chart projections. Advanced brain aging was associated with 

lower executive function (Fig. 3.A) but not with memory function (Supplementary Fig. 2). 

AD-like atrophy was associated with both executive and memory functions (Fig. 3.B–C) 

after age 65 years.

Higher WMH burden was associated with advanced SPARE-BA (Fig. 4.A). This association 

was modulated by age: among middle-aged individuals, higher WMH volume had a stronger 

association with advanced brain aging (i.e., older SPARE-BA than actual age) as compared 

to individuals at older ages (>80 years). WMH were also associated with SPARE-AD after 

age 65 (Fig. 4.B), an association which persisted after adjustment for SPARE-BA in the 

sensitivity analysis (Supplementary Fig. 3). Increasing WMH was associated with decline in 

both executive function in participants over age 40 (Fig. 4.C) and memory in participants 

over age 50 (Fig. 4.D). Higher total WMH volume after age 55 was associated with a higher 

probability of being positive for cerebral β-amyloid (Fig. 4.E) but not for tau 

(Supplementary Fig. 4).

3.4 Brain Charts in MCI and AD patients

Contrary to the findings observed in CN where chronological age had stronger effects, 

executive function and memory were primarily associated with SPARE-BA and SPARE-AD, 

depicted by the relatively horizontal isocontours in Fig. 5.A–D. In other words, Brain age 

(SPARE-BA) is a better predictor of cognitive decline in executive function and memory 

compared to chronological age. Notably, these associations were stronger in MCI/AD 

compared to CN (as measured by the higher range and steeper isocontours). WMH regional 

distribution was more extensive; burden was higher in the MCI/AD population compared to 

the CN population (Fig. 6.A, compare to Fig 2.F). Figures 5.E–F and Fig. 6.B–C show the 

associations between WMH, advanced brain aging, AD-like atrophy, and executive function 

and memory in the MCI and AD stages. Importantly, Fig. 6.B indicates that the association 

of WMH with advanced aging is more pronounced at relatively younger ages. The effect of 

WMH on executive function is also more pronounced at younger ages (relatively horizontal 

isocontours in Fig. 5.E), whereas at older ages, both WMH and age were equal contributors 

to diminished executive function. Finally, similar to CN individuals, WMH showed a 

significant relationship with the presence of amyloid pathology in MCI and AD (Fig. 6.D). 

At the middle ages, WMH volume but not chronological age was associated with increased 

prevalence of amyloid positivity, but at older ages (>80 years-old) the association between 

WMH volume and amyloid positivity was almost not present.

4 Discussion

We established a dimensional and quantitative summarization of brain MRI scans, the Brain 

Chart of Aging, from a large, harmonized, multi-site consortium, using machine learning 
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methods. We found important associations between imaging signatures of the Brain Chart, 

cognition and AD neuropathology. The large sample along with the harmonization 

methodology helped us construct robust neuroimaging markers of aging and early AD from 

heterogeneous data, which better reflect diversity across people, clinical centers, and MRI 

protocols. The three main axes of the Brain Chart were a brain aging index, an AD-like 

atrophy index, and a measure of white matter disease captured with WMH. Higher brain age 

was associated with reduced executive function, and higher SPARE-AD and WMH were 

both associated with lower executive and memory function in the cognitively normal 

population. Our results also demonstrate that WMH are associated with advanced brain 

aging, AD-like atrophy patterns, cognitive decline, and presence of cerebral β-amyloid 

deposition. These associations also persisted in MCI and AD patients, further suggesting a 

potential role of WMH in disease progression.

This study is among the first to develop neuroimaging signatures across multiple cohorts 

using machine learning methods, and produced imaging signatures that could provide 

individualized prognostic information. A recent review showed intensive research in the use 

of machine learning and neuroimaging for building signatures for neuropsychiatric diseases 

with more than 450 models published to date27. However, few of these signatures have had 

rigorous cross-validation in independent samples. In this work, we provide further validation 

of the utility of SPARE-AD27 and of SPARE-BA.

4.1 Advanced brain aging and cognitive decline

In a prior study, we showed considerable overlap between advanced brain aging patterns of 

atrophy and those related to AD5, but the effect of advanced brain aging on cognitive decline 

was not apparent due to limited cognitive testing. In the current cross-sectional study, we 

demonstrated that advanced brain aging patterns in CN were associated with lower executive 

function but not worse memory performance. In contrast, higher SPARE-AD, characterized 

by a pattern showing greater atrophy in temporal lobe regions, was associated with both 

executive function and memory. These results support prevailing hypotheses that different 

regional atrophy patterns are associated with different cognitive impairment profiles, and 

importantly show that the Brain Chart machine learning indices are sensitive for different 

cognitive outcomes. Furthermore, AD is heterogeneous in its phenotype and pattern of 

neurodegeneration with, for example, relative dysexecutive versus amnesic 

presentations28,29. Advanced brain aging may contribute to dysexecutive patterns of 

cognitive impairment in some patients.

The observation that brain age, as well as other Brain Chart dimensions, show stronger 

associations with cognitive scores than chronologic age fits with the concept that certain, 

apparently age-associated, phenomena may better be characterized as related to changes that 

occur preceding a transition to dementia or at the end of life, termed terminal decline 30. 

Prospectively, these transition events are unknown and such data is not available for this 

cohort, but the accumulation of adverse changes in brain age, SPARE-AD, or WMH volume, 

conceptually quantify progression towards these events.
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4.2 WMH and the association with SPARE-AD and SPARE-BA

WMH are established biomarker of small vessel ischemic injury in the brain, strongly 

associated with vascular risk factors, specifically hypertension, and related to vascular 

contributions to cognitive impairment and dementia (VCID). Several mechanisms have been 

proposed to explain the association between WMH and gray matter atrophy, such as 

ischemic damage31 or Wallerian degeneration32. Vascular risk factors have been linked to 

development of AD neuropathology and advanced brain aging33,34. However, it is unclear 

whether the effects of VCID and AD are merely additive or whether they are synergistic. 

The association of WMH to AD-like atrophy observed in this study has been previously 

observed, albeit often in single cohorts1,6. In this study, the association between WMH and 

SPARE-BA was relatively more pronounced at younger than in older ages, both in CN 

individuals and in MCI and AD. A couple factors likely underlie this finding. First, younger 

and overall healthier brains are relatively more homogeneous in brain structure in the CN 

group, so presence of WMH-related atrophy can be detected even if relatively mild. Second, 

vascular disease, while present in a minority, is one of the few processes active at younger 

ages; the widespread prevalence of WMH and heterogeneous presence of other 

neuropathologic processes later in life diminishes the relative influence of WMH on brain 

aging. This finding underlines the importance of modifying vascular risk factors at middle-

age 11.

4.3 WMH and the association with AD pathology

Our observation of associations between WMH and increased levels of AD pathology 

markers at any given age add to recent body of literature 35,36 and has important 

implications. Possibilities for the link between WMH and AD pathology include i) Wallerian 

degeneration secondary to neurodegenerative changes, ii) ischemic injury to axons, 

manifested as white matter changes, which may lead to tangle formation and neuronal 

degeneration32, iii) demyelination, which could be present in AD and lead to the appearance 

of WMH37. However, WMH were associated with approximately double the likelihood of β-

amyloid positivity throughout all ages in the CN cohort. While this result is intriguing and 

suggests the possibility that prevention of small vessel ischemic disease might delay AD 

pathology and brain aging, the current study is unable to elucidate whether this relationship 

is causal or results from another latent neuropathologic process that leads to both WMH and 

β-amyloid deposition and might be a primary treatment target in AD. This observation may 

help enrich clinical trials for β-amyloid positive individuals, as MRI is commonly obtained 

in AD clinical trials.

4.4 WMH and the association with cognitive function

Our data demonstrate that the association between WMH and cognitive decline can start as 

early as in the age of 40, more than two decades before the age at which the prevalence of 

AD dementia reaches 1%. This finding, especially in conjunction with the relationship 

between WMH and AD pathology markers, further demonstrates the potential role of WMH 

as an early contributor to AD. Previous work showed that WMH were associated with 

declining executive function38 and that vascular risk factors were associated with smaller 

prefrontal volumes39. The anterior temporal lobe has dense connectivity with several 
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sensory modalities, e.g., white matter tracts have been observed between the anterior 

temporal lobe and the frontal lobe via the uncinate fasciculate40, which might explain the 

association with cognitive decline in memory and executive functions.

The emphasis in this paper was on cross-sectional relationships between imaging signatures 

and other variables, including cognition. However, one of the main goals of this work is to 

develop prognostic markers, based on the Brain Chart’s coordinates, i.e. expression of these 

imaging signatures. Application of this Brain Chart to longitudinal studies, including the 

ones already part of iSTAGING 2,41–43 will allow us to construct personalized predictions of 

an individual’s brain aging trajectory, based on her/his Brain Chart coordinates. In this study 

we have established different associations of the Brain Chart coordinates, suggesting that 

they may be useful to predict future cognitive decline on an individual basis.

This study has several strengths including the large sample size, diverse harmonized 

populations with rich phenotyping and the use of machine learning signatures as well as 

automated pipelines and advanced statistics to build highly quantitative brain charts enabling 

prediction at an individual level. However, this study also has limitations. i) We did not 

include serial MRI to study longitudinal effects, which requires additional effort in 

harmonization. ii) Our analysis did not include other measures of small vessel disease such 

as infarcts and periventricular spaces assessment, and those should be considered in future 

research. iii) MCI diagnosis was not necessarily due to Alzheimer’s disease, and we did not 

exclude subjects who developed mild cognitive impairment without ever progressing to 

Alzheimer’s disease. For this study, we included all subjects with cognitive decline, whether 

the disease progressed beyond MCI or not. We acknowledge that this grouping of MCI 

participants, while common, can decrease power to detect early AD-related changes. iv) The 

heterogeneity in sampling strategies and exclusion criteria of each study might still pose 

difficulties in generalizing our study findings without clearly defining a reference 

population. Hence our results are generalizable with respect to our pooled samples, which as 

far as we know, is one of the largest MRI databases available. v) Furthermore, while our 

consortium is large, some important biomarkers such as β-amyloid or tau positivity status 

were less available across cohorts, decreasing our statistical power for these markers. vi) 

While the three Brain Chart coordinates used in this study provide insight into understanding 

some of the most common brain age-related processes, they do not specifically account for 

other pathologies in the brain such as Limbic-predominant age-related TDP-43 

encephalopathy (LATE) pathology, which were likely present in varying, low frequencies in 

this large sample. Contributions of other pathologies could be added with incorporation of 

appropriate data sets in the future. vii) Further, SPARE-BA and WMH volumes in 

particularly are not intrinsically disease-specific, but rather capture contributions from a 

number of potential co-pathologies. This can increase the applicability of these indices, but 

greater disease specificity could be obtained as additional data allows for further tailoring of 

these measurements and development of additional Brain Chart dimensions.

5 Conclusion

A Brain Chart derived from a large, harmonized, multi-site sample is established as a means 

to understand relationships between brain aging, cognition, and AD neuropathology. 
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Machine-learning-based methods are used to derive three comprehensive, yet 

complementary, imaging signatures of typical brain aging, AD neurodegeneration, and white 

matter disease, reflecting the effects of underlying neuropathologic processes on brain 

structure. By plotting these dimensions, which have previously demonstrated prognostic 

value 5,6,8,12,16,35,36, onto a standardized coordinate system, one can derive a systematic and 

quantitative way to assess an individual’s brain health. Our results utilizing this Brain Chart 

revealed many relationships. In particular, one of the most conclusive findings of our study 

was the importance of white matter disease, which was associated with worse cognitive 

function, advanced brain aging, increased expression of AD-patterns of atrophy and β-

amyloid positivity. Our results do not necessarily imply causality in the aforementioned 

relationships, but rather demonstrate a very strong statistical association, which suggests that 

preventive strategies against white matter disease might delay cognitive aging. Recent 

evidence from interventional studies supports this hypothesis 44.
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Figure 1. 
Flow chart showing the inclusion and exclusion criteria and final sample included in this 

study
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Figure 2. 
iSTAGING dimensions in cognitively normal subjects. A) SPARE-BA scores were 

calculated for n=8,284 subjects from 11 studies from the iSTAGING consortium using a 

supervised learning method. The model was applied with cross-validation using harmonized 

regional anatomical volumes of the subjects as input features. “Advanced” versus “resilient” 

aging groups were identified as individuals who deviated from normative aging trends. B) 

Subjects in “advanced” and “resilient” groups displayed widespread differences in atrophy 

patterns most pronounced in the frontal operculum, superior temporal, and insular cortex 

and further extending to frontal and inferior parietal cortex, as well as enlargement of the 

ventricles. C) SPARE-AD scores were calculated for n=5,460 subjects from 11 studies from 

the iSTAGING consortium using a supervised learning method. The model was trained 

using harmonized regional anatomical volumes as input features on ADNI CN and AD 

subjects and applied to all other studies; it was applied to ADNI subjects using cross-

validation; D) Subjects with “high” and “low” SPARE-AD scores differed by atrophy 

patterns most pronounced in the hippocampus, amygdala, entorhinal cortex and inferior 

temporal cortex. E) White matter disease dimension, represented by white matter 

hyperintensities (WMH) as a function of age. WMH volume was calculated for n= 7,357 
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subjects from 10 studies using a deep learning method. F) Frequency maps of WMH in the 

iSTAGING consortium, showing WMH progression during the life span (in the 40s n=1,110, 

50s n=1,918, 60s n=2,093, 70s n=1,330 and 80s n=321)
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Figure 3. 
A) Brain charts show associations between chronological age, SPARE-BA, and executive 

function. The relative diagonal isocontours indicate a similar contribution of age and 

SPARE-BA to the executive function (FDR corrected P-Value <0.05). Put differently, 

executive function at a given age cannot be estimated without SPARE-BA, and vice-versa. 

B-C) Brain charts that show associations between chronological age, SPARE-AD, and 

cognitive testing. The isocontours of the executive function indicate a stronger association 

with age compared to SPARE-AD, but the effect of SPARE-AD was significant (FDR 

corrected P-Value <0.05) and increasing after the age of 65 years old. The isocontours of the 
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memory function showed a stronger association with SPARE-AD compared with age after 

the age of 70 years old, further underlying the role of AD-like atrophy on memory.
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Figure 4. 
A-B) Brain charts that show associations between chronological age, WMH volume, and 

brain atrophy captured with SPARE-BA and SPARE-AD. The isocontours of SPARE-BA 

and SPARE-AD indicate strong associations with WMH (FDR corrected P-Value <0.05 for 

both charts). C-D) Brain charts that show associations between chronological age, WMH 

volume, and cognitive testing. The isocontours of the executive function indicate strong 

associations with both age and WMH starting from the forties; the effect of WMH was 

significant (FDR corrected P-Value <0.05). The isocontours of the memory function showed 
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strong associations with age and WMH from the end of the forties; the effect of WMH was 

significant (FDR corrected P-Value <0.05). E) Brain charts that show associations between 

chronological age, WMH, and AD pathology. The isocontours of the Aβ status showed 

strong associations with age and WMH from the sixties; the effect of WMH was significant 

(FDR corrected P-Value <0.05).
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Figure 5. 
Brain charts in patients with MCI and AD: Associations with cognitive testing scores. A-B) 

Brain charts that show associations between chronological age, predicted brain age (SPARE-

BA), and cognitive testing. The isocontours of the executive function indicate a stronger 

association with SPARE-BA than with age (FDR corrected P-Value <0.05). Similarly, the 

isocontours of the memory function showed a stronger association with SPARE-BA 

compared with age; the effect of SPARE-BA was significant on memory (FDR corrected P-

Value <0.05). C-D) Brain charts that show associations between chronological age, SPARE-
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AD, and cognitive testing. The isocontours of the executive and memory functions indicate 

association with SPARE-AD only (horizontal isocontours); the effect of SPARE-AD was 

significant (FDR corrected P-Value <0.05). E-F) Brain charts that show associations 

between chronological age, WMH, and cognitive testing. The isocontours of the executive 

function indicate that the effect of WMH volume on executive function was relatively more 

pronounced at younger ages (relatively horizontal isocontours), whereas at older ages, both 

WMH and age are equal contributors to diminished executive function; the effect of WMH 

on executive function was significant (FDR corrected P-Value <0.05). The isocontours of the 

memory function showed stronger associations with WMH than age (FDR corrected P-Value 

<0.05)
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Figure 6. 
Brain charts in patients with MCI and AD: the WMH dimension. A) Frequency maps of 

WMH in the MCI and AD patients, showing WMH progression over age (in the 50s n=47, 

60s n=326, 70s n=569, and 80s n=289). B-C) Brain charts that show associations between 

chronological age, WMH volume, and brain atrophy captured with SPARE-BA and SPARE-

AD. The isocontours of SPARE-BA and SPARE-AD indicate strong associations with 

WMH (FDR corrected P-Value <0.05 for both charts). D) Brain chart that shows 

associations between chronological age, WMH, and AD pathology. The isocontours of the 
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Aβ status showed stronger associations with WMH than age (FDR corrected P-Value 

<0.05).
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