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People often have the intuition that they are similar to their
friends, yet evidence for homophily (being friends with similar
others) based on self-reported personality is inconsistent. Func-
tional connectomes—patterns of spontaneous synchronization
across the brain—are stable within individuals and predict how
people tend to think and behave. Thus, they may capture interin-
dividual variability in latent traits that are particularly similar among
friends but that might elude self-report. Here, we examined inter-
personal similarity in functional connectivity at rest—that is, in the
absence of external stimuli—and tested if functional connectome
similarity is associated with proximity in a real-world social net-
work. The social network of a remote village was reconstructed; a
subset of residents underwent functional magnetic resonance imag-
ing. Similarity in functional connectomes was positively related to
social network proximity, particularly in the default mode network.
Controlling for similarities in demographic and personality data (the
Big Five personality traits) yielded similar results. Thus, functional
connectomes may capture latent interpersonal similarities between
friends that are not fully captured by commonly used demographic
or personality measures. The localization of these results suggests
how friends may be particularly similar to one another. Additionally,
geographic proximity moderated the relationship between neural
similarity and social network proximity, suggesting that such asso-
ciations are particularly strong among people who live particularly
close to one another. These findings suggest that social connectivity
is reflected in signatures of brain functional connectivity, consistent
with the common intuition that friends share similarities that go
beyond, for example, demographic similarities.

social networks | homophily | fMRI | resting state | functional connectomes

Human social networks exhibit a high degree of homophily,
such that individuals who are close together in their social

network (i.e., friends or friends of friends, rather than people
further removed from one another in social ties) tend to be ex-
ceptionally similar to one another with respect to physical and
demographic traits, such as age, gender, and ethnicity (1). Yet, a
common intuition is that friends are similar to each other in ways
that go beyond readily observable and relatively coarse charac-
teristics, such as demographics. The most common method to
assess such similarities is the administration of self-report surveys
measuring how people tend to think and behave (i.e., personality).
However, past research has found no evidence, or only relatively
weak evidence, for a relationship between similarity in personality
and social network proximity (e.g., refs. 2 and 3).
A separate body of research using functional MRI (fMRI) has

shown that patterns of functional brain connectivity at rest
comprise person-specific “fingerprints” that capture interindi-
vidual variability in a wide range of social, cognitive, and be-
havioral tendencies and capacities (4–10). These resting-state
“functional connectomes” have also been shown to be predictive

of individual differences in self-reported personality (11). Given
that functional connectomes are predictive of an array of cog-
nitive and behavioral phenotypes, interindividual similarities in
functional connectomes may reflect similarities in how friends,
and more generally people close to one another in their social
network, think and behave. Such similarities may include those
that are not sufficiently captured by widely used self-report
surveys, such as measures of personality. Thus, fMRI can pro-
vide a window into the types of latent similarities that are asso-
ciated with friendship. This approach is particularly promising
given recent research integrating task-based fMRI and social
network analysis, which has shown, for example, that when
viewing videos, friends, and more generally, people closer to-
gether in their real-world social network, have exceptionally
similar neural responses, which could be indicative of similarities
in how friends attend to (12), understand (13), and interpret (14)
the world (15, 16). Taken together with other recent work (17),
these findings highlight the promise of integrating social network
analysis and tools from cognitive neuroscience to improve our
understanding of how individuals shape and are shaped by the
real-world social networks in which they are embedded.

Significance

In what ways are we similar to our friends? Here, we charac-
terized the social network of residents of a remote village, a
subset of whom contributed personality and neuroimaging
data. We demonstrate that similarity in individuals’ resting-
state functional connectomes predicts individuals’ proximity
in their real-world social network, even when controlling for
demographic characteristics and self-reported personality
traits. Our results suggest that patterns of functional brain
activity during rest encode latent similarities (e.g., in terms of
how people think and behave) that are associated with
friendship. Taken together, integrating neuroimaging and so-
cial network analysis can offer novel insights into how the
brain shapes or is shaped by the social networks that
it inhabits.
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Here, we tested if patterns of neural responding at rest (e.g.,
individuals’ functional connectomes) are associated with prox-
imity between individuals in the social network of an entire vil-
lage (Fig. 1). Specifically, we tested the hypothesis that greater
similarity in individuals’ functional connectomes would be asso-
ciated with greater proximity between those individuals in the
social network. Given the large body of research demonstrating
that links between interpersonal similarity in a number of cog-
nitive, affective, and behavioral outcomes and social network
proximity disappear beyond three or four “degrees of separa-
tion” (18–26), we focused our analyses on people four or fewer
“degrees of separation” from one another in the village’s social
network (Materials and Methods). We also tested if such rela-
tionships would persist after controlling not only for similarities
in demographic characteristics but also for similarities in self-
reported personality (i.e., the Big Five personality traits: extra-
version, neuroticism, agreeableness, conscientiousness, and
openness/intellect), which are thought to capture stable indi-
vidual differences in people’s cognitive, affective, and behavioral
tendencies (27). Although self-report personality questionnaires
capture much variation in how people tend to think and behave,
there is considerable variance in such tendencies that is unac-
counted for by such questionnaires (28) and that may be encoded
in individuals’ functional connectomes. Here, we tested if simi-
larity in such latent traits is associated with proximity in a
friendship network. Additionally, we examined which brain
networks were particularly strongly associated with social net-
work proximity to inform interpretations of the psychological
significance of these results, as well as predictions for future
research. Finally, given the well-established relationship between
the physical distance between people and their distance from one
another in social ties, we tested if geographic distance moderates
the relationship between neural similarity and social network
proximity.

Results
The complete social network of individuals living in a rural vil-
lage community (29, 30) located on a South Korean island
consisting primarily of older adults was characterized (Fig. 1).
The relative homogeneity of this sample with respect to demo-
graphic characteristics, such as age and race (Materials and
Methods), facilitates testing hypotheses regarding relationships
between neural similarity and social network proximity, above
and beyond interindividual similarity in demographic variables

(which were further accounted for in all statistical analyses). A
subset of individuals who participated in the social network
survey also participated in the fMRI study, in which they un-
derwent resting-state fMRI. Within each connected component
of the social network, the social network proximity between every
unique pair of fMRI participants was calculated; data from pairs
of participants within all connected components were combined
for statistical analyses (Fig. 1; see Materials and Methods for
further details). We then characterized each fMRI subject’s
whole-brain resting-state functional connectome (Fig. 2A and
Materials and Methods). Intersubject similarities in functional
connectomes were then calculated, and the resulting dyadic
connectome similarity vectors were subsequently used to predict
individuals’ social network proximity (Fig. 2B and Materials and
Methods). We also tested for relationships between social net-
work proximity and similarity in connectivity within and between
functional brain networks (Materials and Methods).

Intersubject Similarity in Neural Activity Predicts Social Network
Proximity in the Absence of a Stimulus. We first implemented a
data-driven, machine-learning approach to predict social net-
work proximity based on intersubject similarities in multivariate
patterns of resting-state functional connectivity distributed
across the entire brain using a partial least squares regression
(PLSR)-based algorithm (see Materials and Methods for further
details). Using a 10-fold cross-validation scheme, the algorithm
significantly predicted individuals’ social network proximity
based on the similarity in their functional connectomes, such that
the actual proximity between individuals in the social network
was significantly correlated with what was predicted by the model
(r = 0.502, P = 1.322 × 10−15), while controlling for their simi-
larities in demographic variables, such as age and gender
(Fig. 3A). Given the dependency structure of the data (i.e., the
same individual participates in multiple dyads), we conducted
permutation testing to more conservatively estimate the signifi-
cance of the correlation between real and predicted social net-
work proximity values across dyads (see Materials and Methods
for further details). As shown in Fig. 3B, the true r value was
significantly greater than the majority of the 5,000 permuted r
values (P = 0.036).
Through the algorithm’s dimension reduction procedure

(Materials and Methods), 293 unique neural similarity predictors
were consistently selected across all 10 cross-validation data
folds to be used in predicting social network proximity (see
Materials and Methods for further details). As shown in Fig. 3C,
these predictors measured intersubject similarity in functional
connectivity within and between several networks, and predictors
associated with the default-mode network (DMN) were most
frequently selected by the algorithm. The consistently selected
predictors, as well as the locations of the most frequently im-
plicated nodes (e.g., in left ventrolateral prefrontal cortex, the
left inferior parietal lobule, and left medial prefrontal cortex),
are also visualized on “glass brain” models in SI Appendix, Fig.
S1. However, given the large number of consistently selected
predictors, chord diagrams are provided to convey information
about the implicated brain networks (Fig. 3). Similar results were
observed when repeating this analytic procedure excluding dyads
that live in the same residences (ppermutation = 0.039; SI Appendix,
Fig. S2), such that similarity in functional connectomes signifi-
cantly predicted social network proximity and predictors associ-
ated with the DMN were most frequently selected by the
algorithm. Similar results were also observed when weighting
edges by the frequency with which individuals communicate with
each other (ppermutation = 0.013; SI Appendix, Fig. S3) or the
frequency with which they meet with each other (ppermutation =
0.002; SI Appendix, Fig. S4), rather than weighting edges by
emotional closeness ratings. Functional connectome similarity
was not, however, predictive of social network proximity when

Fig. 1. Social network characterization. Residents of a rural village located
on a small island completed a survey in which they indicated their social ties
with other individuals in their community. The complete social network (n =
798) of the village was reconstructed using this data, and a subset of resi-
dents (red nodes; n = 64) participated in the fMRI study. Lines (“edges”)
indicate the existence of a reciprocated or unreciprocated social tie between
individuals. For visualization purposes, unweighted edges were used to
depict social ties. However, in our analyses, edges were weighted by in-
dividuals’ ratings of emotional closeness with one another (Materials
and Methods).
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computing social distance in the social network without incor-
porating edge weights that encode relative interpersonal close-
ness for directly connected dyads (i.e., emotional closeness,
communication frequency, and meeting frequency), as shown in
SI Appendix, Fig. S5.

Individuals Who Are Close Together in Their Social Network Share
Similar Functional Connectomes. In an exploratory analysis, we
assessed the direction of the linear relationship between social
network proximity and each of the neural similarity predictors
selected across all cross-validation data folds to determine if
social network proximity was positively associated with similarity
in functional connectivity (see Materials and Methods for further
details). Indeed, 261 of the 293 predictors (89%) were positively
associated with social network proximity (Fig. 3D); the remaining
32 predictors were negatively associated with social network
proximity (Fig. 3E).

Individuals Who Are Close Together in Their Social Network Share
Similar Functional Connectivity within and between Brain Networks.
To complement our data-driven predictive modeling analysis and
better inform interpretation of the types of neural similarity

associated with social network proximity, we tested if social
network proximity was associated with intersubject similarity in
functional connectivity within and between each of the 13
functional brain networks defined in the Power et al. (31) atlas.
For each of the 91 statistical tests (13 tests based on within-
network connectivity similarity; 78 tests based on between-
network connectivity similarity), we adapted the method out-
lined by Chen et al. (32) to fit linear mixed-effects models with
crossed random effects to account for the dependency structure
of the data (Materials and Methods).
Similarity in functional connectivity was significantly associ-

ated with social network proximity when controlling for demo-
graphic similarities in nine of these models (Table 1). In all nine
models, we observed a positive relationship between functional
connectivity similarity and social network proximity, indicating
that in cases where the relationship between social network
proximity and neural similarity was significant, greater neural
similarity was associated with greater proximity in the social
network. These effects remained statistically significant after
correcting for multiple comparisons across 91 statistical tests
using false discovery rate (FDR) thresholding, as shown in Ta-
ble 1. Consistent with the results of the predictive modeling

Fig. 2. Functional connectome-based predictive modeling of social network proximity. (A) Subjects’ data were resampled to standard space, and the Power
et al. (31) atlas was used to define ROIs. Each ROI is associated with 1 of 13 functionally defined brain networks, signified by different colors. For each fMRI
subject, we then calculated pairwise Pearson correlations between neural time series extracted from a 15-mm-radius sphere centered on each ROI to form a
functional connectivity matrix (i.e., a functional connectome). (B) The off-diagonal elements in the upper triangular half of each subject’s functional con-
nectome were then flattened into a vector. For each unique pair of fMRI subjects, intersubject similarity in their connectome vectors was measured by
calculating pairwise Euclidean distances between corresponding functional connectivity values in subjects’ respective connectome vectors. (C) We used a
partial least-squares regression-based algorithm to predict individuals’ social network proximity based on the similarity in their functional connectomes (see
Materials and Methods for further details).
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analyses, the connectivity of areas in the DMN was particularly
frequently linked to social network proximity; three of the nine
models in which social network proximity was significantly linked
to neural similarity involved the DMN (Table 1). Similar results
were observed when repeating this analytic procedure excluding
cohabitating dyads (SI Appendix, Table S1) and when weighting
social ties by interindividual communication frequency (SI Ap-
pendix, Table S2) or by meeting frequency (SI Appendix, Table
S3) rather than by interpersonal closeness, as well as when social
ties were unweighted (SI Appendix, Table S4).

Intersubject Similarity in Functional Connectomes Was Associated
with Social Network Proximity while Controlling for Personality
Similarity. In additional exploratory analyses, the same data an-
alytic procedures described above were repeated to test if social
network proximity is associated with similarity in functional brain
connectivity while controlling not only for demographic simi-
larities but also for similarities in self-reported personality traits.
In the predictive modeling analysis, the algorithm successfully

predicted individuals’ proximity to one another in the social

network based on the similarity of their functional connectomes
while controlling for similarities in the Big Five personality traits
and demographic variables (r = 0.477, P = 6.795 × 10−15). This
significant relationship between actual and predicted social
network proximity remained significant after implementing
permutation testing to account for the dependency structure of
the data (P = 0.048). The algorithm’s dimension reduction pro-
cedure yielded a set of neural similarity predictors that were
remarkably similar to those reported in the primary predictive
modeling analysis, which controlled only for intersubject simi-
larities in demographic variables. Similarly, there was an over-
whelmingly positive relationship between these predictors and
social network proximity (SI Appendix, Fig. S6).
We also tested if, when controlling for interindividual simi-

larity in the Big Five personality traits, social network proximity
would remain significantly positively related to neural similarity
when using linear mixed-effects models to characterize similarity
in functional connectivity within and between functional brain
networks. As in our main analyses using this approach, social
network proximity was associated with similarity in functional

Fig. 3. Intersubject similarity in functional connectomes predicts social network proximity. (A) The PLSR-based algorithm successfully predicted social net-
work proximity from left-out data while controlling for intersubject similarities in demographic variables. The algorithm’s predicted social network proximity
was significantly associated with actual social network proximity. (B) This relationship was significant after conducting permutation testing to account for the
dependency structure of the data (see Materials and Methods for further details). (C) The algorithm consistently selected a multivariate pattern that included
293 neural similarity predictors across all 10 cross-validation data folds for predicting social network proximity. These predictors spanned all 13 functional
brain networks defined in the Power et al. (31) atlas. (D) A positive relationship between 261 of these 293 predictors and social network proximity was
observed. (E) In contrast, only 32 predictors were negatively associated with social network proximity. Note: Colors used for connections between two
different brain networks were arbitrarily assigned to one of the two implicated networks.
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connectivity between several pairs of brain networks after ac-
counting for personality similarity. Again, all significant rela-
tionships were positive (i.e., greater social network proximity was
associated with greater neural similarity in all cases). As in the
main results, when accounting for both demographic and per-
sonality similarity, the DMN appeared most frequently in the
models in which social network proximity was associated with
similarity in functional connectivity within and between brain
networks (SI Appendix, Table S5).
For both sets of analyses (i.e., both for predictive modeling

analyses and for analyses measuring relationships between social
network proximity and similarity in functional connectivity within
and between brain networks using linear mixed-effects models),
when controlling for similarity in the Big Five personality traits
convergent results were obtained when defining the social net-
work in different ways. For example, similar results were
obtained when excluding dyads composed of members who live
in the same residences both when using predictive modeling
(ppermutation = 0.026; SI Appendix, Fig. S7) and linear mixed-
effects models (SI Appendix, Table S6) and when social ties
were weighted by interindividual communication frequency (see
SI Appendix, Fig. S8 for predictive modeling results, ppermutation =
0.039; see SI Appendix, Table S7 for results using linear mixed-
effects models) or by meeting frequency (see SI Appendix, Fig.
S9, ppermutation = 0.011, and SI Appendix, Table S8), rather than
by emotional closeness. Using a social network in which edges
were unweighted (i.e., in which emotional closeness and fre-
quency of communication or meeting were not considered),
neural similarity was not predictive of social network proximity
using our predictive modeling approach (as in the main results;
see SI Appendix, Fig. S10); however, neural similarity remained
positively associated with proximity in the social network using
linear mixed-effects models based on similarity in connectivity
within and between functional brain networks (as in the main
results; see SI Appendix, Table S9). Taken together, these results
suggest that intersubject similarity in functional connectomes is
associated with social network proximity, particularly when tak-
ing into account information about the relative interpersonal
closeness of directly connected dyads (e.g., emotional closeness,
communication frequency, and meeting frequency). Further-
more, these relationships are not due to interpersonal similarity

in terms of the personality traits measured here (i.e., the Big Five
personality traits).

Connectome Similarity Is Most Strongly Related to Social Network
Proximity among Individuals Who Live Close to One Another. The
results of our primary analyses demonstrate that similarity in
individuals’ functional connectomes is associated with proximity
in their real-world social network. Prior work has also established
a relationship between geographic proximity and social network
proximity (33–35). We explored if and how geographic proximity
might impact the relationship between neural similarity and
social network proximity.
Very similar people who live far from one another may be less

likely to become friends (compared to very similar people who
live close to one another), as greater physical distance could lead
to fewer encounters. Living close by may provide opportunities
for people to befriend those with whom they are especially
compatible (including, for example, similar others). In the same
vein, associations between neural similarity and social network
proximity may also be particularly pronounced among people
who live close to one another if such associations reflect social
influence (i.e., social network proximity causing similarity),
rather than, or in addition to, assortativity (i.e., similarity causing
social network proximity). For example, there may be more
opportunities for interpersonal influence effects to unfold among
people who are close to one another in both social ties and their
physical location. Both of the possibilities described above would
predict that the relationship between neural similarity and social
network proximity would be strongest among people in close
geographic proximity to one another. It is also possible that
neural similarity would be most strongly related to social network
proximity among people who live relatively far from one
another—for example, people may only maintain friendships
with those who live far from themselves if they are exceptionally
compatible with one another.
To begin to arbitrate between these possibilities, we conducted

an additional exploratory analysis to test whether geographic
distance moderates the relationship between connectome simi-
larity and social network proximity. To calculate a single variable
measuring intersubject similarity in functional connectomes that
approximated the neural similarity data used in the predictive
modeling analysis, we used the aforementioned PLSR-based
algorithm and extracted the primary PLS component (Materials
and Methods). A linear mixed-effects model with crossed random
effects for both participants was used to test for an interaction
between the effects of connectome similarity and geographic
distance on social network proximity; the main effects of geo-
graphic distance and neural similarity were also included in the
model (Materials and Methods). We note that the results of the
analyses reported in the preceding sections should be used to
assess relationships between neural similarity and social network
proximity; the purpose of this analysis was specifically to test if
and how geographic distance moderates the relationships be-
tween connectome similarity and social network proximity
reported above.
We observed a significant interaction between geographic

distance and neural similarity (β = −0.163, SE = 0.044, P <
0.0001); significant main effects of neural similarity (β = 0.840,
SE = 0.071, P < 0.0001) and geographic distance (β = −0.322,
SE = 0.066, P < 0.0001) were also observed. The main effect of
geographic distance suggests that people who lived closer to one
another in the village tended to be closer to one another in the
social network. To better understand the interaction between
neural similarity and geographic distance, we conducted a simple
slopes analysis. This revealed significant associations between
neural similarity and social network proximity among people
who lived close to one another in the village (i.e., for whom the
walking distance between dyad members’ residences was

Table 1. Results of linear mixed-effects models testing for
associations between functional connectivity within and
between brain networks and social network proximity

Brain network(s) β SE P P (FDR-corrected)

DMN-VAN 0.183 0.068 1.803 × 10−4 0.016
DMN-CN 0.165 0.067 0.001 0.017
SMHN-SMMN 0.165 0.066 4.807 × 10−4 0.017
DMN-DAN 0.164 0.068 0.001 0.018
COCN 0.160 0.068 0.001 0.018
FPCN-SAN 0.164 0.071 0.001 0.018
AN-SMHN 0.150 0.067 0.002 0.022
DMN-FPCN 0.147 0.067 0.002 0.026
COCN-AN 0.151 0.071 0.003 0.029

Each model included crossed random effects for participants and a fixed
effect for neural similarity, with social network proximity as the outcome
variable. P values and SEs were adjusted to account for data redundancy
(Materials and Methods). Only significant associations are shown. AN, audi-
tory network; CN, cerebellar network; COCN, cingulo-opercular task control
network; DMN, default mode network; DAN, dorsal attention network;
FPCN, frontoparietal task control network; SAN, salience network; SMHN,
somatosensory motor-hand network; SMMN, somatosensory motor-mouth
network; VAN, ventral attention network.
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approximately one SD below the mean; see Materials and
Methods), β = 0.994, 95% CI [0.835, 1.154], SE = 0.081, t =
17.280, P < 0.0001, as well as among people who lived an average
distance from one another in the village, β = 0.839, 95% CI
[0.702, 0.976], SE = 0.070, t = 16.963, P < 0.0001, and among
people who lived far from one another in the village (i.e., walking
distance one SD above the mean), β = 0.677, 95% CI [0.513,
0.839], SE = 0.083, t = 11.480, P < 0.0001. Thus, the relationship
between neural similarity and social network proximity appeared
to be most pronounced among those who lived closest to one
another in the village (Fig. 4).
We also observed a significant interaction between the effects

of neural similarity and geographic distance on social network
proximity in four of the nine models in which similarity in
functional connectivity within and between brain networks was
associated with social network proximity. This is consistent with
the notion that the relationship between connectome similarity

and social network proximity is contingent on geographic prox-
imity (SI Appendix, Fig. S11). As in the moderation analysis using
the primary PLS component described above, in three of these
four models the most positive relationship between neural sim-
ilarity and social network proximity was observed among par-
ticipants who lived closest to one another—specifically, this was
the case in models characterizing similarity in connectivity 1)
between the DMN and the dorsal attention network, 2) between
the DMN and the frontoparietal task control network, and 3)
within the cingulo-opercular task control network. That said,
there was some heterogeneity in the nature of this interaction
across models. For example, in the remaining model that evinced
a significant interaction, the strongest relationship between
neural similarity and social network proximity was observed
among people whose homes were relatively far apart (SI Ap-
pendix, Fig. S11). As such, we hesitate to draw strong conclusions
from these exploratory moderation analyses. In order to move
toward a more systematic understanding of these phenomena,
we suggest that future work continue to investigate how inter-
personal similarity and geographic proximity interact to predict
social network proximity.

Discussion
The current results demonstrate that similarity in individuals’
patterns of neural connectivity at rest is related to closeness in
their real-world social network, above and beyond effects of
demographic variables or the Big Five personality traits. These
findings are in line with past research showing that friends ex-
hibit similar neural responses when perceiving naturalistic stim-
uli (e.g., movies), which have been attributed to similarities in
how people close together in social ties interpret and respond to
their environment (15, 16). The current findings demonstrate
that friendship and social network proximity are related not only
to individuals’ neural responses to exogenous stimuli but also to
their intrinsically organized neural activity at rest. Prior work has
demonstrated that an individual’s whole-brain resting-state
functional connectome can function as a “fingerprint,” in that
it is both uniquely identifying and stable across disparate points
in time (5, 36). Here, we show that intersubject similarity in a
distributed pattern of functional connectivity is associated with
social network proximity. Similarity in individuals’ connectomes
was overwhelmingly positively associated with their social
closeness in the real world, suggesting that friends share similar
resting-state activity. Moreover, we find that the relationship
between connectome similarity and social network proximity is
moderated by physical proximity, such that the link between
neural similarity and social network proximity tends to be most
pronounced among people who live close to one another. Inte-
grating the current findings into the extant literature on resting-
state functional connectivity can shed light on the types of in-
dividual difference variables that may be exceptionally similar
among friends and inform hypotheses to test in future research,
as described in more detail below.
We found that similarity in functional connectivity at rest was

associated with social network proximity while controlling for
demographic similarities. We also observed remarkably similar
results while controlling for intersubject similarity not only in
demographic variables but also in the Big Five personality traits.
Despite recent evidence demonstrating that similarity in func-
tional connectomes is associated with similarity in the Big Five
personality traits (37), personality data do not account for the
current results, in which similarity in functional connectomes was
associated with friendship above and beyond the effects of sim-
ilarity in the Big Five personality traits. Rather, the aspects of
functional connectome similarity that predicted friendship in the
current study may be related to similarities in latent cognitive,
emotional, and/or behavioral traits that are exceptionally similar
among friends but that are not sufficiently captured by the

Fig. 4. Geographic proximity moderates the relationship between con-
nectome similarity and social network proximity. (A) We tested if geographic
distance moderates the relationship between neural similarity and social
network proximity. (B) A linear mixed-effects model was used to test for an
interaction between the effects of connectome similarity and geographic
distance on social network proximity (Materials and Methods). We observed
a significant interaction between geographic distance and connectome
similarity, such that the relationship between neural similarity and social
network proximity was especially pronounced among individuals who lived
closest to one another in the village (Results). Shaded areas represent 95%
confidence intervals.
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self-report personality measure used here. When considered in
tandem with the current results, the large body of research
linking cognitive, emotional, and behavioral variables to func-
tional brain connectivity (38) provides preliminary clues re-
garding what kinds of interpersonal similarities might underlie
the observed relationship between neural similarity and social
network proximity. For example, patterns of resting-state con-
nectivity associated with the frontoparietal task control and
somatomotor networks have recently been shown to be predic-
tive of individual differences in trait empathic concern (10).
Similarly, functional connectivity of the DMN is predictive of a
component of empathy reflecting the extent to which an indi-
vidual feels another’s pain (39). Variables that are not tradi-
tionally considered social may also underlie relationships
between neural similarity and social network proximity. For ex-
ample, past work demonstrates that people close together in a
social network have particularly similar neural responses in re-
gions associated with attentional allocation, such as the superior
parietal lobule, while viewing movies (15, 16). Interindividual
similarity in attentional allocation, and in other processes that
are not inherently social, could facilitate the development of a
sense of “generalized shared reality” (i.e., the sense of sharing
similar thoughts, feelings or beliefs with someone else, including
about the world outside of one’s social relationships or interac-
tions), which has recently been shown to predict social connec-
tion between individuals (40). Thus, past work linking resting-
state connectivity within and between the brain networks impli-
cated in the current study to individual difference variables that
are not typically considered “social” may also be relevant. For
example, functional connectivity of the DMN has been linked to
individual differences in creativity (7), memory (6), fluid intelli-
gence (25), and attentional skills (41). In the current study’s
predictive modeling analysis, of the functional connectivity-based
predictors that best predicted social network proximity, 45%
were associated with the DMN; moreover, in the analyses linking
connectivity within and between specific brain networks to social
network proximity the DMN was the most frequently implicated
network. Thus, the current results point to testable hypotheses
about the kinds of interpersonal similarities that may be partic-
ularly pronounced among people close to one another in social
ties. These interpersonal similarities may include similarities in
social characteristics (e.g., different facets of empathy) and in
qualities that are typically not considered social but that might
have implications for social connection to the extent that they
are similar or dissimilar across individuals.
While the current study was primarily concerned with testing if

individuals’ social network proximity was linked to the similarity of
their functional connectomes, we also conducted an exploratory
analysis testing if geographic distance moderates this relationship,
given the well-established link between individuals’ physical
closeness and social closeness in the real world (42–45). Associ-
ations between similarity in functional connectivity and social
network proximity appeared to be strongest among people who
lived close to each other in the village (Fig. 4). This could plausibly
be caused by the constraints that geographic distance can impose
on both assortativity and social influence processes. For example,
assortativity may unfold more readily among people who live close
to one another than among people who live far apart, given that
similar people who live far from one another may be less likely to
meet and befriend one another than similar people who live close
to each other. On the other hand, social influence processes may
unfold most readily among people who are close to one another in
both social ties and physical space.
More generally, the current results alone are unable to inform

claims about the causal relationship between functional con-
nectome similarity and social network proximity. As noted
above, the moderating role of geographic distance could plau-
sibly stem from assortativity or social influence processes. Future

longitudinal studies should test if preexisting similarities in
resting-state activity causally predict social network proximity or
if social network proximity facilitates the convergence of indi-
viduals’ functional connectomes over time. For example, preex-
isting similarities in functional connectomes that reflect latent
trait similarities may foster friendship formation due to inter-
personal similarities facilitating communication and affiliative tie
formation (46, 47). This would be consistent with suggestions
that misattunement between individuals disrupts the smooth-
ness of social interactions (48) and may account for some in-
stances of social disconnection, including, but not limited to,
the social disconnection that characterizes some forms of
psychopathology—that is, with the “social interaction mismatch
hypothesis” (48, 49). Future work could test this possibility by
combining the forms of data collected in the current study with
unobtrusive behavioral measures of interpersonal coordination
and orienting during social interactions (50).
Alternatively, the current findings could stem from well-

established social influence processes that unfold within dyads
(51, 52) and percolate outward in social networks, causing peo-
ple to influence and be influenced by others to whom they are
connected only indirectly (42). Future work could use unobtru-
sive methods to track interaction patterns between individuals
(53) and how people approach and attend to one another during
interactions (50) to enrich understanding of how social influence
effects unfold over time in the real world. The repeated, inten-
sive, and sustained interactions that characterize friendships may
lead friends to develop similarities in how they tend to think,
feel, and behave, which become entrenched over time and
reflected in patterns of brain connectivity. In other words, in the
same way that sustained and intensive practice on complex
cognitive tasks involves particular patterns of engagement of
specific brain networks that impact future characteristics of
functional connectivity at rest (54), sustained and intensive in-
teractions between friends could lead to convergence in styles of
thinking, feeling, and behaving that are reflected in similarity in
functional brain connectivity at rest. Living near one’s friends
may make it easier to have intensive and frequent interactions
with them, which in turn could foster greater interpersonal
similarity over time. This would be consistent with the findings
that connectome similarity was most strongly associated with
social network proximity among people who lived close to one
another (Fig. 4) and that connectome similarity was particularly
predictive of social network proximity when weighting edges in
the social network by in-person meeting frequency (SI Appendix,
Fig. S4). It is also possible that assortativity and social influence
processes interact; for example, social network proximity may
increase interpersonal similarity through social influence, and
the resultant interpersonal similarities may further promote
friendship formation [e.g., because interpersonal similarity in-
creases the predictability of social interactions, leading to more
fluid and enjoyable interactions, and thus increasing the likeli-
hood of friendship formation (46)]. Future work using longitu-
dinal designs will be important to elucidate the relative
contributions of these mechanisms to the correspondence be-
tween similarity in patterns of neural responding at rest and
social network proximity.
The unique characteristics of our sample should be taken into

consideration when interpreting the current results. Given that
our sample consists of older adults living in a remote, rural vil-
lage on an island in South Korea, future work should test
whether functional connectomes are predictive of social network
proximity in additional samples. Similarly, future work should
investigate whether the neural variables important for predicting
social network proximity in the current study are also important
for predicting social network structure in other communities.
The kinds of interpersonal similarities that engender or result
from social network proximity likely vary across contexts, and
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thus investigations involving different communities (e.g., com-
munities in different cultural settings and different age groups)
may yield different results (55). In a similar vein, the magnitude
of the relationship between geographic distance and social net-
work proximity, as well as the interaction between geographic
distance and interpersonal similarity in predicting social network
proximity, likely differs across contexts (e.g., depending on an
area’s population density and the extent to which geographic and
functional distance are associated in a given community). Fur-
thermore, given prior work demonstrating that similarity in
neural responses to naturalistic stimuli is also predictive of social
network proximity (15, 16) and that tasks can emphasize indi-
vidual differences in functional connectivity (56), future work
should test if and how interpersonal similarity in functional
connectivity during tasks, including naturalistic stimulation, is
associated with social network proximity. Relatedly, future work
could examine how social network proximity relates to similarity
in neural responding in social contexts, given recent evidence
that social network variables relate to differential patterns of
neural responding in social contexts, such as when making rec-
ommendations to others (57) or experiencing social exclusion
(58). Similarly, in light of past work demonstrating that neural
synchrony is associated with successful communication (59), fu-
ture work could benefit from considering how functional con-
nectivity during social interactions relates to the quality of those
interactions, and more generally, from adopting a “second-
person neuroscience” approach to examine neural processes
during real-time social interactions (60). Additionally, given that
some forms of interpersonal misattunement (e.g., diverging
prediction and interaction styles) may disrupt social interactions
and the formation of social connections in several psychiatric
conditions (48, 49, 60), future work could examine how idio-
syncratic patterns of functional connectivity relate to social im-
pairments that characterize many forms of psychopathology (49)
and social disconnection more generally (61).
Taken together, the current results suggest the possibility of

homophily based on similarities in neural responding at rest.
More specifically, we find that similar patterns of resting-state
functional connectivity distributed across the brain are associ-
ated with friendship and social network proximity. Past research
on homophily has often focused on relatively coarse variables,
such as demographic characteristics; prior work testing the re-
lationship between friendship and similarities in personality has
tended to yield null or inconsistent patterns of findings. Thus,
much remains unknown regarding how friendship and social
network proximity relate to interindividual similarities in psy-
chologically meaningful variables. However, the current study
suggests that similarities in functional connectomes may capture
similarities in meaningful latent variables that are distinct from
demographic characteristics and the Big Five personality traits
and that are associated with individuals’ social closeness in their
real-world social network. Thus, functional connectomes could
serve as neural signatures that identify individuals who are likely
to form social ties and, more generally, as powerful tools for
studying how individuals’ brains influence, and are influenced by,
the structure of real-world social networks.

Materials and Methods
Part 1: Social Network Characterization.
Subjects. Individuals in Part 1 of the study were subjects from the third wave of
the Korean Social Life, Health, and Aging Project [KSHAP (30, 62)]. KSHAP is a
study on the health and social networks of older adults in rural communities
in South Korea. The current sample of subjects reside in Township K,
Ganghwa-gun in South Korea, and the size of the township is 26.43 km2. The
total township population was 860 individuals, and 591 individuals (349
females, mean age = 72.79, SD = 7.18) participated in the social network
survey, resulting in a response rate of 68.7%. The study was approved by and
performed in accordance with the standards of the Institutional Review
Board of Yonsei University, and all subjects provided written informed

consent for the experiment. See ref. 30 for a comprehensive overview of
measures included in Wave 1 of KSHAP data collection. In addition to the
measures listed in ref. 30, the third wave of KSHAP data included resting
state fMRI data on a subset of participants, as well as additional measures of
general cognitive functioning (used for screening fMRI participants as de-
scribed in Subjects) and a measure of personality [the Big Five 44-item
Inventory (63)].
Social network characterization. The social network survey was administered in
the subjects’ homes and in community centers. Subjects responded to a
survey asking them to enumerate their social network members (“alters”),
including a spouse (if any) and up to five people with whom they most often
discussed important concerns in the past 12 mo. This first prompt read,
“People often discuss important things with others. For example, this could
be something good or bad that happened to you, or it could be your usual
worry. When you look back over the past year, how many people do you talk
to often about important things, and who are those people?” In a second
prompt, subjects were also asked to enumerate a “very important” seventh
individual. This second prompt read, “Is there any person who seems very
important to you, other than your spouse or the discussion partners whom
you mentioned? This person would be someone with whom you have not
been in frequent discussions over the past year, but with whom you are still
feeling friendly.” These “very important” alters were not included in sub-
sequent data analysis given that the nature of these alters is qualitatively
different from those enumerated in response to the first prompt. Subjects
provided information about each alter’s name, gender, and residence.
Subjects were also asked to rate the extent to which they were emotionally
close with each of their alters (1: Not very close; 2: Somewhat close; 3: Very
close; 4: Extremely close). Alters who were not married to the subjects and
living outside of Township K were excluded. Alters who were enumerated
by more than one subject were identified based on the following criteria: 1)
At least two out of three Korean characters in their names matched, 2) their
gender matched, 3) their age difference was less than 5 y, and 4) their ad-
dresses belonged to the same village.

Social network analysis was performed using the Python package igraph
(64). We constructed a weighted, undirected graph, in which at least one
social tie between two nodes (i.e., nomination) was sufficient to constitute
an undirected edge. For example, an undirected edge would connect two
nodes, personi and personj, if 1) personi nominated personj as an alter, 2)
personi nominated personi as an alter, or 3) personi and personj each
nominated the other as an alter. For reciprocated edges (n = 270), each edge
was weighted by the mean of emotional closeness ratings provided by each
member of the dyad. For unreciprocated (i.e., not mutually reported) ties
(n = 745), if both dyad members had completed the survey, the corre-
sponding single emotional closeness rating was averaged with 0 (i.e., divided
by 2) in order to account for the unreciprocated nature of nonmutual social
ties. The resultant penalized emotional closeness value was used to weight
the undirected edge. However, in cases where the nominated alter would
have been incapable of reciprocating the nomination (i.e., in cases where
the alter did not participate in the survey; n = 320 edges), the corresponding
single emotional closeness rating was used to weight the undirected edge.
The resulting social network graph consisted of a total of 799 nodes and
1,015 edges and was used to estimate social distances between individuals.

Our main analyses involved weighting edges by ratings of emotional
closeness. As mentioned in Results (see SI Appendix for further details), we
repeated our main analyses using networks in which edges were 1)
weighted by communication frequency, 2) weighted by meeting frequency,
and 3) unweighted. While communication and meeting frequencies were
highly correlated with one another (r = 0.90), correlations between emo-
tional closeness ratings and meeting frequency (r = 0.28) and between
emotional closeness ratings and communication frequency (r = 0.32) were
comparatively modest.

Social distances were computed between fMRI participants within each
connected component of the social network (Fig. 1); data from dyads within
all connected components of the social network were concatenated for
subsequent statistical analyses. For our main analyses, and for additional
analyses using alternative edge weightings, Dijkstra’s algorithm (65) was
used to calculate the social distance between members of dyads within each
connected component. Dijkstra’s algorithm finds the path of “least resis-
tance” between each pair of nodes, where “resistance” is defined as the cost
of traversing a path between those nodes; here, cost was defined as the
inverse of an edge’s weight. Thus, weighted social distance was defined as
the smallest sum of inverted edge weights across intermediary edges be-
tween two individuals. Alternatively, social distance can be operationalized
as the smallest number of intermediary edges required to connect two in-
dividuals in the network (i.e., geodesic distance), where all edges are
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weighted equally. As noted above, social distances based on edges weighted
by emotional closeness, which were highly correlated with unweighted so-
cial distances (r = 0.88), were used for our main analyses so that emotional
closeness could be taken into account. We then negated the weighted social
distance values to convert them into social network proximity values
(i.e., higher values reflect greater closeness in the social network) in
subsequent analyses.

Part 2: Neuroimaging Study.
Subjects. Of the 591 individuals that participated in Part 1, 195 individuals
underwent further screening for preclinical neurocognitive disorders 1 y
later. Individuals were excluded if they 1) scored 1.5 SD below the mean on
the Mini-Mental State Examination for Dementia Screening (66), 2) were in
the fifth percentile on the Long-term Memory Recall Index or Working
Memory Index in the Elderly Memory Scale (67), or 3) had significant cog-
nitive or behavioral changes in the preceding year, as assessed using the
Clinical Dementia Rating (68). Sixty-eight subjects passed the screening
process and participated in the fMRI session, in which they were instructed
to rest quietly with their eyes open and not to fall asleep. Three subjects
were excluded due to excessive movement, neurological abnormality, and
diffuse signal confounds. One subject did not complete the social network
survey and was also excluded.

Of the remaining 64 fMRI subjects, there were 2,016 unique potential fMRI
dyads. Of the 2,016 unique fMRI dyads, 737 dyads had undefined distances
between them (i.e., nodes were in separate components of the network) and
were excluded from analysis. Of the 1,279 remaining dyads, 1,038 dyads were
characterized by a geodesic distance greater than four and were excluded
from analyses given prior work demonstrating that similarities in neural
responses in people four or more “degrees of separation” apart are highly
variable and not significantly different from that of social dyads two or
three “degrees of separation” from one another (15). More generally, a
large body of research demonstrates that relationships between interper-
sonal similarities in a variety of cognitive, emotional, and behavioral phe-
nomena (e.g., risk perception, cooperation, smoking, depression, loneliness,
and happiness) and social network proximity disappear beyond three to four
“degrees of separation” (18–24). This widely documented phenomenon may
result from social influence effects decaying with social distance (69), the
relative instability of long chains of social ties (69), assortativity
(i.e., attraction to similar others) only being possible when opportunities to
encounter similar others exist (which becomes less likely as individuals be-
come further removed from one another in social ties), or some combination
of these factors. While the current work does not attempt to arbitrate be-
tween these possibilities, we limited our analyses to dyads four or fewer
“degrees of separation” from one another in light of these findings.

We note that recoding very large social distances to a common value (e.g.,
∼4) would have minimal impact when analyzing networks with smaller di-
ameters and fewer dyads at remote social distances from one another (e.g.,
when analyzing the social network of a classroom rather than a village, city,
or province). However, in networks with larger diameters (here, the diam-
eter of the largest connected component in the network is 18) and where
the vast majority of dyads have a social distance greater than four (here,
1,038 out of 1279, or 81% of fMRI dyads), recoding high social distance
dyads would result in the vast majority of dyads being assigned the same
social distance value (e.g., of four). Moreover, because we hypothesize that
this very large set of dyads would be extremely heterogeneous with respect
to their level of similarity, as described above, this would introduce noise
that would likely obfuscate the effects that we hypothesized a priori to exist
at more proximal social distances. That said, we note that although we
constrained our main analyses to dyads four or fewer “degrees of separa-
tion” from one another, given our a priori hypotheses, when analyses were
repeated without excluding dyads five or more “degrees of separation”
from one another, neural similarity was still significantly related to social
network proximity across several brain networks. In all cases where con-
nectivity similarity was related to social network proximity, this relationship
was positive. This held true when using social distances weighted by emo-
tional closeness, as in our main analyses (SI Appendix, Table S12) and when
basing social distance on unweighted “degrees of separation” (SI Appendix,
Table S13).

Subjects indicated whether their alters were their parent, child, grand-
child, sibling or “other” relative (e.g., cousin, aunt, etc.). Of the 241 resulting
dyads, three dyads consisted of genetically related subjects and were ex-
cluded from analyses (two genetically related dyads consisted of siblings and
one consisted of “other” relatives). In sum, these 1,778 dyads were excluded
from analysis, resulting in 238 unique fMRI dyads, which consisted of 57 fMRI
subjects. Ultimately, we analyzed data from these 57 fMRI subjects (35

females, mean age = 70.66, SD = 6.28). The fMRI study was approved by and
performed in accordance with the relevant guidelines and regulations by
the Institutional Review Board of Yonsei University, and all subjects provided
written informed consent for the research procedure.
Image acquisition. Subjects were scanned at the Seoul National University Brain
Imaging Center using a 3T Siemens Trio scanner. An echo-planar sequence
(2,000-ms repetition time [TR]; 30-ms echo time [TE]; resolution 3.0 × 3.0 ×
3.0 mm; gap = 1 mm; field of view 240 × 240 mm) was used to acquire
resting-state fMRI data. For each subject, two 5-min runs were acquired,
totaling 10 min of data. A high-resolution T1-weighted magnetic prepared
rapid gradient echo scan was acquired or each subject (2,300 ms TR; 30 ms
TE; field of view 256 × 256 mm; resolution 1 × 1 × 1 mm) at the end of the
scanning session.
fMRI data preprocessing. fMRIPrep version 1.1.8 was used for anatomical and
functional data preprocessing (70). Each subject’s T1-weighted (T1w) image
was corrected for intensity nonuniformity with N4BiasFieldCorrection, dis-
tributed with ANTs 2.1.0, and used as T1w-reference throughout the
workflow. The T1w reference was then skull-stripped with a Nipype imple-
mentation of the antsBrainExtraction.sh workflow (from ANTs), using
OASIS30ANTs as target template. Spatial normalization to the ICBM 152
Nonlinear Asymmetrical template version 2009c (MNI152NLin2009cAsym)
was performed through nonlinear registration with antsRegistration
(implemented in ANTs 2.1.0), using brain-extracted versions of both T1w
volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF),
white matter (WM), and gray matter (GM) was performed on the brain-
extracted T1w using FSL FAST.

For each of the two blood oxygen level dependent (BOLD) runs per subject,
the following preprocessing was performed. First, a reference volume and its
skull-stripped version were generated using a custom methodology of
fMRIPrep. The BOLD reference was then coregistered to the T1w reference
using FSL FLIRT with the boundary-based registration cost function. Cor-
egistration was configured with nine degrees of freedom to account for
distortions remaining in the BOLD reference. Head-motion parameters with
respect to the BOLD reference (transformation matrices and six corre-
sponding rotation and translation parameters) were estimated before any
spatiotemporal filtering using FSL MCFLIRT. Automatic removal of motion
artifacts using independent component analysis (ICA-AROMA) was per-
formed on the preprocessed BOLD in MNI (Montreal Neurological Institute)
space time series after removal of nonsteady state volumes and spatial
smoothing with an isotropic, Gaussian kernel of 6-mm fullwidth at half
maximum. The BOLD time series were then resampled to MNI152N-
Lin2009cAsym standard space, generating a preprocessed BOLD run in
MNI152NLin2009cAsym space.

The confounding variables generated by fMRIPrep that were used as
nuisance variables in the current study included global signals extracted from
within the CSF, WM, and whole-brain masks, framewise displacement, three
translational motion parameters, three rotational motion parameters, a
basis set of cosine functions up to a cutoff of 128 s, and a set of physiological
noise regressors that were extracted to perform component-based noise
correction (anatomical CompCor, aCompCor). More specifically, aCompCor
variables were calculated within the intersection of a subcortical mask
(created by heavily eroding the brain mask) and the union of the CSF and
WM masks. These confounds were regressed out of the data for each pre-
processed run. Temporal filtering was performed with a band-pass filter
between 0.009 and 0.08 Hz.
Functional parcellation and whole-brain connectome construction. To delineate the
brain into regions of interest (ROIs), we used the Power et al. (31) atlas with
264 brain regions, 236 of which are associated with one of 13 functionally
defined brain networks: visual, auditory, cingulo-opercular task control,
cerebellar, dorsal attention, default mode, frontoparietal control, memory
retrieval, salience, somatosensory motor-hand, somatosensory motor-
mouth, subcortical, and ventral attention networks. Here, only the 236
ROIs associated with the above-mentioned brain networks were used
for analysis.

For each subject, in each of the 236 ROIs, the fMRI signal was spatially
averaged within a spherical mask (radius = 5 voxels) and extracted at each
time point to characterize the neural time series at each brain region. We
then calculated the pairwise Pearson correlations between all ROIs’ time
series in order to construct a symmetric 236 × 236 functional connectivity
matrix. This was conducted separately for each of the two resting-state fMRI
runs. The two functional connectivity matrices from each run were then
Fisher z-transformed and averaged to characterize each subject’s whole-
brain resting-state functional connectome.
Calculating dyadic similarities in whole-brain connectomes. For each subject, the
off-diagonal half of the whole-brain functional connectivity matrix was
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flattened into a vector containing 27,730 functional connectivity values. For
each of the unique pairs of fMRI subjects, we calculated pairwise Euclidean
distances (i.e., absolute value of numerical differences) between the corre-
sponding functional connectivity values in subjects’ connectome vectors. We
then negated these Euclidean distance values to convert them into similarity
values (i.e., higher values reflected higher neural similarity). This resulted in
a vector of 27,730 similarity values that characterized whole-brain con-
nectome similarity for each unique pair of fMRI subjects. To account for
demographic similarities that may be related to social network proximity
and/or similarity in resting-state functional connectivity, prior to all subse-
quent analyses we regressed out the effects of intersubject similarities in age
(i.e., negated Euclidean distance between each pair of individuals’ ages) and
in gender (i.e., 1: same gender; 0: dissimilar gender) from social network
proximity. Significant associations between demographic similarity (as well
as personality similarity) and similarity in connectivity within and between
functional brain networks are reported in SI Appendix, Table S10; significant
associations between demographic similarity (as well as personality similar-
ity) and social network proximity are reported in SI Appendix, Table S11.
Whole-brain connectome-based predictive modeling of social distance. As described
in the main text, we tested if similarities in individuals’ distributed patterns of
whole-brain resting-state functional connectivity would be predictive of
their proximity in their real-world social network, after having controlled for
the effects of demographic variables in the previous data analytic step. We
used Scikit-learn to implement PLSR (71), a multivariate data-driven re-
gression model that implements dimension reduction by maximizing the
covariance between predictors and the response variable to yield latent
variables, which are subsequently used as predictors. As such, PLSR is well-
suited for datasets whose predictors are characterized by high dimension-
ality and multicollinearity and is thus a powerful tool to predict response
variables using multivariate fMRI data (72, 73).

Scikit-learn’s KFold function was used to divide the data into 10 training
and test folds (71). Using Scikit-learn’s Pipeline function, we created an al-
gorithm that performed three steps in sequence on the training data for
each fold (models fit to each fold’s training data were used to predict social
network proximity based on neural similarities in the corresponding testing
data): 1) normalize the predictors using Scikit-learn’s RobustScaler function,
2) identify the 1,000 predictors that were mostly strongly associated with
social network proximity (as measured using F scores calculated by univari-
ate linear regression between each predictor and social distance), and 3)
implement PLSR using these 1,000 predictors. Although PLSR is a robust
solution to problems of high dimensionality, performing dimension reduc-
tion prior to implementing PLSR improves model performance (74). We used
a nested cross-validation scheme to perform hyperparameter tuning using a
grid search procedure (i.e., optimizing the n_components hyperparameter
from a grid/range of integers ranging from 1 to 10), such that the training
data of each of the 10 outer data folds were further subdivided into 10 inner
folds consisting of subtraining and validation datasets. Within each of these
inner folds, for each hyperparameter value provided in the hyperparameter
grid (i.e., n_components values ranging from 1 to 10), the algorithm was
trained on the subtraining data and tested on the validation data. The
hyperparameter value used in the model with the best performance across
all validation sets was identified as the optimal hyperparameter for the
corresponding outer training fold. Using this optimal hyperparameter, the
algorithm was trained on the outer fold’s training data and tested on the
outer fold’s testing data. This process was repeated for each of the 10 outer
data folds. Because each dyad was included in the testing data for one of the
outer data folds, this procedure yielded a predicted social network proximity
value for each dyad in the sample. Out-of-sample performance was evalu-
ated by calculating the Pearson r value between predicted and actual social
distance values. To account for the dependency structure of the data, this r
value was then tested against a null distribution of r values generated by
permutation testing. Neuroimaging data were randomly shuffled across
fMRI participants 5,000 times while holding all else in the dataset constant.
In each permuted dataset, the entire data analytic procedure described
above (including calculation of dyadic similarities in functional connectomes)
was repeated to generate a null distribution of 5,000 r values. P values were
determined by calculating the frequency with which the true model’s r value
exceeded the r values in the null distribution.

To test whether intersubject similarities in functional connectomes would
be predictive of social network proximity above and beyond the effects of
similarities not only in demographic variables but also in personality traits, we
repeated the primary analysis described above while also controlling for
interindividual similarities in personality. Personality was assessed using the
Big Five 44-item inventory (63), and dyadic similarities in personality were
calculated by computing (and negating) the Euclidean distance between

individuals’ set of five personality traits (i.e., extraversion, agreeableness,
consciousness, neuroticism, and openness).
Modeling social network proximity as a function of similarity in functional connec-
tivity at the level of brain networks. To complement our data-driven predictive
modeling framework and inform interpretations of these results, we tested
the relationships between social network proximity and intersubject simi-
larity in functional connectivity within brain networks and between each
possible unique pair of brain networks. To calculate similarity in functional
connectivity within each of the 13 functional brain networks defined in the
Power et al. (31) atlas, the following procedure was performed for each
subject. For each brain network, functional connectivity edges between
nodes associated with the brain network were averaged, yielding a single
value reflecting the average level of functional connectivity within that
brain network. To calculate similarity in functional connectivity between
brain networks for each of the 78 possible unique pairs of brain networks,
the following procedure was performed for each subject. For each pair of
brain networks, functional connectivity values corresponding to edges be-
tween nodes associated with each of the two brain networks were aver-
aged, yielding a single value reflecting the average level of functional
connectivity between those two brain networks. In total, 91 aggregate
functional connectivity values (13 characterizing connectivity within each
brain network and 78 characterizing connectivity between each of the
unique pairs of brain networks) were calculated for each subject. For each
aggregate functional connectivity value, intersubject similarity was com-
puted using Euclidean distance (distance values were negated to convert
them to similarity values).

For each brain network and for each unique pair of brain networks (i.e., 91
models total), the relationship between intersubject similarity in functional
connectivity and social network proximity was assessed using linear mixed-
effects models with crossed random effects (i.e., random intercepts) for both
participants to account for dependencies in the data introduced by having
repeated observations for each participant. We adopted the method sug-
gested by Chen et al. (32) for analyses of intersubject similarities of fMRI
data, which was implemented using lme4 and lmerTest in R (75, 76). The
intersubject similarity data were doubled to allow for crossed random ef-
fects, as suggested by Chen et al. (32). For statistical inference, to avoid in-
flating degrees of freedom due to the resultant data redundancy, degrees of
freedom were then corrected as suggested and validated by Chen et al.
(32)—for example, the degrees of freedom for the SE were adjusted from
(2N – k – 1) to (N – k – 1), where k is the number of fixed effects in the model
and N is the number of observations (dyads). SEs were adjusted with a

scaling factor of
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2N − 1
√

=
̅̅̅̅̅̅̅̅̅̅̅̅

N − 1
√

, where N is the number of participants. All
reported findings reflect results using the corrected degrees of freedom and
SE estimates. FDR correction was then implemented to correct for multiple
comparisons across all 91 statistical tests.
Exploratory moderation analysis. Exploratory analyses tested whether geo-
graphic distance moderated the relationship between connectome similarity
and social network proximity. For a given pair of subjects, geographic dis-
tance was calculated by computing the walking distance in meters between
the geographic coordinates encoding the location of residence for each in-
dividual. The significance of the main effect of geographic distance on social
network proximity, as well as the interaction between geographic distance
and neural similarity on social network proximity, was assessed using linear
mixed-effects models (using the approach described in the preceding sec-
tion) that contained fixed effects for neural similarity (described in more
detail below), geographic distance, and their interaction and crossed ran-
dom effects for both participants in each dyad. We carried out this proce-
dure using two approaches to characterize neural similarity: 1) using the
primary PLS component (to approximate the neural similarity data used in
the predictive modeling analyses) and 2) using the aggregate neural simi-
larity measures from the nine models in which similarity in functional con-
nectivity within and between brain networks was associated with social
network proximity (Table 1).

In the first approach, we implemented a PLSR-based algorithm to char-
acterize the connectome similarity variable. We first identified the modal
n_components value across all 10 data folds in the main analysis. In a sep-
arate implementation of the PLSR-based algorithm, we then set the
n_components value equal to the aforementioned modal value. This algo-
rithm then used connectome similarity across the entire sample to predict
social network proximity across the entire sample, and the primary PLS
component was extracted to be used as the neural similarity variable in the
moderation analysis. A cross-validation scheme was not used here, as it
would have produced multiple sets of different PLS components. Therefore,
this analysis is not used to assess the significance of the relationship between
neural similarity and social network proximity and is used only to assess how
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this relationship differs as a function of geographic distance for the aspects
of neural connectivity that are associated with social network proximity.

This process yielded latent variables that maximized the covariance be-
tween all of the functional connectivity-based predictors and social network
proximity. We extracted the latent variable that best maximized this co-
variance, and we then used this single variable as the connectome similarity
variable in approach 1 of the moderation analysis. This procedure was used
to obtain a single variable that approximated the overall characterization of
functional connectome similarity obtained in the predictive modeling anal-
ysis (as this variable necessarily varied across data folds in the predictive
modeling analysis), so that the impact of geographic distance on the rela-
tionship between this aggregate variable and social network proximity
could be explored. Given this procedure for deriving this aggregate con-
nectome similarity measure, inferences regarding the relationship between
neural similarity and social network proximity should be based on the
analyses described in the preceding sections (rather than the main effect of
neural similarity in this analysis or the extent to which each simple slope
differs from 0). This exploratory analysis is specifically focused on examining
how, for neural variables that are related to social network proximity, the

relationship between functional connectivity similarity and social network
proximity varies as a function of geographic distance.

We followed the common convention (77, 78) of visualizing slopes at
three levels of the moderator (the mean ± 1 SD). However, given that the
smallest geographic proximity values in this dataset were 0.958 SD below the
mean, this is the precise value of geographic proximity used for character-
izing and visualizing the simple slope for participants who lived particularly
close to one another (rounded down to −1 SD below mean in the legend of
Fig. 4 for simplicity).

Data Availability. Anonymized fMRI, social network, and questionnaire data
and code used for analyses have been deposited in a GitHub repository
(https://github.com/rhhyon/KSHAP-PNAS-2020).
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