
UC Davis
UC Davis Previously Published Works

Title
Complete genome sequence of Halogeometricum borinquense type strain (PR3T)

Permalink
https://escholarship.org/uc/item/7jn4c33z

Journal
Environmental Microbiome, 1(2)

ISSN
2524-6372

Authors
Malfatti, Stephanie
Tindall, Brian J
Schneider, Susanne
et al.

Publication Date
2009-09-01

DOI
10.4056/sigs.23264
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7jn4c33z
https://escholarship.org/uc/item/7jn4c33z#author
https://escholarship.org
http://www.cdlib.org/


Standards in Genomic Sciences (2009) 1: 150-158 DOI:10.4056/23264 

 
The Genomic standards Consortium

 

Complete genome sequence of Halogeometricum  
borinquense type strain (PR3T) 

Stephanie Malfatti1,2, Brian J. Tindall3, Susanne Schneider3, Regine Fähnrich3, Alla Lapidus1, 
Kurt LaButtii1, Alex Copeland1, Tijana Glavina Del Rio1, Matt Nolan1, Feng Chen1, Susan Lu-
cas1, Hope Tice1, Jan-Fang Cheng1, David Bruce1,4, Lynne Goodwin1,4, Sam Pitluck1, Iain An-
derson1, Amrita Pati1, Natalia Ivanova1, Konstantinos Mavromatis1, Amy Chen5, Krishna Pa-
laniappan5, Patrik D’haeseleer1,2, Markus Göker3, Jim Bristow1, Jonathan A. Eisen1,6, Victor 
Markowitz5, Philip Hugenholtz1, Nikos C. Kyrpides1, Hans-Peter Klenk3, and Patrick 
Chain1,2* 

1 DOE Joint Genome Institute, Walnut Creek, California, USA 
2 Lawrence Livermore National Laboratory, Livermore, California, USA 
3 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, 
Germany 

4 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 
5 Biological Data Management and Technology Center, Lawrence Berkeley National Labora-
tory, Berkeley, California, USA 

6 University of California Davis Genome Center, Davis, California, USA 

*Corresponding author: Patrick Chain 

Keywords: halophile, free-living, non-pathogenic, aerobic, pleomorphic cells, euryarchaeon 

Halogeometricum borinquense Montalvo-Rodríguez et al. 1998 is the type species of the ge-
nus, and is of phylogenetic interest because of its distinct location between the halobacterial 
genera Haloquadratum and Halosarcina. H. borinquense requires extremely high salt (NaCl) 
concentrations for growth. It can not only grow aerobically but also anaerobically using ni-
trate as electron acceptor. The strain described in this report is a free-living, motile, pleomor-
phic, euryarchaeon, which was originally isolated from the solar salterns of Cabo Rojo, Puer-
to Rico. Here we describe the features of this organism, together with the complete genome 
sequence, and annotation. This is the first complete genome sequence of the halobacterial 
genus Halogeometricum, and this 3,944,467 bp long six replicon genome with its 3937 pro-
tein-coding and 57 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea 
project.

Introduction
Strain PR3T (= DSM 11551 = ATCC 700274 = JCM 
10706) is the type strain of Halogeometricum bo-
rinquense, representing the sole species of the 
genus Halogeometricum [1]. Strain PR3T was first 
described by Montalvo-Rodríguez et al. in 1998 [1] 
as Gram-stain negative and motile. The organism 
is of interest because of its position in the tree of 
life, where it is located between members of the 
Haloferax/Halorubrum cluster within the large 
euryarchaeal family Halobacteraceae(Figure 1). 
Here we present a summary classification and a 
set of features for H. geometricum PR3T together 
with the description of the complete genomic se-
quencing and annotation. 

Classification and features 
In addition to the solar salterns of Cabo Rojo, 
Puerto Rico, where the type strain PR3T and two 
accompanying strains (PR7 and PR9) were initial-
ly isolated [1], the occurrence of strains or phylo-
types closely related or belonging to H. borin-
quense have so far only been reported from high 
salt environments such as an Australian crystalliz-
er pond [6], Maras Salterns in the Peruvian Andes 
[7], a salt field at Nie, Ishikawa Prefecture, Japan 
[8], the salterns of Tamilnadu, India (Kannan et al. 
unpublished), Exportadora del Sal, Guerro Negro, 
Mexico (FJ609942), a Taiwanese saltern soil 
(FJ348412), and a low-salt, sulfide- and sulfur-rich 
spring in southwestern Oklahoma, USA [9]. 
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H. geometricum PR3T cells are highly pleomorphic 
(short and long rods, squares, triangles and ovals) 
and motile by peritrichous flagella (Table 1 and 
Figure 2). Cells lyse in distilled water. Gas vesicles 
are present and are responsible for modifying the 
color of colonies or cell suspensions from red to 
pink. H. geometricum PR3T is aerobic, but also ca-
pable of anaerobic growth with nitrate. No anae-
robic growth on arginine (arginine dihydrolase is 
not present). At least 8% NaCl (w/v) is required 
for growth, reflecting the primary characteristic 
requirement for high salt concentrations of the 
Halobacteriaceae [18]. The optimal NaCl concen-
tration range is 20-25% NaCl (w/v) at 40°C (op-
timal growth temperature). Nitrate is reduced to 
nitrite with the production of gas [1]. Spores or 
other resting stages have not been reported [1]. 
H. geometricum PR3T is capable of degrading gela-
tin, but starch is not hydrolysed. A number of su-
gars and polyols are used as carbon sources, and 
acid is produced from some sugars [1]. 
Figure 1 shows the phylogenetic neighborhood of H. 
borinquense strain PR3T in a 16S rRNA based tree. 
Analysis of the two 16S rRNA gene sequences in 
the genome of strain PR3T indicated that the two 
genes differ by five nucleotides (nts) from each 
other, and by 3-5 nts from the previously pub-
lished 16S rRNA sequence generated from DSM 
11551 (AF002984). The slight differences be-
tween the genome data and the reported 16S 

rRNA gene sequence are most likely the result of 
sequencing errors in the previously reported se-
quence data. 

Chemotaxonomy 
The quinone composition of H. borinquense strain 
PR3T has not been recorded, but based on reports 
from other members of the family Halobacteria-
ceae menaquinones with eight isoprenoid units 
are likely to be present. Typically both MK-8 and 
MK-8 (VIII-H2) are predicted. The lipids are based 
on isoprenoid diether lipids, but the exact nature 
of the isoprenoid side chains remains to be inves-
tigated. The major phospholipids are the diether, 
isoprenoid analogs of phosphatidylglycerol and 
methyl-phosphatidylglycerophosphate (typical of 
all members of the family Halobacteriaceae), the 
diether analog of phosphatidyl-glycerol sulfate is 
absent [1]. A single glycolipid has been reported 
with an Rf value similar to that of the triglycosyl 
diether from Haloarcula marismortui, but its struc-
ture has not been determined [1]. The pigments 
responsible for the red color of the cells have not 
been determined, but it may be predicted that 
they are carotenoids, probably bacterioruberins. 
Outer cell layers are probably proteinaceous. The 
presence of peptidoglycan has not been investi-
gated, but is generally absent from members of 
this family Halobacteriaceae. 

 
Figure 1. Phylogenetic tree of H. borinquense PR3T with a selection of type strains of the family Ha-
lobacteriaceae, inferred from 1,433 aligned 16S rRNA characters [2] under the maximum likelih-
ood criterion [3,4]. The tree was rooted with Natronomonas pharaonsis, the deepest branching 
member of the family Halobacteriaceae. The branches are scaled in terms of the expected number 
of substitutions per site. Numbers above branches are support values from 1,000 bootstrap repli-
cates. Strains with a genome sequencing project registered in GOLD [5] are printed in blue; pub-
lished genomes in bold. 
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Figure 2. Scanning electron micrograph of H. borinquense PR3T (Manfred 
Rohde, Helmholtz Centre for Infection Research, Braunschweig)

Table 1. Classification and general features of H. borinquense PR3T according to the MIGS recommendations [10] 

MIGS ID Property Term 
Evidence 

code 

 Current classification 

Domain Archaea TAS [11] 
Phylum Euryarchaeota TAS [12] 
Class Halobacteria TAS [13] 
Order Halobacteriales TAS [14] 
Family Halobacteriaceae TAS [15] 
Genus Halogeometricum TAS [1] 
Species Halogeometricum borquinense TAS [1] 
Type strain PR3 TAS [1] 

 Gram stain negative TAS [1] 
 Cell shape highly pleomorphic TAS [1] 
 Motility motile TAS [1] 
 Sporulation non-sporulating NAS 
 Temperature range mesophile, between 22°C and 50°C TAS [1] 
 Optimum temperature 40°C TAS [1] 
 Salinity halophile, at least 8% (w/v) NaCl TAS [1] 
MIGS-22 Oxygen requirement primarily aerobic; facultatively anaerobic 

growth via nitrate reduction 
TAS [1] 

 Carbon source glucose, mannose, fructose, xylose, maltose, 
trehalose, cellobiose, raffinose, glycerol 

TAS [1] 

 Energy source carbohydrates TAS [1] 
MIGS-6 Habitat aquatic TAS [1] 
MIGS-15 Biotic relationship free living NAS 
MIGS-14 Pathogenicity none NAS 
 Biosafety level 1 TAS [16] 
 Isolation solar salterns of Cabo Rojo, Puerto Rico TAS [1] 
MIGS-4 Geographic location Cabo Rojo, Puerto Rico TAS [1] 
MIGS-5 Sample collection time 1994 TAS [1] 
MIGS-4.1 
MIGS-4.2 

Latitude / Longitude 18,088  /  -67,147 TAS [1] 

MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude sea level NAS 

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a 
direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, 
isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence 
codes are from the Gene Ontology project [17]. If the evidence code is IDA then the property was directly observed 
for a living isolate by one of the authors or an expert mentioned in the acknowledgements. 



 Malfatti, et al. 

http://standardsingenomics.org 153 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of each phylogenetic position, and is part of 
the Genomic Encyclopedia of Bacteria and Archaea 
project. The genome project is deposited in the 

Genome OnLine Database [5]. The complete ge-
nome sequence has not yet been released from 
GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome Insti-
tute (JGI). A summary of the project information is 
shown in Table 2. 

 

Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Two genomic libraries: 8kb pMCL200 
and fosmid pcc1Fos Sanger libraries. 
One 454 pyrosequence standard library. 

MIGS-29 Sequencing platforms ABI3730, 454 GS FLX 
MIGS-31.2 Sequencing coverage 9.7× Sanger; 21.8× pyrosequencing 
MIGS-30 Assemblers Newbler, PGA 

MIGS-32 Gene calling method 
GeneMark 4.6b, tRNAScan-SE-1.23, infer-
nal 0.81 

 INSDC / Genbank ID CP001688 
 Genbank Date of Release September 10, 2009 
 GOLD ID Gc01108 
 NCBI project ID 20743 
 Database: IMG-GEBA 2501416934 
MIGS-13 Source material identifier DSM 11551 
 Project relevance Tree of Life, GEBA 

 
Growth conditions and DNA isolation 
H. borinquense PR3T, DSM 11551, was grown in 
DSMZ medium 372 (Halobacteria Medium) at 
35°C [19]. DNA was isolated from 1-1.5 g of cell 
paste using a Qiagen Genomic 500 DNA Kit (Qia-
gen, Hilden, Germany) with a modified protocol 
for cell lysis, LALMP procedure according to Wu et 
al. [20].. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Sanger and 454 sequencing platforms. All gen-
eral aspects of library construction and sequenc-
ing performed at the JGI can be found at 
http://www.jgi.doe.gov/. 454 Pyrosequencing 
reads were assembled using the Newbler assemb-
ler version v 2.0.0 (Roche). Large Newbler contigs 
were broken into 4,435 overlapping fragments of 
1,000 bp and entered into assembly as pseudo-
reads. The sequences were assigned quality scores 
based on Newbler consensus q-scores with mod-
ifications to account for overlap redundancy and 
adjust inflated q-scores. A hybrid 454/Sanger as-

sembly was made using the PGA assembler. Possi-
ble mis-assemblies were corrected and gaps be-
tween contigs were closed by custom primer 
walks from sub-clones or PCR products. A total of 
2,826 Sanger finishing reads were produced. The 
error rate of the completed genome sequence is 
less than 1 in 100,000. Together all sequence 
types provided 31.5× coverage of the genome. 

Genome annotation 
Genes were identified using GeneMark [21] as part 
of the genome annotation pipeline in the Inte-
grated Microbial Genomes Expert Review (IMG-ER) 
system [22], followed by a round of manual cura-
tion using the JGI GenePRIMP pipeline [23]. The 
predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, UniProt, 
TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro 
databases. The tRNAScanSE tool [24] was used to 
find tRNA genes, whereas ribosomal RNAs were 
found by using the tool RNAmmer [25]. Other non 
coding RNAs were identified by searching the ge-
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nome for the Rfam profiles using INFERNAL 
(v0.81) [26]. Additional gene prediction analysis 
and manual functional annotation was performed 
within the Integrated Microbial Genomes (IMG) 
platform [27]. 

Metabolic network analysis 
The metabolic Pathway/Genome Database (PGDB) 
was computationally generated using Pathway 
Tools software version 12.5 [28] and MetaCyc ver-
sion 12.5 [29], based on annotated EC numbers 
and a customized enzyme name mapping file. It 
has undergone no subsequent manual curation 
and may contain errors, similar to a Tier 3 BioCyc 
PGDB [30]. 

Genome properties 
The genome is 3,944,467 bp long and comprises 
one main circular chromosome with a 60% GC 
content and five plasmids. Of the 3,994 genes pre-
dicted, 3,937 were protein coding genes, and 57 
RNAs. Thirty seven pseudogenes  were also identi-
fied. A total of 62% of the genes were assigned a 
putative function while the remaining ones are 
annotated as hypothetical proteins. The properties 
and the statistics of the genome are summarized 
in Table 3. The distribution of genes into COGs 
functional categories is presented in Figure 3 and 
Table 4. A cellular overview diagram is presented 
in Figure 4, followed by a summary of metabolic 
network statistics shown in Table 5. 

 
Figure 3. Graphical circular map of the genome. From outside to the center: Genes on forward 
strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes 
(tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 
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Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 3,944,467 100.00% 

DNA Coding region (bp) 3,441,571 87.25% 
DNA G+C content (bp) 2,364,339 59.94% 
Number of replicons 1  
Extrachromosomal elements 5  
Total genes 3994 100.00% 
RNA genes 57 1.90% 
rRNA operons 2  
Protein-coding genes 3937 98.57% 
Pseudogenes 37 0.93% 
Genes with function prediction 2486 62.24% 
Genes in paralog clusters 741 18.55% 
Genes assigned to COGs 2449 61.32% 
Genes assigned Pfam domains 2385 59.71% 
Genes with signal peptides 533 13.35% 
Genes with transmembrane helices 971 24.31% 
CRISPR repeats 1  

 

Table 4. Number of genes associated with the general COG functional categories 

Code Value % age Description 
J 162 4.1 Translation, ribosomal structure and biogenesis 
A 1 0.0 RNA processing and modification 
K 140 3.6 Transcription 
L 138 3.5 Replication, recombination and repair 
B 3 0.0 Chromatin structure and dynamics 
D 0 0.1 Cell cycle control, mitosis and meiosis 
Y 0 0.0 Nuclear structure 
V 46 1.2 Defense mechanisms 
T 113 2.8 Signal transduction mechanisms 
M 87 2.2 Cell wall/membrane biogenesis 
N 38 0.1 Cell motility 
Z 0 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 27 0.7 Intracellular trafficking and secretion 
O 123 3.1 Posttranslational modification, protein turnover, chaperones 
C 174 4.4 Energy production and conversion 
G 124 3.1 Carbohydrate transport and metabolism 
E 271 6.9 Amino acid transport and metabolism 
F 77 1.9 Nucleotide transport and metabolism 
H 140 3.5 Coenzyme transport and metabolism 
I 98 2.5 Lipid transport and metabolism 
P 178 4.5 Inorganic ion transport and metabolism 
Q 60 1.5 Secondary metabolites biosynthesis, transport and catabolism 
R 433 11.0 General function prediction only 
S 227 5.8 Function unknown 
- 1488 37.8 Not in COGs 
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Figure 4. Schematic cellular overview diagram of all pathways of H. borinquense strain PR3T. 
Nodes represent metabolites, with shape indicating class of metabolite. Lines represent reactions. 

Table 5. Metabolic Network Statistics 
Attribute Value 
Total genes 3801 
Enzymes 578 
Enzymatic reactions 687 
Metabolic pathways 125 
Metabolites 578 
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