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Dietary lycopene intake and risk of prostate cancer defined by ERG
protein expression1
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ABSTRACT
Background: There is limited evidence that supports etiologically
distinct molecular subtypes of prostate cancer, the identification of

which may improve prevention. Given their antioxidant properties,

we hypothesized that lycopene and tomato sauce may be especially

protective against diseases harboring the common gene fusion trans-

membrane protease, serine 2 (TMPRSS2):v-ets avian erythroblasto-

sis virus E26 oncogene homolog (ERG).
Objective: We aimed to examine associations between estimated
lycopene and tomato sauce intake and the risk of prostate cancer

defined by ERG protein expression subtype.
Design: Our study population consisted of a prospective cohort of
46,719 men from the Health Professionals Follow-Up Study.

TMPRSS2:ERG was assessed by ERG immunohistochemistry on

tumor tissue microarrays constructed from radical prostatectomy

specimens. We used multivariable competing risk models to calculate

HRs and 95% CIs for the risk of ERG-positive and, separately, ERG-

negative disease. We implemented inverse probability weighting to

account for evaluating ERG status only in surgically treated cases.
Results: During 23 y of follow-up, 5543 men were diagnosed with
prostate cancer, among whom 884 were assayed for ERG (426

ERG-positive). With inclusion of only the latter cases, increasing

cumulative average tomato sauce intake was associated with a de-

creased risk of prostate cancer overall ($2 servings/wk compared

with ,1 serving/mo; multivariable HR: 0.70; 95% CI: 0.52, 0.95;

P-trend = 0.002). With respect to molecular subtypes, cumulative

average tomato sauce intake was associated with a decreased risk of

ERG-positive disease (HR: 0.54; 95% CI: 0.37, 0.81; P-trend =

0.004) but not with ERG-negative disease (HR: 0.96; 95% CI:

0.62, 1.50; P-trend = 0.10) (P-heterogeneity = 0.04). Increasing

quintiles of lycopene intake were associated with a decreased risk

of both subtypes (P-heterogeneity = 0.79). Inverse probability

weighting did not materially change the results.
Conclusions: Our results lend some support to the hypothesis that
prostate cancers that harbor TMPRSS2:ERG may be etiologically

distinct from fusion-negative cancers. In particular, tomato sauce

consumption may play a role in reducing TMPRSS2:ERG-positive

disease. Am J Clin Nutr 2016;103:851–60.

Keywords: ERG protein expression, TMPRSS2:ERG, lycopene,
prostate cancer, tomato sauce

INTRODUCTION

Prostate cancer is marked by genetic complexity (1–3), in-
cluding point mutations, chromosomal rearrangements, and
gene fusion events, the most common of which is the trans-
membrane protease, serine 2 (TMPRSS2):v-ets avian erythro-
blastosis virus E26 oncogene homolog (ERG)13 fusion (4). Few
studies have considered possible etiologic differences between
distinct molecular subtypes of disease. The identification of risk
factors for molecular subtypes of prostate cancer has the po-
tential to improve opportunities for prevention of a disease for
which modifiable risk factors have remained elusive.

TMPRSS2:ERG occurs in the tumors of half of patients with
prostate cancer (5), translating to.100,000 new cases of fusion-
positive cancer in the United States each year (6). Experimental
and clinical evidence suggests that cancers with the fusion define
a distinct subgroup of prostate cancers with respect to phenotypic
changes and disease progression (5). From an etiologic perspective,
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however, there are scant epidemiologic data regarding differ-
ential risk factors for TMPRSS2:ERG-positive and -negative
tumors. Only recently, one population-based case-control study
provided some evidence for a differential association between
obesity and the risk of cancers that are positive compared with
negative for TMPRSS2:ERG (7).

This article focuses on the carotenoid lycopene and tomato
sauce for its substantial contribution to lycopene intake. Many
analyses, including in the HPFS (Health Professionals Follow-Up
Study), have shown increasing lycopene and tomato sauce intake
to be inversely associated with prostate cancer risk (8–10). Ly-
copene is the most efficient among carotenoids in quenching
singlet oxygen molecules (11–13), and it may also interfere with
reactions initiated by free radicals (14, 15). These exceptional
antioxidant properties and the accumulation of lycopene at high
concentrations in the prostate (16–19) are a likely basis for the
role of lycopene in protecting against prostate cancer. That an-
tioxidants result in a reduction in DNA damage (17, 20–23)
becomes intriguing in the context of TMPRSS2:ERG, which
results from the ineffective repair of DNA double-strand breaks
(24–26).

In this prospective cohort study within the HPFS, we examined
the hypothesis that lycopene and tomato sauce intakes are as-
sociated with a lower risk of TMPRSS2:ERG-positive prostate
cancer more so than of TMPRSS2:ERG-negative prostate cancer.
We incorporated novel statistical methods using inverse proba-
bility weighting to account for sampling prostate cancer cases
treated with radical prostatectomy (RP).

METHODS

Study population

The HPFS is an ongoing prospective cohort of 51,529 male
health professionals in the United States, aged 40–75 y at en-
rollment in 1986. Participants responded to a baseline ques-
tionnaire with regard to their medical histories and known or
suspected contributors to cancer and other chronic diseases.
Follow-up questionnaires have been mailed every 2 y to update
information on lifestyle factors and to identify newly diagnosed
health outcomes.

For these analyses, we excluded men who reported cancers
other than nonmelanoma skin cancer at baseline in 1986 (n =
2087). We also excluded men who reported implausible caloric
intakes (,800 or .4200 kcal/d), who left .70 food items blank
(n = 1524), or who did not report their consumption of tomato
sauce (n = 1167) on the baseline food-frequency questionnaire
(FFQ). Last, we excluded men who were missing a date of birth
(n = 32). The remaining 46,719 men comprised the study pop-
ulation for these analyses.

The institutional review boards at the Harvard T.H. Chan
School of Public Health and Partners Health Care approved this
study. Written informed consent was obtained from each subject.

Assessment of dietary intake

Dietary intake, including that of tomato sauce and other foods
contributing to lycopene intake, was estimated via a semi-
quantitative FFQ, described in detail elsewhere (27), adminis-
tered every 4 y since 1986. For each item listed on the FFQ,

a commonly used unit or portion size was specified, and
participants were asked how often, on average, over the past
year, they had consumed that amount of each food. Participants
could choose from 9 possible frequencies, ranging from never
to $6 times/d.

Food items listed on the FFQ that contributed to lycopene
intake included tomatoes, tomato sauce, tomato juice, pizza,
salsa, picante or taco sauce, ketchup or red chili sauce, water-
melon, and pink grapefruit. Total lycopene intake was computed
by multiplying the consumption frequency of each unit of the
food items by the lycopene content of the specified portions by
using composition values from the USDA sources supplemented
with other data (28–30). Mean correlation coefficients between
intakes determined by two 1-wk diet records and the FFQ (ad-
justed for week-to-week variation in the diet records) were, on
average, 0.64 for total carotene (27) and 0.37 for tomato sauce
(31). The correlation between the computed dietary intake of
lycopene and plasma concentration of lycopene adjusted for age,
BMI, and plasma lipids was 0.46 (32). Among specific food
items, tomato sauce had the strongest correlation with blood
lycopene (r = 0.37) (32).

Ascertainment of prostate cancer cases and clinical data

Prostate cancer cases were initially identified by self-report or
participants’ next of kin and confirmed by medical record and
pathology report. Given the high accuracy of reporting among
men with available medical records, these analyses included the
9% of cases indicated only by self-report or death certificates.
Deaths were ascertained via reports from family members and
inspection of the National Death Index. Follow-up for mortality
was .98% complete.

The study team reviewed records to abstract information about
tumor stage, Gleason score, and prostate-specific antigen (PSA)
level at diagnosis, as well as treatments. To reduce detection bias,
we censored men who were diagnosed with stage T1a cancers
(n = 257), which are discovered incidentally during treatment of
benign prostatic hypertrophy (33). Prostate tissue was available
for prostate cancer cases through July 2009; we thus ended
follow-up at that time. In total, 5543 prostate cancer cases were
diagnosed during the study period.

Tumor tissue cohort and immunohistochemistry

We retrieved archival prostate tumor tissue from men who
underwent RP (95%) or transurethral resection of the prostate
(5%). The retrieval process was previously described (34).
Among the 5543 cases, we undertook biomarker analysis for 884
cases with formalin-fixed paraffin-embedded RP specimens.
Study pathologists reviewed hematoxylin-and-eosin slides to
provide uniform Gleason grade and other histopathologic fea-
tures and to select areas of tumor for construction of tumor tissue
microarrays (TMAs) (35). We constructed TMAs by taking at
least three 0.6-mm tumor cores from the primary nodule or
nodule with the highest Gleason grade and transferring them to
a recipient block (36).

We used immunohistochemistry of ERG protein expression on
TMAs as a proxy measure of TMPRSS2:ERG status. The method
has been shown to have high concordance with fusion status
assessed by alternate methods (37–39). Details of the assessment
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were described previously (40). Briefly, ERG antisera (1:100,
Clone ID EPR3864; Epitomics) were applied to 0.5-mm TMA
sections and visualization of ERG was accomplished by using
the 3, 3-diaminobenzidine substrate kit (Vector Laboratories). A
single pathologist scored each case as ERG-positive if at least 1
TMA core had positive ERG staining within prostate cancer
epithelial cells. Of cases that were positive for ERG on at least 1
core, 85% stained positive for ERG in all cores.

Dietary exposures

We assessed estimated total lycopene and tomato sauce intakes
as separate exposures. Lycopene intake was adjusted for total
energy intake by using residuals from a regression analysis (41)
and categorized into quintiles. Tomato sauce intake was cate-
gorized into prespecified FFQ categories and adjusted for energy
intake by inclusion in multivariable models. We first used cu-
mulative average intakes to minimize within-person random
variation and computed an assessment of long-term intake using
all available questionnaires (42). By using this categorization, we
related intake from the 1986 questionnaire to cancer incidence
from 1986 to 1990, average intake from the 1986 and 1990
questionnaires to cancer incidence from 1990 to 1994, and so
forth. Data from the previous FFQ were carried forward to the
next time period for participants with incomplete FFQ in-
formation after baseline. Second, we used quantiles of baseline
exposure to allow for a maximum induction period between
exposure and period of risk.

Statistical analysis

Inverse probability weighting

ERG status was evaluated in 884 men with available tissue out
of 2300 total men who were treated with RP. This subset of
patients was diagnosed at a more localized stage, had tumors with
lower Gleason scores, had lower PSA levels, and were more often
diagnosed in earlier years relative to cases in the HPFS who
received other treatments (e.g., external beam radiation) (n =
3243). To account for the potential bias due to overselecting
surgery patients, we implemented inverse probability weighting
to validly estimate the association between exposures and
prostate cancer incidence by ERG expression subtype. We ap-
plied weights, in each time period, equal to 1 for all subjects
who did not develop cancer and equal to zero for patients who
developed cancer but who did not have RP tissue available. For
patients who had tissue available for assay, we applied weights
that accounted for clinical characteristics at and timing of di-
agnosis. Whenever clinical stage (n = 664), Gleason score (n =
1099), or PSA (n = 1037) were not available, we implemented 2
methods to deal with the missingness when creating the weights.
For our primary analyses, we used a missing indicator for men
without values of stage, Gleason score, and PSA at diagnosis. In
secondary analyses, we created and implemented weights in
which we replaced missing data by the most common value
among men with data. Results were comparable for the 2
methods, so we only present results from the former.

Cox models and competing risks

Participants contributed person-time from the date on which
they returned the baseline questionnaire until prostate cancer

diagnosis, death, or end of follow-up. We ran Cox proportional
hazards models adjusted for age and calendar time to assess
associations between dietary exposures and prostate cancer risk
overall. In addition, multivariable models were adjusted for race
(white, African American, Asian American, or other), height
(#68, .68–70, .70–72, or .72 inches), BMI at age 21 (in
kg/m2; ,20, 20 to ,22.5, 22.5 to ,25, or $25), current BMI
(,21, 21 to,23, 23 to,25, 25 to,27.5, 27.5 to,30, or$30),
vigorous physical activity (quintiles of metabolic equivalent task
hours/wk), smoking status (never, former/quit .10 y ago,
former/quit #10 y ago, or current), diabetes (yes or no), family
history of prostate cancer in father or brother (yes or no), PSA
testing in the previous period (yes; no, lagged by one period to
avoid counting diagnostic PSA tests as screening; collected from
1994 on; cumulative average models only), use of multivitamins
(yes or no), total calories (continuous), and intakes of calcium,
a-linolenic acid, supplemental vitamin E, alcohol (quintiles),
and coffee (none, ,1, 1 to ,2, 2 to ,3, or $3 cups/d). For
cumulative average models, covariates other than height, race,
BMI at age 21, and family history of prostate cancer were up-
dated in each questionnaire cycle. The results from simple and
multivariable models were comparable; we thus present results
from the latter models only. For all of the analyses, we con-
ducted linear trend tests across quantiles by modeling their
median values as continuous variables.

Next, we implemented an extension of Cox modeling as de-
scribed by Lunn and McNeil (43) that allows for risk factor
associations to vary by subtype. The method has been previously
described in detail (44). Briefly, we augmented the data to create
2 records for each subject in each questionnaire cycle, one each
for ERG-positive and ERG-negative disease. For evaluation of
ERG-positive cancer, cases diagnosed with ERG-negative dis-
ease were censored at diagnosis, and vice-versa. Men with
prostate cancer for whom ERG status was not assessed were also
censored at diagnosis. We fit a model that allowed for estimating
HRs for ERG-positive cancer and, separately, for ERG-negative
cancer compared with no cancer. We tested for heterogeneity
across these HRs using a likelihood ratio test (45).

For the models of prostate cancer overall and for those
assessing subtype-specific associations, we performed both un-
weighted and weighted analyses. For the latter, we weighted each
individual by the inverse probability weights described above. To
explore possible confounding by PSA screening, we ran analyses
stratified by time period, examining associations separately for
pre–PSA-era diagnoses (1986–1993) and PSA-era diagnoses
(1994–2009). Finally, in exploratory unweighted analyses, we
evaluated the risk of advanced prostate cancer (stage T3b or
higher at diagnosis, development of metastases during follow-
up, or death from prostate cancer) overall and by ERG status.

Analyses were conducted by using SAS version 9.4 (SAS
Institute). Tests were 2-sided, with P , 0.05 considered to be
significant.

RESULTS

At baseline in 1986, lycopene intakes ranged from a median of
2764 to 13,573 mg/d across extreme quintiles (Table 1). Men
with the lowest intake were slightly older than men with higher
intakes. Relative to men in the lowest quintile, men in the
highest quintile were more physically active and consumed more
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supplemental vitamin E, less alcohol, and more tomato-based
products. Baseline tomato sauce intake ranged from never to
a median of 3 servings/wk in the highest category of intake.

During 23 y of follow-up, we identified 5543 total prostate
cancer cases (Table 2). Among them, 2300 were treated with RP,
of whom 884 (15.9% of all cases) were assayed for ERG. Among
men treated with RP, those without tissue available were more
likely to be diagnosed in later years. As a result, they were also
more likely to consume slightly higher amounts of lycopene, the
intake of which increased over time in our cohort. Lifestyle and
demographic factors were otherwise similar for all men treated
with RP. Relative to such men, cases who were not treated with
RP were more likely to be older at the time of diagnosis and to be
diagnosed with higher grade and stage disease and PSA levels.
They also had a higher prevalence of diabetes and were less likely
to never have been smokers. In addition, data on their clinical
characteristics were less likely to be available at diagnosis.

Quintiles of cumulative average lycopene intake were asso-
ciated with a slightly reduced risk of prostate cancer overall after
adjustment for potential confounding variables (Table 3). Sim-

ilarly, cumulative average tomato sauce intake was inversely
associated with risk. Restricting analyses to include only cases
in whom ERG had been assayed, comparable HRs were more
strongly inverse for both lycopene intake and tomato sauce in-
take. Applying inverse probability weights to account for the
distinct distribution of clinical factors in the group assayed for
ERG did not materially change the results. Associations for
baseline intakes of exposures were similar, if slightly stronger.

Cumulative average lycopene intake was associated with
a reduced risk of both ERG-positive prostate cancer and ERG-
negative prostate cancer (Table 4). Differences between the
estimates for ERG-positive and ERG-negative disease were not
significant for either cumulative average (P-heterogeneity =
0.79) or baseline (P-heterogeneity = 0.51) lycopene intake.
Cumulative average tomato sauce intake was associated with
a reduced risk of ERG-positive cancer but had no association
with ERG-negative cancer (P-heterogeneity = 0.04). Similarly,
estimates for baseline tomato sauce intake and the risk of
ERG-positive and -negative cancers differed significantly (P-
heterogeneity = 0.02), although both estimates for the highest

TABLE 1

Age-adjusted characteristics of the HPFS at baseline in 1986 (unless otherwise noted) according to quintiles of energy-adjusted dietary lycopene intake1

Baseline dietary lycopene intake quintile, range (median)

#3861 (2764)

mg/d

3862–5439 (4670)

mg/d

5440–7196 (6258)

mg/d

7197–10,261 (8440)

mg/d

$10,262 (13,573)

mg/d

n 9707 9345 9242 9183 9242

Age,2 y 56.9 6 9.83 54.4 6 9.6 53.6 6 9.5 53.2 6 9.5 53.4 6 9.5

Height, inches 70.2 6 2.8 70.2 6 2.8 70.1 6 2.8 70.0 6 2.9 70.0 6 3.0

BMI at age 21, kg/m2 22.9 6 3.1 22.9 6 2.9 23.0 6 2.9 23.2 6 3.0 23.2 6 3.2

BMI, kg/m2 25.3 6 3.4 25.4 6 3.2 25.5 6 3.2 25.6 6 3.3 25.8 6 3.6

White, % 94.4 95.9 96.2 96.0 95.7

Family history of prostate cancer, % 12.9 11.9 12.3 11.9 10.9

Diabetes, % 2.9 2.6 3.1 3.3 3.8

Top quintile of physical activity ($28.5 MET-h/wk), % 12.5 13.2 15.6 16.5 18.1

Smoking status, %

Never 45.7 46.5 46.5 48.1 46.1

Past, quit .10 y before baseline 28.5 30.4 30.9 30.6 32.0

Past, quit #10 y before baseline 13.4 12.9 13.0 12.5 12.9

Current 12.4 10.2 9.7 8.7 9.0

Multivitamin use, % 40.9 41.1 41.9 41.8 42.2

Had PSA test,4 %

1994 36.7 37.6 38.3 39.3 37.2

2004 58.9 62.5 62.3 62.2 61.1

Nutrient and food intakes

Total energy, kcal/d 2078 6 673 2061 6 587 1944 6 566 1907 6 635 1951 6 615

Calcium, mg/d 906 6 455 899 6 414 895 6 409 893 6 420 888 6 421

a-Linolenic acid, g/d 1.0 6 0.4 1.1 6 0.4 1.1 6 0.4 1.1 6 0.3 1.1 6 0.3

Supplemental vitamin E, mg/d 35.2 6 81.0 34.5 6 81.0 37.4 6 84.2 39.9 6 87.0 42.3 6 90.5

Alcohol, g/d 12.5 6 17.8 11.8 6 15.8 11.0 6 14.5 10.5 6 14.0 10.7 6 14.5

Tomatoes,5 servings/wk 1.4 6 1.4 2.2 6 1.8 2.7 6 2.1 3.2 6 2.5 4.2 6 4.0

Tomato juice,5 servings/wk 0.1 6 0.2 0.2 6 0.3 0.3 6 0.4 0.5 6 0.8 1.6 6 2.6

Tomato sauce,5 servings/wk 0.3 6 0.3 0.6 6 0.3 0.7 6 0.4 1.0 6 0.8 2.2 6 1.9

Pizza,5 servings/wk 0.3 6 0.3 0.4 6 0.4 0.6 6 0.5 0.7 6 0.7 0.9 6 1.1

Coffee, cups/d 1.5 6 1.7 1.4 6 1.6 1.3 6 1.6 1.2 6 1.5 1.2 6 1.5

11 inch ¼ 0.0254 m; 1 cup ¼ 236.588 mL. HPFS, Health Professionals Follow-Up Study; MET-h, metabolic equivalent task hours; PSA, prostate-specific

antigen.
2Not adjusted for age.
3Mean 6 SD (all such values).
4Reported having a PSA test in the 2 y before the questionnaire date.
51 serving ¼ 1 tomato; 1 small glass of tomato juice; 0.5 cup (118.294 mL) tomato sauce; 2 slices of pizza.
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intake category were significantly protective. The application of
inverse probability weights did not materially change the results.

Analyses stratified by PSA era were not as well powered to
detect associations or heterogeneity. However, the exposures
were generally more strongly inversely associated with prostate
cancer overall in the pre-PSA era than in the PSA era. Cumulative
average lycopene and tomato sauce intakes were more strongly
inversely associated with ERG-positive prostate cancer in the
pre-PSA era than in the PSA era. Baseline dietary intakes were
more strongly associated with ERG-negative prostate cancer in

the PSA era than in the pre-PSA era (data not shown). Analyses of
advanced prostate cancer were poorly powered but generally
resulted in more strongly inverse point estimates relative to
analyses of all prostate cancer and showed similar patterns of
heterogeneity by ERG status (data not shown).

DISCUSSION

In this integrative molecular epidemiology study, we con-
firmed that lycopene and tomato sauce intakes were inversely

TABLE 2

Characteristics of participants with prostate cancer in the HPFS at the time of diagnosis (1986–2005), by treatment and ERG status1

Characteristic

Participants treated with RP

Participants treated

otherwise

ERG-positive ERG-negative ERG status unavailable ERG status unavailable

n 426 458 1416 3243

Year of diagnosis, %

1986–1990 8.0 5.9 8.1 8.2

1991–1995 35.7 31.2 25.7 22.1

1996–2000 30.3 32.1 24.1 26.1

2000–2005 16.9 21.0 23.3 27.6

2006–2009 9.2 9.8 18.8 16.1

Age, y 65.1 6 6.12 65.8 6 5.8 65.8 6 5.9 72.9 6 6.9

PSA,3 ng/mL 9.7 6 11.6 10.4 6 12.6 11.7 6 112 20.8 6 155

Missing, % 7.3 8.5 8.9 25.9

Had screening PSA test, % 47.0 48.7 50.7 51.0

Biopsy Gleason score, %

2–63 66.9 63.6 66.4 56.9

73 26.8 26.4 27.0 28.2

8–103 6.3 10.1 6.6 14.9

Missing 9.9 11.4 15.9 24.1

Clinical stage, %

T1/T23 94.6 95.4 95.6 87.7

T33 4.5 3.1 2.7 3.9

T4/N1/M13 0.9 1.5 1.7 8.4

Missing 0.0 0.0 2.1 17.8

BMI, kg/m2 25.7 6 3.5 26.1 6 3.2 25.7 6 3.1 25.9 6 3.7

Diabetes, % 4.9 4.6 4.7 9.1

Top quintile of physical activity ($28.5 MET-h/wk), % 13.6 14.7 17.2 12.8

Smoking status, %

Never 50.7 50.7 48.0 44.1

Past, quit .10 y before diagnosis 32.0 34.3 36.8 38.8

Past, quit #10 y before diagnosis 11.5 8.9 10.9 11.9

Current 5.9 6.2 4.3 5.2

Multivitamin use, % 47.7 48.0 50.8 52.7

Nutrient and food intakes

Total energy, kcal/d 1993 6 586 1981 6 584 1945 6 598 1975 6 623

Lycopene, mg/d 7105 6 4925 7462 6 6203 7601 6 6410 7432 6 6859

Calcium, mg/d 1011 6 479 988 6 444 1015 6 487 1053 6 506

a-Linolenic acid, g/d 1.1 6 0.4 1.1 6 0.4 1.2 6 0.5 1.2 6 0.5

Supplemental vitamin E, mg/d 63.7 6 104 68.4 6 105 68.2 6 113 74.1 6 118

Alcohol, g/d 12.1 6 14.8 12.9 6 16.2 11.5 6 13.6 12.0 6 16.0

Tomatoes,4 servings/wk 2.5 6 2.2 2.5 6 2.1 2.8 6 2.6 3.0 6 3.3

Tomato juice,4 servings/wk 0.6 6 1.2 0.5 6 1.4 0.6 6 1.4 0.7 6 1.9

Tomato sauce,4 servings/wk 0.9 6 1.1 1.1 6 1.1 1.1 6 1.6 1.0 6 1.4

Pizza,4 servings/wk 0.5 6 0.6 0.5 6 0.6 0.5 6 0.7 0.4 6 0.7

Coffee, cups/d 1.2 6 1.5 1.2 6 1.5 1.2 6 1.4 1.1 6 1.4

1ERG, v-ets avian erythroblastosis virus E26 oncogene homolog; HPFS, Health Professionals Follow-Up Study; MET-h, metabolic equivalent task hours;

PSA, prostate-specific antigen; RP, radical prostatectomy.
2Mean 6 SD (all such values).
3Among those with data available.
41 serving = 1 tomato; 1 small glass of tomato juice; 0.5 cup (118.294 mL) tomato sauce; 2 slices of pizza.
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associated with prostate cancer overall. We found that tomato
sauce intake was more strongly associated with ERG-positive
than with ERG-negative disease but found only weak evidence
that lycopene intake may be differentially associated with the 2
subtypes.

Genomic rearrangements result from the ineffective repair of
DNA double-strand breaks (24–26). The double-strand breaks
that result in TMPRSS2:ERG have been shown to involve syn-
ergism between increased androgen receptor signaling and
genotoxic stress (46–48). Lycopene reduces both (17, 49–56),
and culturing prostate cancer cells with lycopene inhibits strand
breaks (57). Our findings of inverse associations between ex-
posures and ERG-positive disease lend some support to our
a priori hypothesis that lycopene and tomato sauce may protect
against the strand breaks that result in ERG-positive cancer.

It was unanticipated that analyses of lycopene and tomato
sauce would return different results with respect to associations
by ERG status. FFQ intakes of lycopene and tomato sauce were
relatively equal surrogates of plasma lycopene in our data (32), and
they showed similar magnitudes of association with prostate
cancer overall. Given that analyses by ERG status used a smaller
number of cases than analyses of prostate cancer overall, chance
could have played a role in the different results across exposures. It
is also possible that tomato sauce has components other than
lycopene that contribute to a reduced risk of ERG-positive disease.
Tomatoes contain phytochemicals beyond lycopene that may re-
duce oxidative stress, among them other carotenoids, polyphenols,
potassium, folate, ascorbic acid, and tocopherols (58–60). Two
experimental studies in rodent models found that tomato powder
more effectively inhibited prostate carcinogenesis than lycopene

TABLE 3

HRs (95% CIs) for lycopene and tomato sauce intakes and risk of prostate cancer overall: HPFS1

RP cases assayed for ERG status only

All cases HR (95% CI)

Cases, n HR (95% CI) n Unweighted Weighted

Lycopene intake

Cumulative average (median)

Q1 (3247 mg/d) 1219 1.00 (ref) 187 1.00 (ref) 1.00 (ref)

Q2 (5085 mg/d) 1199 1.05 (0.97, 1.14) 204 1.03 (0.84, 1.25) 1.05 (0.85, 1.29)

Q3 (6652 mg/d) 1102 0.98 (0.90, 1.06) 192 0.95 (0.78, 1.17) 1.03 (0.82, 1.28)

Q4 (8711 mg/d) 1034 0.95 (0.87, 1.03) 161 0.79 (0.64, 0.99) 0.78 (0.62, 0.98)

Q5 (12,941 mg/d) 989 0.95 (0.87, 1.03) 140 0.72 (0.58, 0.91) 0.72 (0.57, 0.91)

P-trend 0.04 ,0.001 ,0.001

Baseline (median)

Q1 (2764 mg/d) 1292 1.00 (ref) 217 1.00 (ref) 1.00 (ref)

Q2 (4670 mg/d) 1148 1.00 (0.92, 1.08) 205 0.96 (0.80, 1.17) 0.92 (0.75, 1.13)

Q3 (6258 mg/d) 1108 0.99 (0.91, 1.08) 174 0.82 (0.67, 1.00) 0.80 (0.64, 0.99)

Q4 (8440 mg/d) 1044 0.96 (0.89, 1.05) 167 0.80 (0.65, 0.99) 0.79 (0.63, 0.99)

Q5 (13,573 mg/d) 951 0.88 (0.81, 0.96) 121 0.59 (0.47, 0.74) 0.57 (0.44, 0.72)

P-trend 0.001 ,0.001 ,0.001

Tomato sauce intake2

Cumulative average

,1 serving/mo 681 1.00 (ref) 91 1.00 (ref) 1.00 (ref)

1 serving/mo to ,1 serving/wk 2899 0.97 (0.89, 1.06) 484 1.01 (0.81, 1.28) 1.11 (0.87, 1.42)

1 serving/wk to ,2 servings/wk 1304 0.96 (0.87, 1.06) 213 0.89 (0.69, 1.14) 0.92 (0.70, 1.21)

$2 servings/wk 659 0.89 (0.79, 0.99) 96 0.70 (0.52, 0.95) 0.71 (0.52, 0.98)

P-trend 0.02 0.002 ,0.001

Baseline

,1 serving/mo 1097 1.00 (ref) 168 1.00 (ref) 1.00 (ref)

1 serving/mo to ,1 serving/wk 2171 0.95 (0.89, 1.03) 350 0.88 (0.73, 1.07) 0.90 (0.73, 1.11)

1 serving/wk to ,2 servings/wk 1649 0.97 (0.89, 1.05) 294 0.87 (0.71, 1.06) 0.86 (0.70, 1.07)

$2 servings/wk 626 0.84 (0.76, 0.93) 72 0.49 (0.36, 0.65) 0.48 (0.35, 0.67)

P-trend 0.001 ,0.001 ,0.001

1Results are from Cox proportional hazards models. All of the models adjusted for age, calendar time, race (white,

African American, Asian American, or other), height (#68, .68–70, .70–72, or .72 inches), BMI at age 21 y (kg/m2;

,20, 20 to ,22.5, 22.5 to ,25, or $25), current BMI (,21, 21 to ,23, 23 to ,25, 25 to ,27.5, 27.5 to ,30, or $30),

vigorous physical activity (quintiles of metabolic equivalent task hours/wk), smoking (never, former/quit .10 y ago,

former/quit #10 y ago, or current), diabetes (yes or no), family history of prostate cancer in father or brother (yes or

no), PSA testing (yes; no, lagged by one period to avoid counting diagnostic PSA tests as screening; cumulative average

models only), use of multivitamins (yes or no), total calories (continuous), and intakes of calcium, a-linolenic acid,

supplemental vitamin E, alcohol (quintiles), and coffee (none, ,1, 1 to ,2, 2 to ,3, or $3 cups/d). ERG, v-ets avian

erythroblastosis virus E26 oncogene homolog; HPFS, Health Professionals Follow-Up Study; PSA, prostate-specific anti-

gen; Q, quintile; ref, reference; RP, radical prostatectomy.
21 serving = 0.5 cup (118.294 mL) tomato sauce.
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(61, 62). If tomato sauce promotes more antioxidation than ly-
copene, then the former might be more effective in reducing the
DNA double-strand breaks that result in TMPRSS2:ERG. Addi-
tional studies should test the robustness of our findings.

It was also surprising that associations between exposures and
prostate cancer overall were stronger for cases assayed for ERG
than for all men with disease. Given the limited number of ERG-
assayed cases, it seems likely that these differences were due to
chance. It is also possible, however, that there are true differences
between all men diagnosed with prostate cancer and those with
tumors assayed for ERG. In our study, men in the latter group
were more likely diagnosed earlier, and thus in the pre-PSA era.
Ours and a previous study in the HPFS cohort (10) found that

lycopenewas more strongly associated with prostate cancer in the
pre-PSA than in the PSA era. In addition, men treated with RP
tended to be healthier than men treated otherwise, and lycopene
could be more effective in protecting against prostate cancer in
healthier men. For example, men treated with RP were more
likely never smokers, and smoking likely decreases plasma ly-
copene (63), which could inhibit its protective effects. A final
explanation stems from the upregulation of the insulin-like
growth factor I (IGF-I) axis in prostate cancer (64). Lycopene
inhibits IGF-I (13, 65–67), which tends toward higher concen-
trations in younger populations. The protective action of lyco-
pene via the inhibition of IGF-I could thus be more impactful in
younger men, such as the subset with disease treated with RP.

TABLE 4

HRs (95% CIs) for lycopene and tomato sauce and risk of ERG-positive and ERG-negative prostate cancer: HPFS1

RP cases assayed for ERG status only

Unweighted HR (95% CI) Weighted HR (95% CI)

ERG-positive

cases, n

ERG-negative

cases, n ERG-positive ERG-negative ERG-positive ERG-negative

Lycopene intake

Cumulative average (median)

Q1 (3247 mg/d) 97 90 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

Q2 (5085 mg/d) 98 106 0.96 (0.73, 1.27) 1.09 (0.82, 1.45) 0.99 (0.74, 1.33) 1.11 (0.83, 1.49)

Q3 (6652 mg/d) 87 105 0.84 (0.63, 1.12) 1.07 (0.81, 1.43) 0.84 (0.62, 1.15) 1.23 (0.90, 1.67)

Q4 (8711 mg/d) 80 81 0.76 (0.56, 1.03) 0.83 (0.61, 1.12) 0.75 (0.55, 1.03) 0.81 (0.59, 1.11)

Q5 (12,941 mg/d) 64 76 0.65 (0.47, 0.89) 0.80 (0.59, 1.09) 0.62 (0.44, 0.86) 0.83 (0.60, 1.14)

P-trend 0.003 0.03 0.001 0.04

P-heterogeneity 0.79 0.40

Baseline (median)

Q1 (2764 mg/d) 109 108 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

Q2 (4670 mg/d) 106 99 1.00 (0.77, 1.31) 0.93 (0.70, 1.22) 0.94 (0.71, 1.25) 0.90 (0.67, 1.21)

Q3 (6258 mg/d) 79 95 0.74 (0.55, 0.99) 0.90 (0.68, 1.19) 0.70 (0.51, 0.97) 0.89 (0.65, 1.20)

Q4 (8440 mg/d) 73 94 0.71 (0.52, 0.95) 0.90 (0.68, 1.19) 0.72 (0.52, 1.01) 0.85 (0.63, 1.15)

Q5 (13,573 mg/d) 59 62 0.58 (0.42, 0.80) 0.60 (0.44, 0.83) 0.52 (0.37, 0.73) 0.61 (0.44, 0.86)

P-trend ,0.001 0.001 ,0.001 0.004

P-heterogeneity 0.51 0.64

Tomato sauce intake2

Cumulative average

,1 serving/mo 56 35 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

1 serving/mo to ,1 serving/wk 233 251 0.80 (0.59, 1.08) 1.35 (0.95, 1.93) 0.88 (0.64, 1.21) 1.45 (0.99, 2.11)

1 serving/wk to ,2 servings/wk 92 121 0.62 (0.45, 0.88) 1.31 (0.89, 1.92) 0.66 (0.46, 0.94) 1.32 (0.88, 1.98)

$2 servings/wk 45 51 0.54 (0.37, 0.81) 0.96 (0.62, 1.50) 0.58 (0.38, 0.88) 0.92 (0.58, 1.46)

P-trend 0.004 0.10 0.005 0.02

P-heterogeneity 0.04 0.08

Baseline

,1 serving/mo 95 73 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

1 serving/mo to ,1 serving/wk 175 175 0.80 (0.62, 1.04) 0.99 (0.75, 1.31) 0.83 (0.63, 1.08) 1.04 (0.77, 1.40)

1 serving/wk to ,2 servings/wk 122 172 0.64 (0.49, 0.85) 1.16 (0.87, 1.54) 0.63 (0.47, 0.84) 1.13 (0.84, 1.52)

$2 servings/wk 34 38 0.42 (0.28, 0.62) 0.57 (0.38, 0.87) 0.44 (0.29, 0.67) 0.55 (0.36, 0.84)

P-trend ,0.001 0.003 ,0.001 0.001

P-heterogeneity 0.02 0.03

1Results are from competing risks models. All of the models adjusted for age, calendar time, race (white, African American, Asian American, or other),

height (#68, .68–70,.70–72, or .72 inches), BMI at age 21 y (kg/m2; ,20, 20 to ,22.5, 22.5 to ,25, or $25), current BMI (,21, 21 to ,23, 23 to ,25,

25 to ,27.5, 27.5 to ,30, or $30), vigorous physical activity (quintiles of metabolic equivalent task hours/wk), smoking (never, former/quit .10 y ago,

former/quit #10 y ago, or current), diabetes (yes or no), family history of prostate cancer in father or brother (yes or no), PSA testing (yes; no, lagged by one

period to avoid counting diagnostic PSA tests as screening; cumulative average models only), use of multivitamins (yes or no), total calories (continuous), and

intakes of calcium, a-linolenic acid, supplemental vitamin E, alcohol (quintiles), and coffee (none, ,1, 1 to ,2, 2 to ,3, or $3 cups/d). ERG, v-ets avian

erythroblastosis virus E26 oncogene homolog; HPFS, Health Professionals Follow-Up Study; PSA, prostate-specific antigen; Q, quintile; ref, reference; RP,

radical prostatectomy.
21 serving = 0.5 cup (118.294 mL) tomato sauce.
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This mechanism would unlikely differ according to TMPRSS2:
ERG subtype, and thus could explain inverse effects for ERG-
negative disease.

Analyses of baseline exposures were more strongly inverse than
analyses of cumulative average exposures. Lycopene could act
early in the disease process, thereby rendering remote lycopene
intake most etiologically relevant. TMPRSS2:ERG is thought to
occur early in prostate carcinogenesis because it is not detected
in benign prostate (68), is detected in w20% of high-grade
prostatic intraepithelial neoplasia (68–70), and is most often
homogenously present or absent in any tumor nodule, even over
time (71, 72). Earlier-life lycopene exposures might thus be
more likely to affect the presence or absence of TMPRSS2:ERG.
In our study, however, baseline exposures were more strongly
associated with both ERG-positive and ERG-negative disease.

Several explanations have been proffered for the mixed evi-
dence with regard to associations between lycopene, tomato
products, and prostate cancer (9, 10). Another that may in part
explain inconsistencies is that studies were conducted in pop-
ulations with different prevalences of molecular subtypes. In
populations in whom cancers develop with a lower frequency of
a subtype associated with lycopene or tomato products, we might
not see strong associations between exposure and disease risk
overall. For example, Asian patients with prostate cancer have
a lower prevalence of TMPRSS2:ERG (40). Studies with a high
prevalence of Asian men have not found associations between
lycopene and tomato products with prostate cancer (73–75). It
should be noted, however, that studies in non-Asian populations
have also returned null results (76–84).

There are limitations to our study that are worth noting.
Restricting cases to men treated with RP rendered the entire
population of men who did not develop prostate cancer an in-
appropriate comparison group. We instead needed a comparison
group of men who would have received RP had they been
diagnosed with disease. To address this potential bias, we
implemented inverse probability weighting. In doing so, the
interpretation of the results changed from risk of prostate cancer
overall to risk of prostate cancer treated with RP with ERG status
available. In any case, the results were similar regardless of
weighting, and men with ERG status available were not espe-
cially different from other men with prostate cancer. We may not
have completely accounted for the bias, but the weights
accounted for the presumably most important clinical charac-
teristics (stage, Gleason score, and PSA at diagnosis). An ideal
next step would be to measure ERG status in biopsy tissue, which
would be available for virtually all men with prostate cancer.

Another limitation is possible misclassification of diet. Given
the prospective nature of the study, however, wewould expect any
bias in effect estimates that compared extreme quantiles to be
toward the null. The evaluation of cumulative average intake also
likely helped to minimize error. Observational research is limited
by the possibility of uncontrolled confounding. In this case, it
seems unlikely that it could entirely account for our results, given
the strength of the associations and the similarity between age-
adjusted and multivariable results. Our analyses of cumulative
average intake did not entirely account for the possibility of time-
varying confounding, but it likely was not a substantial issue
given the inverse results of analyses of baseline intake.

To our knowledge, only one case-control study (7) and no other
cohort studies have examined risk factors for differential asso-

ciations with distinct molecular subtypes of prostate cancer. Few
cancer epidemiology cohorts maintain prostate tissue re-
positories. The field also lacks a consensus with regard to the
important molecular subtypes of prostate cancer. Our study is
unique in its large prostate tumor tissue repository linked with
long-term follow-up. Another strength is the richness of covariate
data, which allowed us to account for potential confounders.

Our results suggest possible validity of the hypothesis that
prostate cancers that are positive for TMPRSS2:ERG are etio-
logically distinct from cancers that are negative for the fusion.
They also align with an ongoing paradigm shift in prostate
cancer epidemiology. The continued study of prostate cancer as
a single disease may conceal associations with particular sub-
types. Future research should focus on identifying additional
molecular subtypes that are important for differences in disease
initiation and promotion, as well as the identification of risk
factors by TMPRSS2:ERG status. Such research has the poten-
tial to improve opportunities for prevention of a disease for
which there is little agreement on how to reduce risk.
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