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Making Bicycling Comfortable: Identifying Minimum 
Infrastructure Needs by Population Segments Using a 
Video Survey 

EXECUTIVE SUMMARY 

Understanding what environments are comfortable (and perceived as safe) for bicyclists is 
essential for increasing bicycling, particularly for non-experienced riders. Surveys probing 
people’s qualitative perceptions about bicycling environments can inform bicycle planning in 
important ways. In this study we use survey data to analyze bicycling comfort and its 
relationship with socio-demographics, bicycling attitudes, and bicycling behavior. We use an 
existing survey of students, faculty, and staff at UC Davis (n=3089) who rated video clips of 
bicycling environments based on their perceived comfort as a part of the UC Davis annual 
Campus Travel Survey (CTS). The video clips come from a variety of urban and semi-rural roads 
(designated California state highways) around the San Francisco Bay Area where bicycling rates 
vary. Our results indicate considerable effects of socio-demographics and attitudes on absolute 
video ratings, but we find relative agreement about which videos are most comfortable and 
uncomfortable across our sample population segments. In addition, presence of bike 
infrastructure and low speed roads (low posted and equal or lower prevailing speeds) are the 
strongest video factors generating more comfortable ratings. However, our results suggest that 
even the best (according to attributes in our data) designed on-road bike facilities are unlikely 
to provide a comfortable bicycling environment for those without a predisposition to bicycle. 
Nonetheless, our results provide guidance for improving roads with on-street bike facilities 
where protected or separated facilities may not be suitable. 
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Introduction 

Many major cities in California have adopted the goal of increasing their bike mode share to 
reduce emissions and increase public health. To meet these goals, cities are making 
investments to change road environments to better accommodate bicyclists. However, the 
effect these investments is likely to have on bicyclist safety and on levels of bicycling is difficult 
to estimate. At the city level, investments in bike infrastructure are correlated with higher rates 
of bicycling (Pucher et al., 2011). Individual-level studies show that people prefer bicycle-
specific infrastructure in their decision to bicycle and in their choice of routes (Broach and Dill, 
2016). Before-and-after studies of infrastructure investments show a similar trend of increasing 
use of roads following bicycling investments (Monsere et al., 2014). However, despite 
substantial investments, bicycling rates in most cities remain below targets.  

There is growing evidence that safe and comfortable bicycling environments are a necessary 
condition for bicycling to become a mainstream day-to-day travel mode. Besides distance, a 
lack of perceived safety may be the most important barrier to the decision to bicycle (Fowler et 
al., 2017; Handy et al., 2002; Sallis et al., 2013). Evidence overwhelmingly points to the 
importance of protected bike lanes and off-street paths for providing a safer and more 
comfortable bicycling environment, especially for less experienced bicyclists (Dill et al., 2015; 
Harris et al., 2013; Monsere et al., 2014; Teschke et al., 2012; Winters et al., 2013). However, 
cities often find it difficult to provide these types of facilities due to their higher costs, political 
opposition, and the challenge of integrating them into the transportation network. For this 
reason, on-road bike infrastructure such as mixed travel lanes and bike lanes remain important 
to the effort to increase bicycling, and planners face the challenge of designing such facilities to 
feel safe and comfortable despite the limited protection from traffic they provide.  

Providing environments perceived to be safe for prospective bicyclists is made challenging by 
the fact that individuals differ as to the type of environments in which they feel safe. Research 
shows, for example, that women and men differ significantly in their comfort with and 
perceptions of safety for the same environments (Garrard et al., 2012). Most past studies have 
either focused on one segment of the population, often existing bicyclists, with less attention 
paid to variability across the population. One way for planners to get a practical handle on this 
variability is to classify potential bicyclists according to safety perceptions. However, the wide 
variety of social, personal, environmental variables that determine individual bicycling behavior 
makes a meaningful classification of potential bicyclists challenging. Some researchers 
approach the problem holistically and classify people by existing travel behavior and other 
characteristics (Damant-Sirois et al., 2014); others focus on a few key variables such as comfort 
and interest (Dill and McNeil, 2013). 

Surveys are by far the most common way researchers probe people’s feelings about bicycling 
comfort and safety. The distinction between perceived safety (from traffic) and comfort for 
bicycling is not clear; and unlike for driving, the two tend to be conflated. Being comfortable 
bicycling certainly implies feeling safe, and it may also be more causally related to the decision 
to ride a bike. Although attempts have been made to measure comfort more objectively 
(Doorley et al., 2015; Fitch, 2018), surveys remain the most feasible method. These types of 
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surveys require participants to score a qualitative concept (e.g., comfort) on a quantitative scale 
(e.g., Likert type scales). Such surveys rely on textual or visual cues to assess the influence of 
bicycling infrastructure on people’s comfort. Video cues are becoming more commonly used 
because of their realism for portraying the road environment and the ease of use when 
administering a large-scale survey over the web. Although video surveys do not directly 
measure bicyclist comfort in the real world, past evidence suggests the bias may result in an 
equal or even conservative estimate of comfort. For example, Fitch and Handy (2017) show that 
video responses of bicycling comfort are more negative than responses following real bicycling 
on the road. 

In this study we analyze the degree to which individuals perceive different types of bicycling 
environments as comfortable, with the goal of providing guidance on the quality of 
infrastructure needed to expand the pool of potential bicyclists. We use a video survey to 
measure variation in perceptions across a population that includes non-bicyclists as well as 
bicyclists, and our analysis identifies sub-populations that are relatively homogeneous with 
respect to their infrastructure preferences. The results of this study can inform planning efforts 
and investment decisions that aim to increasing bicycling as a mode of transportation. Our 
three primary research questions are as follows: 

(1) How much variation in bicycling comfort is explained by personal characteristics 
compared to road characteristics? 

(2) Which road characteristics have the strongest relationship with bicycling comfort? Do 
certain characteristics have stronger effects on some sub-populations? 

(3) What are the infrastructure minimums for comfortable on-street bicycling? 

Methodology 

Data Collection 

Survey 

We administered the video survey as a part of the 2017 UC Davis Campus Travel Survey (CTS). 
The CTS is an annual survey of travel to and from the university administered on-line to a 
representative random sample of faculty, staff, and students (Wei, 2018). However, responses 
tend to be non-representative in many ways (e.g., much larger proportion of women respond 
than men). Respondents were recruited through email and incentivized with raffles for forty 
$50 pre-paid debit cards and two tablet computers. 

The UC Davis population is unique with respect to bicycling behavior in that the majority bicycle 
to campus, encouraged by a relatively safe bicycling environment and strong bicycling culture. 
Thus, the sample used in this study provides a unique perspective on the link between 
infrastructure and bicycling comfort and perceived safety. Because many participants have 
experience bicycling in Davis, they are more aware of, and have likely reflected on, the 
attributes of a road that make them comfortable. This is not the same for prospective bicyclists 
in other cities who have little or no experience bicycling for day-to-day travel. In addition, the 
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UC Davis sample is dissimilar from existing bicyclist samples in larger cities of the San Francisco 
Bay Area (where the videos were recorded). In general, existing day-to-day bicyclists in the Bay 
Area are more willing than most to bicycle in non-ideal environments (e.g., mixed traffic, high 
speed roads). In this way, the Davis population offers a nice balance between experience (to 
help ensure the measure of comfort is accurate) and willingness to bicycle in non-ideal 
environments (many of which are likely similar to prospective bicyclists in the Bay Area). 
However, they are not representative of a wider prospective bicyclist population across 
California.  

The sample size for this study is n=3089. Along with survey responses associated with the video 
experiment, described below, we measured many other variables in the main survey. These 
include main travel mode to campus, specific travel frequency by mode to campus in the prior 
week, campus role (student/grad student/faculty/staff), age, gender, household structure, 
bicycling confidence, bicycling comfort in a variety of environments (through textual 
descriptions), and some more specific travel attitudes. We measured bicycling confidence and 
comfort through textual descriptions. For example, we asked respondents to rate their bicycling 
ability. For those that could ride a bike, they were asked to select either I can ride a bike, but 
I’m not very confident doing so; I am somewhat confident riding a bike; or I am very confident 
riding a bike. For bicycling comfort, we asked, “In general, how comfortable would you be riding 
a bicycling on a four-lane street (two lanes in either direction) without a bicycle lane, in 
daylight and good weather?” Respondents were asked to select Uncomfortable and I wouldn’t 
ride on it; Uncomfortable but I would ride on it; or Comfortable. All other travel attitudes we 
measured using statements and Likert-type responses from strongly disagree to strongly agree. 
For example, respondents selected how much the agreed or disagreed with the statement “I 
like riding a bike”. We refer to the socio-demographic and attitudinal variables as individual-
level characteristics in our analysis.  

Experimental Design 

In designing the video survey to answer the above research questions, we chose 25 videos (10 
seconds in length) based on recordings taken from a variety of mostly urban arterials and some 
rural roads (designated California state highways) around the Bay Area from a prior study 
(Griswold et al., 2018). Owing to the purpose of this prior study, these videos represented on-
street facilities but not protected bike lanes or off-street bike or shared-use paths. 

We consider each video a different bicycling infrastructure treatment level (creating a nominal 
predictor variable for the models described below). Each video is assigned to one of five bicycle 
infrastructure classes (shared arterial, shared collector road, bike lane with high speeds, bike 
lane with moderate speeds, and buffered bike lane). To limit survey burden, we designed our 
survey to function as two parallel experiments, one in which participants see videos of very 
similar road environments with only subtle differences in road characteristics (within-class 
treatments), and one in which participants see videos of very different road environments with 
extreme differences in road characteristics (between-class treatments) (Table 1). This allowed 
us to examine if participants’ comfort ratings (explained below) depended on the degree of 
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variation in the video clips they saw in the experiment. Our treatment assignment procedure 
was as follows: 

(1) Randomly assign a person to the within-class treatment or the between-class treatment, 
while maintaining a balance in the assignments to the two treatments. 

(2) For within-class treatments, randomly assign one of five bicycle infrastructure classes, 
also known as blocks in experimental research. Do this while maintaining balanced 
assignment across all five blocks. Then present the five videos of the block in random 
order.  

(3) For between-class treatments, randomly assign one video from each of the 5 blocks and 
present them in random order. Do this while maintaining balanced assignment across all 
videos. 

Table 1 demonstrates how the procedure results in a nearly balanced data collection across the 
two treatment types and the infrastructure classes. The video names in Table 1 are shorthand 
for the location of the video clip. For example, “4th_AddisonUniversity” indicates the video 
comes from 4th St between Addison and University in Berkeley, CA.  

Table 1. Experimental Design 

Infrastructure 
Class 

Video name 
Within-Class 
treatments  

Between-Class 
treatments 

Shared 
collector 

Virginia_ChestnutWestStPath X     

One random video 
from 1-5 

4th_AddisonUniversity X     

4th_VirginiaDelaware X     

Chabot_CollegePresley X     

Skyline_SnakeManzanita X     

Shared 
arterial 

SanPablo_GilmanHarrison  X    

One random video 
from 6-10 

SanPablo_CedarVirginia  X    

Ashby_CaliforniaKing  X    

Ashby_DeakinTelegraph  X    

Ashby_ColbyRegent  X    

Bike lane 
adjacent to 
fast traffic or 
rural highway 

Tunnel_OakRidgeUplands   X   

One random video 
from 10-15 

SanPabloDam_WildcatOldSanPabloDam   X   

Skyline_FortFunstonOlympic   X   

Hwy1_MartiniCreek   X   

GrizzlyPeak_SouthClaremont   X   

Bike lane 
adjacent to 
moderate 
speed traffic 

SanPabloDam_FireTrailNo3    X  

One random video 
from 16-20 

California_FranciscoDelaware    X  

Channing_DanaEllsworth    X  

Alcatraz_ColbyHillegass    X  

Broadway_GoldenGateLakeTemescal    X  
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Infrastructure 
Class 

Video name 
Within-Class 
treatments  

Between-Class 
treatments 

Buffered bike 
lane 

Tunnel_HillerVincente 
    

X 

One random video 
from 21-25 

Tunnel_VicenteBridge 
    

X 
CaminoPablo_ElToyonal 

    
X 

Miles_CollegeForest 
    

X 
Sloat35_CreastlakeGabilan 

    
X 

To measure comfort with each environment, the survey asked the following of each participant:  

“Next you will view 5 short video clips (10 seconds each). For each clip, imagine that you are 
bicycling in the environment shown and then rate how comfortable you would feel” 

Participants then viewed the video clip and responded based on a 7-point Likert-type response 
scale (see Figure 1). We removed all audio from the video clips. This reduced the realism 
somewhat because sound is often a good indicator of a soon to be passing vehicle. However, 
because we could not control the participants audio, we decided to exclude sound. 

 

Figure 1. Example image of video survey with response categories. 

Video and Infrastructure Data 

While the videos are themselves treated as variables in our analysis, the characteristics of the 
videos are also a primary focus. We focus on the following features of the videos (i.e., road-
level variables) that were collected in the field during video recording or after reviewing the 
videos from (Griswold et al., 2018): 

• Posted speed limit 
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• Presence of bike lane 

• Presence of buffered bike lane 

• Presence of street parking 

• Prevailing car speed 

• Bike lane width 

• Bike lane and parking lane combined width 

• Shoulder width 

• Outside car lane width (lane closest to bike lane, shoulder, or curb) 

• Car volume 

• Presence of divided road 

• Total bicycling operating space (sum of bike lane width, parking lane width, and 
shoulder width) 

Prevailing car speed was measured by reviewing the videos and timing when cars passed screen 
lines of known distances. Car volume was assigned as “None” (no moving cars in the same 
direction present), “Low” (at least one moving car present and no more than 2 passing cars), 
“High” (more than 2 passing cars). All other road-level variables were measured in the field. 

We used these data and three common metrics of “bikeability” from Griswold et al. (2018), the 
Highway Capacity Manual Bicycle Level of Service (HCM BLOS) (National Research Council and 
Transportation Reserach Board, 2010), the National Cooperative Highway Research Program 
Bicycle Level of Service (NCHRP BLOS) (Dowling et al., 2008), and the Bicycle Level of Traffic 
Stress (BLTS) (Mekuria et al., 2012).  

Analysis 

The intention of the experimental design was to reduce survey burden while at the same time 
providing the ability to examine within- and between-class variability in comfort rating. When 
considering individual-level effects, we found that those in the “between” group tended to 
have higher variance in their ratings and less variance in their means compared to the “within” 
group, both of which results are expected for the experimental design. However, examination 
of the comfort ratings by these groups at their means or in the aggregate revealed negligible 
differences (Figure 2). While the differences observed in Figure 2 are unlikely to be due to 
chance with this large of a sample (χ2 = 27.6, p = 0.0001), the strength of the relationship 
between video group and comfort rating is very weak (Cramer’s V = 0.04). Given this finding, we 
ignore the video group treatment assignment in our statistical models and pool all the data 
from both treatments. 
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Figure 2. Comparison of scores by within and between group participants. 

Descriptive and Bivariate Relationships 

We used exploratory data analysis to examine the relationship between all the variables and 
bicycling comfort. This included both univariate and bivariate visualizations without formal tests 
of statistically significant differences. The exploratory analysis was primarily used to determine 
problematic variables (highly correlated, too much missing data, etc.) and to guide the 
transformation of variables for more formal statistical analyses. 

Predictor Variables 

Our data contains measurements of 20 road-level variables, including the three external 
composite scores of “bikeability”, and about twice as many individual-level characteristics of 
the survey respondents. About half of the individual-level characteristics are attitudinal 
variables, such as how much an individual “likes riding a bike,” measured on a five-point Likert-
type scale. The rest are demographic, including one’s primary role at the university (e.g., 
Undergraduate Student, Staff), gender, age, and household composition. We case-wise deleted 
missing values or removed variables with a large percentage of missing data. The only 
exception was the case of age, which we imputed missing values. We also reduced the number 
of variables through a series of exploratory analyses (see Appendix A: Extended Methods for 
details about variable cleaning and selecting). For easier model parameter interpretation (see 
below), we transformed all variables to the 0-1 scale. For categorical variables we simply used 
binary indicators for one less than the total number of categories. For the 5-point Likert-type 
responses we coded {Strongly disagree, Somewhat disagree, Neither agree nor disagree, 
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Somewhat agree, Strongly agree} as {0, 0.25, 0.5, 0.75, 1}. For numeric variables in units of 
distance we normalized based on the minimum and maximum (e.g., xi – min(x)/max(x) – 
min(x)). 

Statistical Modeling 

We used an ordinal logistic regression model to analyze the bicycling comfort ratings (see 
Appendix A: Extended Methods for modeling details). This model type is most appropriate for 
the seven-level ordinal measure of comfort, the dependent variable in the models. We first 
conducted exploratory modeling using penalized (lasso) maximum likelihood estimation of 
model parameters to help us decide on which variables to remove before further, more 
computationally intensive analysis (see Appendix A: Extended Methods for details). We always 
included variables that could be supported by theory or prior empirical study, and we only used 
this technique to make decisions about variables for which we were uncertain about their 
effect on people’s bicycling comfort ratings. With the reduced set of variables, we built a series 
of regression models with increasing complexity to examine the influence of model complexity 
and variables in groups (see Table 2 for a simple description and Appendix A: Extended 
Methods for more details). The models in Table 2 are named based on their “varying effects” 
and the groups of variables they include to explain bicycling comfort. Models with varying 
effects for Person indicate they allow the average rating to vary by person (making them multi-
level models). I.e., the model estimates a unique average for each person and a spread of those 
averages to account for within- and between-person heterogeneity in ratings. Similarly, models 
with “varying effects” for Video indicate they allow the average rating to vary by video. I.e., the 
model estimates a unique average for each video and a spread of those averages to account for 
within- and between-video heterogeneity in ratings. The non-varying effects are traditional 
predictor variables in regression modeling.  
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Table 2. Description of Models 

Model Name Varying 
Effects 

Non-varying Effects 

Person level Video level 

Null-Person Person   

Null-Person-
Video 

Person, 
Video 

  

Main effects-
Person 

Person Socio-demographic, 
attitudes and 
perceptions 

 

Main effects-
Person-Video 

Person, 
Video 

Socio-demographic, 
attitudes and 
perceptions 

Street parking, operating space, vehicle 
volume and speed, bike infrastructure 

Interaction-
Person 

Person Socio-demographic, 
attitudes and 
perceptions 

Street parking, operating space, vehicle 
volume and speed, bike infrastructure. 

Interactions between street parking and 
bike infrastructure, vehicle volume and bike 
infrastructure, operating space and speed 
limits, vehicle volume and speed limits 

Interaction-
Person-Video 

Person, 
Video 

Socio-demographic, 
attitudes and 
perceptions 

Street parking, operating space, vehicle 
volume and speed, bike infrastructure. 

Interactions between street parking and 
bike infrastructure, vehicle volume and bike 
infrastructure, operating space and speed 
limits, vehicle volume and speed limits. 

We use the six models (Table 2) to understand how influential the variables are for predicting 
comfort ratings (by comparing expected predictions between models). The Bayesian estimation 
procedure we employ to estimate all the models facilitates these assessments (see Appendix A: 
Extended Methods). In Appendix B: Model Parameter Summaries, we report the estimating 
prediction for the six models. The estimates suggest that including varying effects for person 
and video greatly influence ratings. Furthermore, that including all variables and those varying 
effects we can expect the best predictions. This indicates that even when we include person 
level and road level variables, we are missing some explanatory power from variables relating 
to both the video (e.g., other road level or context variables) and the person (e.g., other 
intrapersonal characteristics). However, when we examined interaction models, the expected 
prediction is very similar to the models without the interaction effects. This suggests we are 
limited by our data for examining road variable interactions. Because the interaction models did 
not provide better expected predictions for the main effect models, we selected the Main 
effects-Person-Video model for detailed inferences, scenarios analysis, and discussion. 
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Limitations 

Like all study designs that employ surveys, our study is limited by the representativeness of the 
sample we obtain. Our UC Davis sample offers a unique view into bicycling comfort, but it 
should not be interpreted as representative of current or prospective bicyclists everywhere. 
Because our sample is from the UC Davis campus travel survey, it is dominated by young 
undergraduates (Figure 3). We also have about twice as many responses from women 
compared to men, and the share of bike commuters is also very high. These are common 
results from the annual UC Davis campus travel survey. Women tend to respond to the survey 
at much greater rates than men, and because Davis is a very bike friendly city and campus, 
bicycling is commonplace. 

 

Figure 3. Sample characteristics in total counts of comfort responses. 
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Our study is also limited in the variety of road environments we examine. Because we use 
videos from a prior study focusing on urban and rural roads, we were not able to examine 
characteristics of protected bike lanes and off-street paths. This is unfortunate because prior 
research suggests that these types of infrastructure are very important for providing 
comfortable bicycling spaces. This limitation is most evident in our inability to simulate a 
comfortable environment for a large share of our respondents in our policy analysis section 
(see below). Notwithstanding these limitations, our study does help highlight the features of 
on-street roads that might be altered to increase bicycling comfort for some current and 
prospective bicyclists. 

Results and Discussion 

Bicycling Comfort and Personal Characteristics 

Reported bicycling comfort varied substantially across the 25 videos (Figure 4). The videos are 
ordered by average rating from most comfortable to least comfortable to more easily observe 
trends in the data. While respondents never unanimously responded on one side of the 
comfort scale (e.g., either comfortable or uncomfortable) for any one video, many videos had a 
super majority of users report on one side of the comfort scale (see top seven videos and 
bottom three videos from Figure 4). However, most of the videos saw considerable variation in 
comfort, many with large numbers of people responding in opposing opinions on being 
comfortable bicycling in the environment shown in the video.  
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Figure 4. Kernel density estimates of the distribution of comfort responses by video name and 
infrastructure class. 

Socio-Demographics 

The socio-demographic variables are correlated with bicycling comfort to varying degrees 
(Figure 5). For example, women are less likely to rate videos as comfortable compared to men 
(Figure 5), and this finding holds for every single unique video (Figure 6). In most videos the 
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gender differences are small (a median difference of one if we consider the seven classes 
evenly spaced). Also, men and women are in general agreement about the relative comfort 
provided by each video (i.e., men and women all felt most uncomfortable on the same videos, 
and vice versa). Age also has a strong correlation with reported comfort on the uncomfortable 
side of the scale (Figure 5). The percentage of ratings on the comfortable side of the scale were 
nearly equivalent by age, but older respondents were much less likely to select a neutral 
response and instead more likely to indicate discomfort (Figure 5). To a lesser extent this same 
phenomenon can be seen in the correlation between university role and ratings (Figure 5), but 
since age and university role are heavily correlated, we only include age in our models (as we 
assume it is more likely to be causally related to bicycling comfort). These bivariate correlations 
are substantiated by the statistical models given that clear conditional effects are observed in 
the models even when accounting for all the other predictor variables (see below and Appendix 
B: Model Parameter Summaries). 
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Figure 5. Video ratings by person level socio-demographics and bicycling perceptions. 
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Figure 6. Kernel density estimates of the distribution of comfort responses by video name and 
gender. 
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Attitudes and Perceptions 

Beyond socio-demographics, some of the strongest person-level variables that correlate with 
comfort ratings are self-reported bicycling confidence and bicycling comfort on a generic four-
lane arterial with no bike lane in daylight and good weather (Figure 5). Self-reported bicycling 
confidence is positively correlated with video ratings. With a three-class variable of bicycling 
confidence, video ratings seem to linearly rise with increased confidence. This can be seen in 
the difference in the proportion of red and blue bars for the different bicycling confidence 
classes (Figure 5). The self-reported bicycling comfort on a generic four-lane arterial is also 
positively correlated with video ratings. This is not surprising because we expect people’s 
general and specific measures of bicycling comfort to be bi-directionally causal. For example, a 
person’s general comfort is likely to have been constructed from a series of specific experiences 
as a bicyclist or as a traveler more generally. At the same time, that person’s general comfort is 
likely to influence how they perceive new experiences.  

Other bicycling and travel attitudes are also correlated with video ratings (Figure 7). People 
who agree with the statements “I like riding a bike”, “I feel safe bicycling on campus”, and to a 
lesser extent “I like using public transit” are more likely to rate the videos as comfortable. The 
opposite is true of people who agree with the statements “I need a car to do many of the things 
I like to do”, “I need to dress professionally for my job”, and “traveling to campus stresses me 
out”. These results suggest that people with more favorable bike attitudes are more 
comfortable with the environments compared to people with less favorable bike attitudes. 
Also, people with jobs requiring professional dress and people with car lifestyles are less 
comfortable bicycling compared to others. Of course, a respondent could certainly have both 
strong bike attitudes and live a car-focused or professional lifestyle, but in the aggregate, they 
seem to have opposite associations with bicycling comfort. 

Because responses to the statement “I like riding a bike” have shown strong associations with 
bicycling behavior (Handy et al., 2010), it is not surprising that this statement has strong 
associations with reported bicycling comfort in this video experiment. Those respondents who 
agree they like riding a bike (strongly and somewhat) show some interesting video rating 
patterns in comparison to those who don’t (strongly and somewhat) (Figure 8). For example, 
the top-rated videos show large differences between the like-bike and the don’t-like-bike 
groups. However, the same is not true of the lowest rated videos (Figure 8). In the lowest rated 
videos, the like-bike and the don’t-like-bike groups are more in agreement that the videos pose 
an uncomfortable bicycling environment. This non-linear effect of bike attitudes at the video 
level suggests that bike attitudes may only be good for explaining the bicycling comfort in 
environments where some minimum infrastructure exists. Without that minimum 
infrastructure, even the like-bike group is uncomfortable bicycling. 

This same infrastructure minimum may even hold for some people who report being 
comfortable bicycling on a four-lane road without a bike lane (Figure 9). However, some of 
those people (blue density in Figure 9) still report being comfortable even on the most 
uncomfortable (in the aggregate) videos. To a lesser degree, the opposite is true of the people 
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who are uncomfortable bicycling on a four-lane road (red density in Figure 9). Many of those 
people are uncomfortable even on the roads where most people report being comfortable. 

  

Figure 7. Video ratings by person level attitude statements. 
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Figure 8. Kernel density estimates of the distribution of comfort responses by video name and 
liking biking. 
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Figure 9. Kernel density estimates of distribution of comfort responses by video name and 
comfort. 
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Video-Level Variables 

Wide variation in comfort responses between videos indicates that peoples’ comfort is 
determined by features seen in the videos. Some of the features that correlate with comfort 
across the videos are presented in Figure 10. While these are only a subset of the countless 
features seen in the videos, they represent some of the most important road-level variables 
that have been observed in the literature to influence bicyclist comfort and safety (Buehler and 
Dill, 2016; Dill et al., 2013; Sanders, 2014). Many of the more subtle features of the videos (e.g., 
adjacent land use, turning movements of cars, pavement roughness, etc.), while not considered 
in our analysis independently, are roughly accounted for in the multi-level models in the 
following sections (see below). Figure 10 confirms that variables like presence of bike lanes and 
buffered bike lanes, number of car lanes, presence of medians, bike lane width, total bike 
operating space, and car volumes have clear correlations with bicycling comfort. However, 
posted speed limit, prevailing car speed, outside car lane width, and recording speed of the 
video are more ambiguous.  

By far the strongest predictor of comfortable video ratings are the bike lane variables and the 
presence of only one vehicle lane in the direction of the bike traveler. However, these variables 
are not completely independent. For example, car volume and speed are associated with 
presence of bike lanes, so their individual level associations somewhat depend on each other. 
Furthermore, Figure 10 doesn’t indicate sample sizes of these variables. Some levels of some 
variables (e.g., prevailing car speed) have very small sample sizes which limit the inferences we 
can make from their associations with video ratings. The model results (next section) help to 
improve our estimates of the associations between road-level variables and video ratings. 
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Figure 10. Road-level variable correlations with video responses. For dichotomous variables, 1 
indicates presence, and 0 indicates absence of the variable. 
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Existing Level of Service Type Metrics Related to Bicycling Comfort 

We also examined the relationship between reported bicycling comfort and three commonly 
used level-of-service metrics. While average comfort ratings correlated to some extent with the 
three metrics (Figure 11), the metrics do a poor job of reflecting the variation in comfort rating 
across all seven levels for all participants (Figure 12). Of the three scoring methods we consider, 
the HCM classification is the best predictor of comfort ratings in our data, and the NCHRP 
classification is the worst. However, when including these metrics in separate ordinal regression 
models, none provide very strong predictive ability. In fact, an ordinal regression model with 
two predictors “presence of a bike lane”, and presence of a “buffered bike lane” has more 
predictive power than any of the models with the level-of-service metrics (results not shown). 
While the two BLOS metrics attempt to measure attributes beyond bicycling comfort, it is 
surprising that they do not do a better job of predicting reported bicycling comfort given that 
representing perceived safety is a top objective for those methods. This is especially the case 
for the Level of Traffic Stress (LTS) metric, since it is solely focused on bicyclist “stress” which is 
basically the inverse of our concept of bicycling comfort. These results highlight the inadequacy 
of current metrics to represent bicycling comfort, as has also been shown in other research 
(Griswold et al., 2018). More specifically, they suggest new metrics need to focus on extending 
the positive side of these metrics (e.g., categories A or 1). 

 

Figure 11. Average video rating by level-of-service metrics. 
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Figure 12. Kernel density estimates of distribution of comfort responses by level-of-service 
metrics. The LTS classes 1-4 have been labeled A-D for easier comparison with the other 
methods. 

What Matters Most for Bicycling Comfort? 

To examine how strongly the road characteristics influence bicycling comfort while considering 
the experimental design and individual differences through socio-demographics and attitudes, 
we used multi-variable models with varying effects by video and person (See Appendix A: 
Extended Methods for detailed description of our model development process). These models 
have the power of indicating conditional associations between the predictor variables and 
comfort ratings. For example, the effect of bike lanes on comfort rating in the models depends 
on all the other variables such as whether people like biking or whether they are confident 
bicyclists. This helps ensure the effect of bike lanes is adjusted to its unique effect on comfort 
ratings. Without this adjustment, the effect of bike lanes on comfort could be due to other 
correlated variables. We provide detailed summary of all the modeling results in Appendix B: 
Model Parameter Summaries, and only report one selected model for discussion in this section 
(Main effects person-video). The selected model includes parameters that allow the comfort 
scores to vary by video and by person (see standard deviation (SD) person ID and SD video 
name intercepts in Figure 13). The intercept parameters describe the average thresholds 
between the seven comfort response categories (i.e., very uncomfortable, moderately 
uncomfortable, slightly uncomfortable, neither uncomfortable nor comfortable, slightly 
comfortable, moderately comfortable, very comfortable). Because we used an ordered logistic 
regression, the parameters are on the log-cumulative odds scale making them difficult to 
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directly interpret. However, we scaled the predictor variables so that the magnitude of the 
parameters could be more easily compared. Thus, Figure 13 shows the relative strength of each 
predictor in explaining bicycling comfort. For example, identifying as a woman has a stronger 
effect on comfort compared to having a child in the household, even though both have 
negative effects on bicycling comfort. Age has a relatively strong negative relationship with 
bicycling comfort indicating that the youngest people in the sample are much more 
comfortable in comparison to the oldest people. The six attitudinal variables in the model show 
relationships in the expected direction (e.g., the bike attitudes are positive, and the car/work 
attitudes are negative), and they tend to be stronger predictors of comfort compared to both 
gender and children in the household. The variables specifically focused on bicycling confidence 
and comfort in general have the strongest (positive) relationships with comfort response. These 
multi-variate results substantiate some of the bi-variate results observed in Figure 9.  

The remaining model parameters are the primary focus of this project because they provide the 
strongest evidence for identifying infrastructure minimums for comfortable bicycling. By 
including person-level variables, the modeled relationships between road-level variables and 
bicycling comfort are conditional on individual attitudes and preferences as far as we have 
defined them in the model. The first thing to observe about the road-level parameters in Figure 
13 is the large uncertainty of the effect of most variables (clear from the broad densities). This 
is especially the case for the variable that indicates that bikes must share space with cars (e.g., 
no bike infrastructure). The wide uncertainty of these effects is most likely because we only 
have 25 videos to examine (i.e., 25 unique combinations of road-level variables), and when we 
include varying intercepts for those videos, the specific relationships between road-level 
variables become more uncertain (see Appendix B: Model Parameter Summaries). The few road 
variables that do show strong independent positive effects on comfort are the presence of a 
conventional bike lane or a buffered bike lane (Figure 13). Also, prevailing speeds at or below 
speed limits of 25 or 35 mph had strong effects on bicyclist comfort. 

Along with estimates of road-level variables, the models indicate that person-level variation far 
outweighs the variation between the 25 videos (see standard deviation densities for SD person 
ID, and SD video name in Figure 13). This suggests that creating a comfortable bicycling 
environment for every participant with the features observed in these 25 videos will be 
impossible, and even that creating an environment that is comfortable for most participants 
will require the combination of many positive road attributes.  
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Figure 13. Model parameters describing the conditional relationships between each predictor 
variable and video response. 
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Estimating Minimum Infrastructure Needs 

To estimate the minimum infrastructure needs for making bicycling comfortable for the 
participants in this study, we simulated new environments based on a combination of road 
features (Table 3). We fixed the person-level variables at levels that would create predictions 
for only a very conservative cohort from our sample. Specifically, we chose to simulate 57-year-
old women without children in the household who are not very comfortable bicycling and in the 
10th percentile for bike positive attitudes and 90% percentile for car-focused or professional 
lifestyle attitudes. Simulating a road environment that would be very comfortable for people 
fitting the above description proved very difficult. Even for the best possible collectors and 
arterials (given the constraints of our data), only 18-28% of simulated respondents would rate 
the roads as “very comfortable” (Figure 14). If we lower the bar to “at least slightly 
comfortable”, we see that those best road environments are rated as comfortable for 50-65% 
of predicted responses. This finding highlights the inability of on-road facilities to enable 
comfortable bicycling for many in this conservative cohort and suggests that off-road or 
separated facilities may be the only environments that can provide a perceived safe and 
comfortable space to bike for people most uncomfortable bicycling on city streets. 

Table 3. Attributes of simulated arterials and collectors 

 Arterial Collector 

Scenario Poor Average Good Poor Average Good 

Vehicle Volume High High High High Average Low 

Speed Limit 
[40,50] 

mph 
[40,50] mph 

[30,40) 
mph 

[30,40) 
mph 

[30,40) mph < 30 mph 

Prevailing 
Speed – Speed 

Limit 
5 mph 0 mph -10 mph 5 mph 0 mph -10 mph 

Bike Lane type None Conventional Buffered None Conventional Buffered 
On-Street 

Parking 
Yes Yes Yes Yes Yes Yes 

Outside Lane 
Width 

13 ft 11 ft 9 ft 13 ft 11 ft 9 ft 

Bike Operating 
Space 

0 ft 5 ft 11 ft 0 ft 5 ft 11 ft 
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Figure 14. Model predicted responses for the comfortable side of the scale (cumulative 
comfort) to six simulated road environments for a conservative user group. 

When separated or protected facilities really are not an option, the simulations in Figure 
14suggest that the combination of low traffic volume and speed limits, narrow outside car 
travel lanes, prevailing speeds below the speed limit, and wide buffered bike lanes is likely to 
greatly increase perceived bicycling comfort. However, the values for these attributes need to 
be extreme to have a large impact (see Table 3 for specific values). Because we treated traffic 
volume as categorical based on present moving vehicles in the videos, we are not able to infer 
specific effects of more common measures of vehicle volume (e.g., AADT). However, our data 
does indicate specific guidance for managing vehicle speed. Speed limits at or above 40 mph 
indicate a strong reduction in comfort, but the difference between 25 mph speed limits and 30-
35 mph speed limits is less certain. However, when the speed limit effects are paired with 
prevailing vehicle speeds lower than those limits, the effect of speed can be substantial (see 
Appendix B: Model Parameter Summaries for specific parameter values). This finding implies 
that both reductions to speed limits and engineering changes to roads are needed to increase 
bicycling comfort.  

The strongest road variables in our models are clearly the effects of bike lanes and buffered 
bike lanes (Figure 13 and Appendix B: Model Parameter Summaries). But our models also 
indicate that adding a bike lane to a high volume, high speed road is not likely to provide a 
comfortable bicycling environment for most people. The real power of the bike lane effect is 
when paired with low vehicle volumes and speeds (see interaction models in Appendix B: 
Model Parameter Summaries).  
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While we observe considerable effects of socio-demographics and attitudes on ratings of 
comfortable bicycling environments, in general we find relative agreement across the 
infrastructure and other road attributes for influencing perceived comfort. For example, while 
in the aggregate women rate every video as less comfortable than men, women and men are in 
agreement on which videos present a more comfortable bicycling environment. The same is 
true when classifying this population by general attitudes of bicycling comfort and self 
perceptions of bicycling confidence. However, these effects are most prominent for the videos 
that were rated more comfortable on average. For the videos that were rated uncomfortable, 
the effects of socio-demographics and attitudes seem to be more attenuated. These results 
suggest that it may not be necessary to provide for minimum infrastructure needs by 
population segment, but instead provide a minimum infrastructure for just one conservative 
cohort, as satisfying the needs of a conservative cohort is very likely to satisfy the needs of the 
rest of the population. For example, the group of older women with attitudinal predispositions 
favoring car instead of bike travel could be a good conservative cohort to use as a standard for 
providing infrastructure minimums.  

Of course exceptions will always exist, and any city or region looking to make bike 
infrastructure investments would be better informed about the expected effects of perceived 
bicycling comfort if they collect local survey data. Also, the lack of a strong relationship 
between common measures of “bikeability” and ratings of comfort suggest better metrics 
(classifications) of the network are needed. The current metrics (BLOS, LTS, etc.) seem to 
saturate when respondents just start to find comfort in a road design (i.e., BLOS level A and LTS 
level 4 are only providing comfortable bicycling environments for a small percentage of our 
survey population). This suggests the need for more refined classes on the comfortable/suitable 
range of those scales.  

Our study of bicycling comfort is an important step to understanding how our roads need to 
change for bicycling to be a viable travel option. However, identifying road attributes that make 
bicycling comfortable is just one piece of the infrastructure puzzle. Ensuring that infrastructure 
projects that improve comfort are strategically placed within the context of a comfortable 
network of roads is vitally important for the success of changing perceptions and ultimately 
increasing bicycling. 

Next Steps 

This study improves our understanding of comfortable bicycling environments which can have 
important ramifications for increasing bicycling. Although we conclude that there may not be a 
need to design bicycling environments by population segments, future analysis of this data that 
includes interaction effects between person level variables and road variables or latent 
population stratification (i.e., “bicyclist types”) may require a revision to this conclusion. 
Furthermore, the limitations of our sample characteristics and video stimuli indicate more 
research is needed to ensure the biases from our study are not the primary cause for our 
results. For example, analysis of the current video data—because the video experiment did not 
include off-street paths and protected bike lanes—stops short of providing evidence for 
environments that are truly comfortable for the super majority of the sample. In addition, this 
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study included a convenience sample from UC Davis that, while unique for gaging bicycling 
comfort, may not represent the perceptions and attitudes of prospective bicyclists or truly 
disadvantaged people. Further research that expands the range of road environments and tests 
these on diverse populations is needed to provide a more complete picture of comfortable 
bicycling environments. 

  



 

 30 

References 

Archer, K.J., Williams, A.A.A., 2012. L1 penalized continuation ratio models for ordinal response 
prediction using high-dimensional datasets. Stat. Med. 31, 1464–1474. 
https://doi.org/10.1038/jid.2014.371 

Broach, J., Dill, J., 2016. Using Predicted Bicyclist and Pedestrian Route Choice to Enhance Mode 
Choice Models. Transp. Res. Rec. J. Transp. Res. Board 2564, 52–59. 
https://doi.org/10.3141/2564-06 

Buehler, R., Dill, J., 2016. Bikeway networks: a review of effects on cycling. Transp. Rev. 36, 9–
27. https://doi.org/10.1080/01441647.2015.1069908 

Bürkner, P.C., 2017. brms: An R package for Bayesian multilevel models using Stan. J. Stat. 
Softw. 80. https://doi.org/10.18637/jss.v080.i01 

Damant-Sirois, G., Grimsrud, M., El-Geneidy, A.M., 2014. What’s your type: a multidimensional 
cyclist typology. Transportation (Amst). 41, 1153–1169. https://doi.org/10.1007/s11116-
014-9523-8 

Dill, J., Goddard, T., Monsere M, C., McNeil, N., 2015. Can protected bike lanes help close the 
gender gap in cycling? Lessons from five cities, in: 94th Annual Meeting of the 
Transportation Research Board. Washington, D.C. URL http://docs.trb.org/prp/15-
3481.pdf 

Dill, J., Handy, S.L., Pucher, J., 2013. How to Increase Bicycling for Daily Travel. Active Living 
Research. URL http://trid.trb.org/view.aspx?id=1251364 (accessed 3.21.14). 

Dill, J., McNeil, N., 2013. Four Types of Cyclists? Transp. Res. Rec. J. Transp. Res. Board 2387, 
129–138. https://doi.org/10.3141/2387-15 

Doorley, R., Pakrashi, V., Byrne, E., Comerford, S., Ghosh, B., Groeger, J.A., 2015. Analysis of 
heart rate variability amongst cyclists under perceived variations of risk exposure. Transp. 
Res. Part F Psychol. Behav. 28, 40–54. https://doi.org/10.1016/j.trf.2014.11.004 

Dowling, R.G., Reinke, D., Flannery, A., Ryus, P., Vandehey, M., Petritsch, T., Landis, B., 
Rouphail, N., Bonneson, J., 2008. Multimodal Level of Service Analysis for Urban Streets, 
NCHRP Report 616. Transportation Research Board, Washington, D.C. 

Fitch, D.T., 2018. The road environment and urban bicycling: psychophysiological and 
behavioral responses. University of California, Davis. URL https://ncst.ucdavis.edu/wp-
content/uploads/2016/11/Fitch_Dissertation_FullManuscript.pdf 

Fitch, D.T., Handy, S.L., 2017. The relationship between experienced and imagined bicycling 
comfort and safety. Transp. Res. Board 97th Annu. Meet. 

Fowler, S.L., Berrigan, D., Pollack, K.M., 2017. Perceived barriers to bicycling in an urban U.S. 
environment. J. Transp. Heal. 6, 474–480. https://doi.org/10.1016/j.jth.2017.04.003 

Garrard, J., Handy, S., Dill, J., 2012. Women and Cycling, in: Pucher, J., Buehler, R. (Eds.), City 
Cycling. MIT Press, Cambridge. MA, pp. 211–234. 



 

 31 

Griswold, J.B., Yu, M., Filingeri, V., Grembek, O., Walker, J.L., 2018. A behavioral modeling 
approach to bicycle level of service. Transp. Res. Part A Policy Pract. 116, 166–177. 
https://doi.org/10.1016/j.tra.2018.06.006 

Handy, S.L., Boarnet, M.G., Ewing, R., Killingsworth, R.E., 2002. How the built environment 
affects physical activity: views from urban planning. Am. J. Prev. Med. 23. 

Handy, S.L., Xing, Y., Buehler, T., 2010. Factors associated with bicycle ownership and use: a 
study of six small U.S. cities. Transportation (Amst). 37, 967–985. 
https://doi.org/10.1007/s11116-010-9269-x 

Harris, M.A., Reynolds, C.C.O., Winters, M., Cripton, P.A., Shen, H., Chipman, M.L., Cusimano, 
M.D., Babul, S., Brubacher, J.R., Friedman, S.M., Hunte, G., Monro, M., Vernich, L., 
Teschke, K., 2013. Comparing the effects of infrastructure on bicycling injury at 
intersections and non-intersections using a case-crossover design. Inj. Prev. 19, 303–310. 
https://doi.org/10.1136/injuryprev-2012-040561 

Mekuria, M.C., Furth, P.G., Nixon, H., 2012. Low-Stress Bicycling and Network Connectivity. 
Mineta Transportation Institute, San Jose, CA. 

Monsere, C., Dill, J., McNeil, N., Clifton, K., Foster, N., Goddard, T., Berkow, M., Gilpin, J., Voros, 
K., Hengel, D. van, Parks, J., Communities, N.I. for T. and, 2014. Lessons from the Green 
Lanes: Evaluating Protected Bike Lanes in the U. S. National Institute for Transportation 
and Communities NITC-RR-583. 

National Research Council, Transportation Reserach Board, 2010. HCM 2010 : highway capacity 
manual. URL http://www.hcm2010.org/ 

Pucher, J., Buehler, R., Seinen, M., 2011. Bicycling renaissance in North America? An update and 
re-appraisal of cycling trends and policies. Transp. Res. Part A Policy Pract. 45, 451–475. 
https://doi.org/10.1016/j.tra.2011.03.001 

Sallis, J.F., Conway, T.L., Dillon, L.I., Frank, L.D., Adams, M.A., Cain, K.L., Saelens, B.E., 2013. 
Environmental and demographic correlates of bicycling. Prev. Med. (Baltim). 57, 456–460. 
https://doi.org/10.1016/j.ypmed.2013.06.014 

Sanders, R.L., 2014. Roadway design preferences among drivers and bicyclists in the Bay Area, 
in: 93rd Annual Meeting of the Transportation Research Board. Washington, D.C. URL 
http://docs.trb.org/prp/14-5454.pdf 

Stan Development Team, 2018. Stan Modeling Language. User’s Guid. Ref. Man. 1–488. URL 
http://mc-stan.org/manual.html%5Cnpapers2://publication/uuid/C0937B19-1CC1-423C-
B569-3FDB66090102 

Teschke, K., Harris, M.A., Reynolds, C.C.O., Winters, M., Babul, S., Chipman, M., Cusimano, 
M.D., Brubacher, J.R., Hunte, G., Friedman, S.M., Monro, M., Shen, H., Vernich, L., Cripton, 
P.A., 2012. Route infrastructure and the risk of injuries to bicyclists: A case-crossover 
study. Am. J. Public Health 102, 2336–2343. https://doi.org/10.2105/AJPH.2012.300762 



 

 32 

Vehtari, A., Gelman, A., Gabry, J., 2017. Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Stat. Comput. 27, 1413–1432. 
https://doi.org/10.1007/s11222-016-9696-4 

Venables, W.N., Ripley, B.D., n.d. Modern Applied Statistics with S. Fourth Edition. Springer, 
New York. 

Wei, A., 2018. Results of the 2017-18 Campus Travel Survey. URL 
https://itspubs.ucdavis.edu/wp-
content/themes/ucdavis/pubs/download_pdf.php?id=2889 

Winters, M., Brauer, M., Setton, E.M., Teschke, K., 2013. Mapping bikeability: A spatial tool to 
support sustainable travel. Environ. Plan. B Plan. Des. 40, 865–883. 
https://doi.org/10.1068/b38185 

  



 

 33 

Data Management 

Products of Research  

Data was gathered for this project from the Fall 2017 UC Davis Campus Travel Survey (CTS). The 
data includes participant ratings of bicycling comfort in a block designed video experiment. 
Other variables related to socio-demographics, travel characteristics, travel attitudes, travel 
perceptions, and travel experiences were collected in the survey. Most survey questions are 
measured on ratio and nominal scales. The CTS was an online web-survey using Qualtrics. 

The survey (and individual user) data will be preserved for long-term access by UC Davis 
researchers, Caltrans, and the general public by our hosting the data on the UC Davis ITS public 
facing server. Potential users include researchers, state/regional/local transportation planners, 
and bicycling advocacy organizations. 

The data will stand alone as an evaluation of relative bicycling comfort on distinct state 
highways in California. The highway settings are primarily urban, but vary in traffic conditions, 
lane configurations, speeds, and bicycling infrastructure. The data can be used to help establish 
minimum environmental characteristics for people of a variety of backgrounds and situations to 
feel comfortable bicycling in. The data will be anonymized before release to the public. Any 
geographic data that might be used to identify respondents will be removed. 

Data Format and Content  

The processed and subset (for purposes of this project) survey data will be stored in one 
comma delimited text file. Associated metadata is provided in comma delimited text file. In 
addition, all computer code developed for analyzing the data as a part of this project will be 
provided. 

Data Access and Sharing  

Data has been published on the data repository, Dryad, in partnership with the UC Davis library 
(https://datadryad.org/stash) for general public access and can be found under the following 
DOI: https://doi.org/10.25338/B8KG77  

Reuse and Redistribution  

All rights of reuse and redistribution can be found at the data Dryad site 
(https://datadryad.org/stash). All data used for this project is public and available for 
unrestricted use, unless otherwise specified in the data citation. If the data are used, our work 
should be properly cited: 

Fitch, Dillon; Carlen, Jane; Handy, Susan (2019), Bicycling comfort video experiment, v2, UC 
Davis, Dataset, https://doi.org/10.25338/B8KG77  

  

https://datadryad.org/stash
https://doi.org/10.25338/B8KG77
https://datadryad.org/stash
https://doi.org/10.25338/B8KG77
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Appendix A: Extended Methods 

Variable Cleaning and Selection 

Several predictor variables, such as an individual’s housing unit type, had non-response rates 
over forty-five percent. We considered imputing missing data for several variables that had 
missing entries but found that only age could be reliably imputed. To impute missing ages 
(roughly three percent of the entries) we used primary role (e.g., student, faculty, etc.) because 
it had a strong correlation with age and no missing data itself. We used the version of the age 
variable with missing values imputed when estimating models. We excluded from modelling the 
variables with nearly half or more of responses missing, and as a result all variables considered 
had less than ten percent of responses missing. We excluded a small number of survey 
responses with missing values for many variables we included in the modeling. This resulted in 
the loss of data from fewer than 100 individuals out of our sample of 3089, with the exact 
number depending on the specific analysis.  

We transformed some categorical variables to have fewer, more general categories. This 
helped to avoid small bin sizes that could lead to issues with model fitting (e.g., overfitting 
leading to unreliable inferences). For example, responses about one’s usual mode of 
transportation to UC Davis from a 13-category variable including entries like “taxi services” and 
“electric bike” were converted to a four-category variable with possible values: “bike”, “car”, 
“public transit”, “other” with 6869, 4688, 2923, and 812 entries respectively. 

Some variables had strong correlations, such that including all available variables in a model 
could generate misleading results. For example, the correlation between whether a street is 
divided, and its number of lanes is 0.88 (all four-lane streets in our data are divided, 17 out of 
19 two-lane streets are not, and one-lane streets cannot be divided by definition). The 
correlation between posted speed limit and prevailing car speed on streets in our data is over 
0.9. Some opinion variables (treating them as numeric variables on a scale from one to five) 
also showed moderately strong correlations. For example, the correlation between whether 
someone is satisfied with their commute trips to the UC Davis campus and whether they think 
their commute trips usually go well is about 0.6, whereas those variables are negatively 
correlated (-0.5 and -0.4 respectively) with whether traveling to campus stresses the 
respondent out. 

In some cases, we removed variables that were highly correlated with others, especially if one 
side of the correlated pair had more missing responses. For example, one’s primary role 
(undergraduate student, graduate student, visiting scholar, staff or faculty) is highly correlated 
with one’s reported level of education, but education level had more than fifty percent missing 
entries. The data show a similarly strong correlation between rent share (<5% missing) and rent 
split (~70% missing). 

For the variables we kept after data cleaning we fit ordered regression models with and without 
penalty terms to explore conditional effects on comfort ratings and help us remove 
inconsequential variables. We used the lasso penalty term implemented in the R package 
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glmnetcr (Archer and Williams, 2012) and the polr function from the MASS (Venables and 
Ripley, n.d.) package for this exploratory analysis, and subsequently removed factors from 
further consideration which had both no clear theoretical motivation and provided little 
association with comfort ratings. For example, a respondent’s opinion of how environmental 
concerns affect their choice of daily travel proved to have little association with comfort 
ratings, and it lacks a clear causal mechanism for effecting bicycling comfort. Figure A1 shows a 
summary of estimated penalized models with varying penalties. The paths in Figure A1 show 
the shrinking parameter values with increasing lasso penalties (from right to left). The faster the 
parameters shrink toward zero, the less likely the corresponding variable is to influence comfort 
ratings. From these we selected a pared down set of explanatory variables to include based on 
when the increase in the explanatory power of the model started to flatten (as shown by 
diminishing reductions in deviance as compared to a model with no explanatory variables).  

 

  

Figure A1. Change in model coefficients (each line) by iterative lasso penalty terms. As the 
penalty increases (from right to left), the parameters shrink toward 0. 

Confirmatory Modeling 

Varying Effects 

All our preliminary models had a lot of unexplained variation in ratings. In other words, there is 
a limit to our ability to explain comfort ratings given the individual-level and street-level 
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variables in our data set. Some of this variation could be due to individual-level effects that we 
did not (or cannot) measure. Examining model fit, including outliers from non-varying-effect 
models, we found evidence of “low raters” and “high raters”, who deviated consistently (below 
or above, respectively) from similar raters of a given video. Strong outliers from the models 
tended to be individuals who rated all streets very low on the comfort scale, but had attributes 
associated with high ratings, such as comfort biking on a four-lane road (not shown). This 
observation, along with the design of the experiment, motivated including varying effects in our 
models to capture this important variation. We included two varying intercept terms in our 
models, one for person and one for video. 

Model Estimation, Comparison, and Selection 

For our final models we chose a Bayesian analysis framework because of the ease with which 
we can protect against overfitting through priors, and for the ability to simulate scenarios that 
include all our models’ sources of uncertainty. We considered models with strongly restrictive 
priors (e.g., shrinkage “horseshoe” prior distributions) to further cull our variable set but found 
that they did not exhibit the expected effect of shrinking some variable effects to zero while 
maintaining others. Instead those priors shrunk all parameters slightly toward zero which had 
negligible effects on inference. Ultimately, we chose the more standard Gaussian and half-
student’s t priors for unconstrained and positively constrained priors, respectively. The priors 
provide soft constraints (i.e. weakly informative) on all parameters to reduce the chance of 
overfitting but have little effect on the ultimate inferences because we chose wide standard 
deviations. 

We compared a series of models which we summarize in Table 2 and report results in Appendix 
B: Model Parameter Summaries and chose one model for scenario simulation. We chose the 
Main Effects Person-Video model for scenario simulation because it had the less expected 
prediction error (Appendix B: Model Parameter Summaries) based on the approximated leave-
one-out cross validation (Vehtari et al., 2017). While the Interaction Effects Person-Video model 
has a similar expected predictive error, it proved much more challenging to interpret parameter 
values directly (as in Figure 13).  

To estimate our Bayesian models, we used the R package brms (Bürkner, 2017) which is an 
interface for the Stan computing language (Stan Development Team, 2018). We used the 
default estimation algorithm (dynamic Hamiltonian MCMC), with tuning parameters 
adapt_delta = 0.9, and max_tree_depth = 16, and ensured that each model parameter MCMC 
chain converged (r ̂< 1.01), and that the model produced no other diagnostic warnings from 
Stan. Our general model structure is as follows: 

log (
Pr(y𝑖 < 𝑘)

1 − Pr(y𝑖 < 𝑘)
) = 𝛼𝑘 + 𝛼𝑝𝑒𝑟𝑠𝑜𝑛[𝑖] +  𝛼𝑣𝑖𝑑𝑒𝑜[𝑖] − ∑ 𝛽𝑚𝑋𝑚𝑖

𝑀

𝑚=1

  

𝛼𝑝𝑒𝑟𝑠𝑜𝑛[𝑖] ~ Normal( 0 , 𝜎𝑝𝑒𝑟𝑠𝑜𝑛  ) 

𝛼𝑣𝑖𝑑𝑒𝑜[𝑖] ~ Normal( 0 , 𝜎𝑣𝑖𝑑𝑒𝑜  ) 

Priors  
𝛼𝑘  ~ StudentT( 3 , 0 , 5) 



 

 37 

(𝛽1, … , 𝛽𝑚)  ~ Normal( 0 , 5 ) 

𝜎𝑝𝑒𝑟𝑠𝑜𝑛  ~ HalfStudentT( 3 , 0 , 5) 

𝜎𝑣𝑖𝑑𝑒𝑜  ~ HalfStudentT( 3 , 0 , 5) 

Where log (
Pr(y𝑖≤𝑘)

1−Pr(y𝑖≤𝑘)
) is the log-cumulative-odds that response value y𝑖 is equal to or less than a 

possible response category k (very uncomfortable, …, very comfortable). 𝛼𝑘  are the threshold intercepts 
for the k thresholds between the k+1 response categories. 𝛼𝑝𝑒𝑟𝑠𝑜𝑛[𝑖] and 𝛼𝑣𝑖𝑑𝑒𝑜[𝑖] are the varying 

intercepts for person and video indexed by response i. 𝛽𝑚is the vector of non-varying effects for each 
predictor variable 𝑋𝑚. 𝜎𝑝𝑒𝑟𝑠𝑜𝑛  and 𝜎𝑣𝑖𝑑𝑒𝑜  are the standard deviation parameters for the varying 

intercepts for person and video. Each 𝛽𝑚𝑋𝑚𝑖 term is subtracted from the intercepts to ensure a positive 
𝛽𝑚 value indicates that an increase in 𝑋𝑚𝑖  results in an increase in the average response. This is because 
a decrease (hence subtraction) in the log-cumulative-odds for every outcome below the maximum 
results in a shift of probability toward the higher response categories. 
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Appendix B: Model Parameter Summaries  

Table A1. Model parameter summaries including the posterior mean and standard deviation, and the number of effective sample (n eff.). Also 
included are the expected out-of-sample model prediction errors (elpd_loo) where values closer to zero indicate less error. 

 Null Person Null Person-Video Main Effects Person 
Main Effects Person-

Video Interaction Person 
Interaction Person-

Video 

 mean sd n eff. mean sd n eff. mean sd n eff. mean sd n eff. mean sd n eff. mean sd n eff. 

Intercept[1] -3.10 0.05 991 -3.95 0.32 357 -2.18 0.29 700 -2.27 1.08 1096 -2.30 0.30 858 -2.40 1.67 2095 

Intercept[2] -1.81 0.04 849 -2.34 0.32 355 -0.62 0.29 688 -0.65 1.08 1097 -0.70 0.30 839 -0.77 1.67 2091 

Intercept[3] -0.65 0.04 786 -0.86 0.32 355 0.81 0.29 676 0.84 1.08 1097 0.76 0.30 838 0.72 1.67 2091 

Intercept[4] 0.03 0.04 763 0.02 0.32 355 1.65 0.29 682 1.73 1.08 1099 1.62 0.30 835 1.60 1.67 2092 

Intercept[5] 0.77 0.04 836 0.97 0.32 355 2.57 0.29 681 2.69 1.08 1098 2.56 0.30 849 2.57 1.67 2092 

Intercept[6] 2.20 0.04 1099 2.76 0.32 359 4.28 0.29 702 4.49 1.08 1098 4.32 0.30 853 4.36 1.67 2091 

sd(person) 1.79 0.04 810 2.18 0.04 781 1.63 0.03 821 1.71 0.03 850 1.68 0.03 1038 1.71 0.03 771 

sd(video)    1.57 0.25 552    0.73 0.16 838    0.81 0.25 816 

Woman       -0.34 0.08 757 -0.37 0.08 776 -0.34 0.07 983 -0.37 0.08 1412 

Age       -0.90 0.20 650 -0.94 0.21 632 -0.90 0.21 770 -0.93 0.21 1224 
Child under 18 yo 
in household       -0.22 0.12 649 -0.21 0.12 787 -0.23 0.12 871 -0.21 0.12 1287 
Usually bike for 
commute       0.17 0.08 657 0.19 0.08 627 0.18 0.08 881 0.19 0.08 1164 

Like biking       0.61 0.18 815 0.61 0.19 516 0.49 0.15 926 0.50 0.15 1082 

Need car       -0.28 0.15 513 -0.30 0.16 744 -0.23 0.12 939 -0.24 0.12 1455 

Feel safe       1.00 0.18 778 1.04 0.18 614 0.82 0.14 978 0.83 0.15 1103 

Like transit       0.44 0.15 686 0.46 0.16 560 0.34 0.13 975 0.36 0.13 1393 
Need to arrive 
professional       -0.23 0.14 741 -0.23 0.15 599 -0.19 0.12 903 -0.19 0.12 1304 

Stressed 
commuting       -0.58 0.16 737 -0.62 0.17 534 -0.47 0.13 945 -0.48 0.13 1462 
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 Null Person Null Person-Video Main Effects Person 
Main Effects Person-

Video Interaction Person 
Interaction Person-

Video 

 mean sd n eff. mean sd n eff. mean sd n eff. mean sd n eff. mean sd n eff. mean sd n eff. 

Confident bicyclist       0.78 0.12 595 0.83 0.12 617 0.81 0.12 934 0.82 0.13 1140 
Uncomfortable on 
mixed arterial but 
would ride there       0.96 0.09 364 1.00 0.09 591 0.97 0.09 831 1.00 0.09 1190 
Uncomfortable on 
mixed arterial and 
would NOT ride 
there       2.32 0.11 386 2.43 0.11 507 2.39 0.11 866 2.44 0.11 1306 

On-street parking       0.40 0.07 1737 0.39 0.63 1060 0.99 0.15 1334 0.80 1.22 2060 

Outside lane width       -1.14 0.13 2239 -1.15 1.22 887 -3.18 0.20 1400 -2.34 1.71 1587 

Moderate vehicle 
volume       -0.67 0.07 1284 -0.75 0.59 666 0.57 0.11 1419 0.08 0.93 1576 
High vehicle 
volume       -0.80 0.08 1116 -0.92 0.62 794 0.87 0.14 1135 0.37 1.20 1348 

Bike operating 
space       0.43 0.15 1159 0.73 1.21 797 1.41 0.32 1925 0.97 2.29 2360 

Speed limit [30,40)       -0.12 0.05 2073 -0.15 0.49 725 1.07 0.10 1798 0.87 0.88 1639 

Speed limit [40,50]       -0.65 0.08 1897 -0.75 0.66 788 -0.84 0.39 1097 -0.47 2.44 1729 
Conventional bike 
lane       1.83 0.07 1838 1.89 0.55 1007 3.05 0.21 1010 2.28 1.39 1535 

Buffered bike lane       2.99 0.09 1550 2.97 0.78 966 4.36 0.30 885 3.35 1.84 1608 
Prevailing vehicle 
speed - speed limit       -1.07 0.09 2334 -1.13 0.81 1348 -0.80 0.11 2193 -1.00 1.04 2426 

Moderate or high 
vehicle volume 
with no bike 
operating space       -2.58 0.45 1119 -2.04 3.08 847 -1.81 0.13 1187 -1.49 1.12 1562 

On-street parking 
* Conventional 
bike lane             -1.23 0.25 953 -0.42 1.63 1535 
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 Null Person Null Person-Video Main Effects Person 
Main Effects Person-

Video Interaction Person 
Interaction Person-

Video 

 mean sd n eff. mean sd n eff. mean sd n eff. mean sd n eff. mean sd n eff. mean sd n eff. 
On-street parking 
* Buffered bike 
lane             -0.66 0.38 877 0.14 2.26 1575 
On-street parking 
* Bike operating 
space             -3.20 0.36 1061 -2.20 2.39 1498 

High vehicle 
volume * 
Conventional bike 
lane             -1.92 0.23 1080 -1.09 1.59 1568 

High vehicle 
volume * Buffered 
bike lane             -2.13 0.25 1759 -0.79 1.91 1391 
Speed limit [40,50] 
* Bike operating 
space             -1.92 0.36 1399 -1.03 2.46 2324 
High vehicle 
volume * Speed 
limit [40,50]             1.11 0.26 1254 0.42 1.84 1652 
High vehicle 
volume * Speed 
limit [30,40)             -1.85 0.15 1786 -1.46 1.37 1941 

number of 
participants 3089 3089 3089 3089 3089 3089 

number of 
samples 15288 15288 15288 15288 15288 15288 

Expected log 
predictive density 

from 
approximated 
leave-one-out 

cross validation 
(elpd_loo) 

-25881.6 (85.8) -23009.6 (100.1) -22753.3 (97.1) -22260.0 (99.5) -22496.7 (98.7) -22260.2 (99.6) 
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