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Auxotrophies constrain the interactions of bacteria with their
environment, but are often difficult to identify. Here, we develop
an algorithm (AuxoFind) using genome-scale metabolic recon-
struction to predict auxotrophies and apply it to a series
of available genome sequences of over 1,300 Gram-negative
strains. We identify 54 auxotrophs, along with the corre-
sponding metabolic and genetic basis, using a pangenome
approach, and highlight auxotrophies conferring a fitness advan-
tage in vivo. We show that the metabolic basis of auxotro-
phy is species-dependent and varies with 1) pathway structure,
2) enzyme promiscuity, and 3) network redundancy. Various levels
of complexity constitute the genetic basis, including 1) delete-
rious single-nucleotide polymorphisms (SNPs), in-frame indels,
and deletions; 2) single/multigene deletion; and 3) movement of
mobile genetic elements (including prophages) combined with
genomic rearrangements. Fourteen out of 19 predictions agree
with experimental evidence, with the remaining cases high-
lighting shortcomings of sequencing, assembly, annotation, and
reconstruction that prevent predictions of auxotrophies. We thus
develop a framework to identify the metabolic and genetic basis
for auxotrophies in Gram-negatives.

systems biology | mathematical modeling | auxotrophy | pangenome |
comparative genomics

Host–pathogen interactions and pathogen–microbiota inter-
actions are dictated by the availability of nutrients as well

as the metabolic capability of each participant to transform
the nutrients into metabolic energy and biomass components.
Many bacterial strains (both commensal and pathogenic) lose
the capability to synthesize essential biomass precursors and
become dependent on extracellular resources for survival despite
having prototrophic ancestors. Some auxotrophies arise as a
result of the strain’s adaptation to a specific host or environ-
ment through the formation of small-scale deleterious mutations
leading to gene loss (1). For example, a methionine require-
ment is common among Pseudomonas aeruginosa strains isolated
from cystic fibrosis patients (2–4), a requirement likely satisfied
by the high concentration of amino acids in the patient’s spu-
tum (5). Nutrient obligate pathogens are often host-associated
(6), have a reduced genome (7), and retain a fitness advan-
tage over the free-living bacteria in their specific niche (8).
Additionally, auxotrophs dictate the carbon and energy flow as
well as the stability of endosymbiotic communities (9). Aux-
otrophies have been exploited 1) as markers for strain detec-
tion and identification (10–12), 2) for the elucidation of their
lifestyle and microenvironment (13–17), 3) for the design of
microbial ecosystems (18, 19), 4) for the design of attenuated
live vaccines (20, 21), and 5) for molecular therapy and tumor
targeting (22–24).

The identification of an auxotroph’s nutrient requirements
experimentally is difficult, occurs on a strain-by-strain basis, and
is rarely accompanied with an identified causative genetic or
genomic lesion. Comparative genomic analyses suggest that dele-
terious disruption of biomass precursor biosynthetic pathways

exist in most free-living microorganisms, indicating that they rely
on cross-feeding (25). However, it has been demonstrated that
amino acid auxotrophies are predicted incorrectly as a result
of the insufficient number of known gene paralogs (26). Addi-
tionally, these methods rely on the identification of pathway
completeness, with a 50% cutoff used to determine auxotrophy
(25). A mechanistic approach is expected to be more appropriate
and can be achieved using genome-scale models of metabolism
(GEMs). For example, requirements can arise by means of a sin-
gle deleterious mutation in a conditionally essential gene (CEG),
or as a result of a combination of deletions, in which case they
would escape detection via comparative genomics. Given the
high interconnectedness of metabolic networks, finding such sets
manually is not a trivial task but can be efficiently approached
computationally using GEMs.

GEMs are assembled based on genome annotation and cura-
tion of published literature (27, 28). They contain the most up-to-
date metabolic networks linking reactions with genes according
to experimentally validated mechanisms (28–30). Once they are
converted into a mathematical format (27, 31), flux balance anal-
ysis (32) can be used to identify essential genes and auxotrophies
that result from gaps in the network (15, 31, 33, 34). However,
a workflow for this purpose has yet to be formalized into a
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mathematical problem and developed into a fully fledged algo-
rithm that can be reused across the community. Here, we develop
a custom algorithm (AuxoFind) using comparative genomics
coupled with metabolic modeling to computationally predict
auxotrophies and pinpoint the corresponding genetic basis.

Results
AuxoFind Predicts Auxotrophy from Genomic Sequences Using GEMs.
As a first step toward determining strain-specific auxotrophy, we
collected available curated GEMs for Gram-negative bacteria
from the Biochemically, Genetically and Genomically struc-
tured genome-scale metabolic network reconstructions (BiGG)
database (15, 31, 35–37). We proceeded to download and qual-
ity check genomic sequences from the PATRIC database (38),
including 408 Escherichia, 491 Salmonella, 91 Yersinia, 142 Pseu-
domonas (39), 267 Klebsiella, and 36 Shigella sequences (Fig. 1,
Dataset S1, and SI Appendix, SI Materials and Methods). For
each of the six GEMs, one for each genus, we predicted CEGs
for aerobic growth on minimal medium. CEGs differ from abso-
lutely essential genes in that their absence can be compensated
for by the addition of an extracellular nutrient. In other words,
if a strain is missing a CEG, it is auxotrophic for one or more
nutrients. In contrast, a strain cannot survive without any one
of its essential genes, regardless of the nutritional background.
We then homology mapped all of the modeled genes to other
strains within the same genus to identify the strains which are
lacking one or more CEG, and developed a custom algorithm
(AuxoFind) which predicts nutrient requirements from a list
of present and absent metabolic genes using flux balance anal-
ysis (SI Appendix, SI Materials and Methods) (32). AuxoFind
exploits the mechanistic link between enzymatic functions and
prototrophy encoded in GEMs, taking into account metabolic
and genetic redundancy, and using the genomic background of
each strain as input. Applying AuxoFind allows the user the
flexibility to choose a growth medium and a biomass objective
function to take into full account the strain’s metabolic environ-
ment. This, in turn, allows for the analysis of auxotrophies as a
result of changing nutrient sources, or biomass requirements.
In addition, instead of returning a single solution, AuxoFind
can be set to output multiple alternative solutions as well as
suboptimal solutions. Applying AuxoFind to the strains col-
lected from PATRIC, we predicted a total of 58 strains to be
auxotrophic for at least one nutrient, 4 of which (Salmonella
enterica serovar Bovismorbificans str. 3114, serovar Enteritidis

str. EC20090884, serovar Ouakam, and serovar Paratyphi A
strain A73-2) were subsequently selected out [see Experimen-
tal Validation of Auxotrophies Highlight Technological Short-
comings at Multiple Levels for filtering criteria through Basic
nucleotide Local Alignment Search Tool (BLASTn)]. The final
results included 11 Salmonella strains, 18 Yersinia strains, 15
Escherichia strains, 5 Pseudomans putida, and 5 Klebsiella strains.
The predicted auxotrophies in these 54 strains are analyzed in
detail below.

The Majority of Predicted Nutrient Requirements Were Specific.
We classified the predicted nutrient auxotrophies into two cat-
egories: specific and nonspecific. Specific auxotrophies occur
when the strain requires a specific nutrient to be added to
minimal medium in order to grow, while a strain with a non-
specific auxotrophy can grow when any of a selection of nutri-
ents is added to minimal medium. The requirement for amino
acids was found to be predominantly specific (Fig. 2A), while
requirements for nucleotides were nonspecific (Fig. 2B). The
specificity of amino acid auxotrophy is due to the structure of
the metabolic pathways, and the irreversibility of intermediate
steps. In contrast, nucleotide biosynthesis can be achieved via
multiple routes (including purine and pyrimidine biosynthesis),
as well as nucleotide salvage and interconversion. In the lat-
ter subsystem, there are multiple redundant pathways, few of
which are irreversible, resulting from the promiscuity of par-
ticipating enzymes. Interestingly, multiple auxotrophies which
were predicted across isolates involved nutrients known to be
important in host–pathogen interactions, suggesting that these
auxotrophies may give selective advantage during host–pathogen
interactions. For example, specific auxotrophies for branched
chain amino acids (BCAAs: L-isoleucine, L-leucine, and L-valine)
were shared across 11 strains, 5 of which were isolated from
human samples. Intracellular levels of BCAAs play a critical
role in host–pathogen interactions, affecting both pathogenic-
ity and immune activation (40, 41). Similarly, L-tryptophan (n =
2) constitutes a resource over which the host and the pathogen
compete (42), niacin (n = 5) affects the pathogen’s virulence
and its detection by the immune system (43), and tetrathionate
(n = 1) is a gut inflammation by-product which is known to pro-
vide a respiratory electron acceptor in Salmonella (44). In total,
72% (107 out of 149) of predicted auxotrophies were specific,
with some strains having multiple specific and/or nonspecific
predicted requirements (Dataset S2). Notably, we observed a
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Fig. 1. Workflow chart: Genomes were downloaded from PATRIC (38) and quality controlled based on completeness, number of annotated coding DNA
sequences, and percentage of unassigned nucleotide sequences. Manually curated GEMs were queried from BiGG (35), and used to identify CEGs in minimal
medium. Each GEM was used across strains of the same genus, except for iML1515, which was used for both Escherichia and Shigella strains, iJN1411, which
was only used for P. putida, and iPAU1129, which was only used for P. aeruginosa. Next, we identified the list of missing metabolic genes in each strain
through comparative genomics using genomic sequences as an input. We used AuxoFind to predict auxotrophies and their genetic basis using, as input, the
identified list of missing genes. Finally, when a missing gene was linked to a predicted auxotrophy, we verified its absence algorithmically using BLASTn.

Seif et al. PNAS | March 17, 2020 | vol. 117 | no. 11 | 6265

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910499117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910499117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910499117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910499117/-/DCSupplemental


A B

Fig. 2. In silico predictions of metabolic nutrient requirements across multiple Gram-negative species. (A) Nutrients for which a specific auxotrophy was
predicted in at least one strain. (B) Top 15 metabolites for which a nonspecific auxotrophy was predicted (see Dataset S2 for the full results). Nutrient
requirements were predicted for a total of 54 strains across Escherichia coli, Salmonella, Klebsiella, and Yersinia, with amino acids auxotrophies appearing
with the highest frequency.

specific L-lysine requirement due to the absence of argD across
11 Yersinia pestis strains, a specific biotin requirement (due to
the absence of either bioAB, fabH, or fabI) across 5 Escherichia
coli strains, multiple amino acid auxotrophies in Yersinia ruck-
eri strains, and an L-leucine requirement in 3 E. coli K-12
strains. To determine which strains were closely related, we
constructed phylogenetic trees from the nucleotide polymor-
phism (single-nucleotide polymorphism [SNP]) count from the
concatenation of all core genes using rapid core genome multi-
alignment (ParSNP) (45). While the Y. pestis L-lysine auxo-
trophs were not clustered together in a single subclade, the L-
leucine E. coli auxotrophs, Y. ruckeri amino acid auxotrophs,
and E. coli K-12 strains were (SI Appendix, Figs. S1 and S2).
Otherwise, predicted auxotrophs were generally spread across
the phylogenetic tree, with many subclades containing only one
auxotrophic strain.

Amino Acid and Vitamin Auxotrophies Confer a Fitness Advantage
In Vivo. We next sought to identify the effect of metabolic
requirements on the fitness of auxotrophic strains in their native
environment. We evaluated published fitness profiles for E. coli
strains UTI89 and EC958 and S. enterica subsp. enterica ser.
Typhimurium str. SL1344 mutants across various in vivo and
in vitro environments (including cattle, pig and chicken intes-
tine, mouse spleen, human serum, and bladder cell infection
model) (46–51). Briefly, fitness profiles are derived through
transposon-directed insertion-site sequencing (TRADIS), and
a fitness measure is calculated by comparing the number of
reads across mutants between the inocula and output samples.
We posit that a strain with a disrupted CEG (as defined in
AuxoFind Predicts Auxotrophy from Genomic Sequences Using
GEMs) has an increased fitness, that is, when the gene’s func-
tion is dispensable. In this case, it is evident that the mutant’s
auxotrophy is at least partially compensated for by a favorable
nutritional background. Conversely, loss of function (and there-

fore nutrient dependence) resulting in reduced fitness indicates
an unfavorable environment and/or insufficient access to impor-
tant metabolites. Nutrient dependence was predicted in both
aerobic and anaerobic conditions for each transposon mutant
by AuxoFind, by knocking out the disrupted gene in silico and
simulating for auxotrophy (Datasets S3 and S4). TRADIS yields
a fitness measure (log2 fold change) for each mutant, which
we filtered for adjusted P value smaller than 0.05. A total of
960 measured log2 fold changes passed these thresholds. We
considered log2 fold changes in fitness smaller than −1 to be
detrimental and those larger than 1 to be beneficial. Only 25
CEGs yielded increased fitness upon disruption in at least one
condition, while 70 were detrimental (in ≥1 conditions) (Fig. 3).
At the gene level, 5 out of 15 in E. coli and 6 out of 12 in S.
enterica of the CEGs whose disruption increased fitness were lost
in one or more natural isolates (highlighted in bold in Fig. 3;
Datasets S3 and S4).

Of note, the disruption of two out of five and five out of six
CEGs in S. enterica and E. coli, respectively, yielded increased
fitness in one condition but decreased fitness in another, sug-
gesting that the conferred fitness advantage is niche-specific.
For example, argH and frdD disruption in S. enterica were ben-
eficial in chicken intestine but detrimental in cattle intestine.
Additionally, fitness change upon CEG disruption varied across
phases of infection. For example, the disruption of bioH in
E. coli was advantageous in the intracellular bacterial commu-
nities (IBC) phase but detrimental in later phases (dispersal
and postdispersal phase). In contrast, leuA disruption yielded
decreased fitness in the dispersal phase but increased fitness
in the reversal and postreversal phases. Some beneficial nutri-
ent requirements carried over from one stage of infection to
the next. For example, L-arginine and L-cysteine auxotrophic
mutants exhibited elevated fitness in three consecutive phases
including IBC, dispersal, and postdispersal phases. In addi-
tion, a thiamin requirement was beneficial in four out of the
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biotin (bioH*) biotin (bioA)
4-aminobenzoyl-

glutamate (pabA*)
4-aminobenzoyl-
glutamate (pabB)

Pyridoxine 
(pdxA)

L-arginine (argA or argG*)
L-cysteine (cysI or cysN)

Bladder cell infection model
E. coli strain UTI89

Cattle intestine Pig intestine

Farm animal infection model
S. enterica strain SL1344

Post-reversal

L-isoleucine and L-valine (ilvC)
L-lysine (lysA)

L-leucine (leuA*)

thiamin (thiG or thiF*)

BALB/c liver

niacin (nadC)

L- Histidine (hisG)
L-histidine (hisBF)

niacin (nadA) 
L-leucine (leuB)

L-cysteine (cysC)
L-tryptophan (trpA)
L-arginine (argBH*)

tetrathionate (frdD*, O2-)

Fig. 3. Computationally predicted CEGs that were found to result in
increased fitness (more than one log2 fold change, P value < 0.05)
in mutant screens. For each condition in which the mutant fitness was
tested, we list out both the nutrient for which it is predicted to be auxo-
trophic and the gene which has been disrupted. The fitness profiles were
obtained from various sources in which the TRADIS workflow was applied.
The bladder cell infection model was designed as a proxy for urinary
tract infection. Genes highlighted in bold are lost across natural iso-
lates. An asterisk (*) indicates that CEG knock-out yields a detrimental
effect on fitness in other conditions. See Datasets S3 and S4 for the full
dataset.

five tested phases of infection. Other auxotrophic mutants with
increased fitness included biotin, 4-aminobenzoyl glutamate,
L-isoleucine and L-valine, L-lysine, and L-leucine (49). In an
intestinal infection of cattle with S. enterica, auxotrophic mutants
with elevated fitness were auxotrophic for nicotinate (nadA), L-
histidine (hisBF), L-cysteine (cysC), L-arginine (argBH), L-leucine
(leuB), tetrathionate (frdD only under anaerobic conditions), and
L-tryptophan (trpA).

The metabolic basis for auxotrophies diverges across species as
a function of their metabolic network topology and systems-level
metabolic capabilities.

A subset of genes conferred both specific and nonspecific
auxotrophies, depending on both the location of the missing
enzymatic function in the strain-specific metabolic pathway and
the species-specific local structure of the network. For exam-
ple, L-tryptophan biosynthesis can be achieved via three different
routes in Escherichia, two in Salmonella, and only one in Yersinia
(Fig. 4A). Strains across all three genera have the capability
to synthesize L-tryptophan from chorismate (via trpABCDE),
while only Salmonella and Escherichia strains are capable of
indole transport and utilization, and only Escherichia strains
can synthesize L-tryptophan via both tnaA and trpAB pathways.
As a result, loss of trpCDE confers a nonspecific auxotro-
phy in Escherichia and Salmonella but a specific auxotrophy in
Yersinia, while the loss of trpAB confers a specific auxotrophy
in Salmonella and Yersinia but is not conditionally essential in
Escherichia. In our dataset, both E. coli str. D6 and Yersinia alek-
siciae str. 159 were missing the full trp operon. However, strain
D6 was predicted to be a nonspecific L-tryptophan auxotroph,
while strain 159 was predicted to have an L-tryptophan-specific
requirement.

We observed cases in which the simultaneous supplementa-
tion of multiple nutrients was required to support growth. The
multiplicity of nutrient requirements was caused either by the

absence of multiple CEGs distributed across different pathways
or by the participation of a CEG in multiple essential biosyn-
thetic pathways. For example, ketol-acid reductoisomerase (ilvC)
is essential for the biosynthesis of both L-valine and L-isoleucine.
In the absence of ilvC alone, supplementation of both L-valine
and L-isoleucine is required (Fig. 4B). Interestingly, ilvC, ilvD,
and ilvE were lost across strains in multiple species includ-
ing Klebsiella pneumoniae, S. enterica, and E. coli. There were
also cases in which only the simultaneous absence of two or
more genes (e.g., encoding isozymes) was predicted to confer
an auxotrophy. For example, K. pneumoniae strain L201 and S.
enterica ser. Newport str. 0307-213 were predicted to require
L-arginine supplementation due to the absence of both acetylor-
nithine deacetylase and ornithine carbamoyltransferase isozyme
(Fig. 4C). Finally, we observed instances in which the alterna-
tive to supplementing with one nutrient was to supplement with
multiple nutrients. For example, a shikimate auxotrophy was pre-
dicted for Klebsiella G5, Klebsiella michiganensis str. RC10, and
Escherichia fergusonii str. ATCC35469 due to the absence of
3-dehydroquinate dehydratase (aroD). If shikimate is excluded
from the set of acceptable supplementations, a requirement for
multiple nutrients (including L-tyrosine, L-tryptophan, and L-
phenylalanine) is predicted, making the shikimate requirement
pseudospecific (Fig. 4D).

Small-Scale Mutations Constitute the Genetic Basis for Auxotro-
phies in P. aeruginosa and Shigella . Among the species studied,
none of the P. aeruginosa or Shigella species in our dataset
were predicted to be auxotrophic, despite extensive reports for
amino acid auxotrophy across P. aeruginosa strains isolated from
cystic fibrosis patients and a predominant niacin auxotrophy
in Shigella strains (3, 14). Instead, we found that CEGs were
highly conserved. Niche adaptation through small-scale loss-of-
function mutations has been observed in strains including P.
aeruginosa and Shigella (52–54). This result emphasizes that, in
order to study auxotrophy development in host-adapted strains,
future efforts should expand our workflow for the prediction
of bacterial nutrient requirements (which is currently limited
to the identification of genetic lesions at the gene level) to
account for smaller-scale deleterious mutations. Here, we do
not attempt to predict pseudogenization events, as this would
constitute an effort of its own. However, for proof of con-
cept, we demonstrate one such analysis for the well-known case
of niacin auxotrophy in Shigella, extending it to all strains in
our dataset.

Causal loss of function mutations in nadB (including A28V,
D218N, and G74E) and in nadA (including W299X, P219L,
C128Y, C113A, C200A, C297A, and A111V) result in a niacin
requirement in natural strains of E. coli, Shigella, and S. enterica
(14, 43, 55). We searched our dataset for these mutations and
found a total of 71 strains carrying at least one of the validated
SNPs and/or an indel or deletion of more than 10 amino acids
(which are likely to result in protein structural variations and
which we assume to be deleterious) (56, 57). The affected species
were Shigella flexneri, S. enterica, Shigella sonnei, E. coli, Shigella
dysenteriae, Shigella boydii, Yersinia enterocolitica, Y. pestis, and
Yersinia rohdei, and the SNPs found included A111V, C128Y,
and P219L (nadA) and A28V and D218N (nadB). (Fig. 5A).
Interestingly, subsets of deleterious mutations were restricted
to different species. For example, C128Y and A111V muta-
tions were restricted to S. flexneri strains, D218N and P219L
were restricted to S. dysenteriae strains, and A28V was restricted
to E. coli strains (Dataset S5). While the A111V mutation
was initially described in S. enterica serovar Dublin, we only
identify it here in strains of S. flexneri (55). Additionally, we
observe 16 S. enterica serovar Enteritidis strains to carry large
deletions in either nadA or nadB (or both in the case of 5
strains). These results demonstrate that convergent evolution
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Fig. 4. (A) Specificity of L-tryptophan requirement as a function of species-specific systems-level pathway structure. (B) Multiple simultaneous specific
auxotrophies as a result of single gene deletion. (C) Auxotrophies as a result of deletion of multiple isozymes. In K. pneumoniae str. KP11, argI and argF
are both absent. (D) Pseudospecific auxotrophies in which the alternative to one nutrient requirement (e.g., shikimate) is the simultaneous requirement for
multiple nutrients (e.g., L-phenylalanine, L-tryptophan, and L-tyrosine).

may have led to loss of the nicotinate biosynthesis capabil-
ity across species. That the deleterious mutations were main-
tained across descendants indicates that a niacin requirement
confers a selective advantage, an observation which is also sup-
ported in Amino Acid and Vitamin Auxotrophies Confer a Fitness
Advantage In Vivo.

Genomic Basis of Auxotrophy. Next, we proceeded to examine the
genomic basis of the auxotrophies predicted from our workflow.
To assess the genetic changes at the strain level, we compared
the genomic region of each predicted auxotroph with a closely
related strain (SI Appendix, SI Materials and Methods). We
observed multiple cases in which a missing CEG constituted a
part of a larger deleted genomic fragment, in which multiple
syntenic operons were lost simultaneously. We found that the
number of missing syntenic genes surrounding an absent CEG
varied from n = 1 to n = 251 open reading frames (ORFs) aver-
aging 49 genes. S. enterica str. U288 was the only strain for which
the missing chromosomal region contained only one CEG (hisD)
(Fig. 5B). Conversely, S. enterica str. 0112-791 was missing two
genomic regions (n = 251 ORFs and n = 28 ORFs) and did not
carry a total of four CEGs.

When the conserved genes flanking the missing genomic frag-
ment were adjacent in the auxotroph, we classified the observed
loss as a simple deletion. There were 15 cases of simple multigene

deletion events (Fig. 5C). For example, the deleted region in E.
coli strains DHB4, C3026, and DH10B consisted of 21 genes,
and the genes upstream and downstream of the deletion end-
points in E. coli MC4100 (rapA and fruR) are adjacent in the
three auxotrophs. Conversely, K. pneumoniae strain L201 is miss-
ing a total of 246 contiguous ORFs with respect to strain L491.
One deletion edge was located at position 4,943,680, marking
the end of the chromosomal GenBank file, while the other was
located at position 371, marking the start of the sequence for
plasmid p1-L201. We suspect that an assembly error may explain
this observation.

In the remaining instances, the genes which were located at
the edges of the missing fragment were separated by multiple
ORFs in the auxotroph. Interestingly, these ORFs constituted
a prophage in four auxotrophs, suggesting that insertion of
viral DNA may have mediated the deletion event (Fig. 5D).
In particular, E. coli strain C321.∆A, which is a genomically
recoded organism lacking bioAB and ybhB, carried enterobac-
teria phage Λ [containing 15 genes, predicted by PHAge Search
Tool (PHAST) (58)] in the deletion locus. Similarly, E. coli strain
S50 (isolated from forest soil) carried a prophage sharing three
ORFs with phage Stx2 at the locus for 152 missing contiguous
genes.

A slightly more complex sequence of events affected S. enterica
ser. Newport strain 0211-109 which was isolated from a cow with
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gastroenteritis (Dataset S6 and Fig. 5E). At the locus of deletion
(consisting of 252 genes), we found an insertion sequence clus-
ter likely conferring beta-lactam resistance (18 ORFs, containing
two copies of Class C beta-lactamase, three copies of small mul-
tidrug efflux transporters, and three copies of mobile element
proteins). The auxotroph also carried a DNA internalization-
related competence protein ComEC/Rec2 (involved in binding
and uptake of transforming DNA) directly upstream of the
insertion sequence cluster. Notably, the deletion region (span-
ning genes between pepN and potA) was located immediately
downstream of prophage gifsy 2 (with 56 ORFs) in a close rel-
ative (strain 0112-791), but was relocated elsewhere in strain
0211-109. We hypothesize that genomic rearrangement was
caused by the inserted cluster of genes. Similarly, 14 genes are
deleted in E. coli strain RR1 (a derivative of K-12), including
proA and proB, and 9 genes upstream of the deleted frag-
ment (including 3 transposases) are redistributed across the
genome. At the locus of deletion, RR1 carries multiple repeat
regions denoting that transposition may have occurred. In E. coli
strain HST04, the genes flanking the deletion region (pepD and
ykfl) are located 2,251 ORFs apart, with an insertion sequence
cluster consisting of 16 ORFs located downstream of pepD.
Insertion elements can promote the rearrangement of bacterial
genomes (59).

Finally, we observed four instances in which the predicted aux-
otrophs corresponded to species for which there was only one
representative genome in our dataset. For example, Yersinia fred-

eriksenii carries pdxT and gadCB between yjjG and lpp, while
Yersinia kristensenii (which shares the largest number of gene
families) carries a hypothetical protein ilvNB (involved in L-
isoleucine biosynthesis). The absence of CEGs in these cases are
likely a result of evolutionary events occurring after speciation
(Fig. 5F), and a larger number of pertinent genomic sequences
would be necessary to retrace the evolutionary history of these
chromosomal regions.

Genome streamlining is often associated with niche adapta-
tion and evolution toward symbiosis, and massive gene losses
can occur on a small evolutionary timescale as a result of
population bottlenecks (60). We asked whether the predicted
auxotrophs had a reduced genomic sequence length with respect
to other strains of the same genus. For each genus, we col-
lected the strains’ sequence length and fit the observed distri-
bution to a generalized extreme value distribution using the
block maxima approach. We calculated the probability of a
genome length to be less than or equal to each value in our
dataset, and found that a total of 41 strains fell under a prob-
ability of 5%. Of those, six were predicted auxotrophs (includ-
ing K. michiganensis strain RC10, K. pneumoniae strains KP11
and yzusk-4, K. G5, S. enterica str. 0112-791, and S. enterica
str. 9-65), further supporting the hypothesis that these strains
have developed auxotrophy as a result of niche adaptation.
However, a Fisher’s exact test reveals that there is no signifi-
cant enrichment of auxotrophs among the population of strains
with reduced genomes (P value = 0.6), indicating that genome
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streamlining is not a predominant phenomenon across the six
genera.

Experimental Validation of Auxotrophies Highlight Technological
Shortcomings at Multiple Levels. We proceeded to validate our
predictions experimentally by evaluating growth requirements
of the predicted auxotrophs. We were able to obtain six E.
coli (61–64), three Yersinia (65), three Salmonella (66, 67),
three Shigella (68, 69), and one Klebsiella (70) strain (Fig. 6).
Out of 16 strains that we experimentally tested, 8 (4 E. coli,
2 Y. ruckeri, 1 S. flexneri, and 1 S. sonnei) grew only when
glucose + M9 media was supplemented with the predicted
essential nutrient(s). The confirmed auxotrophies included 1)
an L-proline requirement in E. coli strain HST04; 2) an L-
leucine requirement in E. coli strains DHB4 and DH10B; 3)
a niacin requirement in E. coli strain SF-173, S. flexneri strain
2457T, and S. sonnei strain 2015C-3794; and 4) an L-valine, L-

isoleucine, and L-arginine requirement in Y. ruckeri strains YRB
and NHV 3758. In addition, we found literature evidence for
a biotin requirement in E. coli strain C321.∆A and its two
genomically recoded derivatives (CP006698.1, CP010455.1, and
CP010456.1) (71). Three predicted auxotrophs could grow nei-
ther in minimal medium nor in minimal medium supplemented
with the corresponding predicted nutrient. For example, E.
coli strain RR1 is a predicted L-proline auxotroph, S. dysen-
teriae strain BU53M1 is a predicted niacin auxotroph, and Y.
aleksiciae strain 159 was predicted to have multiple auxotro-
phies. However, neither exhibited any growth upon supple-
mentation, suggesting that they may have additional nutrient
requirements.

Notably, we tested growth of two Y. ruckeri strains on a
reduced chemically defined medium. While there is no precedent
for such an effort for this species, a chemically defined medium
was nonetheless derived for multiple clinical Y. enterocolitica

Genetic basis Strains Missing 
gene/SNPs Essential nutrients Observatio

n
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results 
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Fig. 6. Results of in-house experimental validations for nutrient requirements across 16 Gram-negative strains and outcome of follow-up experiments and
analysis for failure cases. Growth curves, PCR primers, and details regarding the list of strains can be found in SI Appendix. An asterisk (*) denotes that
these strains couldn’t grow upon predicted nutrient supplementation, suggesting that they have additional nutrient requirements. Additionally, we found
literature evidence for a biotin requirement in E. coli strain C321.∆A and its two genomically recoded derivatives. Note that one strain may have multiple
genetic basis of auxotrophy, for example, Yersinia strains. (71).
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(which included L-methionine, L-glutamate, glycine, and L-
histidine) (72), and another for Y. pestis strains (with 12
amino acids, 3 vitamins, and citrate) (73, 74). Our strain-
specific models predicted an auxotrophy for six amino acids:
L-phenylalanine, L-methionine, L-cysteine, L-arginine, L-valine,
and L-proline, with the first three carrying over from the
reference reconstruction for Y. pestis strain CO92. However,
the supplementation of M9 with all six nutrients alone could
not support growth unless R-pantothenate was also added.
This result came as a surprise, since both strains seem to
carry an intact R-pantothenate biosynthetic pathway. Conse-
quently, we found severe growth limitations to arise in both
strains in the absence of L-methionine, R-pantothenate, and L-
isoleucine, with intermediate growth obtained in the absence
of L-valine, L-cysteine, or L-arginine. These validated modeling
predictions confirm that the approach suggested by D’Souza
et al. (8) may miss a few cases due to conservative thresholding
(SI Appendix, SI Text).

Follow-up analyses and experiments highlighted links between
the remaining four erroneous predictions and technological
shortcomings at multiple levels, including 1) wrong sequence
annotation (which was corrected by running BLASTn directly
on the assembly, S. enterica ser. Bovismorbificans strain
3114), 2) localized low sequencing quality (identified by gene-
specific primers, K. pneumoniae strain KP11, S. enterica strains
EC20100101 and SA20094177), 3) erroneous assemblies (ver-
ified through manual analysis of the deletion regions in S.
enterica ser. Bovismorbificans strain 3114), 4) truncated assem-
bly with genes missing at the origin of sequencing (e.g., verified
through manual analysis of the deletion regions, S. enterica ser.
Bovismorbificans strain 3114), and 5) potential reconstruction
knowledge gaps (experimental trial and error and intermedi-
ate growth observed for Y. ruckeri strains). In particular, while
S. enterica strain 3114 had a high-quality assembly, genes that
should have been located near the origin of sequencing were
absent, and could only be found via BLASTn. As a result of these
observations, we subsequently added one quality control check
consisting of a search for the missing CEG in the assembly file
via BLASTn. The results are shown in Dataset S2.

Discussion
In this study, we devise an algorithm (AuxoFind) which bypasses
user-defined thresholds and pathway definitions using recon-
structed genome-scale networks of metabolism and 1,305 quality
controlled/quality assured publicly available complete genomic
sequences to 1) computationally predict auxotrophies, 2) identify
the corresponding metabolic basis, and 3) explore the under-
lying genetic basis. We further verify 16 of our predictions
experimentally and identify the basis for inconsistencies between
predictions and observations.

We predict auxotrophies for several amino acids, nucleotides,
and vitamins, distinguishing specific from nonspecific nutrient
dependencies. Surprisingly, only 38% of predicted auxotrophies
were nonspecific. Nonspecific auxotrophs should have a more
relaxed flexibility in their ability to grow across nutritional envi-
ronments with respect to specific auxotrophs while still relying
on external nutrient sources. However, such a view does not
take into account the strain’s phylogeny which indicates that the
strain’s ancestor was prototrophic, and that auxotrophy likely
developed as a result of selection pressure directed toward the
utilization of a key nutrient in its immediate niche. Indeed, we
predict specific auxotrophies for multiple nutrients previously
found to be involved in host–pathogen interactions (including
BCAAs, L-tryptophan, niacin, and tetrathionate), or which seem
to provide a fitness advantage in various niches in vivo (includ-
ing L-histidine, L-cysteine/tetrathionate, L-tryptophan, niacin, L-
glutamine, L-arginine, and L-leucine). Strikingly, we observe
that auxotrophies that are beneficial in one environment are

detrimental in another. In addition, while the fitness benefits
of some auxotrophies carries over multiple stages of bladder
infection (such as L-arginine, L-cysteine, and thiamin), that of
others (L-leucine and biotin) varies across stages. We hypothesize
that these variations reflect differences in nutritional availability
between niches and suggest that the context-specific nutritional
background likely plays a role in auxotrophy development.

We found that the metabolic basis (including speci-
ficity/nonspecificity and multiplicity) of auxotrophies depends on
1) the entire structure of the metabolic pathway, 2) the promiscu-
ity of a protein’s enzymatic activity, and 3) functional or pathway
redundancy, and therefore varied in a strain-specific fashion.
CEGs carrying out the same function in two different strains can
confer a specific auxotrophy in one species but a nonspecific aux-
otrophy in the other. Additionally, two CEGs participating in the
same biosynthetic pathways confer different simulated specificity
upon deletion, depending on the position of alternative path-
ways with respect to that of the CEG. We therefore suggest that
selective pressures for auxotrophy development leading to loss
of function may affect paralogs differently across strains and vary
across CEGs participating in the same pathway as a function of
a strain’s full reactome.

We observed a continuity in the complexity of the genetic
basis for auxotrophy, ranging from single nucleotide polymor-
phism causing a loss of function mutation to large multigene
and multioperon deletions coupled with extensive homologous
recombination events. Interestingly, the only case of a single
gene deletion event affected hisD, a gene which was observed
to have the largest number of alleles in a pangenome anal-
ysis of E. coli strains (36). There were multiple instances in
which the loss of CEGs was likely mediated and/or accompa-
nied by prophage insertion and/or insertion sequence move-
ment across the genome, with one strain losing four CEGs due
to the insertion of a cluster of genes conferring beta-lactam
resistance. In particular, 6 of the 54 predicted auxotrophs had
significantly smaller genomes, suggesting that they are niche
adapted; this is indeed the case for both S. enterica serovar
Newport strain 0112-791 and serovar Paratyphi A strain 9-65.
Overall, auxotrophies arising from large-scale deletions (one
or more ORFs) are rare (3.8%) in our dataset. They could
perhaps be reversed under the right conditions when their
genetic basis constitutes small variations such as SNPs (75).
However, major events such as full gene deletion and full
operon removal are likely to be more permanent and highly
constrain the strain’s colonization space and bacterial social
network.

Finally, we experimentally verified our predictions for nutri-
ent requirements in 16 strains and observed that 11 strains were
auxotrophs, but that minimal media could support growth of
5 mutants. The latter strains served to highlight technological
shortcomings at multiple levels. The challenges behind call-
ing genes/functions absent from a genomic sequence became
apparent, and the identification of deletions/missing genes is
hampered, even in complete sequences, by 1) uneven sequenc-
ing quality across the genome, 2) incorrect genome assem-
bly, and 3) erroneous genome annotation. We observed that
pangenome alignment (at the ORF level) of closely related
prototrophs can be used to overcome these technological
shortcomings and distinguish between true and false positives.
Knowledge gaps in amino acid biosynthesis of Y. ruckeri, and
the presence of unknown in-frame loss of function mutations
affecting three strains, constituted additional sources of incon-
sistency between in silico predictions and experimental obser-
vations. These contradictions generate testable hypotheses for
follow-up studies (76).

Altogether, our results constitute the most comprehen-
sive systems biology effort aimed at predicting and under-
standing nutrient auxotrophies using mechanistic models of
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metabolism. The approach developed can be applied to quickly
and systematically predict nutrient requirements from genomic
sequences.

Materials and Methods
The specific procedure of data collection and quality control, prediction of
CEGs, and homologous gene identification is described in SI Appendix,
SI Materials and Methods. The detailed workflow for prediction of nutrient
auxotrophy is described in SI Appendix, SI Materials and Methods. Deter-
mination of gene neighborhood and synteny is described in SI Appendix, SI
Materials and Methods. Sixteen strains were tested as a part of this study.
The experimental validation methods and conditions are described in SI
Appendix, SI Materials and Methods.

Data Availability. All data generated in this study are included in this pub-
lished article (and in SI Appendix and Datasets S1–S6). AuxoFind is available
on GitHub, with an example notebook. All genomic sequences analyzed in
this study are publicly available on PATRIC (38), and accession numbers are
available in Dataset S1.
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57. S. P. Nuccio, A. J. Bäumler, Comparative analysis of Salmonella genomes identifies a
metabolic network for escalating growth in the inflamed gut. MBio 5, e00929–14
(2014).

58. Y. Zhou, Y. Liang, K. H. Lynch, J. J. Dennis, D. S. Wishart, PHAST: A fast phage search
tool. Nucleic Acids Res. 39, W347–W352 (2011).

59. K. Nyman, K. Nakamura, H. Ohtsubo, E. Ohtsubo, Distribution of the insertion
sequence IS1 in Gram-negative bacteria. Nature 289, 609–612 (1981).

60. A. I. Nilsson et al., Bacterial genome size reduction by experimental evolution. Proc.
Natl. Acad. Sci. U.S.A. 102, 12112–12116 (2005).

61. B. P. Anton, A. Fomenkov, E. A. Raleigh, M. Berkmen, Complete genome sequence of
the engineered Escherichia coli SHuffle strains and their wild-type parents. Genome
Announc. 4, e00230-16 (2016).

62. D. Boyd, C. Manoil, J. Beckwith, Determinants of membrane protein topology. Proc.
Natl. Acad. Sci. U.S.A. 84, 8525–8529 (1987).

63. C. Chen et al., Convergence of DNA methylation and phosphorothioation epigenetics
in bacterial genomes. Proc. Natl. Acad. Sci. U.S.A. 114, 4501–4506 (2017).

64. H. Jeong, Y. M. Sim, H. J. Kim, S. J. Lee, Unveiling the hybrid genome structure of
Escherichia coli RR1 (HB101 RecA+). Front. Microbiol. 8, 585 (2017).

65. A. Wrobel, C. Ottoni, J. C. Leo, S. Gulla, D. Linke, The repeat structure of two paralo-
gous genes, Yersinia ruckeri invasin (yrInv) and a “Y. ruckeri invasin-like molecule”,
(yrIlm) sheds light on the evolution of adhesive capacities of a fish pathogen. J. Struct.
Biol. 201, 171–183 (2018).

66. C. Bronowski et al., Genomic characterisation of invasive non-typhoidal Salmonella
enterica subspecies enterica serovar bovismorbificans isolates from Malawi. PLoS
Negl. Trop. Dis. 7, e2557 (2013).
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